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Abstract

The edit distance function of a hereditary property H is the asymp-
totically largest edit distance between a graph of density p ∈ [0, 1] and H .
Denote by Pn and Cn the path graph of order n and the cycle graph of order
n, respectively. Let C∗

2n
be the cycle graph C2n with a diagonal, and C̃n be

the graph with vertex set {v0, v1, . . . , vn−1} and E(C̃n) = E(Cn) ∪ {v0v2}.
Marchant and Thomason determined the edit distance function of C∗

6
. Peck

studied the edit distance function of Cn, while Berikkyzy et al. studied the
edit distance of powers of cycles. In this paper, by using the methods of
Peck and Martin, we determine the edit distance function of C∗

8
, C̃n and Pn,

respectively.

Keywords: edit distance, colored regularity graphs, hereditary property,
clique spectrum.

2010 Mathematics Subject Classification: 05C35.

1. Introduction

The edit distance in graphs was introduced by Axenovich, Kézdy and Martin [5]
and by Alon and Stav [4] independently. The edit distance problem considered
here is “How many edges need to be added or deleted (edited) in a graph G

1Corresponding author.
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so that it will have a certain property?” The presence or absence of edges in
a certain graph corresponds to pairs of genes which activate or deactivate one
another in evolutionary biology. In evolutionary theory, the gene reconstruction
avoiding forbidden induced subgraphs is studied [9], which is equivalent to the edit
distance problem. The edit distance problem is also important to the algorithmic
aspects of property testing [1–4].

The edit distance between a graph G and a property H is

dist(G,H ) = min

{
|E(G)△ E(G′)|/

(
n

2

)
: V (G) = V (G′), G′ ∈ H

}
.

The edit distance function of a property H , denoted edH (p), measures the max-
imum distance of a graph with density p from H . Formally,

(1) edH (p) = lim
n→∞

max

{
dist(G,H ) : |V (G)| = n, |E(G)| =

⌊
p

(
n

2

)⌋}
.

if this limit exists.
A hereditary property is a family of graphs that is closed under the taking

of induced subgraphs. For a given graph H, the property of having no H as an
induced subgraph is called a principal hereditary property, denoted by Forb(H).
Clearly, Forb(H) is a hereditary property for any graph H. In fact, for every
hereditary property H there exists a family of graphs F (H ) such that H =⋂

H∈F (H ) Forb(H). A hereditary property is said to be nontrivial if there is an
infinite sequence of graphs that is in the property. The properties for which we
study the edit distance are usually hereditary property.

Balogh and Martin [6] showed that the limit in (1) exists and the edit distance
function has a number of interesting properties.

Proposition 1 [11]. Let H be a nontrivial hereditary property. For p ∈ [0, 1],

(a) edH (p) is continuous.

(b) edH (p) is concave down.

In [4], Alon and Stav proved that for every hereditary property H , there
exists a p∗ = p∗(H ) ∈ [0, 1] such that the maximum distance of a graph G on n
vertices from H is asymptotically the same as that of the Erdös-Rényi random
graph G(n, p∗). Namely,

(2) max {dist(G,H ) : |V (G)| = n} = E[dist(G(n, p∗),H )] + o(1).

We denote the limit in (2) by d∗
H
.

The edit distance functions of some kinds of graphs have been investigated
in recent years, including complete graphs [13] and split graphs [12]. Actually,
complete bipartite graphs are also studied. Marchant and Thomason [10] studied
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the edit distance functions of K2,2 and K3,3, respectively. Balogh and Martin [6]
established the value of p∗

Forb(K3,3)
and d∗

Forb(K3,3)
. Martin and McKay studied

the edit distance function of K2,t in [14]. Recently, Berikkyzy et al. [7] settled
the edit distance function for many powers of cycles.

Denote by Pn and Cn the path graph of order n and the cycle graph of order
n, respectively. Let C∗

2n be the cycle graph C2n with a diagonal, and C̃n be the

graph with vertex set {v0, v1, . . . , vn−1} and E(C̃n) = E(Cn) ∪ {v0v2}.

In [10], Marchant and Thomason studied the edit distance function of the
graph C∗

6 . Motivated by this result, we study the edit distance function of the
graph C∗

8 and prove the following result.

Theorem 2. Let H = Forb(C∗
8 ).

edH (p) = min

{
p

2
,
p(1− p)

1 + p
,
1− p

3

}
, for p ∈ [0, 1].

Peck [15] in her Master’s thesis calculated the edit distance function of Cn.
The result is as follows.

