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Abstract 

Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective 
studies that estimated chronological age from neuroimaging have found accelerated brain aging in 
obesity, but it is unclear how this estimation would be affected by lifestyle intervention. In a sub-study of 
102 participants of the DIRECT-PLUS (dietary-intervention-randomized-controlled-trial polyphenol-
unprocessed) trial, we tested the effect of 18 months of lifestyle intervention on predicted brain age, based 
on MRI-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in 
multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, 
can account for changes in brain age. To establish our method, we first demonstrated that our model could 
successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that 
among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months attenuation of 
brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, 
decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18m of intervention. Finally, 
we showed that lower consumption of processed food, sweets, and beverages were associated with 
attenuated brain age. These results suggest that lifestyle intervention has beneficial effects on the 
trajectory of brain aging.  

Keywords: Lifestyle intervention; Functional connectivity; Brain age; MRI; Obesity; Mediterranean diet; 
Physical activity 
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1. Introduction 

Brain aging is a complex, multifaceted process with various manifestations in different periods of the 
human lifespan, brain regions, and imaging modalities1,2. Nevertheless, reducing this complex process to 
a single scalar, the predicted brain age, may capture multiple conditions and risk factors associated with 
deviation from the normal aging trajectory3. Brain age estimation is typically done by predicting 
chronological age from neuroimaging data in a healthy training group of subjects and applying the fitted 
model to a new, unseen individual. This procedure enables estimating a measure of brain age independent 
of the individual's chronological age. Over-estimation of brain age, in relation to chronological age, is 
observed in several neurological conditions such as mild cognitive impairment, Alzheimer's disease (AD), 
schizophrenia, and depression4–6, and is associated with an increase in mortality rate7. Similarly, over-
estimation of brain age was also found in obesity8–10, suggesting that the brain age framework may 
provide a powerful tool for assessing accelerated brain aging due to excessive weight. Critically, it is 
unclear whether dietary lifestyle interventions may have a beneficial, attenuative effect on the brain aging 
process. 

Obesity is associated with multiple adverse health impacts also observed in normal aging11,12. These 
comorbidities of obesity and typical aging include the risk of cardiovascular disease13, inflammation14, 
type 2 diabetes15, DNA damage16,17, and neurodegenerative processes18. The link between excessive 
weight and neuronal damage is likely mediated by adiposity, metabolic dysfunction, and alteration in the 
gut microbiome19,20. These, in turn, promote inflammatory metabolic processes in the central nervous 
system21. Accordingly, reduction in gray and white matter volume22,23, changes in brain connectivity24,25, 
cognitive impairment26, and the prevalence of dementia27 were all associated with midlife obesity. These 
anatomical2, functional28, and behavioral29 findings are also observed during normal aging. An increase in 
life expectancy30 along with a sharp growth in obesity rates31 elicit the need to characterize, treat and 
perhaps prevent obesity-related brain aging. 

We previously found that weight loss, glycemic control and lowering of blood pressure, as well as 
increment in polyphenols rich food, were associated with an attenuation in brain atrophy 32. Here, as a 
sub-study of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study 
(DIRECT PLUS33), we examined the effect of 18 months of lifestyle intervention on brain aging 
attenuation (Fig. 1). We assessed brain age based on resting-state functional connectivity (RSFC) taken 
before and after the intervention. Brain aging attenuation was quantified as the difference between the 
expected and observed brain age after the intervention. We trained and validated the age prediction model 
using two separate cohorts (n=29134, 35835,36), then applied it to our group of participants from the 
DIRECT-PLUS (n=102). We hypothesized that a successful reduction in anthropometric measurements 
following the intervention would attenuate brain aging. We then examined how multiple clinical 
outcomes, including liver, glycemic, lipids, and MRI fat deposition markers, would be related to 
attenuated brain aging. Finally, we report the correlation between brain age attenuation and changes in 
reported food consumption. To the best of our knowledge, this is one of the first studies that examined the 
beneficial effect of lifestyle interventions on the brain aging trajectory in humans, assessed by resting-
state fMRI. 
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Fig.1 Study design and workflow. The DIRECT-PLUS trial examined the effect of an 18-month lifestyle 
intervention on adiposity, cardiometabolic, and brain health across intervention groups. (a) Participants in 
the functional connectivity sub-study (N=132) completed the baseline measurements at T0. They were 
randomly assigned to three intervention groups: healthy dietary guidelines (HDG), an active control group, 
Mediterranean diet (MED), and green-MED. All groups were combined with physical activity (PA). Eighteen 
months following intervention onset, all measurements were retaken (T18). (b) Measurements included 
anthropometric measurements, blood biomarkers, fat deposition, and structural and functional brain 
imaging. (c) Functional brain imaging was conducted while subjects were at rest and was used to estimate 
resting state functional connectivity (RSFC). RSFC measures the correlation between the time series of pairs 
of brain regions. (d) We fitted a linear support vector regression to predict chronological age from all 
pairwise correlations. We fitted the model on the NKI data set, then tested and applied it to the Cam-CAN 
and the DIRECT-PLUS data. (e, left scatter plot) Based on the T0 data, we first computed the expected aging 
trajectory as the linear relation between the chronological and predicted age of all subjects. The fitted line 
represents the increase in the predicted age in relation to chronological age in the absence of an intervention. 
(e, right scatter plot) The fitted line was used to estimate the expected brain age at T18, given each 
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participant's T0 brain age and the time passed between the T0 and T18 MRI scans. We computed the 
observed brain age by applying the brain age model to the T18 scans. Brain age attenuation was calculated as 
the expected brain age minus the observed at T18. 

