
SIAM J. APPL. MATH.
Vol. 55, No. 4, pp. 1074-1093, August 1995

() 1995 Society for Industrial and Applied Mathematics
011

THE EFFECT OF A REFRACTORY PERIOD ON THE POWER
SPECTRUM OF NEURONAL DISCHARGE*

JOEL FRANKLINi AND WYETH BAIRt

Abstract. The interspike intervals in steady-state neuron firing are assumed to be indepen-
dently and identically distributed random variables, In the simplest model discussed, each interval is
assumed to be the sum of a random neuron refractory period and a statistically independent interval
due to a stationary external process, whose statistics are assumed known. The power spectral density
(hence the autocorrelation) of the composite neuron-firing renewal process is derived from the known
spectrum of the external process and from the unknown spectrum of the neuron-refraction process.
The results are applied to spike trains recorded in a previous study [2] of single neurons in the visual
cortex of an awake monkey. Two models are demonstrated that may produce peaks in the power
spectrum near 40 Hz.
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1. Introduction. There has been recent interest in the use of the Fourier power
spectrum for analyzing temporal structure in trains of action potentials recorded from
neurons [5], [1]. This is largely due to the reports of stimulus-induced oscillation near
40 Hz in neural activity recorded in the visual cortex of the anesthetized cat [4], [6],
[7], [5] and the awake monkey [9].

Bair et al. [1], using data recorded in an earlier study by Britten et al. [2],
compute power spectra of single neuron spike trains. Using the power spectra, they
find that most of the spike trains are well modeled by a Poisson shot-noise process
modulated by a refractory period where the shots are either 5-functions or boxcar
functions, representing individual action potentials or bursts (temporal clusters) of
action potentials, respectively. In both cases, the refractory period is implemented
in the model using a Gaussian depression in the renewal density function (see [11])
for the shot-noise process, and the results of Champeney [3] are used to compute the
resulting power spectrum.

In the present work, instead of relying on the renewal density to model the re-
fractory period, we begin with a function that is explicitly designed to model the
absolute and relative refractory period of the neuron. This density function describes
the neuron’s stochastic dead time following an action potential and is the first of
two contributions to the period between successive action potentials. The remaining
contribution depends on the underlying process describing the input to the cell. We
allow this input process to be any stationary renewal process, not just the Poisson
process used by Bait et al. [1]. Using the refraction function and the probability
density function for the intervals of the underlying process, we can derive the power
spectrum.
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The results allow quantitative comparisons of neuronal spike trains to a variety
of stochastic models. In particular, they enable us to determine how much of the
regularity in successive interspike intervals in a spike train can be explained by a
renewal process with a refractory period or to what extent it is necessary to assume
some underlying oscillatory mechanism to explain regularity. In addition, because our
model distinguishes between the contribution to the interspike interval from refraction
and the contribution from input to the neuron, we believe that it provides a framework
for separately characterizing a neuron’s refractory period and providing a stochastic
description of its inputs.

We apply the mathematical results to neuronal spike trains recorded in a pre-
vious study [2] to demonstrate four points. 1. A fixed stochastic description of a
refractory period is adequate to describe the output of some neurons even when the
input stimulation and the output firing rate vary dramatically. 2. The assumption
of a renewal process for the generation of interspike intervals is consistent with data.
3. Spike patterns such as bursts are accounted for by the theory and result in pre-
dictable peaks in the power spectra of spike trains that are not due to regular timing.
4. If spike rate (or burst rate) becomes fast relative to the refractory period duration,
peaks may develop in the power spectrum near the inverse of the peak in the interval
density, and these peaks are the result of regular timing.

Many others have studied the effect of refraction on neuronal spike train statistics.
Teich, Matin, and Cantor [14] consider the model of a Poisson process modified by
a variable dead time which is very similar to that used by Bair et al. [1] and which
is encompassed in the theory developed here. Teich and Diament [13] modeled the
relative refractory period using a gradual recovery function. Related mathematical
models concerning the power spectra of impulse processes appear in Lukes [10] and
Heiden [8].

