The edit distance for Reeb graphs of surfaces

Barbara Di Fabio^{1,3}, <u>Claudia Landi^{2,3}</u>

¹Dipartimento di Matematica, Università di Bologna ²Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia ³ARCES, Università di Bologna barbara.difabio@unibo.it, claudia.landi@unimore.it

Discrete, Computational and Algebraic Topology November 10-14, 2014

Outline

- Background on Reeb graphs
- State-of-the-art in Reeb graphs comparison
- Edit Distance between Reeb graphs of surfaces
 - combinatorial definition;
 - stability property;
 - optimality.
- Relationships with other stable metrics

Background on Reeb graphs

Definition

Let X be a topological space and $f: X \to \mathbb{R}$ a continuous function. For every $p, q \in X$, $p \sim q$ whenever p, q belong to the same connected component of $f^{-1}(f(p))$. The quotient space X/\sim_f is known as the *Reeb graph* associated with f.

[Reeb, 1946]: If $f : \mathcal{M} \to \mathbb{R}$ is a simple Morse function then $R_f = \mathcal{M} / \sim_f$ is a finite simplicial complex of dimension 1.

[Shinagawa-Kunii-Kergosien, 1991]: Surface coding based on Morse theory.

[Hilaga-Shinagawa-Kohmura-Kunii, 2001]: Similarity between polyhedral models is calculated by comparing Multiresolutional Reeb Graphs constructed based on geodesic distance.

- Define similarity sim(P, Q) between two nodes P, Q weighted on their attributes
- Nodes with maximal similarity are paired according to rules introduced to ensure that topological consistency is preserved when matching nodes.
- The similarity between two MRGs is the sum of all node similarities:

$$SIM(R,S) = \sum_{m \in R, n \in S} sim(\overline{m},\overline{n})$$

[Biasotti-Marini-Spagnuolo-Falcidieno, 2006]: Comparison of Extended Reeb Graphs is based on a relaxed version of the notion of best common subgraph.

- A distance function *d* between two nodes *v*₁ and *v*₂ involves node and edge attributes.
- The distance measure between two graphs G_1 and G_2 is defined by

$$D(G_1, G_2) = 1 - \sum_{v \in G} \frac{(1 - d(\psi_1(v), \psi_2(v)))}{\max(|G_1|, |G_2|)}$$

where G is the common sub-graph between G_1 and G_2 , and ψ_1 and ψ_2 are the sub-graph isomorphisms from G to G_1 and from G to G_2 .

• Heuristics are used to improve quality of the results and computational time

[Bauer-Ge-Wang, 2014]: Functional distorsion distance

- Compares Reeb graphs R_f and R_g as topological spaces
- measures the minimum distortion in the values of f and g induced by maps $\Phi: R_f \to R_g$ and $\Psi: R_g \to R_f$
- stability property for tame functions on the same space
- more discriminative than the bottleneck distance

Edit distance for Reeb graphs of surfaces

- *M* is a connected, closed, orientable, smooth surface of genus g;
- $f: \mathcal{M} \to \mathbb{R}$ is a simple Morse function;

Edit distance for Reeb graphs of surfaces

- *M* is a connected, closed, orientable, smooth surface of genus g;
- $f : \mathcal{M} \to \mathbb{R}$ is a simple Morse function;
- there is a bijective correspondence between critical points of *f* and vertices of Γ_f.

Edit distance for Reeb graphs of surfaces

- *M* is a connected, closed, orientable, smooth surface of genus g;
- $f: \mathcal{M} \to \mathbb{R}$ is a simple Morse function;
- each v ∈ V(Γ_f) is equipped with the value of f at the corresponding critical point.

Elementary deformations, inverses, and their costs

• Birth (B):

$$c(T) = \frac{|\ell_g(u_1) - \ell_g(u_2)|}{2}$$

• Death (D):

$$c(T) = \frac{|\ell_f(u_1) - \ell_f(u_2)|}{2}.$$

Elementary deformations, inverses, and their costs

• Relabeling (R):

$$c(T) = \max_{v \in V(\Gamma_f)} |\ell_f(v) - \ell_g(v)|.$$

Elementary deformations, inverses, and their costs

• (K_i), with i = 1, 2, 3:

$$c(T) = \max\{|\ell_f(u_1) - \ell_g(u_1)|, |\ell_f(u_2) - \ell_g(u_2)|\}.$$

Deformations, inverses, and their costs

 A deformation of (Γ_f, ℓ_f) is a finite ordered sequence T = (T₁, T₂,..., T_r) of elementary deformations such that T_i is an elementary deformation of T_{i-1}T_{i-2}··· T₁(Γ_f, ℓ_f) for every i = 1,...,r.

•
$$c(T) = \sum_{i=1}^{r} c(T_i).$$

• The inverse deformation of T is $T^{-1} = (T_r^{-1}, \ldots, T_1^{-1})$. Clearly, $T^{-1}(\Gamma_g, \ell_g) = T_1^{-1} \cdots T_r^{-1}(\Gamma_g, \ell_g) \simeq (\Gamma_f, \ell_f)$, and $c(T^{-1}) = c(T)$.

