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Abstract The present work aims to investigate the effect of the gravitational field on a two-dimensional
thermoelastic medium influenced by thermal loading due to a laser pulse. The bounding plane surface is
heated by a non-Gaussian laser beam. The problem is discussed under Green–Naghdi theory with and without
energy dissipation. The normal mode analysis method is used to get the expressions for the physical quantities.
The results are illustrated graphically.

1 Introduction

The non-classical theories of thermoelasticity, so-called generalized thermoelasticity, have been developed to
remove the paradox of the physically impossible phenomenon of infinite velocity of thermal signals in the
conventional coupled thermoelasticity, Lord–Shulman theory [1] and Green–Lindsay theory [2]. In the 1990s,
Green and Naghdi (G–N) have formulated three models (I, II, III) of thermoelasticity for homogeneous and
isotropic material [3,4]. The model I of G–N theory after linearization reduced to the classical thermoelasticity
theory. The model II of G–N theory [5] does not allow dissipation of the thermoelastic energy. In this model,
the constitutive equations are derived by starting with the reduced energy equation and by including the thermal
displacement gradient among the constitutive variables. Chandrasekharaiah [6] used the Laplace method to
study the one-dimensional thermal wave propagation in a half space based on the (G–N) theory of type II due
to a sudden application of the temperature to the boundary. Recently, many thermoelastic problems have been
discussed [7–9].

Model III of (G–N) theory confesses a dissipation of energy, where the constitutive equations are derived
starting with a reduced energy equation. This model includes the thermal displacement gradient, the temperature
gradient, and some independent constitutive variables.

The effect of gravity in the classical theory of elasticity is generally neglected. The effect of the gravity on the
problem of propagation of waves in solids, in particular on an elastic globe, was first studied by Bromwich [10].
Ailawalia and Narah [11] depicted the effects of rotation and gravity in the generalized thermoelastic medium.
Othman et al. [12] studied the influence of the gravitational field and rotation on the generalized thermoelastic
medium using a dual-phase-lag model. Das et al. [13] investigated the surface waves under the influence of
gravity in a non-homogeneous medium. Othman and Hilal [14] studied the rotation and gravitational field effect
on two-temperature thermoelastic material with voids and temperature-dependent properties using (G–N III).
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Othman et al. [15] explained the effect of gravity on plane waves in a rotating thermomicrostretch elastic solid
for a mode I crack with energy dissipation.

Very rapid thermal processes under the action of an ultra-short laser pulse are interesting from the standpoint
of thermoelasticity because they require deformation fields and an analysis of the coupled temperature. This
means that the laser pulse energy absorption results in a localized temperature increase, which causes thermal
expansion and generates rapid movements in the structure elements, thus causing the rise in vibrations. These
effects make materials susceptible to the diffusion of heat by conduction.

The ultra-short lasers are those with the pulse duration ranging from nanoseconds to femtoseconds. The
high intensity, energy flux, and ultra-short duration laser beam have studied situations where very large thermal
gradients or an ultra-high heating rate may exist on the boundaries, this in the case of ultra-short-pulsed laser
heating [16,17]. The microscopic two-step models that are parabolic and hyperbolic are useful for modifying
the material as thin films. When a metal film is heated by a laser pulse, a thermoelastic wave is generated due to
thermal expansion near the surface. Wang and Xu [18] studied the stress wave induced by pico and femtosecond
laser pulses in a semi infinite metal by expressing the laser pulse energy as a Fourier series. Othman et al.
[19] studied the effect of rotation on a fiber-reinforced on the generalized magneto-thermoelasticity subject to
thermal loading due to the laser pulse.

The present work aims to determine the distributions of the displacement components, the stresses, the
temperature and the volume fraction field in a homogeneous isotropic thermoelastic medium under the influence
of the laser pulse in the case of the absence and the presence of the gravity and two values of time. The model
is illustrated in the context of (G–N) theory of types II and III. Expressions for the physical quantities are
obtained using the normal mode analysis and are represented graphically.

