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Abstract

We analyse the transport of a dilute suspension of particles through a channel with porous walls accounting for the
concentration dependence of the viscosity. Two cases of leakage flow of fluid through the porous channel walls are
studied: (i) constant flux, and (ii) dependent on the pressure drop across the wall. The effect of mixing the suspension
first compared with point injection is examined by considering inlet concentration distributions of different widths. We
find that a pessimal distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid
influx. We also show that the presence of an osmotic pressure may lead to fluid being sucked into the channel. We
consider how the application of an external hydrodynamic pressure affects this observation and discuss the significance
of our results for water filtration.
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1. Introduction

Water filtration is becoming increasingly important as
a method of water treatment in our everyday lives. Many
of the processes are not fully understood, including the
crossflow filtration system we consider. A crossflow fil-
tration system consists of a fluid with contaminants (of-
ten particulates) flowing tangentially to a porous mem-
brane. This membrane allows the fluid to pass through
but rejects the particulates. The filtration is driven by
two pressure differences: (i) the hydrodynamic pressure
difference across the membrane and (ii) the difference in
osmotic pressure across the membrane. The osmotic pres-
sure on the filtrate side is generally close to zero while that
on the feed side is greater than that in the bulk flow due to
the build-up of particles near the membrane surface. This
phenomenon is referred to as concentration polarization
and is one of the main limitations of the efficacy of water
filtration [1] since the high osmotic pressure on the feed
side of the membrane reduces the effective pressure that
drives filtration.

The fluid velocity in a channel with porous walls has
been analysed for a constant viscosity and constant leak-
age velocity [2]. The solution is a Poiseuille-like parabolic
profile decreasing in magnitude along the channel for the
axial component and a transverse component with a cu-
bic dependence on cross-channel position that is propor-
tional to the leakage velocity. More generally with any
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flow through the porous walls, the axial flow rate in the
channel is reduced and, combined with advection by the
transverse flow, results in concentration polarization [3].

A complicating factor in water filtration using mem-
branes is the dependence of the liquid viscosity on parti-
cle concentration. The liquid viscosity is often taken as a
constant in models of filtration, but in practice depends
on many local properties of the fluid such as its tempera-
ture, density and shear rate. Of particular concern in this
paper is the effect of concentration-dependent viscosities
on crossflow filtration. Davis & Sherwood [4] consider the
convection-diffusion equation for particles in a steady-state
boundary layer with a concentration-dependent viscosity
and diffusivity given by Davis & Leighton [5]. This model
assumes that, outside the boundary layer, the bulk con-
centration of particles is constant. Physically, this may be
achieved in a system in which the Péclet number,
Pe = δQ/2D0, is large (here Q is the areal fluid flux at
the inlet, D0 the molecular diffusion coefficient of the ma-
terial being filtered in the absence of surrounding parti-
cles, and δ the aspect ratio of the channel). A similarity
solution in the boundary layer is obtained in this case.
Bowen & Williams [6] consider a full numerical solution
to the continuity, Navier–Stokes and convective–diffusion
equations for crossflow ultrafiltration for concentration-
dependent viscosity and diffusion coefficient using a
Thomas algorithm. Their results show the significant ef-
fect various parameters have on concentration polarization
and the rate of filtration.

The transition from concentration polarization to de-
position (fouling) on the membrane is of great importance
to the lifetime of membranes. Bacchin et. al. [7] model
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this by a toggle that changes the equations for the per-
meate flux and wall concentration depending on which is
taking place. This toggle is implemented via a critical con-
centration: below this critical value, concentration polar-
ization occurs, but once above it, there is sufficiently high
concentration for particle deposition to occur as well as
concentration polarization (i.e., there is some irreversible
solidification as a gel or cake formation). The type of driv-
ing phenomena may alter the outcome and the critical flux
for the transition between concentration polarization and
deposition is linked to the local Péclet number.

In this paper we consider a pressure-driven fluid flow
with advection and diffusion of particles in a porous chan-
nel. We study the particular case of a dilute suspension
of identical and neutrally buoyant particles where we con-
sider a bulk concentration with a specified cross-stream
distribution entering the channel. As such, we assume
that no deposition of particles on the membrane occurs.
We assume a concentration-dependence of the viscosity of
the fluid and determine that a constant diffusion coeffi-
cient is sufficient. We assume that the flow is steady in
time and examine its variations in space arising due to the
local particle concentration and leakage flow through the
channel walls. We allow fluid (but not particles) to pass
through the porous walls so that the walls act as perfect
filters, and we do not consider the possibility that par-
ticles may block pores when they reach the walls. We
retrieve the fluid flow as in [2] as a leading-order solution
that does not have a particle concentration dependence,
and we determine a higher-order solution that does de-
pend on particle concentration. We also consider the case
of a pressure-dependent leakage velocity where the hydro-
dynamic and osmotic pressures drive the filtration. We are
particularly interested in the pressures required for a con-
stant inlet fluid flux due to the concentration-dependent
viscosity.

In §2 we provide a mathematical description of the
problem, applying a thin-channel approximation to the
governing equations to derive a coupled system of non-
linear partial differential equations (PDEs). We simplify
these equations in §3 by examining the asymptotic limit of
a dilute suspension of particles and solve these equations
in §4 with analytic results at leading order and numerical
results at the next order. In §5 we consider the effects of an
outer pressure, that is, a pressure outside the channel that
affects the transmembrane pressure difference. We have
taken order-one Péclet numbers, meaning that the advec-
tion and diffusion of particles in the channel are equally
important to provide the greatest generality for the parti-
cle dynamics in the channel.

2. Modelling

We consider a two-dimensional channel of length L,
with porous walls located at z = ±H/2, as depicted in
Figure 1. Fluid is injected into the channel at x = 0
at a fixed areal flux, Q, and with a given concentration

x
y

H

L

Figure 1: Schematic of a channel with porous walls. The channel
has length L and width H. The fluid flows from left to right and is
allowed to leak out through the channel walls. Particles entrained in
the fluid with some distribution at the inlet are advected by the flow
and diffuse by Brownian motion, collecting at the channel walls.

distribution of particles. The velocity field within the
fluid is u = (u, v), with u the axial component and v the
transverse component. In such a configuration the sol-
vent (particle-free) viscosity, µ0, will play a key role in
determining the flow profile. We shall assume a small
Reynolds number, Re = ρ0Q/µ0 ≪ 1 (with ρ0 the density
of the fluid) and hence assume that inertia may be ne-
glected. Furthermore, we shall only consider the steady
state of the system.

For convenience, we will define the concentration of
particles, c (mol/m3), in terms of the volume fraction, φ,
that is, the volume occupied by the particles. The volume
fraction is linearly related to the concentration via

φ = NAVp c, (1)

where NA is Avogadro’s number and Vp is the volume
occupied by a single particle. We suppose that the vol-
ume fraction of particles at the inlet, x = 0, is prescribed
by φ(x = 0, y) = Φ(y) for some function Φ. We wish to un-
derstand how the volume fraction, φ(x, y), changes with
distance along the channel as a result of the fluid flow,
and how it influences the flow. We shall therefore also as-
sume that the viscosity of the fluid, µ, is dependent on the
volume fraction, writing µ = µ(φ), the functional form of
which will be prescribed in due course.

2.1. Governing equations

Assuming a small Reynolds number, the fluid flow is
governed by the steady Stokes equations, representing con-
servation of mass and momentum of the fluid. We may
write these as

∇ · u = 0, (2a)

∇ ·
(

µ(φ)
[

∇u+ (∇u)
T
])

= ∇p, (2b)

where p is the hydrodynamic fluid pressure.
The flow advects the particles down the channel, but

they also diffuse within the channel. The particle volume
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fraction is therefore governed by the steady advection–
diffusion equation,

u ·∇φ = ∇ · (D(φ)∇φ) . (3)

Here D(φ) is the particle diffusivity, which will in principle
depend on volume fraction.