 

2. Results 

2.1 Brain age estimation 

To estimate chronological age from RSFC, we utilized data from 649 participants from two 
separate cohorts for the brain age model training, validation, and testing. We predicted 
chronological age from functional connectivity among the 100 nodes of the Schaefer brain atlas37

(4950 edges) using a linear support vector regression model. The model was first trained and 
validated on 291 participants from the Nathan Kline Institute dataset (NKI34; n=291) using 5-fold
cross-validation. As expected, a positive correlation was found between the predicted and 
observed age (r=0.439, p<0.001; MAE=8.544, p<0.001). Next, we retrained the model on the 
entire sample and tested it in an independent sample from the Cambridge Centre for Ageing 
Neuroscience dataset (Cam-CAN35; n=358) again, yielding a positive correlation between the 
predicted and observed age (r=0.290, p<0.001; MAE=11.402, p=0.005). Finally, we used the 
fitted model to estimate the brain age within the DIRECT-PLUS cohort. Of the 132 subjects that 
participated in the fMRI sub-study, 102 were included in all analyses after exclusions due to 
excessive in-scanner motion (23% omitted; Methods 4.5). The predicted brain age and observed 
chronological age were correlated (r=0.244, p=0.013; MAE=8.337, p<0.001; Fig. 2), 
reproducing the results found within the two other datasets. An analysis of the contribution of 
individual nodes to brain age prediction is provided in the supplementary information (SI) 
section 10.1. 

Fig.2 Prediction accuracy within the validation and test cohorts. The scatter plots depict the data points and 
regression line between the predicted (y-axis) and observed (x-axis) age. The predicted-observed correlation 
is presented for the validation data (left), the Can-CAN test data (middle), and the DIRECT-PLUS data at 
baseline. The shaded area around the regression lines represents a 95% confidence interval estimated using 
bootstrapping. Pearson's correlation, MAE (mean absolute error), and corresponding p values are shown at 
the bottom of each plot. 
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2.2 Baseline characteristics 

Baseline characteristics among the 102 participants with valid RSFC MRI scans are presented in 
Table 1 (see SI Table 1 for additional measures). The mean participant age was 51.5±10.5 years 
(median=50.6, range 33.9-81.9), and 91.2% were men. The mean body mass index (BMI) and 
waist circumference (WC) were 30.1±2.5 kg/m2 and 107.1±6.6 cm, respectively. The mean 
baseline predicted brain age by RSFC was 52.8±4 years. At baseline, predicted brain age was 
associated with chronological age (r=0.24, p=0.013), chemerin (r=0.25, p=0.012), fibroblast 
growth factor 21 [(FGF21), r=0.21, p=0.034] and with obesity-associated measurements 
obtained by MRI including visceral abdominal tissue (VAT): r=0.33, p<0.001 and superficial 
subcutaneous fat (SSC): r=-0.28, p=0.005). Predicted brain age at baseline was also associated 
with decreased hippocampal occupancy score (HOC), an anatomical measurement of brain 
atrophy (r=-0.255, p=0.010).  
 

Table 1. Baseline characteristics according to the baseline predicted brain age tertiles 

Predicted 
brain age 
tertiles 

Lowest tertile Middle tertile Highest tertile p-value 
p between 
extremes 

  

Mean STD Mean STD Mean STD     

Age (years) 47.665 10.359 52.059 8.012 54.755 11.701 0.003 0.01 

BMI (kg/m²) 30.147 2.826 29.883 2.407 30.352 2.276 0.614 0.742 

Chemerin 
(ng/mL) 

192.645 33.094 201.788 41.363 212.504 44.989 0.083 0.042 

HOMA IR 2.953 1.607 3.452 2.133 3.995 2.942 0.092 0.078 

HbA1c (%) 5.382 0.678 5.493 0.69 5.603 0.667 0.065 0.18 

HDL-C 
(mg/dL) 

47.717 11.718 50.352 12.078 45.9 7.075 0.699 0.442 

LDL-C 
(mg/dL) 

126.221 26.828 124.869 30.655 121.383 30.766 0.378 0.492 

Triglycerides 
(mg/dL) 

139.908 63.467 136.03 56.107 150.606 73.442 0.785 0.523 

Liver fat (%) 7.585 6.878 8.59 7.948 9.961 8.733 0.164 0.238 

VAT (cm²) 104.695 35.396 127.646 40.848 130.88 37.453 0.008 0.005 

* Lowest tertile =  x <= 51.49 years, middle tertile =  51.49 < x <= 54.74 years , highest tertile = >54.74 years 

 