Theorem 3 [15]. Let H = Forb(Cn).

(a) If n is odd, then edH (p) = min

{
p
2 ,

p(1−p)

1+(⌈n
3
⌉−2)p

, 1−p

⌈n
2
⌉−1

}
, for p ∈ [0, 1].

(b) If n is even, then edH (p) = min

{
p(1−p)

1+(⌈n
3
⌉−2)p

, 1−p

⌈n
2
⌉−1

}
, for p ∈

[
⌈n/3⌉−1, 1

]
.

Motivated by this result, we study the edit distance function of C̃n and Pn.

Theorem 4. Let H = Forb(C̃n) and n ≥ 9.

edH (p) = min

{
p

2
,

p(1− p)

1 +
(⌈

n−1
3

⌉
− 2

)
p
,
1− p⌈
n−3
2

⌉
}
, for p ∈ [0, 1].

Theorem 5. Let H = Forb(Pn) and n ≥ 3.

edH (p) = min

{
p(1− p)

1 +
(⌈

n−1
3

⌉
− 2

)
p
,

1− p⌈
n
2

⌉
− 1

}
, for p ∈

[
⌈(n− 1)/3⌉−1 , 1

]
.

Our paper is organized as follows. Some definitions and tools are explained
in Section 2. We prove Theorems 2, 4 and 5 in Sections 3, 4 and 5, respectively.
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2. Definitions and Tools

All graphs considered in this paper are simple. The standard graph theory nota-
tion not defined here will conform to that in [8]. The edit distance notation not
defined here will conform to that in [11].

In order to estimate the edit distance function, Alon and Stav [4] defined a
colored regularity graph (CRG) K as follows. Let K be a simple complete graph,
together with a partition of the vertices into white and black, and a partition
of the edges into white, gray, and black. Denote by VW (K) and V B(K) the
set of white vertices and the set of black vertices, respectively. Then V (K) =
VW (K) ∪ V B(K). Denote by EW (K), EG(K) and EB(K) the set of white
edges, the set of gray edges and the set of black edges, respectively. Then we
have E(K) = EW (K) ∪ EG(K) ∪ EB(K). A CRG K ′ is said to be a sub-CRG
of K if K ′ can be obtained by deleting vertices of K and is a proper sub-CRG if
K ′ 6= K.

We say that a graph H embeds in K (writing H 7→ K), if there is a function
ϕ : V (H) → V (K) so that if h1h2 ∈ E(H), then either ϕ(h1) = ϕ(h2) ∈ V B(K)
or ϕ(h1)ϕ(h2) ∈ EB(K) ∪ EG(K) and if h1h2 6∈ E(H), then either ϕ(h1) =
ϕ(h2) ∈ VW (K) or ϕ(h1)ϕ(h2) ∈ EW (K) ∪ EG(K). For a hereditary property
H , we denote by K (H ) the subset of CRGs K such that any graph H ∈ F (H )
does not embed in K. That is, K (H ) = {K : H 67→ K, ∀H ∈ F (H )}.

For a hereditary property H , we can use the g function of each CRG K to
compute the edit distance function, where g function is defined by

(3) gK(p) = min
{
xTMK(p)x : xT1 = 1,x≥ 0

}
,

and

[MK(p)]ij =





p if vivj ∈ EW (K) or vi = vj ∈ VW (K),

1− p if vivj ∈ EB(K) or vi = vj ∈ V B(K),

0 if vivj ∈ EG(K).

Marchant and Thomason in [10] proved that for every p ∈ [0, 1], there is a
CRG K ∈ K (H ) such that edH (p) = gK(p). That is

Proposition 6 [10]. Let H be a nontrivial hereditary property. For p ∈ [0, 1],

edH (p) = min{gK(p) : K ∈ K (H )}.

In [10], the authors also proved that in order to find such CRGs, we only
need to look at all p-core CRGs. A CRG K is p-core if, for any proper sub-CRG
K ′ of K, we have gK′(p) > gK(p).

The gray-edge CRG K(r, s) is the CRG K with r white vertices, s black
vertices and all edges gray. The clique spectrum of H is the set Γ(H ) := {(r, s) :
H 67→ K(r, s), ∀H ∈ F (H )}. Clearly, we obtain
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Proposition 7 [11]. Let H be a nontrivial hereditary property and Γ(H ) denote
the clique spectrum of H . If we define

γH (p) := min
(r,s)∈Γ(H )

gK(r,s)(p) = min
(r,s)∈Γ(H )

p(1− p)

r(1− p) + sp
,

then edH (p) ≤ γH (p).