2.2. Boundary conditions

We now consider the boundary conditions to which the
governing equations (2) and (3) are subjected. We assume
that the flow and particle distribution are symmetric about
the axis of the channel, that is,

∂φ

∂y
=

∂u

∂y
= v = 0 on y = 0. (4)

Henceforth we shall consider only the behaviour in half
channel 0 ≤ y ≤ H/2. We consider the two leakage flows
through the porous channel walls, V := v(x,H/2), that are
most often found in practical applications. First we con-
sider the case when V is a constant, say V∗. In the absence
of significant osmotic effects, this type of leakage flow has
been achieved by having a flow of fluid (recirculated fil-
tered fluid) outside the channel so that the pressure differ-
ence across the membrane is constant along the wall [8].
Secondly we consider the case where V is proportional to
the net driving force (i.e., the transmembrane pressure less
the difference in osmotic pressure). At the wall, we there-
fore have one of the two possible boundary conditions for
the transverse velocity,

v(x,H/2) = V =

{

V∗ = constant,

κ (∆p−∆π) ,
(5)

respectively, where κ is a constant of proportionality that
is related to the solvent viscosity and the permeability of
the porous wall and its thickness (cf. Darcy’s law). Here
the term ∆p = p(x) − pouter is the hydrodynamic pressure
difference across the membrane, which is measured rela-
tive to the pressure outside the channel, pouter (i.e., the
reference pressure). Similarly, ∆π = π − πouter where π
is the osmotic pressure due to particles in the channel
and πouter is that due to particles outside the channel.
Here, we take πouter = 0 since we assume complete rejec-
tion of particles at the channel wall. The osmotic pressure
difference across the porous wall is, in general, a function
of the volume fraction of particles at the surface of the
porous wall

∆π = ∆π

[

φ

(

x, y =
H

2

)]

, (6)

since we assume that there are no particles on the other
side of the membrane.

In general, at a porous wall there is a tangential slip
velocity, whose magnitude is determined by a Neumann
boundary condition such as that given by Beavers and

Joseph [9]. However, it has been found that this slip is
not significant for a wide range of membranes [10], and so
here, for simplicity, we shall assume a no-slip boundary
condition

u(x,H/2) = 0, (7)

as also adopted by Bowen & Williams [6].
Since particles are rejected by the membrane but fluid

may pass through, we use a no-flux boundary condition
for the particles at the channel walls. This may be written
as [4, 7]

vφ−D
∂φ

∂y
= 0 on y = H/2. (8)

Two final conditions close the system. At the inlet we
impose a constant fluid flux condition

∫ H/2

−H/2

u dy = 2

∫ H/2

0

u dy = Q at x = 0, (9)

where Q is the constant areal flux. At the outlet we require
that the pressure be constant; without loss of generality
we may set this outlet pressure to to zero, i.e.,

p = 0 at x = L, (10)

but note that this may differ from the pressure outside the
channel and so pouter may not necessarily be zero.

2.3. Thin-channel approximation

We suppose that the channel is thin so that the aspect
ratio H/2L = δ ≪ 1. We exploit the smallness of δ, non-
dimensionalizing the system by letting

x = Lx̂, y = δLŷ, u =
Q

H
û,

v = δ
Q

H
v̂, µ = µ0µ̂, p =

Qµ0

δ2HL
p̂,

κ =
δ3L

µ0

κ̂, π =
Qµ0

δ2HL
π̂, (11)

in which the dimensionless variables appear with a hat
and µ0 is the viscosity of the solvent in the absence of
particles. Substituting the non-dimensionalization (11)
into equations (2) and (3) and retaining only leading-order
terms in δ provides the equations for the volume fraction
in a thin-channel flow with a concentration-dependent vis-
cosity (dropping the hats for convenience),

∂u

∂x
+

∂v

∂y
= 0, (12a)

∂

∂y

(

µ(φ)
∂u

∂y

)

=
∂p

∂x
, (12b)

0 =
∂p

∂y
, (12c)

Pe

(

u
∂φ

∂x
+ v

∂φ

∂y

)

=
∂

∂y

(

D(φ)
∂φ

∂y

)

. (12d)
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Here Pe is the (reduced) Péclet number,

Pe =
δ

2

Q

D0

, (13)

with D0 = D(0) the molecular diffusion coefficient, that
is, the diffusion coefficient in the absence of the effects
of surrounding particles. This is given by the Stokes–
Einstein relation. The Péclet number measures the rate
of advection of particles down the channel compared with
the diffusion across the channel. As discussed earlier, the
viscosity µ (φ) is assumed to be a known function. We
note that (12c) implies that the hydrodynamic pressure is,
to leading order, a function of x only, i.e., p = p(x). Note
also that equation (12d) indicates that there is no axial
particle diffusion present at leading order in δ.

The dimensionless boundary conditions, to leading or-
der in δ, to be used in determining the solution to (12) are
as follows (again dropping hats for convenience),

∂φ

∂y
=

∂u

∂y
= v = 0 on y = 0, (14a)

v(x, 1) = V =

{

V∗,

κ [p− pouter −∆π] ,
(14b)

u(x, 1) = 0, (14c)

Pe vφ− ∂φ

∂y
= 0 on y = 1, (14d)

∫ 1

0

u dy = 1 at x = 0, (14e)

p = 0 at x = 1. (14f)

Finally, we specify the volume fraction profile at the inlet

φ(0, y) = Φ(y), (15)

for some Φ(y). Two natural types of injection that should
be compared are (i) uniform injection across 0 ≤ y ≤ 1 and
(ii) point injection. To capture both of these we consider a
normalized particle distribution at the inlet that is Gaus-
sian in nature, of the form

φ(0, y) = Φ(y) =

exp

(−y2

2σ2

)

√

π

2
σ erf

(

1√
2σ

) . (16)

Here σ is a constant that reflects the width of the distri-
bution. The uniform inlet volume fraction arises in the
limit σ → ∞, whilst point injection at the centre y = 0
corresponds to σ → 0; intermediate values of σ give differ-
ent pulse widths.

Equations (12) subject to boundary conditions (14)
and inlet condition (15) define our problem mathemati-
cally.

2.4. Model solution

Our aim is to determine the change in particle volume
fraction, φ, as we move down the channel, i.e., the varia-
tion with y of φ(x, y) as x increases. Integrating the mo-
mentum equation (12b), and making use of the symmetry
and no-slip conditions (14a,14c) gives

u(x, y) = −dp

dx

∫ 1

y

ỹ

µ
(

φ(x, ỹ)
) dỹ. (17)

Substituting (17) into the continuity equation (12a), inte-
grating and applying (14a) gives

v(x, y) =
∂

∂x

{

dp

dx

(

y

∫ 1

y

ỹ

µ
(

φ(x, ỹ)
) dỹ

+

∫ y

0

ỹ2

µ
(

φ(x, ỹ)
) dỹ

)}

, (18)

where we have taken the x-derivative outside the integra-
tion, and used integration by parts to simplify a double
integral. The transverse fluid velocity at the channel wall,
V , is then given by

v(x, 1) = V =
∂

∂x

{

dp

dx

(

∫ 1

0

ỹ2

µ
(

φ(x, ỹ)
) dỹ

)}

. (19)

Treating V as given by the two behaviours of the leakage
flow of interest in (14b), and expanding the derivative in
equation (19), we have an ordinary differential equation
(ODE) for the hydrodynamic pressure, p(x), of the form

d2p

dx2
− B(x)

A(x)

dp

dx
− 1

A(x)
V = 0, (20)

where

A(x) =

∫ 1

0

ỹ2

µ
(

φ(x, ỹ)
) dỹ, (21a)

B(x) =

∫ 1

0

ỹ2

µ
(

φ(x, ỹ)
)2

∂µ
(

φ(x, ỹ)
)

∂x
dỹ. (21b)

Equations (17) and (18) give the axial and transverse
velocities in terms of the volume fraction, φ, and hydro-
dynamic pressure, p. These may be substituted into the
advection–diffusion equation (12d) and, with the ODE for
the hydrodynamic pressure (20), they provide two coupled
integro-differential equations for φ and p, which are diffi-
cult to solve numerically. However, in the next section we
are able to make further analytical progress by exploring
the limit of a dilute suspension, φ ≪ 1.