 $T_1(\Gamma_f,\ell_f)$

 $T_1(\Gamma_f,\ell_f)$

 $T_2 T_1(\Gamma_f, \ell_f)$

 $T_2 T_1(\Gamma_f, \ell_f)$

 $T_3T_2T_1(\Gamma_f,\ell_f)$

 $T_3T_2T_1(\Gamma_f,\ell_f)$

 $T_3T_2T_1(\Gamma_f,\ell_f)$

 $T_3T_2T_1(\Gamma_f,\ell_f)$

 $T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_5 T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_5 T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_6 T_5 T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_6 T_5 T_4 T_3 T_2 T_1(\Gamma_f, \ell_f)$

 $T_7 T_6 T_5 T_4 T_3 T_2 T_1(\Gamma_f, \ell_f) = (\Gamma_g, \ell_g)$

The edit distance

Definition

For every two labeled Reeb graphs (Γ_f, ℓ_f) and (Γ_g, ℓ_g), we set

$$d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) = \inf_{T \in \mathscr{T}((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))} c(T).$$

The edit distance

Definition

For every two labeled Reeb graphs (Γ_f, ℓ_f) and (Γ_g, ℓ_g) , we set

$$d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) = \inf_{\mathcal{T} \in \mathscr{T}((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))} c(\mathcal{T}).$$

Definition

 $(\Gamma_f, \ell_f) \cong (\Gamma_g, \ell_g)$, if there exists an edge-preserving bijection $\Phi: V(\Gamma_f) \to V(\Gamma_g)$ such that $\ell_f(v) = \ell_g(\Phi(v))$ for all $v \in V(\Gamma_f)$.

Theorem

d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.

Stability property

Theorem $d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) \le \|f - g\|_{\infty}.$

Stability property

Theorem

 $d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) \leq ||f - g||_{\infty}.$

Let
$$\mathscr{F} = \mathcal{C}^{\infty}(\mathscr{M}, \mathbb{R}) = \mathscr{F}^0 \cup \mathscr{F}^1_{\alpha} \cup \mathscr{F}^1_{\beta} \cup \dots$$
, with
 $\mathscr{F}^0 = \text{simple Morse functions:}$

• \mathscr{F}^1_{α} = simple functions with exactly one degenerate critical point; • \mathscr{F}^1_{β} = Morse functions with exactly one complicate point.

Let $f, g \in \mathscr{F}^0$. We want to find the relationship between $d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))$ and $||f - g||_{\infty}$.

There exist $f_1, g_1 \in \mathscr{F}^0$ arbitrarily near to f, g, resp., for which the path $h(\lambda) = (1 - \lambda)f_1 + \lambda g_1$, $\lambda \in [0, 1]$, is such that • $h(\lambda)$ belongs to $\mathscr{F}^0 \cup \mathscr{F}^1$ for every $\lambda \in [0, 1]$; • $h(\lambda)$ is transversal to \mathscr{F}^1 .

A linear path between two functions h_1 , h_2 in the same connected component of \mathscr{F}^0 corresponds to deformations of type (R) with cost less than $||h_1 - h_2||_{\infty}$.

A linear path between two functions h_1 , h_2 across \mathscr{F}^1_{α} corresponds to deformations of type (B) or (D) with cost less than $||h_1 - h_2||_{\infty}$.

A linear path between two functions h_1 , h_2 across \mathscr{F}_{β}^1 correspond to a deformation of type (R) or (K_i), i = 1, 2, 3 with cost less than $\|h_1 - h_2\|_{\infty}$.

Optimality of the edit distance

Theorem $d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) = \inf_{\xi \in Diff(\mathscr{M})} \|f - g \circ \xi\|_{\infty}.$

Optimality of the edit distance

Theorem

$$d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g)) = \inf_{\xi \in Diff(\mathscr{M})} \|f - g \circ \xi\|_{\infty}.$$

Theorem (Cagliari, Di Fabio, L., Forum Mathematicum) $\delta([f],[g]) := \inf_{\xi \in Diff(\mathscr{M})} ||f - g \circ \xi||_{\infty} \text{ is a metric on classes of simple}$ Morse functions of surfaces up to composition with diffeomorphisms.

Corollary

d is a metric on isomorphism classes of labeled Reeb graphs.

Relationship with the bottleneck distance

Corollary

Let D_f, D_g denote the persistence diagrams of f, g, and d_B the bottleneck distance. It holds that $d_B(D_f, D_g) \leq d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))$ and the inequality may be strict.

Relationship with the bottleneck distance

Corollary

Let D_f, D_g denote the persistence diagrams of f, g, and d_B the bottleneck distance. It holds that $d_B(D_f, D_g) \leq d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))$ and the inequality may be strict.

Relationship with the functional distortion distance

Corollary

Let R_f, R_g denote the Reeb spaces of f, g, and d_{FD} the functional distortion distance. It holds that $d_{FD}(R_f, R_g) \leq d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))$ and the inequality may be strict.

Relationship with the functional distortion distance

Corollary

Let R_f, R_g denote the Reeb spaces of f, g, and d_{FD} the functional distortion distance. It holds that $d_{FD}(R_f, R_g) \leq d((\Gamma_f, \ell_f), (\Gamma_g, \ell_g))$ and the inequality may be strict.

To do

- Generalization to the piecewise-linear case
- Generalization to the comparison of non-diffeomorphic surfaces
- Algorithm

To do

- Generalization to the piecewise-linear case
- Generalization to the comparison of non-diffeomorphic surfaces
- Algorithm

Thank you for your attention! Preprint: http://arxiv.org/abs/1411.1544