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The eduction of structures from flow imagery using wavelets
Part I. The mixing layer

S. V. Kailas, R. Narasimha

Abstract Using two-dimensional Mexican hat wavelets,
digitized imagery from the flow visualization pictures of
a mixing layer by Brown and Roshko have been analysed. The
objective of the present study is to ‘‘calibrate’’ the proposed
wavelet technique for educing structures in a flow whose
large-scale organization is well established. It is found that,
with appropriate thresholds on wavelet-transform coefficients,
considerable insight into the structure of the flow at different
scales can be obtained. In particular, the analysis reveals that
the small-scale structure within the large-scale vortices is
approximately homogeneous, and has characteristic scales that
do not vary significantly with downstream distance.

1
Introduction
The first dramatic evidence of coherent structures in a fully
developed turbulent flow came from the pioneering studies of
Roshko and his co-workers (e.g. Brown and Roshko 1974;
Roshko 1976) in mixing layers. Along with the studies of
Kline et al. (1967) in a boundary layer, this body of work
established that turbulence, despite its apparent disorder,
possesses a considerable degree of order, and may exhibit an
astonishing variety of coherent motions (see e.g. Robinson
1991 for a ‘‘taxonomy’’ of these motions in a turbulent
boundary layer). Inspite of the extensive work on coherent
structures in a variety of flows (reviewed by Hussian (1986)
and Fiedler (1988)), inferring the nature and characteristics
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of such structures in the presence of considerable disorder
remains a difficult problem.

Much early work was done with straight-forward flow
visualization. Although obtaining quantitative information
from flow visualisation studies has often been a laborious,
imprecise and ambiguous exercise, direct visualisation by
shadowgraph, schlieren, interferometry, molecular or particle
scattering or fluorescence is still a powerful technique in
determining the gross features of large-scale structure in
flows where it is clearly visible. In other cases (e.g. jets), our
understanding of coherent motions in the fully developed
region is less adequate. Laser sheet visualizations do not reveal
order as clearly in jets as in mixing layers. Two-point
space—time correlations of longitudinal velocity fluctuations
(Tso and Hussain 1989) have been more successful, but such
methods may under-estimate the degree of order present
because of the averaging process inherent in the correlation
technique, especially as there is considerable jitter in the
structures, and their spatial scales and life-time are both highly
variable (e.g. see the statistics of the mixing layer provided by
Bernal 1988). If there are several types of structure of different
scales, such techniques cannot reveal whether their occurrence
is simultaneous or not.

With the advent of digital imagery, sophisticated measure-
ment techniques (particle and holographic imaging
velocimetry) and high-resolution direct numerical simulations,
some sort of processing is often undertaken to obtain more or
less quantitative information. Visual processing has in general
been addressed by thresholding and averaging techniques; e.g.
Cutler and Johnson (1997) have recently used thresholding on
laser-illuminated digitised images of a plume to study the
nature of intermittency in a supersonic flow with injection.
(Such techniques are canonical even in the image-processing
community.) With such methods the precise technique used
may differ from experiment to experiment, sometimes even
from image to image. An objective, easily applicable and
universally understood method would therefore be most
useful.

We explore here the idea that the wavelet transform may
provide a logical framework for image processing that can
be universally applied, and with some familiarity and
calibration can provide less ambiguous interpretations. Thus
the present work has two objectives, first to describe the use of
the wavelet transform technique on flow visualisation pictures
where the existence of large-scale coherent structures is
unambiguous, and secondly to study the small-scale structure
of the flow. We shall consider more complex flows in a future
publication.
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2
Data analysed
The data analysed are two pictures kindly supplied by
Prof. A. Roshko, respectively, of laminar and turbulent mixing
layers obtained using schlieren photography. A plane mixing
layer is selected for this first study as the coherent structure
here is unambiguously clear.

