The edit distance for Reeb graphs of surfaces

Barbara Di Fabio ${ }^{1,3}$, Claudia Landi ${ }^{2,3}$

${ }^{1}$ Dipartimento di Matematica, Università di Bologna
${ }^{2}$ Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia
${ }^{3}$ ARCES, Università di Bologna

Discrete, Computational and Algebraic Topology November 10-14, 2014

Outline

- Background on Reeb graphs
- State-of-the-art in Reeb graphs comparison
- Edit Distance between Reeb graphs of surfaces
- combinatorial definition;
- stability property;
- optimality.
- Relationships with other stable metrics

Background on Reeb graphs

Definition

Let X be a topological space and $f: X \rightarrow \mathbb{R}$ a continuous function. For every $p, q \in X, p \sim q$ whenever p, q belong to the same connected component of $f^{-1}(f(p))$. The quotient space X / \sim_{f} is known as the Reeb graph associated with f.
[Reeb, 1946]: If $f: \mathscr{M} \rightarrow \mathbb{R}$ is a simple Morse function then $R_{f}=\mathscr{M} / \sim_{f}$ is a finite simplicial complex of dimension 1.

[Shinagawa-Kunii-Kergosien, 1991]: Surface coding based on Morse theory.

State-of-the-art in Reeb graphs comparison

[Hilaga-Shinagawa-Kohmura-Kunii, 2001]: Similarity between polyhedral models is calculated by comparing Multiresolutional Reeb Graphs constructed based on geodesic distance.

- Define similarity $\operatorname{sim}(P, Q)$ between two nodes P, Q weighted on their attributes
- Nodes with maximal similarity are paired according to rules introduced to ensure that topological consistency is preserved when matching nodes.
- The similarity between two MRGs is the sum of all node similarities:

$$
\operatorname{SIM}(R, S)=\sum_{m \in R, n \in S} \operatorname{sim}(\bar{m}, \bar{n})
$$

State-of-the-art in Reeb graphs comparison

[Biasotti-Marini-Spagnuolo-Falcidieno, 2006]: Comparison of
Extended Reeb Graphs is based on a relaxed version of the notion of best common subgraph.

- A distance function d between two nodes v_{1} and v_{2} involves node and edge attributes.
- The distance measure between two graphs G_{1} and G_{2} is defined by

$$
D\left(G_{1}, G_{2}\right)=1-\sum_{v \in G} \frac{\left(1-d\left(\psi_{1}(v), \psi_{2}(v)\right)\right)}{\max \left(\left|G_{1}\right|,\left|G_{2}\right|\right)}
$$

where G is the common sub-graph between G_{1} and G_{2}, and ψ_{1} and ψ_{2} are the sub-graph isomorphisms from G to G_{1} and from G to G_{2}.

- Heuristics are used to improve quality of the results and computational time

State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^0]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^1]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^2]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^3]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^4]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^5]
State-of-the-art in Reeb graphs comparison

[Di Fabio-L. 2012]: Edit distance for Reeb graphs of curves endowed with simple Morse functions

[^6]
State-of-the-art in Reeb graphs comparison

[Bauer-Ge-Wang, 2014]: Functional distorsion distance

- Compares Reeb graphs R_{f} and R_{g} as topological spaces
- measures the minimum distortion in the values of f and g induced by maps $\Phi: R_{f} \rightarrow R_{g}$ and $\Psi: R_{g} \rightarrow R_{f}$
- stability property for tame functions on the same space
- more discriminative than the bottleneck distance

Edit distance for Reeb graphs of surfaces

- \mathscr{M} is a connected, closed, orientable, smooth surface of genus \mathfrak{g};
- $f: \mathscr{M} \rightarrow \mathbb{R}$ is a simple Morse function;

Edit distance for Reeb graphs of surfaces

- \mathscr{M} is a connected, closed, orientable, smooth surface of genus \mathfrak{g};
- $f: \mathscr{M} \rightarrow \mathbb{R}$ is a simple Morse function;
- there is a bijective correspondence between critical points of f and vertices of Γ_{f}.

Edit distance for Reeb graphs of surfaces

- \mathscr{M} is a connected, closed, orientable, smooth surface of genus \mathfrak{g};
- $f: \mathscr{M} \rightarrow \mathbb{R}$ is a simple Morse function;
- each $v \in V\left(\Gamma_{f}\right)$ is equipped with the value of f at the corresponding critical point.