3. Asymptotics for a Dilute Suspension

The coupled nonlinear system of equations (12) can be
simplified by considering a dilute suspension of particles,

φ(x, y) = ǫφ1(x, y) (22)
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with ǫ ≪ 1 and φ1 assumed to be O (1).
The osmotic pressure difference across the porous wall,

in the dilute limit, is a linear function of the particle vol-
ume fraction [11]

∆π = ǫπ0φ1(x, y = 1) +O
(

ǫ2
)

, (23)

where π0 is a reference osmotic pressure. In the dilute
limit, the leading-order effect of volume fraction on viscos-
ity is given by the Einstein viscosity [12]

µ(φ) = 1 +
5

2
ǫ φ1 +O

(

ǫ2
)

. (24)

Finally, the asymptotic expression for the effective diffu-
sion coefficient, D(φ), for a dilute mono-disperse suspen-
sion is given by [13]

D(φ) = 1 + ǫ χ φ1, (25)

where the constant χ is a virial coefficient, a type-specific
constant accounting for particle-particle interactions (see
[13, 14] for tabulated values from the literature).

We exploit the dilute approximation by expanding the
hydrodynamic pressure and velocity components as

p(x) = p0(x) + ǫ p1(x) +O
(

ǫ2
)

, (26a)

u(x, y) = u0(x, y) + ǫ u1(x, y) +O
(

ǫ2
)

, (26b)

v(x, y) = v0(x, y) + ǫ v1(x, y) +O
(

ǫ2
)

. (26c)

Substituting these expressions into the advection–diffusion
equation for φ, (12d), we find that the lowest-order terms
are at O (ǫ), and so this forms an equation for φ1 in terms
of the leading-order velocities u0 and v0:

Pe

(

u0

∂φ1

∂x
+ v0

∂φ1

∂y

)

=
∂2φ1

∂y2
. (27)

We note that the Stokes–Einstein diffusivity, D0, enters
through the Péclet number and also that the concentration-
dependent terms in the diffusivity only appear at order ǫ2,
which are neglected. Hence, we need only consider a con-
stant diffusivity, D0, here. The symmetry and no-flux
boundary conditions from (14a) and (14d) read

∂φ1

∂y
= 0 on y = 0, (28a)

Pe V0 φ1 −
∂φ1

∂y
= 0 on y = 1, (28b)

where V0 = v0(x, 1) is the leading-order leakage flow at the
porous channel walls. The inlet condition is

φ1(0, y) = Φ1(y), (29)

for a normalized Gaussian function Φ(y) of the form given
by equation (16).

The expression for the axial velocity given by (17) may
be expanded in powers of ǫ, using the viscosity and pres-
sure expansions (24) and (26a), to give

u(x, y) =
dp0
dx

(y2 − 1)

2

+ ǫ

(

dp1
dx

(y2 − 1)

2
+

dp0
dx

∫ 1

y

5

2
ỹφ1(x, ỹ) dỹ

)

+O
(

ǫ2
)

.

(30)

Similarly for the transverse velocity, given by (18), we find

v(x, y) =
d2p0
dx2

(3y − y3)

6

+ ǫ
∂

∂x

{

dp1
dx

(3y − y3)

6
− dp0

dx

[

y

∫ 1

y

5

2
ỹφ1(x, ỹ) dỹ

+

∫ y

0

5

2
ỹ2φ1(x, ỹ) dỹ

]}

+O
(

ǫ2
)

. (31)

Equations (30) and (31) determine the leading-order and
order-ǫ components of the velocities u and v. As expected
in the dilute limit, the presence of particles does not affect
the leading-order problem; their effect is only felt at the
next order.

The two cases for the boundary condition for v at
y = 1 (14b) take the form V = V0 + ǫV1 where

V = V0 + ǫV1 =











V∗,

κ
(

p0 − p0outer
)

+ǫκ
[

p1 − p1outer − π0φ1(x, y = 1)
]

.

(32)

Thus there is no O (ǫ) correction to the leakage flow for the
case of constant outflow, i.e., V1 = 0 in this case. However,
for the pressure-dependent leakage flow, the leading-order
outflow is proportional to the leading-order pressure dif-
ference across the membrane, and the order-ǫ outflow is
related to the order-ǫ hydrodynamic pressure and the os-
motic pressure.

4. Results

4.1. Leading-order velocities

Examining the O(1) velocity terms in the
expansions (30) and (31), we find the leading-order ve-
locity components u0 = (u0, v0),

u0(x, y) =
dp0
dx

(y2 − 1)

2
, (33a)

v0(x, y) =
d2p0
dx2

(3y − y3)

6
. (33b)

Note that the axial velocity, u0, depends quadratically
on the transverse coordinate, y, and the transverse ve-
locity, v0, depends cubically on y. Similar channel veloci-
ties may be found in the literature (e.g., see Probstein [2]
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for the case of a constant leakage outflow). If the hy-
drodynamic pressure gradient, dp0/dx, were constant, the
leading-order velocities (33) would correspond precisely to
Poiseuille flow. However, here we have the added inter-
est that dp0/dx may be a function of x. This means
that, while the profile remains parabolic, its magnitude
may vary due to the spatially varying hydrodynamic pres-
sure, p0. This variation must be determined case by case
by considering the leading-order flow through the channel
wall V0

v0(x, 1) = V0 =
1

3

d2p0
dx2

=

{

V∗,

κp0.
(34)

We note that, in solving for the leading-order hydro-
dynamic pressure p0 from the ODE in (34), we use the
constraints of constant flux at the channel inlet (14e) and
zero pressure at the outlet (14f), which, for the leading-
order problem, read as

∫ 1

0

u0 dy = 1, at x = 0, (35a)

p0 = 0, at x = 1. (35b)

In the following we consider each of these two cases, in
turn.

4.1.1. Case 1: Constant leakage

In the case of constant flow through the porous walls,
V0 ≡ V∗ = constant, the ODE for the leading-order hydro-
dynamic pressure (34) with conditions (35) has solution

p0 = 3(1− x)

[

1− 1

2
V∗(x+ 1)

]

. (36)

This function decreases with V∗ for all x, i.e., the greater
the leakage flow the lower the required hydrodynamic pres-
sure to maintain a constant flux. Hence, for constant flow
though the walls, the pressure gradient changes linearly
with distance down the channel. The leading-order flow
then reads

u0 = (u0, v0),

=

(

3

2
(1 − y2)− 3

2
V∗x(1− y2),

1

2
V∗(3y − y3)

)

, (37)

from (33). The leading-order axial velocity u0 = u0(x, y)
and the transverse velocity v0 = v0(y) are dependent on
the magnitude of the flow through the walls. Figure 2
shows the leading-order velocity profiles for V∗ = 0.25. The
leading-order axial velocity has a parabolic profile but its
magnitude decreases linearly down the channel, correspond-
ing to a retardation of the fluid due to the leakage through
the channel walls. The leading-order transverse velocity
has a cubic profile as a result of the flow towards the
channel walls, which does not vary with axial position. In
the case of no leakage flow (impermeable walls), V∗ = 0,
and (37) reduces simply to Poiseuille flow.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

(a)

y

u0

Increasing x

❄

−1 −0.5 0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b)

y

v0

Figure 2: Profiles of the leading-order velocities (37) with constant
leakage flow V∗ = 0.25 through the channel walls. (a) Axial velocity,
u0, at x = 0 (solid), x = 0.25 (dot-dashed), x = 0.5 (dashed),
x = 0.75 (dotted) and x = 1 (skinny-dotted), and (b) Transverse
velocity, v0. We observe that v0 = v0(y) in the channel.