2.3 The relation between successful lifestyle intervention and attenuation of functional brain 

aging 
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Our primary hypothesis was that success in lifestyle intervention, as assessed by anthropometric 
measurements, will attenuate functional brain aging. Brain aging attenuation was quantified as 
the difference between the expected and observed brain age at T18 (Fig. 1e). Following 18 
months of lifestyle intervention, participants showed a reduction of 0.76 (±1.86) units in BMI on 
average, 2.31 (±5.61) kg reduction in weight, and 5.39 (±5.89) cm reduction in waist 
circumference. These constitute a -6.45% ±(5.60%) and -4.35% ±(5.86%) percent reduction from
baseline for waist circumference and BMI and weight, respectively. Additionally, at T18, the 
observed age was lower than expected in 56.8% of the subjects, while the opposite was found in 
43.1% of the subjects (X2=1.922, p=0.166; see Fig. 3, top). Importantly, we found a correlation 
between ∆BMI and brain age attenuation such that participants that showed a decrease in BMI 
also exhibited attenuated brain aging (r=.319, p<0.001; Fig. 3, bottom). Specifically, one percent 
of BMI or weight loss resulted in an .9 months attenuation of brain age. Similar results were 
found with ∆ bodyweight (r=.319, p<0.001) and ∆ waist circumference (r=.198, p=0.046; Fig. 4).
The correlations to ∆BMI and ∆weight were significant after correcting for age and baseline 
brain age (p<0.05 for all), while the correlation to waist circumference showed only a trend 
(r>.171, ps <0.079 for all). 
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Fig.3 Observed compared to expected brain age at T18. The upper panel depicts the chronological age (x-
axis) and the observed (empty circles) and expected (full circles) brain age (y-axis) of each subject. The 
dashed line represents the expected brain age trajectory fitted based on the T0 data (see regression line in Fig. 
1e, left). Arrows point from the expected to the observed age of a single individual, corresponding to brain 
age attenuation. Arrows' colors correspond to the extent of brain age attenuation (blue shades indicate 
attenuation, red shades indicate an acceleration in brain age). The observed age was lower than expected in 
56.8% of the subjects, while the opposite was found in 43.1% (X2=1.922, p=0.166). In the lower panel, arrows 
were reordered by subjects' BMI change over the 18 months of intervention. A significant correlation was 
found between the BMI and brain age change (r=.319, p<0.001).  This is evident in the graph, such that most 
of the blue arrows are located on the left side of the x-axis (negative values), and most of the red arrows 
appear on the right side (positive values). 

 

2.4 The relation between brain age attenuation and clinical measurements 

To examine the clinical outcomes associated with attenuated brain aging, we further tested the 
correlation of brain age attenuation with liver, glycemic, lipids, and MRI-assessed fat deposition 
biomarkers (Fig. 4). Except of deep subcutaneous changes, all fat deposition measurements, 
superficial subcutaneous, visceral, and liver fat changes (e.g loss) were significantly and directly 
associated with brain age attenuation (p<0.05, FDR corrected), i.e., the more the individual 
succeeded in diet-induced fat depots loss, the more brain age attenuation has been achieved. We 
then tested the association between brain age attenuation and liver and glycemic biomarkers. Out 
of all examined liver biomarkers, a decrease in alanine transaminase (ALT), Gamma-glutamyl 
Transferase (GGT), alkaline phosphatase, and serum chemerin were significantly associated with 
attenuation in brain age (p<0.05 for all, FDR corrected). Of all examined lipid profile markers, 
only an increase in ∆HDL-C was significantly correlated with brain age attenuation (r=-.273, 
p=0.005). Finally, a decrease in HOC was significantly correlated with brain age attenuation (r=-
.296, p=0.003). All results were reproduced after controlling for baseline age and predicted age 
at T0. However, after further correction for changes in BMI, only ∆ alkaline phosphatase, ∆ 
chemerin and ∆ HOC were associated with brain age attenuation (all p’s<0.018), with no 
significant associations with all other biomarkers (p>0.05, for all; SI Table 2). 
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Fig.4 Brain age attenuation association with clinical measurements. The scatter plots depict the data points 
and regression line between brain age attenuation (y-axis) and each clinical measurement (x-axis). Clinical 
measurements include anthropometry (blue), liver markers (orange), glycemic markers (brown), lipid profile 
(red), and fat deposition measured using MRI (green). The shaded area around the regression line represents 
a 95% confidence interval estimated using bootstrapping. Pearson's correlation and the corresponding p-
value are shown at the bottom of each plot. Significant associations following FDR correction are marked in 
bold (*=p<0.05, **=p<0.01). 