Elementary deformations, inverses, and their costs

- Birth (B):

$$
c(T)=\frac{\left|\ell_{g}\left(u_{1}\right)-\ell_{g}\left(u_{2}\right)\right|}{2} .
$$

- Death (D):

$$
c(T)=\frac{\left|\ell_{f}\left(u_{1}\right)-\ell_{f}\left(u_{2}\right)\right|}{2} .
$$

Elementary deformations, inverses, and their costs

- Relabeling (R):

$$
c(T)=\max _{v \in V\left(\Gamma_{f}\right)}\left|\ell_{f}(v)-\ell_{g}(v)\right| .
$$

Elementary deformations, inverses, and their costs

- $\left(\mathrm{K}_{i}\right)$, with $i=1,2,3$:

$$
c(T)=\max \left\{\left|\ell_{f}\left(u_{1}\right)-\ell_{g}\left(u_{1}\right)\right|,\left|\ell_{f}\left(u_{2}\right)-\ell_{g}\left(u_{2}\right)\right|\right\}
$$

Deformations, inverses, and their costs

- A deformation of $\left(\Gamma_{f}, \ell_{f}\right)$ is a finite ordered sequence $T=\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ of elementary deformations such that T_{i} is an elementary deformation of $T_{i-1} T_{i-2} \cdots T_{1}\left(\Gamma_{f}, \ell_{f}\right)$ for every $i=1, \ldots, r$.
- $c(T)=\sum_{i=1}^{r} c\left(T_{i}\right)$.
- The inverse deformation of T is $T^{-1}=\left(T_{r}^{-1}, \ldots, T_{1}^{-1}\right)$. Clearly, $T^{-1}\left(\Gamma_{g}, \ell_{g}\right)=T_{1}^{-1} \cdots T_{r}^{-1}\left(\Gamma_{g}, \ell_{g}\right) \simeq\left(\Gamma_{f}, \ell_{f}\right)$, and $c\left(T^{-1}\right)=c(T)$.

Connecting Reeb graphs by deformations

Connecting Reeb graphs by deformations

Connecting Reeb graphs by deformations

$T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

\%

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{5} T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{5} T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{6} T_{5} T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{6} T_{5} T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)$

Connecting Reeb graphs by deformations

$T_{7} T_{6} T_{5} T_{4} T_{3} T_{2} T_{1}\left(\Gamma_{f}, \ell_{f}\right)=\left(\Gamma_{g}, \ell_{g}\right)$

Connecting Reeb graphs by deformations

The edit distance

Definition

For every two labeled Reeb graphs $\left(\Gamma_{f}, \ell_{f}\right)$ and $\left(\Gamma_{g}, \ell_{g}\right)$, we set

$$
d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)=\inf _{T \in \mathscr{T}\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)} c(T) .
$$

The edit distance

Definition

For every two labeled Reeb graphs $\left(\Gamma_{f}, \ell_{f}\right)$ and $\left(\Gamma_{g}, \ell_{g}\right)$, we set

$$
d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)=\inf _{T \in \mathscr{T}\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)} c(T) .
$$

Definition

$\left(\Gamma_{f}, \ell_{f}\right) \cong\left(\Gamma_{g}, \ell_{g}\right)$, if there exists an edge-preserving bijection $\Phi: V\left(\Gamma_{f}\right) \rightarrow V\left(\Gamma_{g}\right)$ such that $\ell_{f}(v)=\ell_{g}(\Phi(v))$ for all $v \in V\left(\Gamma_{f}\right)$.

Theorem

d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.

Stability property

Theorem
$d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right) \leq\|f-g\|_{\infty}$.

Stability property

Theorem
$d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right) \leq\|f-g\|_{\infty}$.

An example in which $d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right) \leq \frac{a}{2}:$

Stability property (sketch of the proof)

Let $\mathscr{F}=C^{\infty}(\mathscr{M}, \mathbb{R})=\mathscr{F}^{0} \cup \mathscr{F}_{\alpha}^{1} \cup \mathscr{F}_{\beta}^{1} \cup \ldots$, with

- $\mathscr{F}^{0}=$ simple Morse functions;
- $\mathscr{F}_{\alpha}^{1}=$ simple functions with exactly one degenerate critical point;
$\underset{14 \text { of } 18}{-\mathscr{F}_{1}^{1}}=$ Morse functions with exactly one complicate point.