The experimental set-up is described in detail in Brown and
Roshko (1974). In these experiments the upper stream is
helium at a free stream velocity U

1
\10 m/s while the lower

stream is nitrogen at velocity U
2
\3.8 m/s. The pressure was

8 bar in the turbulent flow (with Reynolds number Re\3]106
based on the free stream velocity and kinematic viscosity of the
fluid on the faster side and the width of the picture), and 2 bar
in the laminar mixing layer (Re\0.3]105). The photographs
are first recorded on video tape and the video signal is fed to an
image digitizer. Digitisation is accomplished using a Data
Translation (USA) frame grabber board DT2871 (along with
a PAL to RGB converter board DT2869) placed inside a PC 486.
The pictures are digitised with 500]130 (laminar) and
500]151 (turbulent) pixel resolution and 8 bit accuracy with
256 grey levels of image intensity.

3
The wavelet transform
The wavelet transform fK (x, a) of a function f (x) may be
defined as the convolution product of a scaled and shifted
mother wavelet t(x) with the function to be analysed:

fK (x, a)\: f (x@)tA
x!x@

a B dx@

where a is the scale parameter and x@ is the shift parameter.
Detailed reviews of wavelet transform principles and tech-
niques are available in Strang (1989) or Meyer (1993). Briefly,
the mother wavelet must be a rapidly decaying function of its
argument (i.e. must have compact support), have a zero mean
to be ‘‘admissible’’, and be normalized suitably, usually to
ensure invertibility and preservation of the L2 norm. Several
such functions exist in the wavelet literature. An invertible,
orthonormal transform yields an ‘‘optimal’’ wavelet repres-
entation of f (x) useful for such purposes as signal compres-
sion. For the present work, we use the continuous version of
the transform which is richly redundant and hence facilitates
analysis, in particular, because of the freedom it provides on
the choice of wavelet scale. The transform is particularly useful
because of its ability to identify localized regions of energy
concentration. This property is its major advantage over
conventional Fourier-type analysis, which provides only
a global distribution of energy. In the case of a 2D image this
implies the possibility of detecting regions of high activity at
different physical scales.

The transform has been earlier used to study coherent
structures in turbulence. Thus Farge (1992) reconstructed
scale-specific regions of high vorticity concentration in direct
numerical simulations by inverting the transform, and used it
to study the dynamics of these structures. In the present case,
we use the transform solely as a detector of structures at
various spatial scales. For this purpose we specifically choose
the two-dimensional Mexican hat wavelet,

t(x)\(2!x2]y2) exp !(x2]y2)/2

where x,(x, y) is a two-dimensional position vector in the
plane of the image being analysed, with x along the centre-line
of the mixing layer and y normal to it. The zero-crossings of
this transform have been shown to be particularly useful in
detecting regions of sharp gradients in an image (Marr 1982).
Such gradients may assist in identifying the interfaces between
coherent and non-coherent motion.

For better appreciation of the physical scales of the struc-
tures detected, we shall in the present study replace the scale
a of the wavelet transform by a@, the ratio of the wavelet scale to
the length L of the image along the x-axis.

4
Results

4.1
The laminar mixing layer
Two grey scale images, respectively of a laminar and a fully
turbulent mixing layer, are shown in the top left panels of
Fig. 1 and 2. The grey scales are arranged linearly between the
lowest and highest intensity values. It is clear that the large
coherent structures so easily seen in the laminar case are also
present in the turbulent mixing layer, albeit ‘‘super-imposed’’
on a ‘‘background’’ of fine scale turbulence (Roshko 1976).
What is immediately obvious form these pictures is that
there is no ambiguity in inferring the existence of coherent
structures.

Figure 1 also shows the wavelet transform of the laminar
layer at six dyadically increasing scales starting from a@\0.02.
Again the grey scales are arranged linearly with intensity;
however white, centred around zero, demarcates the positive
from the negative coefficients. Since the wavelet transform at
the smallest scales is sensitive to the very fine scale noise
occurring on an otherwise smooth background, it was neces-
sary to remove the (almost unnoticeable) digitisation noise
from the background ambient flow or non-mixing-layer
region. This helps to prevent distraction from the main results.
Initially, elaborate quantitative methods were tried to remove
this noise, including the identification of thresholds from
probability distributions of pixel intensity, edge detection by
short-time variances and various refinements thereof. How-
ever, a simple definition of the edge by eye, leveling all pixels
above and below the upper and lower edges (the ‘‘back-
ground’’) to a constant value and careful thresholding of the
wavelet transform of the image at the smallest scale (see details
below), proved most effective. The results are those displayed
in Fig. 1.