Let K be a p-core CRG, v ∈ V (K), and let x be an optimal weight vector in
the quadratic program (3) that defines gK(p). The weight of v, denoted by x(v),
is the entry corresponding to v of the vector x. We denote the gray neighborhood

of v by NG(v) = {v′ ∈ V (K) : vv′ ∈ EG(K)}. The weighted gray degree of vertex
v ∈ V (K) is dG(v) = Σv′∈NG(v)x(v

′) and the number of vertices adjacent to v
via gray edges is denoted by degG(v), i.e., degG(v) = |NG(v)|. We use similar
notation for the white and black cases. Now we get dG(v) + dW (v) + dB(v) = 1
for each v ∈ V (K).

The weighted gray codegree of vertices v and v′, denoted by dG(v, v
′), is the

sum of the weights of the common gray neighbors of v and v′. Denote the number
of common gray neighbors of vertices v and v′ by degG(v, v

′).
Marchant and Thomason [10] gave the following characterization of all p-core

CRGs.

Proposition 8 [10]. Let K be a p-core CRG.

(a) If p ≤ 1/2, then there are no black edges, and the white edges are only

incident to black vertices.

(b) If p ≥ 1/2, then there are no white edges, and the black edges are only

incident to white vertices.

Martin [13] gave a formula for dG(v) for all v ∈ V (K) and a bound on the
weight of each v.

Proposition 9 [13]. Let p ∈ (0, 1) and K be a p-core CRG with optimum weight

vector x.

(a) If p ≤ 1/2, then x(v) = gK(p)/p for all v ∈ VW (K) and

x(u) ≤ gK(p)/(1−p), dG(u) =
p− gK(p)

p
+
1− 2p

p
x(u), for each u ∈ V B(K).

(b) If p ≥ 1/2, then x(u) = gK(p)/(1− p) for all u ∈ V B(K) and

x(v) ≤ gK(p)/p, dG(v) =
1− p− gK(p)

1− p
+
2p− 1

1− p
x(v), for each v ∈ VW (K).

The following results will be used in this paper.
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Proposition 10 [13]. Let p ∈ (0, 1/2) and K be a p-core CRG with black vertices

and white or gray edges.

(a) If K has no gray 3-cycle, then gK(p) > p/2.

(b) If K has a gray 3-cycle, but no gray C+
4 (that is, four vertices that induce 5

gray edges), then gK(p) ≥ min {2p/3, (1− p)/3}.

Proposition 11 [7]. Let F be a connected graph. If some path of maximum

length forms a cycle, then F is Hamiltonian.

Proposition 12 [7]. Let F be a graph on n vertices with no cycle of length longer

than
⌈
n
2

⌉
− 1, with every vertex having degree at least

⌈
n−1
3

⌉
≥ 2 and with every

pair of vertices having at least one common neighbor. Furthermore, let F have

the property that no maximum length path forms a cycle.

Let v1 · · · vℓ be a path of maximum length in F . Then v1 and vℓ have exactly

one common neighbor vc on this path. Furthermore, N(v1) ⊆ {v2, . . . , vc} and

N(vℓ) ⊆ {vc, . . . , vℓ−1}.

3. Proof of Theorem 2

In this section, we consider the edit distance function for the hereditary property
that forbids C∗

2n where n is even and prove that edForb(C∗

8
)(p) = γForb(C∗

8
)(p) for

all p ∈ [0, 1].
First, we obtain the value of γForb(C∗

2n)
(p) for p ∈ [0, 1] and restrict

edForb(C∗

2n)
(p) to p ∈ [0, 1/2) and CRGs K with only black vertices. Finally,

we determine the edit distance edForb(C∗

8
)(p) = γForb(C∗

8
)(p) and then prove The-

orem 2.

Lemma 13. Let H = Forb(C∗
2n), p ∈ [0, 1] and n ≥ 4 be even.

γH (p) = min

{
p

2
,

p(1− p)

1 +
(⌈

2n−1
3

⌉
− 2

)
p
,
1− p

n− 1

}
.

Furthermore, if there is a p-core CRG K ∈ K(Forb(C∗
2n)) such that gK(p) <

γForb(C∗

2n)
(p) for any p ∈ [0, 1], then p < 1/2 and K has all black vertices.