There is a maximum allowable constant leakage flow,
V∗

max, for which there is a positive net axial flow at the end
of the channel; in this limiting case, all the fluid injected at
the inlet passes through the porous walls. Exceeding this
leakage flow velocity results in back-flow from the channel
outlet into the channel. The value of V∗

max is obtained
by equating the influx of fluid with the flux through the
channel walls, given by integrating the velocity v0 (37)
along the channel wall at y = 1, resulting in a maximum
leakage flow of V∗

max = 1. Such a dead-end flow occurs in
direct-flow filtration [15].

4.1.2. Case 2: Pressure-dependent leakage

We now determine leading-order and order-ǫ solutions
for the velocities, pressure and volume fraction for a
pressure-dependent leakage flow. For simplicity we assume
zero pressure outside the channel, pouter ≡ 0. This corre-
sponds to the common set-up in which the hydrodynamic
outlet pressure and pressure outside the channel walls are
equal. In §5 we relax this assumption to explore the effect
of a non-zero pouter.

When the leakage flow through the wall is proportional
to the hydrodynamic pressure, p, and osmotic pressure, π,
then at leading order only the hydrodynamic pressure is
significant, V0 = κp0, as seen from equation (32). The
leading-order transverse flow at y = 1 (34) gives an ODE
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Figure 3: Profiles of the leading-order velocities for pressure-
dependent leakage flow with κ = 1 so that V0 = p0: (a) axial velocity,
u0, and (b) transverse velocity, v0. In each, we show the profiles at
x = 0 (solid), x = 0.25 (dot-dashed), x = 0.5 (dashed), x = 0.75
(dotted) and x = 1 (skinny-dotted).

for the leading-order hydrodynamic pressure

1

3

d2p0
dx2

= κp0. (38)

This ODE, subject to the boundary conditions (35), has
the solution

p0 =

√

3

κ
sech

√
3κ sinh

[√
3κ(1− x)

]

. (39)

From this equation, we see that the pressure, p0, decreases
with κ for all x and, as is the case for uniform leakage, the
greater the leakage through the channel walls, the lower
the required hydrodynamic pressure to achieve a constant
influx. Substituting (39) into (33) determines the leading-
order velocity field, (u0, v0). We note that, as κ → 0 (in
the limit of impermeable walls), p0 → 3(1− x), and we re-
cover Poiseuille flow, as expected. The components of the
leading-order velocity field are shown in Figure 3 for κ = 1.
We observe that the leading-order axial velocity u0 re-
tains its parabolic profile along the channel though the
amplitude decreases exponentially, because of the leak-
age of fluid through the channel walls. The leading-order
transverse fluid velocity v0, which has a cubic profile about
y = 0, also decreases in magnitude along the channel. This
indicates the tendency of the fluid to move towards the
porous walls of the channel but with an exponentially de-
caying rate along the channel.

4.2. Numerical results for volume fraction

Having seen that the leading-order velocity fields and
pressure gradient can be determined analytically in the
two cases of interest, we now turn our attention to de-
termining the volume fraction profile, φ1. Recall that the
advection–diffusion equation (27), with u0 and v0 given by
our previous analysis, must be solved subject to the bound-
ary conditions (28) and the Gaussian inlet particle distri-
bution (29). We note that this initial condition does not
satisfy the no-flux boundary condition (14d) and so there
is a small transient over which this relaxes to a configura-
tion that satisfies the boundary conditions. However, we
choose to employ this inlet condition as it provides a sim-
ple expression that elucidates the effect of a non-uniform
particle volume fraction distribution, and we do not expect
the behaviour in the small transient to have an effect on
the global system dynamics. We solve this system numer-
ically, implementing a scheme in MATLAB (see Appendix
for details). As an illustrative example, Figure 4 depicts
how an initial distribution in the channel develops down-
stream of the injection point, with σ2 = 0.05, Pe = 3, for
the cases of: no leakage at the wall; constant leakage; and
pressure-dependent leakage (with κ = 1).

For the case of an impermeable wall, V∗ = 0, we ob-
serve that the initial distribution spreads until it is es-
sentially uniform across the width of the channel (Fig-
ure 4(a)). With leakage flow through the porous wall,
particles still diffuse away from the centre-line but now
collect near the wall. This build-up of particles at the
porous walls is known as concentration polarization [1].
In particular, for the case of constant leakage, the volume
fraction of particles at the wall increases monotonically
along the length of the channel (Figure 4(b)). When leak-
age is proportional to the pressure, the volume fraction at
the walls is greatest about half way along the channel, as
in Figure 4(c). This is as a result of the transverse flow,
which becomes smaller near the end of the channel after
which point diffusion acts to move particles away from the
wall.

4.3. Order-ǫ velocities

Having computed the leading-order velocity compo-
nents, u0 and v0, and volume-fraction distribution φ1, we
are now in a position to compute the perturbation to the
fluid flow caused by the presence of particles, i.e., the O (ǫ)
corrections to the fluid velocity. From the axial and trans-
verse velocities, (30) and (31) respectively, we have

u1(x, y) =
dp1
dx

(y2 − 1)

2
+

dp0
dx

∫ 1

y

5

2
ỹφ1(x, ỹ) dỹ, (40a)

v1(x, y) =
∂

∂x

{

dp1
dx

(3y − y3)

6
− dp0

dx

[

y

∫ 1

y

5

2
ỹφ1(x, ỹ) dỹ

+

∫ y

0

5

2
ỹ2φ1(x, ỹ) dỹ

]}

. (40b)
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Figure 4: Profiles of the particle volume fraction φ1 in the chan-
nel given by the solution to (27) with velocities (33). (a) No leak-
age V∗ = 0, φ1 tends to a uniform state in the channel, (b) con-
stant leakage V∗ = 0.25, pressure given by (36), and (c) pressure-
dependent leakage with p0 given by (39). In (b) and (c) leakage flow
results in particles collecting at the boundaries. In all computations,
we take Pe = 3, σ2 = 0.05, and for (c), κ = 1.

We note that a perturbation to the velocity, u1, in principle
affects the flux of fluid into the channel. However, the
condition of constant fluid influx (14e), considering (35a),
demands that,

∫ 1

0

u1(0, y) dy = 0. (41)

To ensure that this condition is satisfied we must impose
a perturbation to the hydrodynamic pressure at the in-
let x = 0, i.e., p1(0) = P 6= 0. The value of P indicates
how much harder we must push the liquid in the pres-
ence of particles to obtain the same fluid influx as would
be obtained for a configuration in the absence of parti-
cles. The hydrodynamic pressure perturbation, p1, may
be found from the perturbed leakage V1 out of the channel
wall at y = 1,

∂

∂x

{

1

3

dp1
dx

− dp0
dx

∫ 1

0

5

2
ỹ2φ1(x, ỹ) dỹ

}

= V1, (42)

using the transverse velocity (31). Here V1 = 0 for the
case of constant leakage flow through the channel walls
and V1 = κ (p1 − π0φ1) when the leakage flow is pressure-
dependent, see equation (32). For each case we may sub-
stitute for p0 in equation (42) and solve subject to

p1(0) = P , p1(1) = 0. (43a,b)

We then use the flux condition (41) to find P .
By considering the initial volume fraction distribution

given by (16) we may determine the dependence of P on
the width of the distribution, σ. This gives us insight into
the pressures required to transport a fixed flux of fluid
containing a given distribution of particles through the
channel for the two distinct cases of leakage through the
channel walls, V1.

