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Outline

• Background on Reeb graphs

• State-of-the-art in Reeb graphs comparison

• Edit Distance between Reeb graphs of surfaces
◦ combinatorial definition;
◦ stability property;
◦ optimality.

• Relationships with other stable metrics
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Background on Reeb graphs

Definition

Let X be a topological space and f : X → R a continuous function.
For every p,q ∈ X , p ∼ q whenever p,q belong to the same connected
component of f −1(f (p)). The quotient space X/∼f is known as the
Reeb graph associated with f .

[Reeb, 1946]: If f : M → R

is a simple Morse function
then Rf = M /∼f is a finite
simplicial complex of dimen-
sion 1.

[Shinagawa-Kunii-Kergosien, 1991]: Surface coding based on Morse
theory.
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State-of-the-art in Reeb graphs comparison

[Hilaga-Shinagawa-Kohmura-Kunii, 2001]: Similarity between
polyhedral models is calculated by comparing Multiresolutional Reeb
Graphs constructed based on geodesic distance.

• Define similarity sim(P ,Q) between two nodes P ,Q weighted on
their attributes

• Nodes with maximal similarity are paired according to rules
introduced to ensure that topological consistency is preserved when
matching nodes.

• The similarity between two MRGs is the sum of all node
similarities:

SIM(R ,S) = ∑
m∈R,n∈S

sim(m,n)
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State-of-the-art in Reeb graphs comparison

[Biasotti-Marini-Spagnuolo-Falcidieno, 2006]: Comparison of
Extended Reeb Graphs is based on a relaxed version of the notion of
best common subgraph.

• A distance function d between two nodes v1 and v2 involves node
and edge attributes.

• The distance measure between two graphs G1 and G2 is defined by

D(G1,G2) = 1− ∑
v∈G

(1−d(ψ1(v),ψ2(v)))

max(|G1|, |G2|)
where G is the common sub-graph between G1 and G2, and ψ1

and ψ2 are the sub-graph isomorphisms from G to G1 and from G
to G2.

• Heuristics are used to improve quality of the results and
computational time
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State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed
with simple Morse functions
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State-of-the-art in Reeb graphs comparison

[Bauer-Ge-Wang, 2014]: Functional distorsion distance

• Compares Reeb graphs Rf and Rg as topological spaces

• measures the minimum distortion in the values of f and g induced
by maps Φ : Rf → Rg and Ψ : Rg → Rf

• stability property for tame functions on the same space

• more discriminative than the bottleneck distance
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Edit distance for Reeb graphs of surfaces

• M is a connected, closed, orientable, smooth surface of genus g;

• f : M → R is a simple Morse function;
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Edit distance for Reeb graphs of surfaces

• M is a connected, closed, orientable, smooth surface of genus g;

• f : M → R is a simple Morse function;

• there is a bijective correspondence between critical points of f and
vertices of Γf .
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Edit distance for Reeb graphs of surfaces

• M is a connected, closed, orientable, smooth surface of genus g;

• f : M → R is a simple Morse function;

• each v ∈ V (Γf ) is equipped with the value of f at the
corresponding critical point.
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Elementary deformations, inverses, and their costs

�f (v1)�f (v1)�f (v1)�f (v1)

�g (u1)

�g (u1)
�g (u2)

�g (u2)

�f (v2)�f (v2)�f (v2)�f (v2)

(B)(B)

(D)(D)

• Birth (B):

c(T ) =
|�g (u1)− �g (u2)|

2
.

• Death (D):

c(T ) =
|�f (u1)− �f (u2)|

2
.
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Elementary deformations, inverses, and their costs

�f (v1)

�g (u1)
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�g (v6)�f (v6)

(R)

• Relabeling (R):

c(T ) = max
v∈V (Γf )

|�f (v)− �g (v)|.
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Elementary deformations, inverses, and their costs
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• (Ki ), with i = 1,2,3:

c(T ) = max{|�f (u1)− �g (u1)|, |�f (u2)− �g (u2)|}.
9 of 18



Deformations, inverses, and their costs

• A deformation of (Γf , �f ) is a finite ordered sequence
T = (T1,T2, . . . ,Tr ) of elementary deformations such that Ti is an
elementary deformation of Ti−1Ti−2 · · ·T1(Γf , �f ) for every
i = 1, . . . , r .

• c(T ) =
r

∑
i=1

c(Ti).

• The inverse deformation of T is T−1 = (T−1
r , . . . ,T−1

1 ).
Clearly, T−1(Γg , �g ) = T−1

1 · · ·T−1
r (Γg , �g )� (Γf , �f ), and

c(T−1) = c(T ).
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations

(K3) (K3)(D)

(D)

T3T2T1(Γf , �f )

11 of 18



Connecting Reeb graphs by deformations

(K3) (K3)(D)

(D)

T3T2T1(Γf , �f )

11 of 18



Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations
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Connecting Reeb graphs by deformations

(Γf ,�f ) (Γg ,�g )
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(K1)(K2)(K3) (K3)

(K3)

(D)
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(B)

⇒ T = (T1, . . . ,T7) ∈ T ((Γf , �f ),(Γg , �g ))
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The edit distance

Definition

For every two labeled Reeb graphs (Γf , �f ) and (Γg , �g ), we set

d((Γf , �f ),(Γg , �g )) = inf
T∈T ((Γf ,�f ),(Γg ,�g ))

c(T ).
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The edit distance

Definition

For every two labeled Reeb graphs (Γf , �f ) and (Γg , �g ), we set

d((Γf , �f ),(Γg , �g )) = inf
T∈T ((Γf ,�f ),(Γg ,�g ))

c(T ).