Proof. If n is even, the extreme points of the clique spectrum of Forb(C∗
2n) are

(2, 0),
(
1,
⌈
2n−1

3

⌉
−1

)
and (0, n−1). Then γH (p) = min

{
p
2 ,

p(1−p)

1+(⌈ 2n−1

3
⌉−2)p

, 1−p
n−1

}
.

Since edH (1/2) = γH (1/2) for any hereditary property and γH (1) = 0, we
may use continuity and concavity to conclude that edH (p) = γH (p) = 1−p

n−1 for
p ∈ [1/2, 1]. Now we suppose p ∈ [0, 1/2) and K is a p-core CRG such that
gK(p) < γH (p).
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If K has only white vertices, then |V (K)| ≤ 2 and gK(p) ≥ p
2 ≥ γH (p) since

C∗
2n 7→ K(3, 0). If K has both white and black vertices, then it has 1 white

vertex ω since C∗
2n 7→ K(2, 1). Furthermore, it can have at most

⌈
2n−1

3

⌉
−1 black

vertices.

To see this, denote the vertices of C∗
2n by {0, . . . , 2n− 1} where i ∼ i+ 1 for

0 ≤ i ≤ 2n−2, 2n−1 ∼ 0 and 0 ∼ n. If n is not divisible by 3, then let S consist
of the members of {0, 1, . . . , 2n− 1} that are divisible by 3. The graph C∗

2n − S
has

⌈
2n−1

3

⌉
connected components, each of which are cliques of size 1 or 2. If n

is divisible by 3, then let S = {i : i ∈ {0, 1, . . . , 2n − 1}, i − 1 is divisible by 3}.
The graph C∗

2n − S has
⌈
2n−1

3

⌉
connected components, each of which are cliques

of size 2 except three edges n− 1 ∼ n, n ∼ 0 and 0 ∼ 2n− 1.

If dG(vi) = x(ω) for any vi ∈ V B(K), then by Proposition 9(a), we have
gK(p)

p
= p−gK(p)

p
+1−2p

p
x(vi) >

p−gK(p)
p

. Rearranging the terms, we obtain gK(p) >
p
2 ≥ γH (p), a contradiction. So, there are two black vertices v1, v2 in K such
that v1v2 ∈ EG(K). Let v1 receive n − 1 ∼ n and v2 receive 0 ∼ 2n − 1. Then
C∗
2n 7→ K. Thus, regardless of whether the edges are white or gray, there are at

most
⌈
2n−1

3

⌉
− 1 black vertices in K and gK(p) ≥ p(1−p)

1+(⌈ 2n−1

3
⌉−2)p

≥ γH (p).

So, if p ∈ [0, 1/2) and gK(p) = edForb(C∗

2n)
(p), then K is either K(2, 0),

K
(
1,
⌈
2n−1

3

⌉
− 1

)
, K(0, n − 1) or K has all black vertices (and white or gray

edges).

Proof of Theorem 2. Now, we calculate edH (p) where H = Forb(C∗
8 ). By

Lemma 13, we know γH (p) = min
{

p
2 ,

1−p
3 , p(1−p)

1+p

}
and only need to consider the

p-core CRGs K with only black vertices for some p ∈ [0, 1/2).

If K has only black vertices, then K has no gray C+
4 otherwise C∗

8 7→ K.
By Proposition 10, we know either gK(p) > p/2 ≥ γH (p) or gK(p) ≥ min

{
2p/3,

(1−p)/3
}
> γH (p). By straightforward calculations, this contradicts to gK(p) <

γH (p) for all p ∈ [0, 1/2).

4. Proof of Theorem 4

In this section, we consider the edit distance function for hereditary property
that forbids C̃n. Let H = Forb(C̃n). First, we obtain the value of γH (p) for

p ∈ [0, 1]. Then we suppose there is a p-core CRG K ∈ K (Forb(C̃n)) such that
gK(p) < γH (p) and establish some characterizations of such a p-core CRG K.

Finally, we obtain a contradiction to such a CRG existing in K (Forb(C̃n)) for
our desired range of p values, establishing γH (p) ≤ edH (p).
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Lemma 14. Let H = Forb(C̃n), and n ≥ 6. Then

γH (p) = min

{
p

2
,

p(1− p)

1 +
(⌈

n−1
3

⌉
− 2

)
p
,

1− p⌈
n−3
2

⌉
}
, for p ∈ [0, 1].

Furthermore, if there is a p-core CRG K ∈ K (H ) such that gK(p) < γH (p) for
any p ∈ [0, 1], then p < 1

2 and K has all black vertices.