2.5 Relation between brain age attenuation and food consumption 

We examined whether food consumption, as reported using a Food Frequency Questionnaire 
(FFQ), could be associated with functional brain aging attenuation. Associations were tested 
using Kendall's rank correlation. We began with categories that could negatively affect brain 
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aging attenuation. In line with our hypothesis, we found that decreased consumption of 
processed food (t=3.131, p=.002) and sweets and beverages (τ=-0.231, p=.002) was associated 
with more attenuation in brain age. An increase in green tea and walnut consumption, for which 
we hypothesized an attenuation effect on brain aging due to their high polyphenol content, did 
not result in a significant correlation (all τ's <0.081, p's>.121). 
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3. Discussion 

Considerable evidence implies that excessive weight accelerates normal aging11,12, a process that 
is also manifested in brain aging38. In the current study, we examined for the first time, as far as 
we can say, whether a lifestyle dietary intervention may attenuate the effect of obesity on the 
brain aging trajectory. We hypothesized that reducing anthropometric measurements following a 
lifestyle intervention would be associated with attenuated brain aging. We first demonstrated, 
across two separate cohorts, that age could be estimated from RSFC, as done in previous work39. 
We then applied the fitted age prediction model to the participants of the DIRECT-PLUS. We 
found that 1% of body weight loss results in an 8.9 months attenuation of brain age (SI Fig. 2). 
Attenuated brain aging was further correlated with a decrease in WC, MRI assessed fat 
deposition, liver biomarkers, and HDL-C. Finally, reduced reported consumption of processed 
food, sweets and beverages were also related to attenuated brain aging. 

Accumulated evidence points to the potential of lifestyle intervention to reverse the negative 
impact of excess weight on brain structure, function, and cognition. Cross-sectional and 
longitudinal studies found that reported adherence to a Mediterranean diet was linked to 
increased gray matter volume in multiple regions40, including the hippocampus41. Adherence to 
healthy dietary patterns was also associated with reduced cognitive decline42. Importantly, 
randomized clinical trials can support a causal relationship between lifestyle intervention and the 
brain aging process. Such studies from our group32 and others43,44 revealed that subjects enrolled 
in a PA + dietary intervention exhibit lower hippocampal atrophy and smaller ventricles. A 
similar beneficial effect on cognitive functioning in middle age was also found45, along with 
functional connectivity alteration in the default mode and executive control networks46,47. To 
date, a single study in rats has tested the effect of a dietary intervention using the brain age 
framework and found a reduction in brain aging rate48. Hence, the current work provides the first 
evidence that such a beneficial effect on brain age can also be found in humans. 

The brain age framework reduces the multifaceted aging process captured in a given imaging 
modality to a single scalar. This scalar, the predicted brain age, is well-defined in the sense that it 
minimizes the prediction error within the training data set. Moreover, the clinical relevance of 
functional brain age is shown,  for example, in predicting Alzheimer's onset49 and symptoms 
severity in depression50. This reductionist approach raises several challenges. The first is the 
ability to interpret the features used by the machine learning model51 (see SI 1). A second 
challenge is understanding the physiological factors that may affect its predictions52, which we 
address in the current work. Here we report how a set of clinical measures are associated with 
changes in brain aging. Importantly, lifestyle and other interventions can affect these measures to 
attenuate the brain aging process. We suggest that such mapping of changes in clinical outcomes 
to months or years of attenuated brain aging has important scientific, clinical, and even 
educational value. 
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We found that clinical outcomes that include anthropometric, liver, and lipid biomarkers were 
associated with attenuated brain age. Specifically, two main factors were linked to changes in 
brain age, changes in anthropometry measures, and liver status. The first factor included BMI, 
weight, WC, and superficial subcutaneous and visceral fat. The second factor included liver fat, 
ALT, GGT, alkaline phosphatase, and serum chemerin. Alkaline phosphatase and chemerin were 
also associated with changes in brain age after controlling for changes in BMI. The negative 
impact of elevated liver enzymes and liver fat on brain health is seen, for example, in the case of 
AD53–55. This link is thought to be mediated by oxidative stress, vascular damage, and 
inflammation56. Chemerin, produced in the liver, is an adipokine linked to energy homeostasis, 
adipogenesis, and excessive weight56. Chemerin is correlated with age57and BMI58 and was 
found to be reduced following lifestyle intervention59,60. The relation between serum chemerin 
and brain aging is still unclear, but possible linking mechanisms are hypertension61 and 
inflammation58. Besides these two factors, HDL-C was the only variable whose increase was 
correlated to brain aging attenuation. This is in line with evidence of the protective role of HDL-
C in cognitive decline and dementia62. Finally, of all the reported food consumption items, only 
reduced consumption of processed food, sweets and beverages were linked to attenuated brain 
aging. Although these results are based on self-reports, they may be helpful for developing 
neuroprotective dietary guidelines63.  

It is important to consider several limitations and strengths of the current study. The first 
limitation was gender imbalance (F: 93, M: 9; F:8.8%, M: 91.2%), which reflected the workplace 
profile from which participants were recruited64–67. This distribution misrepresents the proportion 
of obese women within the general population (F: 51%, M: 49%; CDC, 2018). Hence these 
results should be further corroborated in a gender-balanced sample. Additionally, participants 
were recruited based on excess adiposity or dyslipidemia, therefore, they represented a restricted 
range of the normal population. This design allows to maximize the intervention effects but 
restricts our ability to detect correlation at baseline. The strengths of the study included the 
wealth of health biomarkers that included anthropometric, blood, and imaging measures. The 
relatively large sample for similar intervention trials, the tight on-site monitoring over the dietary 
compliance, and the long intervention duration. Finally, the use of three distinct datasets for 
training and validation, testing, and inference supports the generalization of our model. 

