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THE EDWARDS MODEL FOR FRACTIONAL BROWNIAN

LOOPS AND STARBURSTS

WOLFGANG BOCK*, TORBEN FATTLER, AND LUDWIG STREIT

Abstract. We extend Varadhan’s construction of the Edwards model for
polymers to fractional Brownian loops and fractional Brownian starbursts.
We show that, as in the fBm case, the Edwards density under a renormalizaion
is an integrable function for the case Hd ≤ 1.

1. Introduction

Fractional Brownian motion (fBm) has attracted considerable attention in re-
cent years. This class of processes in general lacks the martingale and Markov
properties so that many standard techniques from classical stochastic analysis
are not available for them. For a detailed overview we refer to the monographs
[7, 22, 24] and the references therein. There one now finds specific techniques and
results developed in recent years such that these processes nowadays are more and
more present in applications. Among them are models in finance, see e.g. [2, 3, 4]
and physics [15, 21]. In particular they can also be used as a model for the con-
formations of chain polymers [8, 12, 16, 17], generalizing the classical Brownian
models (see e.g. [25], and references therein). In this note we use results from
[20] to show the existence of an Edwards model [14, 16] for fractional Brownian
loops and starbursts. These geometrical objects can serve as models for ring poly-
mers and so called dendrimers, see e.g. [26, 23]. The existence of the Edwards
density as an integrable function gives rise to the analytical study of these objects
as stochastic processes. We follow here closely the lines of [16] for the fractional
Brownian motion case and prove the additional nessessary properties for loops and
starbursts.

2. Fractional Rings

Conventionally, fBm BH(t), t ≥ 0 is defined on half-lines as a centered Gauss-
ian process with

E
((

BH(t)−BH(s)
)2)

= |t− s|2H (2.1)

FBm loops should be defined with parameter t on a circle of length T , with
translationally invariant increments around that circle. Following J. Istas [20],
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this can be constructed replacing the distance D = |t− s| by the geodesic one:

E
((

bH(s)− bH(t)
)2)

= (min (|s− t| , T − |s− t|))2H =: d2H(s− t), (2.2)

but with limitations: the covariance kernel so constructed is positive definite, and
hence there is a corresponding Gaussian process if and only if the Hurst index H
is small; for H > 1/2 this will not be the case, for the Brownian case in particular,
with H = 1/2, see [9].

ForH ≤ 1/2 one defines d-dimensional fBm loops via a d-tuple bH =
(
bH1 , ...bHd

)

of independent copies of bH .We note that d2H is concave and positive on (0, T )
which implies (see p.89 of [5]) that bH is locally non-deterministic and hence, for
0 < t1 < . . . < tn there is a k > 0 such that for any vector u := (u2, . . . un) ∈ Rn−1

E




(

n∑

i=2

ui

(
bH (ti)− bH (ti−1)

)
)2


 ≥ k
n∑

i=2

u2
iE
((

bH (ti)− bH (ti−1)
)2)

,

(2.3)
by equation (2.1) of [6] and in equation (3.4) of [18].

2.1. The Self-Intersection Local Time. We define, first informally, the self-
intersection local time of fBm loops as the integral

L =

∫ ∫

0<s<t<T

dsdt δ
(
bH(s)− bH(t)

)
, (2.4)

an expression which calls for a regularization of the Dirac δ-function, such as by
the heat kernel

δε(x) ≡
1

(2πε)d/2
e−

|x|2
2ε , x ∈ Rd, ε > 0, (2.5)

For Hd < 1, similar to the usual fBm case,

L = lim
ε↘0

Lε := lim
ε↘0

∫ ∫

0<s<t<T

dsdt δε
(
bH(s)− bH(t)

)
(2.6)

exists, see e.g. Theorem 1 of [19]. In particular one finds in our case from (2.4)
and (2.5) that

E (L) = lim
ε↘0

1

(2π)d/2

∫ T

0
dt

∫ t

0
ds

1

(dH(t− s) + ε)d/2
. (2.7)

Further note that, if we split the outer integration in the middle, we can use
|s − t|2H and (T − |s − t|)2H for the different areas respectively. By substitution
rule we obtain from the above expression

1

(2π)d/2

∫ T/2

0
dτ

T − τ

τdH
+

1

(2π)d/2

∫ T

T/2
dτ

T − τ

(T − τ)dH
=

T

(2π)d/2

∫ T/2

0
dτ

1

τdH
,

(2.8)
which is finite for Hd < 1. The same holds true for E(L2).

Theorem 2.1. For H ≤ 1/2 and Hd < 1 there exists the L2- limit

lim
ε↘0

Lε > 0. (2.9)
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Hence, for any g > 0 there exists the Edwards model, with

exp (−gL)

E (exp (−gL))
∈ L1 (νH) (2.10)

as a the probability density w.r.t. the fBm measure νH .