4.3.1. Case 1: Constant leakage

When there is constant flow through the boundary,
V = V∗, and so, at order ǫ, V1 = 0. In this case, the
ODE (42) to determine the order-ǫ pressure, p1, becomes

1

3

d2p1
dx2

− ∂

∂x

{

dp0
dx

∫ 1

0

5

2
ỹ2φ1(x, ỹ) dỹ

}

= 0, (44)

which has solution

p1 =P(1− x) + 3

∫ x

0

[

dp0(x̃)

dx̃

∫ 1

0

5

2
ỹ2φ1(x̃, ỹ) dỹ

]

dx̃

− 3x

∫ 1

0

[

dp0(x̃)

dx̃

∫ 1

0

5

2
ỹ2φ1(x̃, ỹ) dỹ

]

dx̃, (45)

where we have applied the boundary conditions (43). Upon
imposing the flux condition (41), we see that the input
pressure perturbation, P , is related to the particle volume
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fraction through

P = 3
dp0(0)

dx

∫ 1

0

5

2
ỹ2φ1(0, ỹ) dỹ

−3

∫ 1

0

[

dp0(x̃)

dx̃

∫ 1

0

5

2
ỹ2φ1(x̃, ỹ) dỹ

]

dx̃

−3

∫ 1

0

dp0(0)

dx

∫ 1

ỹ

5

2
y′φ1(0, y

′) dy′ dỹ. (46)

We note that this relationship is non-local, depending on
the behaviour of the particles along the entire length of the
channel. Substituting for P into (45) provides the pressure
perturbation, p1, and, along with φ1, allows us to calculate
the perturbations to the velocity field u1 and v1 using the
order-ǫ velocities (40).

In Figure 5(a) we illustrate the pressure for the pro-
file φ1 with σ2 = 0.05 and Pe = 3, as shown in Figure 4(b).
As we expect, the pressure perturbation is positive for
all x: the hydrodynamic pressure in the channel required
to maintain the same fluid influx as the case in which no
particles are present is increased as a result of the increase
in viscosity. The perturbation to the axial velocity, u1, is
shown in Figure 5(b). Recall that the leading-order axial
velocity here is a Poiseuille profile, decreasing in magni-
tude as we move down the channel. We see that, in regions
of high particle volume fraction, u1 is negative and so the
total axial velocity, u, is decreased by the presence of par-
ticles, while in regions of lower particle volume fraction u1

is positive and so the total axial velocity is increased. By
conservation of mass, (12a), a perturbation in the axial
velocity results in a perturbation in the transverse veloc-
ity, v. Since there is an accumulation of particles near the
walls, i.e., the region of high volume fraction moves to the
walls, the location of the position of maximum retardation
in the transverse direction caused by the perturbation to
the flow moves towards the walls as we move down the
channel (Figure 5(b)). Hence, while the perturbed trans-
verse velocity, v1 (40b), initially increases, since there is
no perturbed leakage through the walls, i.e., v1(x, 1) = 0,
the fluid must ultimately be transported back towards the
centre of the channel; this is signified by a change in sign
of v1 further along the channel, as seen in Figure 5(c).

The relationship between the pressure perturbation at
the inlet, P , and the width of the particle distribution,
σ, for various constant leakage velocities, V∗, is shown in
Figure 6. Since the addition of particles increases the vis-
cosity of the fluid, and the hydrodynamic pressure gra-
dient is related to the viscosity through the momentum
equation (12b), we expect that a greater hydrodynamic
pressure will be required to maintain a constant influx.
However, we find that that there is a critical value of σ
that maximizes the additional pressure, P . The critical
value of the distribution width, σpess, decreases linearly
with leakage flow, V∗, as in Figure 7(a). This means, sur-
prisingly, that there is an inlet particle distribution width
that requires the largest additional (perturbed) pressure.
The value of this pessimal pressure perturbation increases
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Figure 5: Pressure and order-ǫ velocity profiles given by (40) for the
case of constant leakage flow through the channel walls, V∗ = 0.25.
(a) The hydrodynamic pressure, p = p0 + ǫp1, for ǫ = 0.05 (dot-
dashed) is plotted with the leading-order term, p0 (solid). (b) Pro-
file of the order-ǫ axial velocity perturbation, u1, for x = 0 (solid),
x = 0.25 (dot-dashed), x = 0.5 (dashed), x = 0.75 (dotted) and
x = 1 (skinny-dotted), (c) profile of order-ǫ transverse velocity per-
turbation, v1, for x = 0 (solid), x = 0.25 (dot-dashed), x = 0.5
(dashed), x = 0.75 (dotted) and x = 1 (skinny-dotted). In the com-
putations we have taken Pe = 3, σ2 = 0.05.
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Figure 6: Variation of the pressure perturbation parameter P given
by (46) with σ for the case of constant leakage flow: V∗ = 0 (solid),
V∗ = 0.2 (dot-dashed), V∗ = 0.4 (dashed) and V∗ = 0.6 (dotted).
As σ increases, P tends to a constant, with a non-trivial behaviour
for σ < 2 showing a critical value of σ that maximizes P. Note
that P → 15/2 as σ → ∞ when V∗ = 0. In the computations, we
have taken Pe = 3.

as the leakage flux increases, see Figure 7(b). The val-
ues of σ around this pessimal pressure perturbation reflect
inlet distributions that have significant volume fraction
gradients across the channel. Hence the viscosity has a
significant gradient in the channel, globally, and thus the
particles have a greater effect on the resulting flow. It
is found that both ‘thinner’ and ‘fatter’ volume fraction
distributions require less additional pressure to maintain
a constant fluid influx: for larger values of σ, the volume
fraction distribution is more uniform and so there is less
variation to the flow due to the concentration-dependent
viscosity, whereas for smaller values of σ the volume frac-
tion is largely confined to a small region that does not
significantly affect the viscosity for large regions of the
channel.

In the case of no flow through the porous walls (im-
permeable walls, V∗ = 0) there is an analytic asymptote
for P as σ → ∞, namely P → 15/2 (see Figure 6, solid
line). This may be calculated using the expression for p0
from (36) and the equation for P (46), since in the limit
σ → ∞, φ ≡ 1. However, in the case of porous walls,
concentration polarization along the channel walls results
in φ1 no longer being spatially independent in the channel.
This precludes the analytical calculation of the asymptote
that is observed numerically in the limit σ → ∞, see Fig-
ure 7(b). The asymptotic value of P increases with the
magnitude of the leakage flow.

Although the leading-order hydrodynamic pressure, p0,
required to maintain a constant influx decreases with in-
creasing leakage flow, it is observed in Figure 6 that the
order-ǫ hydrodynamic pressure, p1, increases with increas-
ing leakage flow. This arises as a result of there being no
order-ǫ leakage flow in this case. Particles aggregate at the
walls because of the leading-order leakage; by increasing
the leakage velocity, V∗, this increases the accumulation
of particles at the wall, and thus the local viscosity, so
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Figure 7: (a) The distribution width resulting in the pessimal pres-
sure, σpess, and (b) the pessimal pressure perturbation, Ppess (solid),
and the asymptotic pressure perturbation, Pasym (dot-dashed),
as σ → ∞, for the case of a constant leakage flow V = V∗. In the
computations, we have taken Pe = 3.

more pressure is required to advect these particles along
the channel.

