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Background on Reeb graphs

Definition

Let X be a topological space and f : X — R a continuous function.
For every p,q € X, p ~ g whenever p,q belong to the same connected
component of f~1(f(p)). The quotient space X/~ is known as the
Reeb graph associated with f.

[Reeb, 1046]: If f:.t >R |} | | h
is a simple Morse function \/ ‘ n
then Re = .4/ ~¢ is a finite 2
simplicial complex of dimen- ‘ % H
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[Shinagawa-Kunii-Kergosien, 1991]: Surface coding based on Morse
theory.

30of 18




State-of-the-art in Reeb graphs comparison

[Hilaga-Shinagawa-Kohmura-Kunii, 2001]: Similarity between
polyhedral models is calculated by comparing Multiresolutional Reeb
Graphs constructed based on geodesic distance.

e Define similarity sim(P, Q) between two nodes P, Q weighted on
their attributes

e Nodes with maximal similarity are paired according to rules
introduced to ensure that topological consistency is preserved when
matching nodes.

e The similarity between two MRGs is the sum of all node
similarities:

SIM(R,S)= Y, sim(m,n)

meR,neS
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State-of-the-art in Reeb graphs comparison

[Biasotti-Marini-Spagnuolo-Falcidieno, 2006]: Comparison of
Extended Reeb Graphs is based on a relaxed version of the notion of
best common subgraph.

e A distance function d between two nodes v; and v» involves node
and edge attributes.

e The distance measure between two graphs G; and G is defined by

) (1—d(ya(v), y2(v)))
D61, &) =1- 3, — GG

veG

where G is the common sub-graph between G; and Gy, and v
and y» are the sub-graph isomorphisms from G to G; and from G
to Go.

e Heuristics are used to improve quality of the results and

computational time
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State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed
with simple Morse functions
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State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed

with simple Morse functions
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State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed
with simple Morse functions
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State-of-the-art in Reeb graphs comparison

[Bauer-Ge-Wang, 2014]: Functional distorsion distance
e Compares Reeb graphs Rr and R as topological spaces

e measures the minimum distortion in the values of f and g induced
by maps ®: Rr — Ry and V: R; — Ry

e stability property for tame functions on the same space

e more discriminative than the bottleneck distance




Edit distance for Reeb graphs of surfaces

e # is a connected, closed, orientable, smooth surface of genus g;

e f:.# — R is a simple Morse function;




Edit distance for Reeb graphs of surfaces

e # is a connected, closed, orientable, smooth surface of genus g;
e f:.# — R is a simple Morse function;

e there is a bijective correspondence between critical points of f and
vertices of .
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Edit distance for Reeb graphs of surfaces

e # is a connected, closed, orientable, smooth surface of genus g;
e f:.# — R is a simple Morse function;

e each v € V(I¢) is equipped with the value of f at the
corresponding critical point.

» do




Elementary deformations, inverses, and their costs

tr(v2) Le(v2) le(v2) le(v2)
ﬂ Lg(u2) ﬂ lg(1n)
W 1g(u) W Lg(u2)
Le(v1) Le(v1) Le(v1) Le(ve)
e Birth (B):

ey~ ) el
e Death (D):
o(T) = !ff(ul)gff(lb)\'
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Elementary deformations, inverses, and their costs

L¢(ve)
éf(uz)
(tn uz)
A lg(va) é
ff(V3) (V3
(V1) Le(v2) Lg(v1) lg(v2)

e Relabeling (R):

e(T) =, max [£(v) ~ Ls(v)]




Elementary deformations, inverses, and their costs

lr(ve) éf(Vs le(ve) 6(vs) Le(v1) lr(v1)

Lr(u2) (K!2 fy(un) lg(u2)

Le( Le(va)
Kf(ul)
(e —Q Lg(u1)
06 (ur) v
Le(va)

Le(v.
t1lvr) (v1) 07 (ve) Lr(vs) gf(va)f( 4)ff(V.s)
) Le(vs) fr(v) Le(vs)
frlen) e(wn)
Le(n) (K3) g (u2)
lr(v1) te Le(v1) lr(v2)

e (Kj), with i =1,2,3:
c(T) = max{|le(u1) = Lg(un)l; € (u2) — L (u2)}-




Deformations, inverses, and their costs

e A deformation of (I'¢,£f) is a finite ordered sequence
T=(T1,Ta,...,T,) of elementary deformations such that T; is an
elementary deformation of T;_1T;_5--- T1([¢,¢f) for every
i=1,...,r.

o o(T)= éf( T)).

e The inverse deformation of T is T~1 = (Tr_l,..., Tl_l).
(T H)=c(T).
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations

%g(ﬁ.)%ﬂ (K9
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations

(Ky) (d) (K3) (R) (K2) (K1)
(Ks) (K1) (D)