The raw image was first carefully trimmed to retain the
mixing layer and the background was uniformly set to the
average pixel intensity of the edge of the mixing layer
bordering the background. Thus the upper background was set
to the average intensity of the upper edge and similarly the
lower background. The resultant raw image is shown in Fig. 1.
There was virtually no discernible difference between this
version and the original image, except that the small scale
background noise was completely eliminated. Two additional
refinements were found to be necessary. There is a small
amount of unmixed background (ambient fluid) within the
laminar mixing layer, and this resulted in retention of noise at
the lowest scale (a@\0.02). This was removed by examining the
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Fig. 1. Raw image of the laminar mixing layer (U
1
\10 m/s,

U
2
\3.78 m/s and pressure\ 2 bar), and wavelet transforms

at six different scales

wavelet transform coefficients at increasing thresholds both
above and below zero. The wavelet-transformed image at
a@\0.02 shown in Fig. 1 displays the thresholded values which
exhibit very little background noise, but retains all the essential
features that were seen in the unprocessed transformed image.
Since the fine scale noise is not picked up at larger scales (one
of the reasons why the transform is used as a filter in signal
processing applications, see e.g. Meyer 1993), the wavelet
transforms at a@ greater than 0.04 are displayed without any
thresholding. At higher scales the best results were obtained
when the pixels in the background outside the mixing layer
were set to zero. The negative transforms (all occurring outside
the mixing layer) are not displayed at a@\0.32 and 0.5 for
clarity, as they have no physical bearing on the flow features in
any case.

Several features may be immediately noted in Fig. 1. At the
smallest scale of a@\0.02, the fine scale structure of the mixing
layer stands out. The location of the regions or layers of
maximum density gradient may be noted. These follow the
regions of highest intensity in the raw image and are seen to
be strikingly similar to it in nearly every detail. The wavelet
transform therefore unambiguously picks out the finest
regions of interest at the smallest scales. The analogy of the
mixing layer and breaking rollers on a beach (Roshko 1976)
is seen all the way up to a@\0.16. The wavelet transform at
a@\0.32 actually shows the first three vortices closest to the

splitter plate as a continuous wave, while the fifth and sixth
vortices from the splitter plate are seen to exhibit roller
characteristics.

Also, as we go higher in scale, the regions of stronger and
weaker gradients at each scale can be identified, e.g. at a@\0.08
and 0.16, the density gradients at the bottom are seen to be
stronger (more nearly continuous and uniformly intense) than
those at the top (less intense and discontinuous). Again, the
curling up of the fluid layers in the core of the vortices, so clear
at the lower scales, is seen to be replaced by fragmented,
separate regions of varying intensity and size at higher scales.
And the smallest two vortices (just off the splitter plate),
distinctly seen as tiny rollers at a@\0.02, appear as separate
upper and lower layers at a@\0.04 and 0.08, while at a@\0.16
the cores of these vortices are clearly demarcated as separate
more intense regions.

At a@\0.32, as already noted above, the first three vortices
off the splitter plate are seen as a thick wavy sheet, the fourth is
of just the right size to be resolved as an independent entity,
while the fifth and sixth continue to show roller characteristics.
At the highest scale a@\0.5, the smallest three vortices are too
small to be resolved separately, but the next three vortices are
seen as distinct isolated entities. Thus, as we go up in scale the
fine structure gets obliterated while the large-scale structure
gets more clearly defined. Also, at the same wavelet scale,
structures of different sizes (even if these have the same shape
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Fig. 2. Raw image of the turbulent mixing layer (U
1
\10 m/s,