2 Formulation of the problem and basic equations

Consider as a homogeneous, linear, isotropic, thermoelastic medium a half space (x ≥ 0), the rectangular
Cartesian coordinate system (x, y, z)having originated on the surface z = 0. In the used equations, a dot denotes
differentiation with respect to time, while a comma denotes the material derivative. For two-dimensional
problems, we assume the dynamic displacement vector as u = (u, v, 0), and all the considered quantities are
functions of the time variable t and of the coordinates x and y.

According to Green and Naghdi [5], the field equations and the constitutive relations of a linear homogenous,
isotropic generalized thermoelastic medium for body forces, heat sources and extrinsic equilibrated body force
in the context of (G–N) theory of type III for can be written as

µui, j j + (λ + µ)u j,i j − βT,i + Gi = ρüi , (1)

kT,i i + k∗Ṫ,i i = ρCe T̈ + βT0ë − ρ Q̇, (2)

σi j = [λuk,k − βT ]δi j + 2µei j , i, j, k = 1, 2, 3, (3)

ei j =
1

2
(ui, j + u j,i ) i, j = 1, 2, 3

where λ,µ are the Lamé’s constants, T is the temperature distribution, β = (3λ + 2µ)αt such that αt is the
coefficient of thermal expansion, ρ is the density, Ce is the specific heat, k is the thermal conductivity, k∗ is the
material constant characteristic of the theory, T0 is the reference temperature chosen so that |(T − T0)/T0| <<

1, e is the dilation, ei j are the strain tensor components, σi j are the stress tensor components, δi j is the Kronecker
delta, Gi is the gravity force, and Q is the heat input of the laser pulse.

As k∗ → 0, Eq. (2) will be reduced to the heat condition equation in (G–N) theory (of type II).
The plate surface is illuminated by the laser pulse given by the heat input

Q =
I0γ

2πr2
exp

(

−
y2

r2
− γ x

)

f (t) (4)

where I0 is the absorbed energy, r is the beam radius, and γ is constant.
The temporal profile f (t) can be defined as

f (t) =
t

t2
0

exp

(

−
t

t0

)

where t0 is the pulse rising time.
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The basic governing equations of a linear, homogenous thermoelastic medium under the influence of a
laser pulse and the gravitational field will be in the forms:

µ∇2u + (λ + µ)
∂e

∂x
− β

∂T

∂x
+ ρg

∂v

∂x
= ρ

∂2u

∂t2
, (5)

µ∇2v + (λ + µ)
∂e

∂y
− β

∂T

∂y
− ρg

∂u

∂x
= ρ

∂2v

∂t2
, (6)

k∇2T + k∗ ∂

∂t
∇2T = ρCe

∂2T

∂t2
+ βT0

∂2e

∂t2
− ρ

∂

∂t
Q. (7)

Introducing the following dimensionless variables:

x ′ =
ω∗

1

c1
x, x ′ =

ω∗
1

c1
x, u′ =

ω∗
1

c1
u, v′ =

ω∗
1

c1
v, σ ′

i j =
σi j

µ
, θ ′ =

T

T0
,

g′ =
g

c1ω
∗
1

, t ′ = ω∗
1 t, Q′ =

Q

ω∗
1T0Ce

, c2
1 =

(

λ + 2µ

ρ

)

and ω∗
1 =

ρCec2
1

k
, (8)

Eqs. (5)–(7) will be rewritten into the non-dimensional forms with dropping primes for convenience:

∇2u + b1
∂e

∂x
− b2

∂θ

∂x
+ b3

∂v

∂x
= b4

∂2u

∂t2
, (9)

∇2v + b1
∂e

∂y
− b2

∂θ

∂z
− b3

∂u

∂x
= b4

∂2v

∂t2
, (10)

ε3∇2θ + ε2
∂

∂t
∇2θ =

∂2θ

∂t2
+ ε1

∂2e

∂t2
−

∂

∂t
Q (11)

where

b1 =
λ + µ

µ
, b2 =

βT0

µ
, b3 =

ρgc2
1

µ
, b4 =

ρc2
1

µ
, ε1 =

β

ρCe

, ε2 =
k∗ω∗

1

ρCec2
1

, ε3 =
k

ρCec2
1

.