To conclude, in the current work, we examined how changes in multiple health factors, including 
anthropometric measurements, blood biomarkers, and fat deposition, can account for brain aging 
attenuation. We reveal that the two factors with the strongest association with brain aging were 
changes in anthropometry measures and liver biomarkers. These findings complement the 
growing interest in bodily aging indicated, for example, by DNA methylation68 as health 
biomarkers and interventions that may affect them. These exciting results may advance our 
knowledge of factors related to healthy brain aging and guide future neuroprotective 
interventions.  
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4. Methods 

4.1 Dataset used for training and validating the brain age model  

Training, validation, and testing of the brain age model were conducted on data from two cohorts 
that included functional and structural brain magnetic resonance imaging (MRI). The training 
was conducted on the enhanced Nathan Kline Institute-Rockland Sample (NKI34) and testing on 
the Cambridge Centre for Ageing and Neuroscience dataset (Cam-CAN35,36). The NKI dataset is 
composed of 291 subjects (226 females, 65 males) recruited from Rockland County, USA. All 
participants provided informed consent and the study was approved by the Institutional Review 
Board at the Nathan Kline Institute (#226781 and #239708) and Montclair State University 
(#000983 A and #000983B). The Cam-CAN dataset includes 358 (193 females, 165 males) 
subjects roughly uniformly distributed from Cambridge City, UK. All participants provided 
informed consent, and the study was approved by the local ethics committee, Cambridgeshire 2 
Research Ethics Committee (reference: 10/H0308/50). In both datasets, we included only 
subjects within the DIRECT-PLUS age range (34-82 years). Exclusion criteria included 
unsuccessful completion of the preprocessing and quality control stages (see 4.5). 

 
4.2 Study design 

This work was based on a sub-study of the DIREC-PLUS trial (clinicaltrials.gov ID: 
NCT03020186). The primary aims of the DIRECT-PLUS trial were 18-month changes in 
visceral abdominal tissue, intrahepatic fat, and adiposity across intervention groups. The results 
for the primary outcomes were presented in separate publications33. The DIRECT-PLUS was 
launched in May 2017 and conducted in an isolated workplace in Israel (Nuclear Research 
Center Negev, Dimona, Israel). Most clinical and medical measurements, including 
anthropometric measurements, blood drawing, and lifestyle intervention sessions, were 
performed on-site. Among 378 volunteers, 294 met age (30+ years of age) and abdominal 
obesity inclusion criteria [waist circumference (WC): men>102 cm, women>88 cm] or 
dyslipidemia [TG>150 mg/dL and high-density-lipoprotein-cholesterol (HDL-c) ≤40 mg/dL for 
men, ≤50 mg/dL for women]. Exclusion criteria were inability to perform physical activity; 
serum creatinine ≥2 mg/dL; serum alanine aminotransferase or aspartate aminotransferase more 
than three times above the upper limit of normal; a major illness that might require 
hospitalization; pregnancy or lactation; active cancer, or chemotherapy treatment in the last three 
years; warfarin treatment; pacemaker or platinum implantation; and participation in a different 
trial. Among 294 eligible participants, 132 participants were randomly assigned to participate in 
the fMRI sub-study. The Soroka Medical Center Medical Ethics Board and Institutional Review 
Board provided ethics approval. All participants provided written consent and received no 
financial compensation. 
 
 

4.3 Randomization and intervention 
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All participants completed the baseline measurements and were randomized, using a computer-
based program, in a 1:1:1 ratio, stratified by sex and work status (to ensure equal workplace-
related lifestyle features between groups), into one of the three intervention groups: healthy 
dietary guidelines (HDG) as an active control group, Mediterranean diet (MED), green-MED, all 
combined with physical activity (PA). Interventions lasted for 18 months and were 
contemporaneous, and participants were not blind to group assignment (open-label protocol). 
Each participant received complete dietary guidance (based on the specific intervention group) 
and a free and fully available clinical dietitians consult. Furthermore, all participants received 
free gym membership, including educational sessions encouraging moderate-intensity PA. A 
detailed description of the intervention outline is available in SI Table 3. 

 
4.4 MRI acquisition 

MRI scans were conducted at the Soroka University Medical Center (SUMC), Beer Sheva. 
Participants were scanned in a 3T Philips Ingenia scanner (Amsterdam, The Netherlands) 
equipped with a standard head coil. Subjects were instructed to refrain from food and non-water 
beverages two hours before the MRI sessions. Each of the two sessions at T0 and T18 included 2 
RS-fMRI runs of 7 minutes each and a 3D T1-weighted anatomical scan to allow registration of 
the functional data. Before each RS session, participants were instructed to remain awake with 
their eyes open and lie still. fMRI BOLD contrast was acquired using the gradient-echo echo-
planner imaging sequence with parallel acquisition (SENSE: factor 2.2). Scanning parameters 
were as follows: whole-brain coverage 41 slices (3 × 3 × 3 mm3), transverse orientation, 3 mm 
thickness, no gap, TR = 2200 ms, TE = 30 ms, flip angle=90°, FOV = 200 × 222 (RL x AP) and 
matrix size 68 × 71 (RL x AP). High-resolution anatomical volumes were acquired with a T1-
weighted 3D pulse sequence (1 × 1 × 1 mm3, 150 slices). A detailed description of liver and 
abdominal fat MRI is available in SI section 10.2. 
 