U
2
\3.78 m/s and pressure\8 bar), and wavelet transforms at

seven different scales

and internal organisation) are always resolved in relation to
the chosen wavelet scale. Thus, if smaller structures have
a clumping or clustering recognisable at the chosen wavelet
scale, the nature of this organisation is revealed (see e.g.
the wavy sheet at a@\0.32). Similarly any sub-structure or
organisation within the larger structure, corresponding to the
wavelet scale, is revealed (e.g. the details of the rollers, also at
a@\0.32). Finally, at each scale, the wavelet captures patterns
appropriate to that scale as independent entities. The wavelet
transform therefore appears to be a useful tool in the eduction
of scale-specific regions of coherence in the flow.

4.2
The turbulent mixing layer
We now turn our attention to the more interesting case of the
fully turbulent mixing layer (Fig. 2).

Here too the image was carefully trimmed and the pixels on
the upper and lower back-ground of the mixing layer set to
a uniform average value corresponding to the respective edge.
In the raw image of the turbulent mixing layer, the large-scale
structure is again seen to stand out. Clearly these are strikingly
similar in gross features to those seen the laminar case. The
vortices are clearly seen and grow in size downstream of the
splitter plate. The regions of maximum strain (edges of the
vortices) are seen as the most intense in the image. In addition,

the ‘‘bubble-like’’ regions (marked A, B, C, D, E in Fig. 2) just
upstream of each vortex and below the upward rising arm
of the strain layer appear as a sub-structure or a series
of sub-structures. With the range of physical scales present in
the turbulent flow, the scale-specific nature of the wavelet
transform becomes a great advantage, and reveals a wide
diversity in structural organisation.

Figure 2 also shows the wavelet transforms of the turbulent
mixing layer at seven different wavelet scales increasing
dyadically from a@\0.01. It has already been shown above that
the wavelet transform picks out organised regions in a flow as
isolated structures at the appropriate scales. Thus, perhaps the
most surprising result is revealed at the lowest two wavelet
scales (a@\0.01 and 0.02). Here the whole mixing layer appears
to be covered by a nearly homogeneous distribution of very
fine scale structures. These, at first glance, appear to be of
approximately the same size, no matter how far downstream
one proceeds. (A more quantitative study of this aspect will be
reported separately.) On the other hand, Everson et al. (1990),
studying dye concentration in longitudinal sections of a jet
illuminated by a laser sheet, note that the size of the small-scale
structures in the jet increases with downstream distance from
the exit nozzle. In striking contrast, the present study suggests
that the size of the small-scale structure does not vary
significantly with downstream distance x in the mixing layer
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(an observation we shall return to in Sect. 5). Also, while their
study (and that of Kailas et al. 1995 for diametral slices of a jet)
shows the small scale structure to be ‘‘string-like’’ (cross-
sections of sheets), it is not so clear in the present study. In fact,
the fine structure in the mixing layer appears to be a mixture of
broken strings interspersed with beads. A major reason for this
observation may well be that in the present case the imagery
being analysed is not a section of the flow but (being obtained
from a schlieren photograph) represents in some sense
a spanwise integral of the flow.

At the smallest two wavelet scales, there appears to be a hint
that these structures are more intense (and connected) along
the regions of maximum density gradient, e.g. the bottom edge
of the mixing layer is clearly more intense and better organized
than the top edge. With increasing wavelet scale the connected-
ness of these regions is more clearly manifested and an
intermediate scale structure of the mixing layer becomes
apparent. At a@ greater than 0.04 (and particularly at a@\0.16)
the edges of the vortices show clear elongated structures that
appear to be cross sections of thick rolled-up sheets. Thus the
stringy nature of structures seen in a jet by Everson et al. (1990)
and Kailas et al. (1995) at the smallest scales is seen here at
scales intermediate between the smallest and the largest. It may
be noted, however, that the thickness of the edges does not
appear to increase with distance downstream. Again, at larger
scales (a@\0.08), though the vortex core is occupied by
structures bigger in size than those seen at the smallest scales,
these too apparently exhibit the same uniformity of size
independent of x. Thus, while the overall vortex size grows
with downstream distance, the sub-structures do not show
growth even if there appears to be elongation of the edges in
the x-direction.