Here ε1, ε2 and ε3 are the coupling constants.

Using the expressions relating the displacement components u(x, y, t) and v(x, y, t) to each of the potential
functions ψ1(x, y, t) and ψ2(x, y, t) in the dimensionless forms:

u =
∂ψ1

∂x
+

∂ψ2

∂y
, v =

∂ψ1

∂y
−

∂ψ2

∂x
(12)

gives

e = ∇2ψ1 and

(

∂u

∂y
−

∂v

∂x

)

= ∇2ψ2. (13)

Using (12) and (13) into (9)–(11) yields

[

(1 + b1)∇2 − b4
∂2

∂t2

]

ψ1 − b3
∂

∂x
ψ2 − b2θ = 0, (14)

b3
∂

∂x
ψ1 +

[

∇2 − b4
∂2

∂t2

]

ψ2 = 0, (15)

−ε1
∂2

∂t2
∇2ψ1 +

(

ε3 + ε2
∂

∂t

)

∇2θ −
∂2θ

∂t2
= −

∂

∂t
Q. (16)
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The constitutive relations will be

σxx = b4
∂u

∂x
+ (b1 − 1)

∂v

∂y
− b2θ, (17)

σyy = b4
∂v

∂y
+ (b1 − 1)

∂u

∂x
− b2θ, (18)

σzz = (b1 − 1)e − b2θ, (19)

σxy =
[

∂u

∂y
+

∂v

∂x

]

and σxz = σzy = 0. (20)

3 The normal mode analysis

We can decompose the solution of the physical quantities in terms of the normal mode as follows:

[ψ1, ψ2, θ ](x, y, t) = [ψ∗
1 , ψ∗

2 , θ∗](x) exp[i(ωt + ay)] (21)

where [ψ∗
1 , ψ∗

2 , θ∗](x) are the amplitudes of the physical quantities, ω is the angular frequency, i =
√

−1,
and a is the wave number.

Using (21), Eqs. (14)–(16) will be

[D2 − B1]ψ∗
1 − B2 Dψ∗

2 − B3θ
∗ = 0, (22)

b3 Dψ∗
1 + [D2 − B4]ψ∗

2 = 0, (23)

B5[D2 − a2]ψ∗
1 + [D2 − a2]θ∗ = B6

∂

∂t
Q (24)

where B1 = a2 − b4ω
2

1+b1
, B2 = b3

1+b1
, B3 = b2

1+b1
, b6 = a3

b1
, B4 = a2 − b4ω

2, b9 = ε1ω
2, B5 =

ε1ω
2

ε3+iε2ω+ω2 , B6 = −1
ε3+iε2ω+ω2 , and D = d

dx
.

Eliminating ψ∗
1 , ψ∗

2 , and θ∗ from Eqs. (22)–(24) gives the differential equations

[D6 − B7 D4 + B8 D2 − B9]ψ∗
1 = B10

(

1 −
t

t0

)

exp

[

−
(

y2

r2
+

t

t0
+ γ x + iωt + iay

)]

, (25)

[D6 − B7 D4 + B8 D2 − B9]T ∗ = B11

(

1 −
t

t0

)

exp

[

−
(

y2

r2
+

t

t0
+ γ x + iωt + iay

)]

, (26)

[D6 − B7 D4 + B8 D2 − B9]ψ∗
2 = B12

(

1 −
t

t0

)

exp

[

−
(

y2

r2
+

t

t0
+ γ x + iωt + iay

)]

(27)

where

B7 = B1 + B4 − B2b3 − B3 B5 + a2, B8 = a2 B1 + a2 B4 − a2 B2b3 − a2 B3 B5 − B3 B5 B4 + B1 B4,

B9 = a2 B1 B4 − a2 B2b3 − a2 B3 B5 B4, B10 = B3 B6(γ
2 − B4)

Ioγ

2πr2t2
o

,

B11 = B6

[

(γ 2 − B1)(γ
2 − B4) + (γ 2 B2b3)

] Ioγ

2πr2t2
o

, B12 = −B3 B6b3
Ioγ

2

2πr2t2
o

.