Proof. The extreme points of the clique spectrum of Forb(C̃n) are (2, 0),
(
1,⌈

n−1
3

⌉
− 1

)
and

(
0,
⌈
n−3
2

⌉ )
, which establishes the value of γH (p).

Since edH (1/2) = γH (1/2) for any hereditary property and γH (1) = 0,
we may use continuity and concavity to conclude that edH (p) = 1−p

⌈n−3

2
⌉
for p ∈

[1/2, 1].

Now, let p ∈ [0, 1/2) and K be a p-core CRG such that C̃n 67→ K. If K has

at most two vertices, then gK(p) ≥ p
2 since C̃n 7→ K(3, 0). If K has both white

and black vertices, then it has at most one white vertex since C̃n 7→ K(2, 1).
Furthermore, it can have at most

⌈
n−1
3

⌉
− 1 black vertices.

To see this, denote the vertices of C̃n by {0, 1, . . . , n− 1} where i ∼ i+ 1 for
0 ≤ i ≤ n−2, n−1 ∼ 0 and 0 ∼ 2. Let S consist of the members of {3, . . . , n−1}
that are divisible by 3. If n− 1 is not divisible by 3, then add 0 to S. The graph
C̃n − S has

⌈
n−1
3

⌉
connected components, each of which are cliques of size 1 or 2

or 3. Thus, regardless of whether the edges are white or gray, there are at most⌈
n−1
3

⌉
− 1 black vertices in K and gK(p) ≥ p(1−p)

1+(⌈n−1

3
⌉−2)p

, with equality if and

only if K ∼= K
(
1,
⌈
n−1
3

⌉
− 1

)
.

Summarizing, if p ∈ [0, 1/2) and gK(p) = edH (p), then K is either K(2, 0),
K

(
1,
⌈
n−1
3

⌉
− 1

)
, K

(
0,
⌈
n−3
2

⌉)
, or K has all black vertices (and white or gray

edges).

We only need to consider the K ∈ K (Forb(C̃n)) with all black vertices such
that gK(p) < γ

Forb(C̃n)
(p). Now, we establish some characterizations of such a

p-core CRG K.

Proposition 15. Let p ∈ [0, 1/2) and K be a p-core CRG such that K has only

black vertices and white and gray edges. If C̃n 67→ K then K has no gray cycle of

length l ∈
{⌈

n−1
2

⌉
, . . . , n− 1

}
.

Proof. Suppose K has some gray cycle of length l ∈
{⌈

n−1
2

⌉
, . . . , n− 1

}
. Par-

tition the vertices of C̃n into l parts so that one part is the triangle and each
of the others parts is either a set of two consecutive vertices (an edge) or single

vertex. Because of the structure of C̃n and the fact that
⌈
n−1
2

⌉
≤ l ≤ n − 1, it

is always possible to do so. This partition witnesses an embedding of C̃n into
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the l-cycle of K because we can map consecutive parts to consecutive vertices
on the l-cycle. Since non-consecutive parts do not have edges between them and
Proposition 8(a) gives that the edges of K are either white or gray, this map is

an embedding that demonstrates C̃n 7→ K, a contradiction.

Proposition 16. Let p ∈

[
1

⌈n−1

3
⌉
, 12

)
, and K be a p-core CRG with all black

vertices such that gK(p) < γ
Forb(C̃n)(p)

. Then

(a) for every v ∈ V (K), degG(v) ≥
⌈
n−1
3

⌉
, and

(b) for every v, w ∈ V (K), degG(v, w) ≥ 1.

Proof. (a) Let v, w ∈ V (K). By using Proposition 9(a),

degG(v) ≥

⌈
dG(v)

max{x(w)}

⌉
≥

p−gK(p)
p

+ 1−2p
p

x(v)

gK(p)
1−p

≥
(p− gK(p))(1− p)

pgK(p)
=

1− p

gK(p)
−

1− p

p

>
(1− p) +

(⌈
n−1
3

⌉
− 1

)
p

p
−

1− p

p
=

⌈
n− 1

3

⌉
− 1.