The ‘‘breaking wave’’ picture is revealed at a@\0.04 and
above; at a@\0.08 the analogy is particularly strong. The lower
arms of the vortices are seen as distinct regions that rise along
the edge of a vortex and appear to break up at the top and into
the core, much like rollers on a beach.

At a@\0.32 and 0.5, the more interesting aspects are
revealed by the negative values of the wavelet transform. This
is due to the lower over-all intensity of the (larger scale)
vortex cores compared to that of the background (see the raw
data). The smallest two vortices are seen as distinct entities at
these scales. However, the wavelet scale is still too small to
recognise the fourth vortex as one single entity, the arms of this
vortex being still resolved separately. At a@\0.32, while the
core of the third vortex is seen as a region of high negative
intensity (with its extension upwards and downstream between
the vortex edges being captured), at a@\0.5 the third vortex is
seen as an isolated entity.

Thus, the analysis reveals structures at three levels. At
a@\0.01 and 0.02, the whole turbulent mixing layer appears
homogeneously ‘‘peppered’’ by fairly uniform small structures.
The connectedness of the vortex edges are well defined for a@
between 0.04 and 0.16 (most clearly at a@\0.16). And the
locations of the vortex cores are best seen at the largest scale
(a@\0.5). The smallest scales show a mixture of structure
shapes, pieces of strings (with no preferred orientation) mixed
with beads. The scales in between reveal thick elongated
string-like organisation. And those at the largest scale are
clearly bead-like.

The manner in which the wavelet transform picks out
structures of the appropriate size as the wavelet scale is
increased is also revealed in the study of the ‘‘bubbles’’ marked
A, B, C, D and E in Fig. 2. The wavelet sees these as distinct
entities or sees distinct aspects of these at different scales.
At a@\0.02, bubble B is difficult to distinguish among the fine
scale structures as an area enclosing two (or three) smaller
structures. These enclosed structures cannot be resolved
separately at a@\0.04 and the bubble is seen as an area
enclosing a single structure. At a@\0.08, it is seen as a distinct
region of negative intensity with a very thin edge that hardly
registers at this scale. At a@\0.16, the bubble has disappeared
as it is too small to be discerned at this scale. Similarly bubble
A is barely recognisable upto a@\0.04, is clearly distinguished
at a@\0.08 and 0.16 as an area of low intensity enclosed by
a broken boundary of higher intensity, and finally, at a@\0.32,
it is seen as a single separate entity. The same is the case
for bubbles C, D and E. This again shows that the wavelet
transform is very useful in picking out areas of coherence
appropriate to the scale of the wavelet used.

4.3
Eduction of structures from wavelet transforms
A variety of options exist to detect structures from the
wavelet-transformed images. In the present case, the best
results were obtained by studying the images at various
thresholds. The optimum threshold could be determined so
that the structures captured revealed details unique to that
scale but ignored unnecessary clutter.

Figure 3 shows the structures so revealed for the laminar
mixing layer at different wavelet scales at the thresholds
shown. Several interesting features stand out. At a@\0.02,
nearly every roll-up of each vortex is clearly revealed. At the
next larger scale, the details of the smallest two vortices are no
longer clear. At a@\0.08, the internal rolled-up layers of the
fourth, fifth and sixth vortices are broken up (the breaking
roller analogy). At a@\0.16, the cores of the fifth and sixth
vortices are clearly marked out. At a@\0.32, at the threshold
chosen, the first four vortices merge into a thick wavy sheet
while the fifth and sixth vortices are seen to be like breaking
rollers. At the highest scale a@\0.5, the fifth and sixth vortices
are picked up as separate isolated entities. However, while each
wavelet scale reveals a distinct feature of the laminar mixing
layer, the relationships between one scale and the next and the
raw image is clearly discernible.