TeTsTaT3ToT1(T¢,0f)
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Connecting Reeb graphs by deformations

(Ky) (d) (K3) (R) (K2) (K1)
(Ks) (K1) (D)

TeTsTaT3ToT1(T¢,0f)
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Connecting Reeb graphs by deformations

(Ky) (D) (K3) (R) (K2) (K1) (B)
(Ks) (K1) (D)

TrTeTs T4 T3 ToT1(Mf lr) = (Tg,lg)
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Connecting Reeb graphs by deformations

(rf,Zf)

(Ky) (D) (K3) (R) (K2) (K1) (B)
(Ks) (K1) (D)

= T = (Tl,...,T7) c y((rfaef)a(rg’gg))

11 of 18




The edit distance
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The edit distance

Definition
For every two labeled Reeb graphs (['¢,f¢) and (g, ¢;), we set
d((Tr, lf),(Tg,lg)) = inf T).
(( fs f)7( g» g)) Tey((rfl,rl)f),(rg,ég))C( )
Definition

(Fr lr) = (Tg,Lg), if there exists an edge-preserving bijection
®: V([f) = V(Ig) such that lg(v) = Lg(P(v)) for all v e V(Ty).

Theorem
d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.

12 of 18
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Stability property
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Stability property

Theorem
d((Tr.lr), (Mg, lg)) < If — &l

An example in which d((I'¢,4¢),(Tg,4g)) <

l.,c3+a

é?’
,C+a

éQ
,C1+a

é‘ll
b
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Stability property (sketch of the proof)

74

al
7B

Let 7 = C=(4 ,R) = FOUFZUFU. .., with
o .70 = simple Morse functions;

o ZL = simple functions with exactly one degenerate critical point;
o .Z} = Morse functions with exactly one complicate point.
14 of 1.



Stability property (sketch of the proof)

Let f,g € .#°. We want to find the relationship between
d((rfﬁef)a(rgaeg)) and ”f_g”oo'
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Stability property (sketch of the proof)

There exist f;,g1 € Z° arbitrarily near to f,g, resp., for which the

path h(A)=(1—-A)A —i—lgl A €1[0,1], is such that
 h() belongs to F°0U.F* for every A € [0,1];

o h(A) is transversal to F*.
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Stability property (sketch of the proof)

A linear path between two functions hy, hy in the same connected
component of .7 corresponds to deformations of type (R) with cost

less than ||h; — hao]|...
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Stability property (sketch of the proof)

A linear path between two functions hy, hy across ﬂ’ol{ corresponds to
deformations of type (B) or (D) with cost less than ||h; — ha||...
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Stability property (sketch of the proof)




Stability property (sketch of the proof)

A linear path between two functions hy, hy across 9’[} correspond to a

deformation of type (R) or (K;), i =1,2,3 with cost less than
[ — hall...

14 of 18



Stability property (sketch of the proof)
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Stability property (sketch of the proof)
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Stability property (sketch of the proof)
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Optimality of the edit distance
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Optimality of the edit distance

Theorem
d((T¢,4¢),(Tg,lg)) = inf f—gol|..
((Tr.lr), (Mg, lg)) éeDiff(//l)H go&l|
Theorem (Cagliari, Di Fabio, L., Forum Mathematicum)
o([f],lg]) ;== inf ||f —goé&ll~ is a metric on classes of simple
eeDifR.u)
Morse functions of surfaces up to composition with diffeomorphisms.

Corollary

d is a metric on isomorphism classes of labeled Reeb graphs.

15 of 18
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Relationship with the bottleneck distance

Corollary

Let D¢, Dy denote the persistence diagrams of f,g, and dg the
bottleneck distance. It holds that dg(Df,Dg) < d((T',lf), (Mg, 4g))
and the inequality may be strict.
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Relationship with the bottleneck distance

Corollary

Let D¢, Dy denote the persistence diagrams of f,g, and dg the
bottleneck distance. It holds that dg(Df,Dg) < d((T',lf), (Mg, 4g))
and the inequality may be strict.




Relationship with the functional distortion distance

Corollary

Let R¢, Ry denote the Reeb spaces of f,g, and drp the functional
distortion distance. It holds that drp(Rr,Rg) < d((T¢,l¢), (Mg, 4g))
and the inequality may be strict.
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Relationship with the functional distortion distance

Corollary

Let R¢, Ry denote the Reeb spaces of f,g, and drp the functional
distortion distance. It holds that drp(Rr,Rg) < d((T¢,l¢), (Mg, 4g))
and the inequality may be strict.

f (Tr,lr)

Clf—" Ry D
Bl e )

Ay




To do

e Generalization to the piecewise-linear case
e Generalization to the comparison of non-diffeomorphic surfaces
e Algorithm
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Thank you for your attention!
Preprint: http://arxiv.org/abs/1411.1544
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