(b) By the inclusion-exclusion principle, dG(v) + dG(w)− dG(v, w) ≤ 1, and

by using Proposition 9(a), we have dG(v, w) ≥ 2p−gK(p)
p

+ 1−2p
p

(x(v)+x(w))−1 ≥
p−gK(p)

p
≥ p−2gK(p)

p
and for all u ∈ V (K), x(u) ≤ gK(p)/(1− p). Therefore,

degG(v, w) ≥

⌈
dG(v, w)

max{x(u)}

⌉
≥




p−2gK(p)
p

gK(p)
1−p



=

1− p

gK(p)
−

2(1− p)

p

>
(1− p) +

(⌈
n−1
3

⌉
− 1

)
p

p
−

2(1− p)

p
=

⌈
n− 1

3

⌉
−

1

p
.

Since p ≥ 1

⌈n−1

3
⌉
, we have degG(v, w) ≥ 1.

We consider the value of ed
Forb(C̃n)

(p) from the perspective of the gray sub-

graphs of CRGs K. Let F be a graph such that V (F ) = V (K) and E(F ) =

EG(K), where K ∈ K (Forb(C̃n)) is a p-core CRG with all black vertices such
that gK(p) < γ

Forb(C̃n)
(p). By Proposition 16, F is a connected graph and each

pair of vertices has at least one common neighbor.

Proposition 17. Let n ≥ 9 and F be a graph with no cycle with length in{⌈
n−1
2

⌉
, . . . , n− 1

}
and every pair of vertices having at least one common neigh-

bor. Then F has no cycle of with length greater than
⌈
n−1
2

⌉
− 1.
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Proof. Let v1 · · · vℓv1 be a shortest cycle in F among all those with length greater
than n− 1. Consider the path v1 · · · v⌈n−1

2
⌉−1 on the cycle v1 · · · vℓv1.

Assume vi is a common neighbor of v1 and v⌈n−1

2
⌉−1, then either v1vivi+1 · · ·

vℓv1 or v1 · · · viv⌈n−1

2
⌉−1 · · · vℓv1 has length less than ℓ. Without loss of generality,

we assume v1vivi+1 · · · vℓv1 has length less than ℓ, which implies
⌈
n− 1

2

⌉
− 1 ≥ ℓ− i+ 2 ≥ ℓ−

(⌈
n− 1

2

⌉
− 2

)
+ 2 ≥ n−

⌈
n− 1

2

⌉
+ 4.

Thus,

2

⌈
n− 1

2

⌉
− 1− n− 4 ≥ 0,

a contradiction, since 2
⌈
n−1
2

⌉
− 1− n− 4 < 2

(
n−1
2 + 1

)
− 1− n− 4 < 0.

Therefore, F has no cycle of with length greater than
⌈
n−1
2

⌉
− 1.

Then, we consider the maximum-length path in the graph F . If this path
forms a cycle, then Proposition 11 gives that F must be Hamiltonian. By Propo-
sition 17, |V (K)| ≤

⌈
n−1
2

⌉
− 1 and gK(p) ≥ 1−p

⌈n−1

2
⌉−1

, a contradiction. Thus, no

maximum-length path in F forms a cycle. By Proposition 17, F has no cycle of
with length greater than

⌈
n−1
2

⌉
− 1. And, by Proposition 16, every vertex in F

has degree at least
⌈
n−1
3

⌉
≥ 2 and every pair of vertices has at least one common

neighbor.
Let v1 · · · vℓ be a maximum-length path in F such that the sum x(v1)+x(vℓ)

is largest among all such paths. Then by Proposition 12, we have v1 and vℓ
have a unique common neighbor vc and N(v1) ⊆ {v2, . . . , vc}. Let v1 have d
neighbors in F . Since v1 cannot have neighbors outside of this path, dG(v1) ≤
x(v2) + · · · + x(vc). And if vi ∈ {v1, . . . , vc−1} is a predecessor of a neighbor of
v1 in F , then it is an endpoint of a path containing the same ℓ vertices, namely
vivi−1 · · · v1vi+1vi+2 · · · vc · · · vℓ. Hence all d predecessors of gray neighbors of v1
(including v1 itself) have weight at most x(v1). By Proposition 9, p−gK(p)

p
+

1−p
p
x(v1) = x(v1) + dG(v1) ≤ x(v1) + · · · + x(vc) ≤ dx(v1) + (c − d) g

1−p
, which

implies

gK(p)

(
c− d

1− p
+

1

p

)
≥ 1− x(v1)

(
d−

1− p

p

)
.