4.5 MRI preprocessing 

The preprocessing pipelines used in this work were extensively described in a previous 
publication69. T1w scans were preprocessed through FreeSurfer's70 (version 6.0) recon-all 
processing. FreeSurfer's cortical segmentation and spherical warp were used to transfer the 
Schaefer 100-node cortical parcellation37 to each subject's volumetric anatomical space. 
Functional images of the NKI dataset were preprocessed with fMRIPrep (version 1.1.8;71 and 
images of the DIRECT-PLUS and Cam-CAN datasets were preprocessed with the Configurable 
Pipeline for the Analysis of Connectomes (C-PAC72 version 1.6.2). Briefly, both pipelines 
included the following steps: slice-timing correction, motion correction, skull stripping, 
estimation of motion parameters, and other nuisance signal time series. For the NKI dataset, 
functional scans were bandpass filtered (0.008 – 0.08Hz) and confound regressed in a manner 
orthogonal to the temporal filters. Confounds included six motion estimates, the mean time series 
derived in CSF, WM, and whole-brain masks, the derivatives of these nine regressors, and the 
squares of these 18 terms. Spike regressors were added for each frame with framewise 
displacement above 0.5mm. Data were linearly detrended and standardized. Nuisance regression 
in the DIRECT-PLUS and Cam-CAN fMRI dataset included the first five principal components 
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of the signal from white matter and CSF73, six motion parameters, and linear and quadratic 
trends, global signal regression, followed by temporal filtering between 0.1 and 0.01 Hz and. 
Finally, a scrubbing threshold of 0.5mm frame-wise displacement was applied74 (removal of 1 
TR before and 2 TR after excessive movement). The time series of the two functional scans in 
the DIRECT-PLUS were concatenated to a single T0 and T18 scans. The exclusion criterion for 
excessive movements was determined a priori to less than 70% (9 min and 48 sec) of the resting-
state session after the scrubbing procedure (23% omitted; 102 subjects left). In all datasets, 
functional connectivity was defined as the Pearson correlation among pairs of ROIs' time series 
followed by Fisher's r-to-z transformation.  

  
4.6 Clinical measurement and blood biomarkers 

All parameters were measured at baseline and after 18 months of intervention. Waist 
circumference was measured to the nearest millimeter halfway between the last rib and the iliac 
crest using an anthropometric measuring tape. Blood and urine samples were collected at 8:00 
AM after a 12-hour fast. Blood samples were centrifuged and stored at -80°C. Hippocampal 
occupancy score (HOC) was calculated as the hippocampal volume divided by [hippocampal 
volume + inferior lateral ventricle volume] in each hemisphere, then averaged across 
hemispheres 32,75. 

 

4.7 Nutritional assessment 

Assessment of nutritional intake and lifestyle habits was self-reported online using validated 
food frequency questionnaires76 including green tea, walnuts, and Wolffia globose intake 
evaluation. The questionnaires were administered at baseline, after six months, and at the end of 
the trial. The closed workplace enabled monitoring of the freely provided lunch and the intense 
dietary and PA sessions, which were provided simultaneously to all three groups. 

 
4.8 Brain age estimation 

Subjects' chronological age was predicted from the lower triangle of the functional connectivity 
matrix depicting all unique edges (4950 edges). We used a support vector regression model77 
implemented using Scikit-learn78 with a linear kernel and all the default parameters. Model 
accuracy was quantified as the Pearson correlation between the observed and predicted age. We 
additionally report the mean absolute error (MAE) in years, along with a p-value based on a non-
parametric permutation test created by shuffling the data labels 1,000 times79.  

 
4.9 Statistical analysis 

The primary outcome of the current work was brain age attenuation quantified as the difference 
between the expected and observed brain age at T18. The expected brain age at T18 was 
calculated by first producing brain age prediction for all participants at T0. Then, a linear 
regression was used to estimate brain age from the chronological age at T0. The fitted regression 
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formula, representing the expected aging trajectory in the absence of intervention, was used to 
estimate the expected brain age at T18 given each participant's T0 brain age and the time passed 
between the T0 and T18 MRI scans. The observed brain age was produced by applying the brain 
age model to the T18 scans. Association between brain age attenuation and change in clinical 
measures following the intervention were reported using Pearson's correlation. Correction for 
multiple comparisons was conducted within each biomarker category using the Benjamini–
Hochberg false discovery rate (FDR80) with an alpha of 0.05. Associations to food consumption 
reports were reported using Kendall's tau correlation for ordinal data. Processed food at T18 had 
only two levels, “same consumption” and “less consumption”, thus relation to brain age 
attenuation was tested with independent t-test. Change in clinical measurements were computed 
as a delta (Δ), the value at T0 minus the value at T18. We quantified change in reported food 
consumption as the change between the T0 and T18 questionnaires for food groups (i.e., 
processed food, sweets, and beverages) and as total consumption for polyphenols-provided foods 
(i.e., Mankai, green tea, walnuts). To control for the possible effect of age or gender, we used 
partial regression by regressing out the linear effect of age and gender from both brain age 
attenuation and the clinical measures. This was done by predicting each clinical measure, with 
the covariate as a predictor, keeping only the residual. 
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10.1 Brain age prediction accuracy of individual nodes 
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To examine the contribution of different nodes for age prediction, we reiterated the model training 
procedure for each of the nodes separately. We extracted the row of each node in the RSFC, matrix which
represents all the nodes' connections with the rest of the brain, or its 'connectivity fingerprint'81. As in the 
original model, we used a linear support vector regression fitted on the NKI data set, then tested it on the 
Cam-CAN data set. We report the prediction accuracy of each node on the test set as the Pearson 
correlation between the predicted brain age and the chronological age. We plot the results on the brain 
surface and using a box plot where nodes are arranged according to their resting-state network affiliations 
(SI fig. 1). 