Stability property (sketch of the proof)

Let $f, g \in \mathscr{F}^{0}$. We want to find the relationship between $d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)$ and $\|f-g\|_{\infty}$.

Stability property (sketch of the proof)

There exist $f_{1}, g_{1} \in \mathscr{F}^{0}$ arbitrarily near to f, g, resp., for which the path $h(\lambda)=(1-\lambda) f_{1}+\lambda g_{1}, \lambda \in[0,1]$, is such that

- $h(\lambda)$ belongs to $\mathscr{F}^{0} \cup \mathscr{F}^{1}$ for every $\lambda \in[0,1]$;
- $h(\lambda)$ is transversal to \mathscr{F}^{1}.

14 of 18

Stability property (sketch of the proof)

A linear path between two functions h_{1}, h_{2} in the same connected component of \mathscr{F}^{0} corresponds to deformations of type (R) with cost less than $\left\|h_{1}-h_{2}\right\|_{\infty}$.

Stability property (sketch of the proof)

A linear path between two functions h_{1}, h_{2} across \mathscr{F}_{α}^{1} corresponds to deformations of type (B) or (D) with cost less than $\left\|h_{1}-h_{2}\right\|_{\infty}$.

Stability property (sketch of the proof)

Stability property (sketch of the proof)

A linear path between two functions h_{1}, h_{2} across \mathscr{F}_{β}^{1} correspond to a deformation of type (R) or $\left(\mathrm{K}_{i}\right), i=1,2,3$ with cost less than $\left\|h_{1}-h_{2}\right\|_{\infty}$.

Stability property (sketch of the proof)

Stability property (sketch of the proof)

Stability property (sketch of the proof)

Stability property (sketch of the proof)

Stability property (sketch of the proof)

Optimality of the edit distance
Theorem
$d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)=\inf _{\xi \in \operatorname{Diff(\mu)}}\|f-g \circ \xi\|_{\infty}$.

Optimality of the edit distance

Theorem
$d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)=\inf _{\xi \in \operatorname{Diff(\mu)}}\|f-g \circ \xi\|_{\infty}$.
Theorem (Cagliari, Di Fabio, L., Forum Mathematicum)
$\delta([f],[g]):=\inf _{\xi \in \operatorname{Diff}(\mathbb{M})}\|f-g \circ \xi\|_{\infty}$ is a metric on classes of simple Morse functions of surfaces up to composition with diffeomorphisms.

Corollary

d is a metric on isomorphism classes of labeled Reeb graphs.

Relationship with the bottleneck distance

Corollary

Let D_{f}, D_{g} denote the persistence diagrams of f, g, and d_{B} the bottleneck distance. It holds that $d_{B}\left(D_{f}, D_{g}\right) \leq d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)$ and the inequality may be strict.

Relationship with the bottleneck distance

Corollary

Let D_{f}, D_{g} denote the persistence diagrams of f, g, and d_{B} the bottleneck distance. It holds that $d_{B}\left(D_{f}, D_{g}\right) \leq d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)$ and the inequality may be strict.

Relationship with the functional distortion distance

Corollary

Let R_{f}, R_{g} denote the Reeb spaces of f, g, and $d_{F D}$ the functional distortion distance. It holds that $d_{F D}\left(R_{f}, R_{g}\right) \leq d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)$ and the inequality may be strict.

Relationship with the functional distortion distance

Corollary

Let R_{f}, R_{g} denote the Reeb spaces of f, g, and $d_{F D}$ the functional distortion distance. It holds that $d_{F D}\left(R_{f}, R_{g}\right) \leq d\left(\left(\Gamma_{f}, \ell_{f}\right),\left(\Gamma_{g}, \ell_{g}\right)\right)$ and the inequality may be strict.

17 of 18

To do

- Generalization to the piecewise-linear case
- Generalization to the comparison of non-diffeomorphic surfaces
- Algorithm

To do

- Generalization to the piecewise-linear case
- Generalization to the comparison of non-diffeomorphic surfaces
- Algorithm

> Thank you for your attention!
> Preprint: http://arxiv.org/abs/1411.1544

[^0]: 6 of 18

[^1]: 6 of 18

[^2]: 6 of 18

[^3]: 6 of 18

[^4]: 6 of 18

[^5]: 6 of 18

[^6]: 6 of 18