By Propositions 15 and 16, we have c ≤
⌈
n−1
2

⌉
− 1 and d >

⌈
n−1
3

⌉
− 1. So when

p ≥
⌈
n−1
3

⌉−1
, by Proposition 9(a), we have x(v) ≤ gK(p)/(1− p), hence

gK(p) ≥
1− p

c
≥

1− p⌈
n−1
2

⌉
− 1

≥ γH (p),

a contradiction. So edH (p) = γH (p) for all p ∈

[
1

⌈n−1

3
⌉
, 12

)
.
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Finally, edH (p) = γH (p) = p
2 for p = 1

⌈n−1

3
⌉
, and edH (p) = γH (p) = p

2 for

p = 0. Then, since the function γH (p) is linear over this interval and edH (p)

is continuous and concave down, we have edH (p) = γH (p) for p ∈

[
0, 1

⌈n−1

3
⌉

]
.

Hence the two functions are equal for all p ∈ [0, 1].

5. Proof of Theorem 5

Similarly as Section 4, but it also involves some crucial differences. We first prove
the following lemma.

Lemma 18. Let H = Forb(Pn) where Pn denotes the path on n ≥ 3 vertices.

γH (p) = min

{
p(1− p)

1 +
(⌈

n−1
3

⌉
− 2

)
p
,

1− p⌈
n
2

⌉
− 1

}
, for p ∈ [0, 1].

Furthermore, if there is a p-core CRG K ∈ K (H ) such that gK(p) < γH (p) for
any p ∈ (0, 1), then p < 1

2 and K has all black vertices.

Proof. The extreme points of the clique spectrum of Forb(Pn) are
(
1,
⌈
n−1
3

⌉
− 1

)

and
(
0,
⌈
n
2

⌉
− 1

)
, which establishes the value of γH (p).

Since edH (1/2) = γH (1/2) for any hereditary property and γH (1) = 0, we
may use continuity and concavity to conclude that edH (p) = 1−p

⌈n
2
⌉−1

for p ∈

[1/2, 1].

Now, let p ∈ [0, 1/2) and K be a p-core CRG such that Pn 67→ K. If K has
only white vertices, then K ≈ K(1, 0) and gK(p) = p > γH (p). If K has both
white and black vertices, then it has at most one white vertex since Pn 7→ K(2, 1).
Furthermore, it can have at most

⌈
n−1
3

⌉
− 1 black vertices. To see this, denote

the vertices of Pn by {0, 1, . . . , n − 1} where 0 ∼ 1 ∼ 2 ∼ · · · ∼ n − 1. Let S
consist of the members of {0, 1, . . . , n − 1} that are divisible by 3. The graph
Pn − S has

⌈
n−1
3

⌉
connected components, each of which are cliques of size 1 or

2. Thus, regardless of whether the edges are white or gray, there are at most⌈
n−1
3

⌉
− 1 black vertices in K and gK(p) ≥ p(1−p)

1+(⌈n−1

3
⌉−2)p

, with equality if and

only if K ≈ K
(
1,
⌈
n−1
3

⌉
− 1

)
.

Summarizing, if p ∈ [0, 1/2) and gK(p) = edH (p), thenK is eitherK
(
1,
⌈
n−1
3

⌉

−1
)
, K

(
0,
⌈
n
2

⌉
− 1

)
or K has all black vertices (and white or gray edges).

When n < 5, γH (p) = min{p, 1 − p}. This observation plus continuity and
concavity give that edH (p) = γH (p) for all p ∈ [0, 1]. From now on, we assume
n ≥ 5.



818 Y. Hu, Y. Shi and Y. Wei

We only need to consider the K ∈ K (Forb(Pn)) with all black vertices such
that gK(p) < γForb(Pn)(p). Now, we establish some characterizations of such a
p-core CRG K.

Proposition 19. Let p ∈

[
1

⌈n−1

3
⌉
, 12

)
, and K be a p-core CRG with all black

vertices such that gK(p) < γForb(Pn)(p). Then

(a) for every v ∈ V (K), degG(v) ≥
⌈
n−1
3

⌉
, and

(b) for every v, w ∈ V (K), degG(v, w) ≥ 1.

Proof. (a) Let v, w ∈ V (K). By using Proposition 9(a),

degG(v) ≥

⌈
dG(v)

max{x(w)}

⌉
≥

p−gK(p)
p

+ 1−2p
p

x(v)

gK(p)
1−p

≥
(p− gK(p))(1− p)

pgK(p)
=

1− p

gK(p)
−

1− p

p

>
(1− p) +

(⌈
n−1
3

⌉
− 1

)
p

p
−

1− p

p
=

⌈
n− 1

3

⌉
− 1.