Equation (25) can be factored as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)ψ∗

1 = B10

(

1 −
t

t0

)

exp

[

−
(

y2

r2
+

t

t0
+ γ x + iωt + iay

)]

(28)

where k2
n(n = 1, 2, 3) are the roots of the characteristic equation of the homogeneous equations of Eqs. (25)–

(27).
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The general solutions of (25)–(27) bound as x → ∞ are given by

ψ1(x, y, t) =
3

∑

n=1

Rn exp(−knx + iωt + iay) + L1 B10 f1, (29)

ψ2(x, y, t) =
3

∑

n=1

H1n Rn exp(−knx + iωt + iay) + L1 B12 f1, (30)

θ(x, y, t) =
3

∑

n=1

H2n Rn exp(−knx + iωt + iay) + L1 B11 f1. (31)

Here

H1n =
−b3kn

(k2
n − B4)

, n = 1, 2, 3, H2n =
(k2

n − B1) − B2 H1nkn

B3
, n = 1, 2, 3

L1 = −
1

γ 6 − B7γ 4 + B8γ 2 − B9
, f1 =

(

1 −
t

t0

)

exp

(

−
y2

r2
−

t

t0
− γ x

)

where Rn(n = 1, 2, 3) are some undefined coefficients.
To obtain the components of the displacement vector, substituting (29) and (30) into (12) gives

u(x, y, t) =
3

∑

n=1

M1n Rn exp(−knx + iωt + iay) −
(

γ I1 +
2y I2

r2

)

exp

(

−
y2

r2
−

t

t0
− γ x

)

, (32)

v(x, y, t) =
3

∑

n=1

M2n Rn exp(−knx + iωt + iay) +
(

−γ I2 +
2y I1

r2

)

exp

(

−
y2

r2
−

t

t0
− γ x

)

(33)

where M1n = −kn + iaH1n, M2n = ia + kn H1n, n = 1, 2, 3.

To get the components of the stress tensor, substitute (32), (33) and (31) into (17)–(20),

σxx (x, y, t) =
3

∑

n=1

H3n Rn exp(−knx + iωt + iay) + I4 exp

(

−
y2

r2
−

t

t0
− γ x

)

, (34)

σyy(x, y, t) =
3

∑

n=1

H4n Rn exp(−knx + iωt + iay) + I5 exp

(

−
y2

r2
−

t

t0
− γ x

)

, (35)

σzz(x, y, t) =
3

∑

n=1

H5n Rn exp(−knx + iωt + iay) + I6 exp

(

−
y2

r2
−

t

t0
− γ x

)

, (36)

σxy(x, y, t) =
3

∑

n=1

H6n Rn exp(−knx + iωt + iay) + I7 exp

(

−
y2

r2
−

t

t0
− γ x

)

. (37)

Here

H3n = −b4kn M1n + iaM2n(b1 − 1) − b2 H2n, H4n = ib4aM2n − kn M1n(b1 − 1) − b2 H2n,

H5n = ia(b1 − 1)M2n − (b1 − 1)kn M1n − b2 H2n, H6n = −kn M2n + iaM1n, n = 1, 2, 3,

I1 = −B10

(

1 −
t

t0

)

L1, I2 =
B12

B10
I1, I3 =

B11

B10
I1,

I4 = b4γ

(

γ I1 +
2y

r2
I2

)

−
2

r2
b1

(

I1 + 2yγ I2 −
2y2

r2
I1

)

− b2 I3,

I5 = (b1 − 1)γ

(

γ I1 +
2y

r2
I2

)

−
2

r2
b4

(

I1 + 2yγ I2 −
2y2

r2
I1

)

− b2 I3,
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I6 = (b1 − 1)γ

(

γ I1 +
2y

r2
I2

)

−
2

r2
(b1 − 1)

(

I1 − 2yγ I2 +
2y2

r2
I1

)

− b2 I3,

I7 = −I2

(

2

r2
+ γ 2 +

4y4

r4

)

.