2. Mathematical model. We will apply the following model in 3 and will
derive the mathematical assertions in 4.

We will analyze the steady-state firing of a single neuron. We shall suppose that
the output potential is a renewal process

+
(1) x(t) E h(t-- tk),

where the tk are the successive firing instants and where h(t- tk) is the output of the
single firing at the instant tk. The function h(t) is given. The ensemble {tk } is random.
The successive positive lags -k tk- tk-1 are assumed to be statistically independent
with the same p.d.f. (probability-density function) f(T) for - > 0. Although the
successive lags 7k are random, their p.d.f, f(-) is assumed to be known.

We suppose that f(-) is continuous for - _> 0 except for isolated simple jump
discontinuities, and we will assume that f(-) has finite moments

(2) f(’)dt

for k 0, 1, 2, and preferably also for k 3 and 4. We assume that the wave form
h(t) has a finite Fourier transform

(3) H(w) h(t)e-t dt (-x < w < x).
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We do allow h(t) to be the Dirac 5-function. We expect, but do not require, that
h(t) 0 for t < 0.

To study neuron refraction, we shall hypothesize a simple model for the successive
lags 7k tk tk-1. We shall suppose that each lag T is the sum of two parts

(4) Tk 7kl + Tk2

where Tkl arises from refraction, and where Tk2 arises from all other causes, for exam-
ple, from an assumed random input potential.

We shall suppose that the parts Tk and T are statistically independent, with
probability densities fl (’) and f2(T) that are independent of k. Thus, the sum - has
the p.d.f.

7"

(5) f(T) fl (T)* f2(T) fl (T- A)f2 (z)dz.

The ensemble of random variables {Tj } is supposed to be statistically independent
for -oo < k < oo and j 1, 2.

We assume that the random variables Tk and T have finite means #1, #2 and
finite variances cr2 and a22. Then the total lags k T + Tk have the common mean

# #1 + #2 and the common variance a2 a2 + a22.
We will show how the mean # and the variance a2 appear in the power spectral

density of the steady-state neuron output potential x(t).
The power spectral density Sx(w) is defined as the Fourier transform of the au-

tocorrelation Rx(T):

(6) Sx(w) Rx(’)e- dT,

where the autocorrelation Rx(T) is defined as the expected value

(7) R() E [x(t)x(t- T)] (-- < T < ).

The autocorrelation is independent of t, by the assumption that the ensemble of firing
instants {t} is a stationary random process.

We will prove that x(t) has the power spectral density

(8) Sx(w)=[H(w)12u{2ruS(w)+l+2Re ](iw) }1 -w)
where is the average firing frequency #-1, and where ](s) is the Laplace
transform of the lag p.d.f:

(9) ](s) f(7)e-s dT (Re s _> 0).

We shall derive the limit

lim 2Re
](iw) 2a2 1,

-o 1- f(iw)
and we will use this value at w 0 in equation (8) for Sx(w). Then we may write

(11) Sx(W) -IH(w)l  / / o(1)} as w --, 0.
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Here o(1) is the generic symbol for some function of w that tends to zero as w -- 0; if
the lags - have finite fourth moment E(-4), we can even show that

(12) Sx(w) [H(w)12 {2rf(w) + 2a2 + O(w2) } as w 0.

In any case, the lag mean and variance, p - and a2, appear in the power
spectral density S(w) at small frequencies, . For the contribution of refraction and
other, independent causes, we now recall the formulas

where the refraction lag Tkl has mean and variance P and a.
Example 1. To see how these results might be used, suppose that the random

refraction lags 7kl have a gamma distribution with the common p.d.f.

b Ta--le-bT (T > O)(14) f () F(a)
where a and b are unknown positive constants. Then

(1) rfl(r) dr a(a + 1)... (a + k 1)b- ( O, 1,2,...).

Then the first and second moments are 1 ab- and a(a + 1)b-. Since the second
moment must equal ghe variance plus the square of the mean, we find

(16) ab- and ab-

for the common mean and variance of the refraction lags r (- < j < ).
or instance, if is fixed and if +0, then fl (r) becomes just (r- ).
Suppose the total lag rj is the sum of the refraction lag and the independent

source lag r, where the source lag has the Poisson p.d.f.