2.2. The Case Hd=1. As in the fBm case for Hd = 1 one has to center the
local time. Hence we define

Lε,c ≡ Lε − E(Lε). (2.11)

Theorem 2.2. Assume that Hd = 1, d ≥ 2. Then the limit

Lc ≡ lim
ε↘0

Lε,c ∈ L2 (νH) (2.12)

exists in L2 (νH) and there is a positive constant M such that for all 0 ≤ g ≤ M

exp(−gLc) (2.13)

is an integrable function.

Hence, also in this case, we have an Edwards measure, with

exp (−gLc)

E (exp (−gLc))
∈ L1 (dνH) (2.14)

as probability density w.r.t. the fBm measure dνH .

Proof. For the case Hd = 1 singularities arise for τ = d (t− s) ! 0, so that the
expectation of the local time diverges. The Varadhan construction requires two
estimates [27, 16], namely:

E(Lε) = O(|ln ε|) (2.15)

and, after centering, i.e.

Lε,c ≡ Lε − E(Lε) (2.16)

we need to show for some K > 0, that

E
(
(Lε,c − Lc)

2
)
≤ Kε1/2. (2.17)

In this proof we elaborate these estimates for the case of loops. The first bound
can be verified directly, see (2.8). To adapt the proof in [16] of the second estimate
it is useful to introduce

Γε =

∫ ∫

d(t−s)≥∆

δε(b
H(t)− bH(s)) (2.18)

for a small positive ∆. The “gap-renormalized” Γε is non-negative and finite in
the limit

Γ ≡ lim
ε↘0

Γε ∈ L2 (νH) . (2.19)

As a result exp (−gΓ) is finite for any g > 0.
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Remark 2.3. Note that Γε is not only dependent on ε but also on ∆, the same
holds for Γ. To avoid too many indices it is however not included this in the
notation.

Due to the fact that exp (−gΓ) is finite for any g > 0, we only need to verify
the validity of the Varadhan construction for

Λε ≡
∫ ∫

d(t−s)<∆

δε(b
H(t)− bH(s)).

As a first step we center Λε:

Λε,c ≡ Λε − E(Λε). (2.20)

For positive ε one computes

E(Λ2
ε) =

∫

T∆

dsdtds′dt′ E(δε(bH(t)− bH(s))δε(b
H(t′)− bH(s′))) (2.21)

=
1

(2π)d

∫

T∆

dsdtds′dt′
(
(λ+ ε) (ρ+ ε)− µ2

)−d/2
(2.22)

- as in equation (13) of [19] - where now

T∆ ≡ {(s, t, s′, t′) ∈ [0, T ]4 : |t− s| < ∆, |t′ − s′| < ∆}, (2.23)

and for ∆ ≤ T/2 with

λ ≡ E
((

bH(s)− bH(t)
)2)

= |t− s|2H (2.24)

ρ ≡ E
((

bH(s′)− bH(t′)
)2)

= |t′ − s′|2H

µ ≡ E
((
bH(s)− bH(t)

) (
bH(s′)− bH(t′)

))

=
1

2

(
d2H (s− t′) + d2H (s′ − t)− d2H (t− t′)− d2H (s− s′)

)
. (2.25)

Following the argument in [16] we have here again the estimate

E
(
(Λε,c − Λc)

2
)
≤ d

2(2π)d

∫

T∆

dτ ρ

∫ ε

0
dx

(
1

(δ + xρ)d/2+1
− 1

((λ+ x)ρ)d/2+1

)
,

(2.26)
so, following [16], it is sufficient to show that also in the case of loops the rhs is of
order ε1/2. We then decompose T∆ into two subsets, adapting the notation of [16]

T∆1,2 ≡ {(s, t, s′, t′) ∈ T∆ : [s, t] ∩ [s′, t′] '= ∅} (2.27)

and
T∆3 ≡ {(s, t, s′, t′) ∈ T∆ : [s, t] ∩ [s′, t′] = ∅} (2.28)

In the first subset, for any ∆ ≤ T/4, “geodesic” distances d between any pair of
points are less than T/2, hence are equal to the ordinary ones: d(t′ − s) = |t′ − s|
etc.. Hence the estimates given in [16] for the domains T1,2 apply to the present
case, and the contribution from this subdomain of the integral (2.26) is of order
ε1/2. For T∆3 we assume without loss of generality 0 < s < t < s′ < t′. If
t′ − s ≤ T/2, all distances between points (s, t, s′, t′) are again less than T/2, and
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as above, the contribution from this subdomain of the integral (2.26) for sufficiently
small ∆ is of order ε1/2 too. Likewise, with an exchange of variables, for the case
d(s′ − t) ≤ T/2.