 

 

SI Fig.1 Brain age prediction accuracy of individual nodes. Prediction accuracy was quantified as the 

correlation between chronological age and predicted age. (a) Prediction accuracy was depicted on the brain 

surface on a lateral (top) and medial (bottom) view. (b) Box plot showing the prediction accuracy (y-axis) in 

each of the seven canonical resting-state networks 82. Each dot represents a single node. 

 

 

SI Table 1. Baseline characteristics according to the baseline predicted brain age tertiles 

 

  WC 
(cm) 

AST 
(U/L) 

GGT 
(U/L) 

ALKP 
(mg/dL) 

FGF 21 
(pg/mL) 

Glucose 
(mg/dL) 

Choleste
rol 
(mg/dL) 

DSC 
(cm²) 

T1 <= 
51.49 

Mean 106.676 26.246 33.374 32.054 71.038 139.367 97.303 191.222

 STD 5.953 7.420 13.394 17.717 18.399 78.297 23.254 24.946

T2 51.49 Mean 107.794 25.502 33.910 39.812 76.073 190.866 105.046 191.699

ch 

ns 

 

 
SSC 
(cm²) 

222 117.061

46 40.293 

699 102.311
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- 54.74 

 Std. 
Deviatio
n 

6.596 7.544 12.743 33.591 21.185 140.253 22.915 32.555 35.303 

T3>54.7
4 

Mean 106.941 26.522 36.157 37.920 78.599 200.744 103.133 185.407 94.245 

 Std. 
Deviatio
n 

7.215 8.049 15.827 27.268 21.799 109.839 17.129 32.853 28.995 

 p-value 0.550 0.946 0.400 0.170 0.097 0.016 0.045 0.470 0.012 

 p 
between 
extremes 

0.869 0.883 0.436 0.321 0.127 0.010 0.243 0.414 0.012 
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SI Fig. 2. Brain age attenuation compared to percent weight reduction from baseline. A scatter plot depicting 
the linear relationship between percent weight reduction from baseline (x-axis) and years of brain age 
attenuation (y-axis). Also shown on the graph are the correlation coefficient and the parameters of the linear 
relation between the two variables. One percent of body weight loss corresponded to an .  months 
attenuation of brain age. 

 

SI Table 2 – Correlation and partial correlation of brain age attenuation and biomarkers 

 r p-value r (age-
corrected) 

p-value 
(age-

corrected) 

r (baseline 
brain age -
corrected) 

p-value 
(baseline 
brain age-
corrected) 

r (∆BMI-
corrected) 

p-value 
(∆BMI-

corrected) 

∆BMI (kg/m²) 
0.319 0.001 0.319 0.001 0.266 0.007 -0.041 0.682 

∆WC (cm) 0.198 0.046 0.198 0.046 0.171 0.085 -0.042 0.674 

∆AST (U/L) 0.084 0.403 0.092 0.359 0.053 0.599 0.052 0.603 

∆ALT (U/L) 0.247 0.012 0.268 0.007 0.197 0.047 0.135 0.176 

∆GGT (U/L) 0.257 0.013 0.264 0.011 0.237 0.022 0.157 0.133 

∆ALKP (mg/dL) 0.263 0.007 0.281 0.004 0.230 0.020 0.233 0.018 

∆FGF 21 (pg/mL) 0.122 0.221 0.123 0.217 0.094 0.346 0.044 0.659 

∆Chemerin (ng/mL) 0.288 0.003 0.290 0.003 0.219 0.027 0.245 0.013 

∆Glucose (mg/dL) -0.019 0.853 -0.005 0.958 -0.101 0.323 -0.088 0.389 

∆HOMA IR 0.092 0.369 0.107 0.293 -0.018 0.862 -0.027 0.789 

∆HbA1c (%) 0.187 0.059 0.198 0.046 0.164 0.099 0.090 0.371 
∆Cholesterol 
(mg/dL) -0.050 0.618 -0.048 0.629 -0.008 0.934 -0.020 0.840 