4.3.2. Case 2: Pressure-dependent leakage

When there is a pressure-dependent flow through the
porous channel walls, the order-ǫ leakage flow through the
walls is given by V1 = κ [p1 − π0φ1(x, y = 1)]. The ODE
for the hydrodynamic pressure, (42), then becomes

d2p1
dx2

− 3κp1 = 3g(x), (47)

with boundary conditions (43), where

g(x) :=
∂

∂x

{

dp0
dx

∫ 1

0

5

2
ỹ2φ1(x, ỹ) dỹ

}

−κπ0φ1(x, 1). (48)

The homogeneous adjoint problem to (47) only permits
the trivial zero solution; the Fredholm Alternative Theo-
rem [16] then implies that the ODE in (47) with boundary
conditions (43) has a unique solution. This solution can be
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found using the method of variation of parameters, giving

p1 = P cosh
(√

3κx
)

+ 3

∫ x

0

[

cosh
(√

3κ[x− x̃]
) dp0(x̃)

dx̃

∫ 1

0

5

2
ỹ2φ1(x̃, ỹ) dỹ

]

dx̃

+

√

3

κ

dp0(0)

dx
sinh

(√
3κx

)

×
(
∫ 1

0

∫ 1

ỹ

5

2
y′φ1(0, y

′) dy′ dỹ −
∫ 1

0

5

2
ỹ2φ1(0, ỹ) dỹ

)

−
√
3κ π0

∫ x

0

φ1(x̃, 1) sinh
(√

3κ[x− x̃]
)

dx̃, (49)

where we have imposed the boundary condition (43a) and
flux condition (41). Imposing the final boundary condi-
tion (43b), we determine the relationship between the ad-
ditional pressure, P , and the particle distribution φ1

P =

√

3

κ
tanh

√
3κ

dp0(0)

dx
×

(
∫ 1

0

5

2
ỹ2φ1(0, ỹ) dỹ −

∫ 1

0

∫ 1

ỹ

5

2
y′φ1(0, y

′) dy′ dỹ

)

− 3 sech
√
3κ×

∫ 1

0

[

cosh
(√

3κ[1− x̃]
) dp0(x̃)

dx̃

∫ 1

0

5

2
ỹ2φ1(x̃, ỹ) dỹ

]

dx̃

+
√
3κ π0 sech

√
3κ

∫ 1

0

φ1 (x̃, 1) sinh
(√

3κ[1− x̃]
)

dx̃.

(50)

Given φ1 we may solve (50) for P and then the pressure
p1 and the order-ǫ velocities u1 and v1 follow immediately
from (49) and (40).

We illustrate the resulting behaviour by considering the
injection of particles with distribution width σ =

√
0.05, so

that φ1 is as shown in Figure 4(c). The behaviour of p0
and p1 and the osmotic pressure are then as shown in Fig-
ure 8(a). We observe that the hydrodynamic pressure per-
turbation, p1, is positive corresponding to an increase in
the total hydrodynamic pressure in the channel. How-
ever, there is an axial position beyond which the osmotic
pressure, ∆π, exceeds the hydrodynamic pressure pertur-
bation. This is unavoidable since p1 = 0 at x = 1, and this
has an impact on the leakage flow observed.

The flow perturbation u1 is shown in Figure 8(b). Near
the entrance to the channel u1 is negative in the centre of
the channel where there is a high volume fraction so the
total axial flow is lower than the leading-order (particle-
free) flow; in regions of low particle volume fraction u1 is
positive and so the total axial flow is greater than in the
absence of particles, similar to the case of constant leak-
age flow. However, further down the channel u1 is nega-
tive across the entire channel. This is due to the order-ǫ
transverse leakage flow which causes fluid to be removed
from the channel. In this case, the perturbation to the
transverse velocity, v1, (see Figure 8(c)) increases the to-
tal transverse velocity towards the walls over the entire
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Figure 8: Pressure and order-ǫ velocity profiles given by (40) for
the case of pressure-dependent leakage flow through the channel
walls, V1 = κ [p1 − π0φ1(x, 1)]. (a) The hydrodynamic pressure,
p = p0 + ǫp1 for ǫ = 0.05 (dot-dashed) is plotted with the leading-
order term, p0 (solid). The inset shows the pressure perturbation,
p1 (solid), and the osmotic pressure (dot-dashed) in the channel. (b)
Profile of order-ǫ axial velocity perturbation, u1, at x = 0 (solid),
x = 0.25 (dot-dashed), x = 0.5 (dashed), x = 0.75 (dotted) and
x = 1 (skinny-dotted), (c) profile of order-ǫ transverse velocity per-
turbation, v1, at x = 0 (solid), x = 0.25 (dot-dashed), x = 0.5
(dashed), x = 0.75 (dotted) and x = 1 (skinny-dotted). In the com-
putations, we have taken Pe = 3, σ2 = 0.05.
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Figure 9: Variation of the pressure perturbation parameter, P,
given by (50) with σ for the case of pressure-dependent leakage flow
through the channel walls, V1 = κ [p1 − π0φ1(x, 1)] with κ = 0.25
(solid), κ = 0.5 (dot-dashed), κ = 0.75 (dashed) and κ = 1 (dotted).
As σ increases P tends to a constant, again with a non-trivial be-
haviour for σ < 2 showing a critical σ to at which P is maximized.
In the computations, we have taken Pe = 3.

length of the channel. This induces an additional fluid
flux through the channel walls which also advects particles
towards the walls, increasing the osmotic pressure due to
concentration polarization up to the point where it exceeds
the hydrodynamic pressure (see Figure 8(a)). This excess
osmotic pressure results in a net inward flow (classic os-
mosis), which is undesirable in filtration because it reduces
the amount of pure water that is produced by filtration.
Hence, near the end of the channel this osmotic inflow is
unavoidable, when pouter = 0. However, since the particles
in the channel do not affect the leading-order flow, there
is no leading-order osmotic inflow of fluid, and the outflow
through the channel walls tends to zero at the end of the
channel (since p = 0 at x = 1). Inflow of fluid by osmosis
is therefore an order-ǫ effect.

The relationship between P and σ is shown in Fig-
ure 9 for different constants of proportionality, κ, for the
pressure-dependent leakage flow. We see a similar func-
tional relationship to Case 1 for constant leakage, specifi-
cally the existence of a pessimal distribution of particles as
shown. In this case there is no simple analytical asymptote
as σ → ∞, for the same reasons as in Case 1 with V∗ 6= 0.
The value of the distribution width resulting in the pessi-
mal pressure perturbation clearly increases linearly with κ,
as in Figure 10(a). However, the pessimal pressure pertur-
bation is observed to decrease with κ, in an approximately
linear fashion (provided κ exceeds a certain value, κ ≈ 0.3)
as in Figure 10(b). Similarly to Case 1, the leading-order
hydrodynamic pressure, (39), in the channel is reduced by
the leakage velocity. However, this case differs in that the
asymptote for P as σ → ∞ decreases as the leakage flow
through the channel walls increases through an increase
in wall permeability in κ. This decrease is approximately
linear for κ > 0.3, as in Figure 10(b). Hence, less pressure
is required to ensure a constant influx of fluid for higher
wall permeabilities when particles are present in the chan-
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Figure 10: (a) The distribution width resulting the the pessi-
mal pressure, σpess, and (b) the pessimal pressure perturbation,
Ppess (solid), and the asymptotic pressure perturbation, Pasym (dot-
dashed), as σ → ∞, for different channel wall permeabilities, κ. In
the computations, we have taken Pe = 3.

nel. This result is a consequence of the osmotic component
of P , which becomes increasingly negative with κ and so
causes the reduction in the pressure perturbation. This
suggests that the component of the channel for which there
is a net fluid outflow and which acts as an effective filter
is shorter because more fluid is lost through the walls ear-
lier in the channel, reducing the hydrodynamic pressure,
p, required to maintain a given fluid influx.