In the remaining case, for sufficiently small ∆, the geodesic distance b between
the intervals [s, t] and [s′, t′] is large in comparison to ∆ This corresponds to the
second sub-region

t− s < ∆ ( b, t′ − s′ < ∆ ( b (2.29)

of T3 considered in the proof of Proposition 1 in [16]. Recalling that the periodic
fBm also is locally nondeterministic, we conclude as in the corresponding proof of
Lemma3.1(3) of [18] that for a sufficiently small k > 0,

λρ− µ2 ≥ kλρ (2.30)

also here. Hence the arguments in Lemma 6 and Lemma 7 of [16] carry over to the

case at hand, and in conclusion the O(ε1/2) bound holds for E
(
(Lε,c − Lc)

2
)
. "

3. Starbursts

A generalization of centered Gaussian random paths, such as e.g.

X = {xk(tk) : xk(0) = 0; k = 1, . . . , n; 0 ≤ tk ≤ Tk} , (3.1)

branching out from a common starting point, is often called a “starburst” or
“dendrimer” in applications, see e.g. [13] and chapter 1 in[25]. For a Brownian
motion, one simply obtains n Brownian motions starting in zero.

For the definition of an fBm starburst X = (βH , following [20] one will want to
maintain the characteristic fractional correlations between different branches, i.e.

E
((

(βH
k (s)− (βH

l (t)
)2)

= d2Hkl (s, t), (3.2)

where now the geodesic distance

dkl(s, t) =

{
|s− t| if k = l
s+ t if k '= l

. (3.3)

This means that on the same branch, i.e. in the case k = l the distance is given
by the absolute value, hence as for standard processes defined on the real line.
For the case of two different branches, one connects the distance via the common
starting point, which is set to zero. Hence one obtains s + t for k '= l. We hence
obtain for H '= 1

2 a long-range interaction also between different branches.

We denote the corresponding Gaussian measure by µ(H,n).

As shown by Istas [20] such an extension of fBm is again viable whenever the
Hurst index H is no larger than 1/2. (For H = 1/2 this produces simply an n-tuple
of independent Brownian motions.)

For k '= l we set, first informally,

Lkl =

∫ Tk

0
ds

∫ Tl

0
dtδ
(
βH
k (s)− βH

l (t)
)

(3.4)

and for k = l we define the centered local times Lk,c as in [16].
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Then consider
L(g) ≡

∑

k

gkLk,c +
∑

l<k

gklLkl (3.5)

for positive gk and gkl, 1 ≤ k, l ≤ n.

For shorthand we write g > 0 for gk > 0 and gkl > 0, for all 1 ≤ k, l ≤ n.
Lk,c by itself is well-defined for Hd < 1 and controllable à la Varadhan for

Hd = 1 and small positive g; and the Lkl are bounded. Hence, for Hd < 1 we
have as before

Theorem 3.1. For H ≤ 1/2 and H < 1/d there exists the L2 limit

lim
ε↘0

Lε(g) > 0. (3.6)

So for any g > 0 there exists the Edwards model, with

exp (−L(g))

E (−L(g))
∈ L1 (µ(H,n)) (3.7)

as a probability density w.r.t. the Gaussian measure measure dµ(H,n).

Theorem 3.2. Assume that Hd = 1, d ≥ 2. Then the limit

Lc(g) ≡ lim
ε↘0

Lε,c(g) ∈ L2 (µ(H,n)) (3.8)

exists and there exists a positive constant M such that for all 0 ≤ gk ≤ M

exp(−Lc(g)) (3.9)

is an integrable function.

Proof. For sufficiently small g > 0 we have that exp (−gkLk,c) εL1(µ(H,n)). Hence
we can choose g > 0 such that exp (−gkLk,c) εLn and have

exp

(
−

n∑

k=1

gkLk,c

)
∈ L1(µ(H,n)). (3.10)

The Lkl are non-negative and bounded, hence, for arbitrary gkl ≥ 0

exp(−Lc(g)) = exp

(
−

n∑

k=1

gkLk,c −
n∑

k>1

gklLkl

)
∈ L1(µ(H,n)). (3.11)

"
Remark 3.3. Based on the construction of fBm on metric trees as parameter space
by [20], vast generalizations of this last result seem possible.

4. Conclusion and Outlook

In this note we have generalized the methods from [16] from fBm to fractional
loops and starbursts. These loops and starbursts can serve as models for the
coformations of ring polymers and dendrimers in solvents. The existence of the
Edwards density is the starting point for further analytical study of these models.
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