4 Boundary conditions

In this section, we determine the constants Rn(n = 1, 2, 3). The boundary conditions under consideration
should suppress the positive exponentials to avoid unboundedness at infinity. The coefficients R1, R2, R3 are
chosen such that the boundary conditions on the surface at x = 0 are

(i) The mechanical boundary conditions

σxx = −p1 exp(ωt + iay), σxy = 0. (38)

(ii) The thermal boundary condition on the surface of the half space

∂θ

∂x
= 0 (39)

where p1 is the magnitude of the mechanical force.
Substituting the expressions of the considered variables in the above boundary conditions, we can obtain

the following equations satisfied by the parameters:

3
∑

n=1

H3n Rn = −p1, (40)

3
∑

n=1

H6n Rn = 0, (41)

3
∑

n=1

−kn H2n Rn = 0. (42)

Invoking the boundary conditions (38) and (39) at the surface x = 0 of the plate, we get a system of
three equations (40)–(42). Applying the inverse of the matrix method, we then obtain the values of the three
coefficients Rn(n = 1, 2, 3).

⎛

⎝

R1

R2

R3

⎞

⎠ =

⎛

⎝

H31 H32 H33

H61 H62 H63

−k1 H21 −k2 H22 −k3 H23

⎞

⎠

−1 ⎛

⎝

−p1

0

0

⎞

⎠ . (43)

Hence, we obtain the expressions for the displacements, the temperature distribution, and the other physical
quantities of the plate surface.

5 Numerical results and discussion

For numerical computations, following Dhaliwal and Singh [20] the magnesium material was chosen. All the
units of the parameters used in the calculation are given in SI units. The constants of the problem are taken as

λ = 2.17 × 1010 N/m2, µ = 3.278 × 1010 N/m2, K = 1.7 × 102 W/m K, ρ = 1.74 × 103 kg/m3,

β = 2.68 × 106 N/m2 K, Ce = 1.04 × 103 J/kg K, ω∗
1 = 3.58 × 1011/s, αt = 1.78 × 10−5 K−1,

T0 = 298 K.

The laser pulse parameters are

I0 = 102 J/m2, r = 0.2 µm, γ = 25/m, t0 = 10 ns.
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The comparisons were carried out for

p1 = 0.25 N/m2, k∗ = 100 W/m K, a = 0.5 m, ω = 2.9 rad/s, x = 2 m, t = 0.9 s, g = 9.8 m/s2,

and 0 ≤ x ≤ 2.5 m.

The comparisons are established for the cases:

1. Different values of the gravity [g = 9.8, 3 m/s2 and t = 0.9 s].
2. G–N theory type II and type III [g = 9.8 m/s2 and t = 0.9 s].

These values are used for the distribution of the real parts of the displacement components, the temperature,
and the stresses with the distance x for (G–N) theory of both types II and III in different values of the gravity
effect g = 9.8, 3, and t = 0.9.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 show the changes in the behavior of the physical
quantities as functions of the distance x in 2D for different values of the gravity and time.