4.4. Total Permeate Flux

A quantity of particular interest is the total flux of fluid
that flows out through the porous walls, F . This is given
by the integral of the transverse velocity along the wall,

F = 2

∫ 1

0

v(x, 1) dx,

= 2

∫ 1

0

v0(x, 1) + ǫv1(x, 1) dx = F0 + ǫF1. (51)

(Here the factor of two is due to the symmetry of the sys-
tem about y = 0.) This is easily calculated for the constant
leakage flow case since here V = V∗ for all 0 ≤ x ≤ 1, and
so the total fluid flux passing through the porous walls
is F = 2V∗.

For the pressure-dependent leakage flow case, the
leading-order leakage flow may also be calculated analyt-
ically. At leading order the leakage flow is given by κp0
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Figure 11: (a) Order-ǫ flux through the channel walls as a function
of Péclet number, Pe, for σ = 0.2 (solid), σ = 0.4 (dot-dashed),
σ = 0.75 (dashed), and σ = 1.5 (skinny-dotted). (b) Pressure per-
turbation parameter, P, against Péclet number for σ = 0.2 (solid),
σ = 0.4 (dot-dashed), σ = 0.75 (dashed), and σ = 1.5 (skinny-
dotted).

where p0 is given in equation (39). The total flux due to
the leading-order term is thus F0 = 2

(

1− sech
√
3κ
)

, an
increasing function of κ as might be expected. However,
the order-ǫ term must be calculated numerically. The in-
teresting feature of the order-ǫ term, F1, is that it is de-
pendent on the particles in the flow. In addition, there is
an osmotic inflow of fluid towards the end of the channel
that reduces the net permeate flux. Consequently, both
the inlet distribution width, σ, and the Péclet number,
Pe, influence the result (Figure 11(a)). For lower Péclet
numbers, more localized distributions (lower values of σ)
result in larger fluxes, but for larger Péclet numbers, more
spatially uniform distributions (larger values of σ) produce
larger fluxes. Analysing the pressure perturbation param-
eter, P , with Péclet number (Figure 11(b)), we see that,
as the Péclet number is increased, a greater pressure is re-
quired to maintain a constant influx. Since an increase in
Péclet number also increases the leakage flux, this suggests
a direct correspondence between hydrodynamic pressure
and leakage flux, as one would expect.

5. Pressure Outside the Channel

In the previous section we concluded that it is an in-
evitable consequence of the osmotic pressure that an O (ǫ)
flux of fluid enters the channel through its walls in a

pressure-dependent leakage flow. In water filtration, this
effect, at any order, is undesirable; here we consider a mod-
ified set-up that eliminates this inflow.

The modification we consider is the case where the
pressure outside the channel, pouter, is a non-zero constant.
The effective total transmembrane pressure may then be
written as

∆p−∆π = p0(x)− pouter + ǫ [p1(x) − π0φ1(x, 1)] . (52)

We retain, without loss of generality, the condition that
the fluid pressure, p, is zero at the end of the channel. In
the previous section we found that if pouter = 0 then to-
wards the end of the channel the fluid pressure falls below
the osmotic pressure so that the effective transmembrane
pressure is negative, resulting in fluid entering the channel
through the membrane. However, we may choose pouter in
such a way that the effective total transmembrane pressure
remains non-negative over the entire length of the channel.

As in §4.3.2, osmotic pressure (order-ǫ) is negligible
in the leading-order problem (32) and the leading-order
leakage flow is given here by V0 = κ(p0 − pouter) (cf., equa-
tion (32)). The leading-order transverse flow at y = 1 (34)
gives an ODE for the leading-order pressure

1

3

d2p0
dx2

= κ(p0 − pouter). (53)

This ODE with boundary conditions (35) has the solution

p0(x) = pouter −
√

3

κ
sinh

(√
3κx

)

+

(

√

3

κ
tanh

√
3κ− pouter sech

√
3κ

)

cosh
(√

3κx
)

.

(54)

The leading-order velocities (u0, v0) may be calculated by
substituting (54) into equation (33). These, in turn, may
be used to calculate the volume fraction of particles, φ1,
in the channel by solving the advection–diffusion equa-
tion (12d).

If pouter > 0 then the pressure difference across the
membrane is reduced, reducing the leakage flux which in
turn increases the required hydrodynamic pressure. Since
the leakage flux is reduced, concentration polarization at
the channel walls is reduced. However, as p = 0 at x = 1,
there is a point in the channel at which p < pouter and
so there is an induced leading-order leakage influx from
the outside into the channel through the channel walls.
This inflow does not occur at leading order with pouter = 0.
Conversely, if pouter < 0 then the pressure difference across
the membrane is increased, increasing the leakage flux
which in turn decreases the required hydrodynamic pres-
sure. Here we do not have an influx of fluid into the
channel at any position at leading order if pouter is larger
in magnitude than the osmotic pressure (order-ǫ). How-
ever, since the leakage flux is increased, there is a greater
concentration-polarization effect at the channel walls.
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The leading-order total permeate flux, F0, for a non-
zero pouter, reads

F0 =
2

3

√
κ

[

3√
κ

(

1− sech
√
3κ
)

−
√
3 pouter tanh

√
3κ

]

, (55)

using (51). Setting pouter = 0 we retrieve the expression
for F0 from §4.4. We note that F0 is a decreasing function
of pouter for all κ. Furthermore, the order-ǫ total permeate
flux, F1, is an increasing function of the outside pressure:
for pouter = 0.25, F1 is less than that with zero outer pres-
sure for all Pe and σ; conversely, for pouter = −0.25, F1 is
greater than that with zero outer pressure for all Pe and σ.

By setting pouter < 0 we ensure a number of outcomes.
Firstly, no fluid leaks into the channel from the walls.
From a water-filtration perspective this means that none
of the filtered water re-enters the channel. Secondly, we
increase the leakage velocity at the walls resulting in more
fluid being filtered. The penalty we pay in doing so is the
extra energy required to generate the negative external
pressure.

5.1. Order-ǫ outer pressure

We wish to choose the outer pressure to avoid any re-
entry of fluid into the channel through the walls. In the
previous section we saw that this might be achieved by us-
ing a sufficiently large negative outer pressure. However,
we also want to minimize the energy required to gener-
ate this additional pressure as so it is the ‘optimum’ outer
pressure that is of interest. Since re-entry is an order-ǫ
effect due to the osmotic pressure, we assume that pouter
is O (ǫ). Also, since F0 differs between the cases of an
outer pressure and no outer pressure, a better compari-
son of how the particles affect the flow is to consider an
outer pressure that is of order ǫ. Now the leading-order
pressure is given by equation (39) and F0 does not depend
on pouter and remains as in the case of pouter = 0, that is,
F0 = 2

(

1− sech
√
3κ
)

.
As the leading-order problem remains unchanged, and

the re-entry is a result of the osmotic pressure exceeding
the hydrodynamic pressure near the exit of the channel,
we take pouter to be equal and opposite to the osmotic
pressure at the exit of the channel, that is

pouter = −ǫπ0φ1(1, 1). (56)

The transmembrane pressure difference now reads

∆p−∆π = p0(x) + ǫ {p1(x)− π0[φ1(x, 1) + φ1(1, 1)]} .
(57)

This leads to a modification to the order-ǫ pressure given
by equation (49) and the pressure perturbation given by
equation (50). In this case the terms φ1(x̃, 1) in the final
term of each equation are replaced with φ1(x̃, 1)− φ1(1, 1).