Figure 4 shows the structures determined from the wavelet
transforms of the turbulent mixing layer, again at the
thresholds shown. At the lowest wavelet scales (a@\0.01, 0.02
and even 0.04), the homogeneous distribution of the small
scale structure is very clearly seen. Konrad (1976) has studied
the density variation within the mixing layer, and shown that
there remain small blobs of non-turbulent fluid ingested by the
large vortices during growth but remaining unmixed within the
mixing layer. Also, Roshko (1976) had concluded that the
significant intermittency (with rapid fluctuations between
values corresponding to the pure fluid on either side of
the mixing layer), seen in point measurements of passive
transportable scalars in a mixing layer, indicated the presence
of distinctly separate small-scale structure embedded within
the large-scale vortices. The wavelet transform pictures do
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Fig. 3. Structures educed from the wavelet transform of the laminar
mixing layer

show a significant small scale structure in the fully turbulent
mixing layer consistent with the above picture. But, addition-
ally, they reveal that these are relatively homogeneously
distributed, so that the small blobs of fluid appear to be spread
rather evenly throughout the mixing layer, again nearly
independently of distance downstream. The large scale organisa-
tion is very difficult to discern in the wavelet transform
pictures at these scales. Thus, unlike in the laminar case, the
small scale structure is significantly uncorrelated to the large
scale structure or the raw image. It may be worth remembering
here that Bernal and Roshko (1986) had shown that the onset
of three-dimensionality in the small-scale motion does not
destroy the spanwise coherence of the large scale motion.

Although some hints of organisation along the regions of
strain (the arms of the vortices) are revealed at the smallest
scales, this becomes more clearly apparent only at the
intermediate scales a@\0.08, 0.16 (and to some extent for the
largest vortex even at a@\0.32 and 0.5). The structure of the
turbulent mixing layer at these scales shows similarities to that
of the laminar case. The above is consistent with Roshko (1976,
his Fig. 10), who has shown how the edges of the mixing layer
are more ‘‘unmixed’’ than the centres. Also, Wygnanski et al.
(1979) showed that the cores have much shorter spin-wise
characteristic lengths than the edges of the mixing layer. Again,
the thickness of the vortex boundaries appears to remain
constant with downstream distance. This invariance is also
seen in the case of the internal sub-structures inside each
vortex, upto a@\0.08, the sub-structures at higher wavelet

scales in the smaller vortices apparently being too weak in
intensity and organisation relative to the vortex edges to be
resolved at the thresholds chosen.

Interestingly, the above also shows that the wavelet picks out
all types of structures at a given wavelet scale, even if these are
of widely varying aspect ratios } such as the highly elongated
arms and the smaller more rounded internal sub-structures. It
may therefore be concluded that the nature and distribution of
such scale-specific structures are aspects of the flow organisa-
tion and not artifacts of a particular wavelet scale.

The similarity of vortices to breaking rollers is clearly seen at
a@\0.08 (and at 0.16, for the third and fourth vortex). At
a@\0.5, the location, shape and size of the first three vortex
cores are clearly seen, while the wavelet is still too small to
‘‘see’’ the fourth vortex as a separate entity, its lower arm being
picked up clearly. Interestingly, the elongation of the vortex
cores in the downstream direction as seen in the raw image is
clearly captured.

The manner in which aspects of the bubble sub-structures
appear at differing scales is also revealed. Thus bubble A is
seen at a@\0.01 and 0.02 as an organisation of fine structures
along a barely discernible boundary, with other fine structures
(of apparently the same size, but weaker organisation or
connectivity) embedded within. At a@\0.04 and 0.08, the
boundaries of the bubble are clearly defined but only the most
intense internal region is picked up at a@\0.08. At a@\0.16,
only the more intense and connected boundary regions are
picked up, the internal structures being too weak in intensity
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Fig. 4. Structures educed from the wavelet transform of the turbulent
mixing layer

and too loosely organized to be revealed. At a@\0.32, the whole
bubble is seen as an isolated structure, but it is not seen at
a@\0.5, the wavelet at this scale being too large to resolve
structures of this size. A similar sequential detection, with
increasing wavelet scale, of different aspects is seen for bubbles
C, D and E, culminating in the whole set of bubbles being
recognised as a single coherent entity at a@\0.32.