(b) By the inclusion-exclusion principle, dG(v) + dG(w)− dG(v, w) ≤ 1, and

by using Proposition 9(a), we have dG(v, w) ≥ 2p−gK(p)
p

+ 1−2p
p

(x(v)+x(w))−1 ≥
p−gK(p)

p
≥ p−2gK(p)

p
and for all u ∈ V (K), x(u) ≤ gK(p)/(1− p). Therefore,

degG(v, w) ≥

⌈
dG(v, w)

max{x(u)}

⌉
≥




p−2gK(p)
p

gK(p)
1−p



=

1− p

gK(p)
−

2(1− p)

p

>
(1− p) +

(⌈
n−1
3

⌉
− 1

)
p

p
−

2(1− p)

p
=

⌈
n− 1

3

⌉
−

1

p
.

Since p ≥ 1

⌈n−1

3
⌉
, we have degG(v, w) ≥ 1.

Proposition 20. Let p ∈ [0, 1/2) and K be a p-core CRG such that K has only

black vertices and white and gray edges. If Pn 67→ K then K has no gray path with

length greater than
⌈
n
2

⌉
− 1.

Proof. Suppose K has some gray path of length l >
⌈
n
2

⌉
− 1. Partition the

vertices of Pn into l parts so that each of parts is either a set of two consecutive
vertices (an edge) or single vertex. Because of the structure of Pn and the fact
that l >

⌈
n
2

⌉
− 1, it is always possible to do so. This partition witnesses an

embedding of Pn into l-path of K because we can map consecutive parts to
consecutive vertices on the l-path. Since non-consecutive parts do not have edges
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between them and Proposition 8(a) gives that the edges of K are either white or
gray, this map is an embedding that demonstrates Pn 7→ K, a contradiction.

We consider the value of edForb(Pn)(p) from the perspective of the gray
subgraphs of CRGs K. Let F be a graph, V (F ) = V (K), E(F ) = EG(K)
where K ∈ K (Forb(Pn)) is a p-core CRG with all black vertices such that
gK(p) < γForb(Pn)(p). By Proposition 19, we obtain F is a connected graph.
Suppose a maximum-length path forms a cycle in the graph F . Then Proposi-
tion 11 implies that F must be Hamiltonian. By Proposition 20, |V (K)| ≤

⌈
n
2

⌉
−1

and gK(p) ≥ 1−p
⌈n
2
⌉−1 , a contradiction, and so we may assume that no maximum-

length path in F forms a cycle. By Proposition 20, F has no path with length
greater than ⌈n2 ⌉ − 1, so F has no cycle with length greater than ⌈n2 ⌉ − 1. And,
by Proposition 19, every vertex in F has degree at least

⌈
n−1
3

⌉
≥ 2 and every

pair of vertices has at least one common neighbor.
Let v1 · · · vℓ be such a maximum-length path in K such that the sum x(v1)+

x(vℓ) is the largest among all such paths. By Proposition 12, v1 and vℓ have a
unique common neighbor vc and N(v1) ⊆ {v2, . . . , vc}. Let v1 have d neighbors
in F . Since v1 cannot have neighbors outside of this path, the sum of the weights
of the neighbors of v1 satisfies dG(v1) ≤ x(v2) + · · · + x(vc) in K. And if vi ∈
{v1, . . . , vc−1} is a predecessor of a neighbor of v1, then it is an endpoint of a path
containing the same ℓ vertices, namely vivi−1 · · · v1vi+1vi+2 · · · vc · · · vℓ. Hence all
d predecessors of gray neighbors of v1 (including v1 itself) have weight at most

x(v1). By Proposition 9, p−gK(p)
p

+ 1−p
p
x(v1) = x(v1) + dG(v1) ≤ x(v1) + · · · +

x(vc) ≤ dx(v1) + (c− d)gK(p)
1−p

, which implies

gK(p)

(
c− d

1− p
+

1

p

)
≥ 1− x(v1)

(
d−

1− p

p

)
.

By Propositions 19 and 20, we have c ≤
⌈
n
2

⌉
− 1 and d ≥

⌈
n−1
3

⌉
. And, when⌈

n−1
3

⌉−1
≤ p ≤ 1

2 , by Proposition 9(a), we have x(v) ≤ gK(p)/(1− p), hence

gK(p) ≥
1− p

c
≥

1− p⌈
n
2

⌉
− 1

≥ γH (p),

a contradiction.

So we can get edH (p) = γH (p) for p ∈

[
1

⌈n−1

3
⌉
, 1

]
. The proof is thus

complete.
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