Definition

(Γf , �f )∼= (Γg , �g ), if there exists an edge-preserving bijection
Φ : V (Γf )→ V (Γg ) such that �f (v) = �g (Φ(v)) for all v ∈ V (Γf ).

Theorem

d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.
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Stability property

Theorem

d((Γf , �f ),(Γg , �g ))≤ ‖f −g‖∞.
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Stability property

Theorem

d((Γf , �f ),(Γg , �g ))≤ ‖f −g‖∞.

An example in which d((Γf , �f ),(Γg , �g ))≤ a

2
:

c1+ a
c1

c2+ a
c2

c3+ a
c3

b2 b2

b1 b1

(Γf , �f ) (Γg , �g )f g
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

Let F = C∞(M ,R) = F 0∪F 1
α ∪F 1

β ∪ . . ., with
• F 0 = simple Morse functions;
• F 1

α = simple functions with exactly one degenerate critical point;
• F 1

β =Morse functions with exactly one complicate point.
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

f

g

Let f ,g ∈ F 0. We want to find the relationship between
d((Γf , �f ),(Γg , �g )) and ‖f −g‖∞.
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

f

g

f1

g1

There exist f1,g1 ∈ F 0 arbitrarily near to f ,g , resp., for which the
path h(λ ) = (1−λ )f1+λg1, λ ∈ [0,1], is such that
• h(λ ) belongs to F 0∪F 1 for every λ ∈ [0,1];
• h(λ ) is transversal to F 1.
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

f

g

f1

g1

h1

h2

A linear path between two functions h1, h2 in the same connected
component of F 0 corresponds to deformations of type (R) with cost
less than ‖h1−h2‖∞.
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

f

g

f1

g1

h̄
h1

h2

A linear path between two functions h1, h2 across F 1
α corresponds to

deformations of type (B) or (D) with cost less than ‖h1−h2‖∞.
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Stability property (sketch of the proof)

(B)

(D)

h̄h1 h2
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Stability property (sketch of the proof)

F 0

F 1
α

F 1
β

f

g

f1

g1

h̄
h1

h2

A linear path between two functions h1, h2 across F 1
β correspond to a

deformation of type (R) or (Ki ), i = 1,2,3 with cost less than
‖h1−h2‖∞.
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Stability property (sketch of the proof)

p p pqq qq qq

(R)

h̄h1 h2
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Stability property (sketch of the proof)

pp pqq q

(K1)

h̄h1 h2
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Stability property (sketch of the proof)

pp pppp q qq

(K2)

(K3)

h̄h1 h2

14 of 18



Stability property (sketch of the proof)
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Stability property (sketch of the proof)
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Optimality of the edit distance

Theorem

d((Γf , �f ),(Γg , �g )) = inf
ξ∈Diff(M )

‖f −g ◦ξ‖∞.
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Optimality of the edit distance

Theorem

d((Γf , �f ),(Γg , �g )) = inf
ξ∈Diff(M )

‖f −g ◦ξ‖∞.

Theorem (Cagliari, Di Fabio, L., Forum Mathematicum)

δ ([f ], [g ]) := inf
ξ∈Diff(M )

‖f −g ◦ξ‖∞ is a metric on classes of simple

Morse functions of surfaces up to composition with diffeomorphisms.

Corollary

d is a metric on isomorphism classes of labeled Reeb graphs.
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Relationship with the bottleneck distance

Corollary

Let Df ,Dg denote the persistence diagrams of f ,g, and dB the
bottleneck distance. It holds that dB(Df ,Dg )≤ d((Γf , �f ),(Γg , �g ))
and the inequality may be strict.
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Relationship with the bottleneck distance

Corollary

Let Df ,Dg denote the persistence diagrams of f ,g, and dB the
bottleneck distance. It holds that dB(Df ,Dg )≤ d((Γf , �f ),(Γg , �g ))
and the inequality may be strict.

00
11
22
33
44
55
66

Df = Dg7

77
f g(Γf , �f ) (Γg , �g )
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Relationship with the functional distortion distance

Corollary

Let Rf ,Rg denote the Reeb spaces of f ,g, and dFD the functional
distortion distance. It holds that dFD(Rf ,Rg )≤ d((Γf , �f ),(Γg , �g ))
and the inequality may be strict.
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Relationship with the functional distortion distance

Corollary

Let Rf ,Rg denote the Reeb spaces of f ,g, and dFD the functional
distortion distance. It holds that dFD(Rf ,Rg )≤ d((Γf , �f ),(Γg , �g ))
and the inequality may be strict.

bb

dd

c1

c2

c1+ a

c2+ a

gf (Γf , �f ) (Γg , �g
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To do

• Generalization to the piecewise-linear case

• Generalization to the comparison of non-diffeomorphic surfaces

• Algorithm
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Thank you for your attention!
Preprint: http://arxiv.org/abs/1411.1544
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