At all scales, the larger vortices, further away from the
splitter plate, enclose more small structures than the smaller
vortices closer to the splitter plate, this being especially clear
at a@\0.08 and 0.16. Roshko (1976) states that small scale
turbulence mixing is important at high Reynolds numbers
to account for the decrease of vorticity as the mixing
layer grows by ingestion of irrotational fluid. The presence of
more small scale regions enclosed within the vortices further
away from the splitter plate (see a@\0.08 and 0.16) supports
this view.

In summary, unlike the laminar mixing layer, three levels of
scale-specific structures are revealed in the turbulent mixing
layer: the smallest scale homogeneous structure, the intermedi-
ate scale organisation of the vortex boundaries (and some
internal sub-structures), and the large-scale coherence of each
vortex itself. While the latter two structure types are discern-
ible in the raw image (and in the laminar case), the smallest
scale structures reveal an organisation very difficult to discern

from the raw image, and appear relatively uncorrelated to the
large scale organisation; they are certainly not seen in the
laminar case. This again is unlike the situation seen in a round
turbulent jet either in longitudinal sections (Everson et al.
1990) or diametral ones (Kailas et al. 1995), where the
structures detected bear organisational semblance across
wavelet scales and to the raw image.

5
Conclusions
The present work shows that, in the laminar case, the
small-scale structure is similar to what is seen in the raw
images itself, the wavelet transform tracing out the organisa-
tion of the sharp density gradients more clearly. So also the
large scale structure, the vortices being detected as single
coherent structures at the appropriate wavelet scale. However,
in the turbulent mixing layer, while the large-scale wavelet
picture reveals clearly the coherence visible in the raw data, the
small scale picture bears only a weak correlation to the large
scale picture, unlike the case of jet imagery (Everson et al. 1990;
Kailas et al. 1995). It is here that the value of the wavelet
transform is best exhibited in this flow: the small structures,
difficult to discern in the raw data, are more clearly revealed.
Furthermore, these show noticeable homogeneity in distribu-
tion and uniformity in size with downstream distance. This is
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in sharp contrast to current views about the small scale
structure of other free shear flows such as jets (Everson et al.
1990). The explanation for this probably lies in the dependence
of the Kolmogorov length scale (say l

*
) on downstream

distance in different flows. It is well known that l*&e~1/4
where e is the specific dissipation, proportional to U3/d where
U and d are characteristic large-eddy velocity and length scales.
Using the standard similarity laws, it is easily seen that l*\x1/4
in a mixing layer and l*&x in a round jet: the small scales are
much less sensitive to downstream distance in a mixing layer
compared to a jet. It is remarkable that the low-scale wavelets
are able to detect this feature of the small scale motion in the
flow.

Besides the above, there appear to be two other levels of
structure organisation in the turbulent mixing layer. These
are discernible in the raw image itself and are similar to
those seen in the laminar case. Thus, the edges of the large
structures stand out as more intense and better organised
contiguous regions than the vortex centres at scales in between
the smallest and largest. This is in agreement with the known
fact that these edges are more highly correlated in the spanwise
direction than are the cores (Roshko 1976). At these scales, the
wavelet transform picture clearly brings out the often stated
analogy of the mixing layer being akin to breaking rollers.
Finally, each vortex is seen as a single coherent entity at the
largest scales.

In interpreting the present pictures, it must of course be
remembered that they represent spanwise integrals over the
flow because of the optical technique used. We see greater
potential for analysis of visualizations of sections of the flow,
e.g. by laser-sheet illumination with fluorescent dye, and will
publish separately results on jet flows. The objective of the
present work has been to show that the wavelet transform can
provide a powerful tool for inferring structure from instan-
taneous data.
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