Figure 1 represents the distribution of the displacement components u in the case of g = 9.8 and g = 3
in the context of both types II and III of (G–N) theory. It is noticed that the distribution of u decreases with
the increase in the gravity for x > 0, in both types of (G–N) theory II and III. Figure 2 illustrates that the

Fig. 1 Distribution of the displacement u against x

Fig. 2 Distribution of the displacement v against x
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Fig. 3 Distribution of the temperature θ against x

Fig. 4 Distribution of the stress component σxx against x

Fig. 5 Distribution of the stress component σyy against x
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Fig. 6 Distribution of the stress component σxy against x

Fig. 7 Distribution of the displacement u against x

Fig. 8 Distribution of the displacement v against x
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Fig. 9 Distribution of the temperature θ against x

Fig. 10 Distribution of the stress component σxx against x

Fig. 11 Distribution of the stress component σyy against x
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Fig. 12 Distribution of the stress component σxy against x

Fig. 13 3D curve of the displacement u versus the components of distance

Fig. 14 3D curve of the displacement σxx versus the components of distances

distribution of v decreases with the increase in the gravity for type II of (G–N) theory, but it increases in the
case of type III of (G–N) theory for x > 0. Figure 3 explains the distribution of the temperature θ in the case of
g = 9.8 and g = 3 in the context of both types II and III of (G–N) theory. It is noticed that the distribution of
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θ decreases with the increase in the gravity for x > 0, in type III of (G–N) theory, while an opposite situation
takes place in type II of (G–N) theory. Figure 4 depicts the distribution of the stress component σxx in the
context of both types II and III of (G–N) theory for g = 9.8 and g = 3. It is observed that the distribution
of σxx decreases in the case of (G–N) theory of both types II and III in the range 0 ≤ x ≤ 0.15, followed
by an increase. Figure 5 explains the distribution of the stress σyy for g = 9.8 and g = 3 in the case of
(G–N) theory of types II and III; it is seen that σyy increases then decreases in a small range. The gravity has
a decreasing effect on the stress component in the interval 0 ≤ x ≤ 0.4. Figure 6 shows the distribution of the
stress component σxy for g = 9.8 and g = 3 in the case of (G–N) theory of types II and III. It is seen that the
distribution of σxy increases with the increase in the gravity, and then converges to zero. Figure 7 represents
the distribution of the displacement component u in the case of t = 0.9 and t = 0.2 in the context of both
types II and III of (G–N) theory; it is noticed that the distribution of u decreases with the increase in time for
x > 0, in both types of (G–N) theory II and III. Figure 8 shows that the distribution of v increases with the
increase in time for both types II and III of (G–N) theory in the range 0 ≤ x ≤ 0.4 and decreases in the range
0.4 ≤ x ≤ 0.7 for t = 0.9 and t = 0.2. Figure 9 explains the distribution of the temperature θ for t = 0.9 and
t = 0.2 in the context of both types II and III of (G–N) theory. It is noticed that it increases with the increase
in time for both types II and III of (G–N) theory. Figure 10 depicts the distribution of the stress component
σxx in the context of both types II and III of (G–N) theory for t = 0.9 and t = 0.2; it is observed that the
distribution of σxx increases in the case of (G–N) theory of both types II and III in the range 0 ≤ x ≤ 0.2
followed by decreasing behavior. Figure 11 explains the distribution of the stress σyy for t = 0.9 and t = 0.2
in the case of (G–N) theory of types II and III; it is seen that σyy decreases in the range 0 ≤ x ≤ 0.1 followed
by increasing values in the range 0.1 ≤ x ≤ 0.4 for both types II and III of (G–N) theory. Figure 12 determines
the distribution of the stress component σxy for t = 0.9 and t = 0.2 in the case of (G–N) theory of types II and
III; it is noticed that the distribution of σxy decreases in the range 0 ≤ x ≤ 0.38, then increases in the range
0.38 ≤ x ≤ 1.

The 3D curve is representing the complete relations between u and the stress components σxx against both
components of the distance x, y as shown in Figs. 13 and 14 in the presence of the gravity under (G–N) theory
of type III. This figure is very important to show that the functions are moving in wave propagation.

6 Conclusions

The results of the present work can be summarized as:

(i) The values of all physical quantities converge to zero with increasing the distance x , and all functions are
continuous.

(ii) The gravity field as a physical operator has a significant role in the considered physical quantities.
(iii) The laser pulse and the time effect have significant influences on the distribution of the considered physical

quantities.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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