∆HDL-C (mg/dL) -0.273 0.005 -0.272 0.006 -0.228 0.021 -0.144 0.149 

∆LDL-C (mg/dL) 0.033 0.738 0.035 0.730 0.069 0.493 0.060 0.551 
∆Triglycerides 
(mg/dL) 0.177 0.075 0.180 0.071 0.166 0.095 0.082 0.412 
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∆Liver fat (cm²) 0.259 0.010 0.264 0.008 0.225 0.025 0.045 0.659 

∆VAT (cm²) 0.320 0.002 0.334 0.001 0.297 0.004 0.178 0.085 

∆DSC (cm²) 0.201 0.050 0.202 0.049 0.215 0.037 -0.024 0.818 

∆SSC (cm²) 0.250 0.013 0.246 0.014 0.232 0.022 0.007 0.947 

∆HOC -0.296 0.003 -0.294 0.003 -0.346 <0.001 -0.269 0.007 

 

* All delta values were calculated as the value at T0 minus the value at T18  
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SI Table 3 – Intervention outline by group 

 

10.2 Liver and visceral fat imaging protocols 

To quantify and follow IHF% changes, we used H-MRS, a reliable tool for liver fat quantification ( 

https://pubmed.ncbi.nlm.nih.gov/25903702/). Localized, single-voxel proton spectra were acquired using 

a 3.0T magnetic resonance scanner (Philips Ingenia, Best, The Netherlands). The measurements were 

taken from the right frontal lobe of the liver, with a location determined individually for each subject 

using a surface, receive-only phased-array coil. Spectra with and without water suppression were acquired 

using the single-voxel stimulated echo acquisition mode (STEAM) with the following parameters: 

TR=4000msec, TE=9.0msec and TM=16.0msec. The receiver bandwidth was 2000Hz and the number of 

data points was 1024. Second-order shimming was used. Four averages were taken in a single breath hold 

for an acquisition time of 16 sec. The voxel size varied somewhat according to anatomy, but was 

Green-MED MED HDG  

18-months group sessions in the workplace, weekly for the first month and monthly 

thereafter 

18 months free gym membership 

18 months of PA educational sessions 

45-60 minutes of aerobic training + resistance training, 3-4 times/week 

Lifestyle group sessions, including PA 

Limit dietary cholesterol, trans-fat, saturated fat, sugars, and salt and increase intake 

of vegetables 

General dietary guidance 

1500-1800 kcal/day for men, 1200-1400 kcal/day for 

women 

Guidelines for a 

healthy MED diet with 

no specific recipes or 

calorie restriction 

Energy, kcal/day 

~40% mainly PUFA and MUFA Total fat, % of daily consumption 

Less than 40 gr/day in the first 2 months with increased 

gradual intake for up to 80 gr/day 

Carbohydrates, gr/day 

 

Less/Avoid red and processed meats. Reduced poultry 

intake 

Specific recommendations 

 

+1240 mg/day 

[source: provided walnuts 

(28 g/day), green tea (3-4 

cups/day), Wolffia globosa 

duckweed (Mankai) shake 

(100 g frozen cubes)] 

+440 mg/day 

[source: provided 

walnuts (28g/day] 

Polyphenols, mg/day 
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approximately 50(AP) × 45(RL) × 54(FH) mm. Water suppression was achieved using the MOIST 

(Multiple Optimizations Insensitive Suppression Train) sequence consisting of four phase-modulated T1 

and B1 insensitive pulses with a 50Hz window. Data were analyzed using Mnova software (Mestrelab 

Research, Santiago de Compostela, Spain) by an experienced physicist blinded to the intervention groups, 

who also performed visual quality control of fitted spectra. The total image hepatic fat fraction was 

determined as the ratio between the sum of the area under all fat divided by the sum of area under all fat 

and water peaks (Cite: https://pubmed.ncbi.nlm.nih.gov/19834463/). Inter-class reliability was tested 

between two different technicians and resulted in an average measure of r=0.99 (p<0.001). Intra-class 

reliability was tested among all baseline scans and resulted in an average measure of r=0.96 (p<0.001). 

Liver fat color images were produced using PRIDE software (by Philips).  

Abdominal fat depots were assessed at baseline and 18-months thereafter using 3-Tesla MRI scans 

(Ingenia 3.0T, Philips Healthcare, Best, the Netherlands). The scanner utilized a 3D modified DIXON 

(mDIXON) imaging technique without gaps (2 mm thickness and 2 mm of spacing), fast-low-angle shot 

(FLASH) sequence with a multi-echo two excitation pulse sequence for phase-sensitive encoding of fat 

and water signals (TR, 3.6ms; TE1,1.19ms; TE2, 2.3ms; FOV 520×440×80mm; 2×1.4×1mm voxel size). 

Four images of phantoms were generated: in-phase, out-phase, fat, and water phase 83. Participants were 

instructed to hold their breath to avoid motion artifacts when their abdomen was scanned. We quantified 

abdominal fat using MATLAB-based semiautomatic software and blinded to intervention group. A 

continuous line over the fascia superficialis was drawn to differentiate deep-SAT from superficial-SAT 

and calculated mean VAT, deep-SAT, and superficial-SAT along two axial slices: L5-S1 and L4-L5. We 

quantified fat mass regions as area and relative proportion of each fat subtype (percentage). 
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