The choice of outer pressure that negates the osmotic
effect does indeed prevent any influx of fluid from outside
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Figure 12: (a) Order-ǫ flux through the channel walls as a func-
tion of Péclet number, Pe, for σ = 0.2 with zero outer pres-
sure (solid) and an order-ǫ outer pressure pouter = −π0φ1(1, 1) (dot-
dashed), and σ = 0.75 (dashed, skinny-dotted respectively). We see
that the order-ǫ outer pressure increases the fluid flux. (b) Pres-
sure perturbation parameter, P, as a function of Péclet number
for σ = 0.2 with zero outer pressure (solid) and an order-ǫ outer
pressure pouter = −π0φ1(1, 1) (dot-dashed), and σ = 0.75 (dashed,
skinny-dotted respectively). We see that the order-ǫ outer pressure
decreases the pressure perturbation parameter.

the channel through the walls, with transverse velocity giv-
ing a leakage flux out of the channel at each point along the
wall. This results in a greater order-ǫ permeate flux F1 as
seen in Figure 12(a) as well as a reduction in the pressure
perturbation P as in Figure 12(b).

By choosing pouter, (56), in this way we ensure that
no fluid leaks into the channel from the walls. However, in
terms of the energy penalty we pay in doing so, the analysis
here provides a mechanism for determining the minimum
suction pressure required to ensure that no filtered fluid
re-enters the channel, thus optimizing the filtration oper-
ation if the actual outlet gauge is zero (p = 0 at x = 0).
For a positive outlet pressure, pouter could be zero or even
positive.

6. Conclusion

The flow and particle distribution for a dilute suspen-
sion in a channel flow with porous walls has been de-
scribed. The presence of particles reduces the flow ve-
locity by increasing the viscosity of the fluid. Allowing
leakage (either constant or pressure dependent) through
the porous walls reduces the pressure required for the fluid
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to flow at a constant influx. This leakage flow also con-
tributes to the transport of particles from the centre of
the channel to the channel walls, leading to concentration
polarization when the walls are impermeable to particles.

We considered the effect of varying the width of an
inlet pulse of particles in the cross-stream channel direc-
tion. Beginning with a very narrow pulse (relatively highly
concentrated in a small region around the centre of the
channel), we observe that it initially becomes harder to
push the particles as this pulse width increases, that is,
a higher inlet hydrodynamic pressure is required. We at-
tribute this to the size of the region of the channel occupied
by the particles: for small widths the particles do not affect
a significant region of the channel to alter the fluid flow;
however, as this pulse width increases, the particles affect
a greater proportion of the fluid and so a greater pressure
is required to transport the particles with a constant fluid
influx. Interestingly, this increase in pressure reverses as
the width of the inlet distribution of particles surpasses a
critical value and it becomes easier (requires less pressure)
to transport the particles. We attribute this observation
to the lower particle volume fraction gradients in the chan-
nel, since the particles are now more uniformly distributed.
Generally, we observe a critical, pessimal value of the inlet
distribution width that maximizes the additional pressure
required. Since this inlet distribution requires the great-
est pressure to maintain a constant fluid influx, the energy
required and total cost of pumping the fluid–particle mix-
ture into the channel is maximized – this suggests that
filtration systems should avoid the intermediate distribu-
tion widths. As we increase the width of the distribution,
approaching the case of a uniform distribution at the in-
let, the additional pressure required tends to a constant
asymptote in all cases.

In the case of pressure-dependent leakage flow, concen-
tration polarization results in the osmotic pressure exceed-
ing the hydrodynamic pressure at the end of the channel
and an inward flow from the porous channel walls. In a
filtration system, this situation of pure fluid entering the
channel contaminated by particles is undesirable yet un-
avoidable due to the condition of equal outlet pressure and
pressure outside the channel.

Finally, we analysed the effect of a constant outer pres-
sure to the channel walls. This appears through the trans-
membrane pressure difference. A positive outer pressure
decreases concentration polarization at the channel walls
but again there is an unavoidable influx of fluid through
the channel walls. A negative outside pressure increases
the leakage flux, with no influx, but at the cost of increased
concentration polarization, and energy expenditure. Tak-
ing an outer pressure that is equal and opposite to the
osmotic pressure at the end of the channel negates the in-
flux caused by osmosis. Since the magnitude of the outer
pressure is small, it is a reasonable compromise in terms of
additional energy required to prevent the re-entry of fluid
into the channel.

Our results here thus offer two routes to design opti-

mization via the minimization of energy required: first,
insight into particle distributions that should be avoided,
and second, guidance on the appropriate external pressure
to avoid the re-entry of filtered water. Both features give
new insight into strategies employed in cross-flow filtration
devices.

Appendix A. Numerical scheme

We exploit symmetry about the y-axis to consider the
domain (x, y) ∈ [0, 1]× [0, 1], and discretize this domain
by introducing grid points

xi = hi, i = 0, 1 . . .N, (A.1a)

yj = kj, j = 0, 1 . . .M, (A.1b)

for grid spacings h and k where h = ∆x = 1/N and
k = ∆y = 1/(M − 1). We index the variable φ as follows

φi,j = φ1(xi, yj). (A.2)

The resulting solutions are then mapped to the other half
of the domain, −1 ≤ y < 0. A forward-centre finite differ-
ence scheme for advection-diffusion equation (27) is

φi+1,j = φi,j

+
2h

p′(xi)(y2j − 1)

(

− p′′(xi)
3yj − y3j

6

φi,j+1 − φi,j−1

2k

+
1

Pe

φi,j+1 − 2φi,j + φi,j−1

k2

)

, (A.3a)

φi+1,1 = φi,1 −
2h

p′(xi)

(

2

Pe

φi,2 − φi,1

k2

)

, (A.3b)

φi+1,M =
2φi+1,M−1 − 1

2
φi+1,M−2

3
2
− k Pe vi+1,M

, (A.3c)

φ1,j = Φ(yj), (A.3d)

for i = 1, 2, . . .N − 1 and j = 2, 3, . . .M − 1. The stan-
dard forward-centre finite difference discretization for non-
boundary points of the advection–diffusion equation (27) is
given in (A.3a), with the symmetry condition ∂φ1/∂y = 0
at y = 0 given by (A.3b) and the no-flux boundary condi-
tion given by (A.3c). There is an initial condition of some
φ(0, x) = Φ (A.3d). The scheme (A.3) is second-order ac-
curate.

For a constant-coefficient convection-diffusion equation

fx + afy = bfyy, (A.4)

with b > 0, there are two mesh size parameters to consider

ν =
a∆x

∆y
, η = b

∆x

∆y2
. (A.5)

Implementing a stable forward in x, central-differences in y
finite-differences scheme, it is required that [17]

0 < ν ≤ 1, 0 < η ≤ 1

2
. (A.6)
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In our governing equations, the advection-diffusion equa-
tion (12d) for the volume fraction φ1 does not have con-
stant coefficients, but the coefficients are well behaved,
with no singularities. We ensure that the scheme is sta-
ble by requiring ∆x/∆y2 = 1/50 ≪ 1/2 for stability: we
use ∆y = 2× 10−2 and ∆x = 8× 10−6.
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