(17) f2() 2e-’ (w k 0).

Then the source lags 7j have the common mean and variance

s) and

Therefore, the total lags 7j have the common mean and variance

(19) ab- + and a2 ab- +.
The p.d.f, f(7) is the convolution fl(w)* f(w). The Laplace transform (s) is the
product

(b)ap2 (Re s k 0).](s) ]l
+

To compute the power spectral density of the neuron output potential x(t), we
must use the expression

(el) () a ()
(- < < ),- ]()
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where G(0) is defined as the limit as w - 0, which we will derive in Lemma 4.1"

(22) G(0) /220.2 1 #-20-2 1,

(23) C(0) (#1 + #2)-2(al2 + a)- 1.

The full power spectral density is

(24) Sx(w) IH(w)12/2 [2r/25(w)+ 1 + G(w)].

For w near zero, we recall the assertion

(25) () IH()12[2r5()+ 22 + 0(2)1.

For instance, if the neuron-firing wave form is just the Dirac &function h(t) 5(t),
then H(w) 1, and so

(26) Sx() .[e.() +. + 0()] s - 0.

From experimental data, we can find the power spectrum Sx(w). If the graph of
Sx(w) near w 0 indicates that

(27) S(w) AS(w) + C + o(1) as w --. 0,

then we may observe the spike strength, A, and the constant C. Knowing A and C,
we may write the equations

(28) A- 2r/2, C a2

or, equivalently,

2r (712 + (722(29) A C
(, + ,)’ (, + ,)"

Now, if we know the mean #2 and the variance a of the source lags, we can solve the
two equations for the mean #1 and the variance cr of the refraction lags.

By the way, to obtain the lag mean and variance, # and cr2, we do not need the
power spectral density. If we observe a long sequence of firing instants to < t < t2 <

< tN, then we may approximate the mean and variance by the empirical mean
and variance,

(30) T1 nt- nt- TN tN to
N N

and

(31) s2
N

N- 1 E(-y )2,
j=l

where 7j tj tj_l.
More general models of neuron firing lags. We have assumed that each firing lag

’j is the sum Tjl +-j2, where Vjl comes from refraction and -y2 comes from independent
sources. We have supposed that the variates ’jl, 7j. (-c < j < oe) are statistically
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independent, where each variate -jl has p.d.f, fl (-) and each variate -j2 has p.d.f.
f2 (’r).

More generally, each lag -j may need to be considered as the sum of m parts"

(32) ’j ’jl +"" + ’j. (-oo < j < oo).

Since we still have a stationary renewal process, the lags {Tj } are still independently,
identically distributed (i.i.d.), with a common p.d.f, f(T) (7 >_ 0).

Suppose that the partial lag Tj has p.d.f, fr(7) (r I,..., m). Let the partial
lags have expected values and variances

(33) #r E(Tjr) and err....
For m 2 we assumed that the partial lags were independent, so that the total lag
’j had mean and variance

(34) # #1 + + #m and a2
al
2 +... + a2

m"

Of course, these formulas remain true for m > 2 if the partial lags are independent
and the Laplace transform f(s) of the p.d.f, f(T) is just the product of the Laplace
transforms jr (s)"

(35)

Even if m 2, these formulas must be changed if the partial lags Tjl,..., -j are
dependent. Then we have

m m

(36) # 1 --""" +m but
a=l =1

where {aZ} are the covariances; and now the Laplace transform ](s) generally cannot
be expressed as the product fl (s)... fro(s).

3. Application. We will now apply the results stated in the previous section to
neuronal spike trains and will use the equations presented in Example 1 of the previous
section as our model. This application makes four points: 1. a fixed stochastic
description of a refractory period is adequate to describe the output of some neurons
even when the input stimulation and the output firing rate vary dramatically; 2. the
assumption of a renewal process for the generation of interspike intervals is often
valid; 3. spike patterns such as bursts are accounted for by the theory and result
in predictable peaks in the power spectra of spike trains that are not due to regular
timing; and 4. if spike rate (or burst rate) becomes fast relative to the refractory
period duration, peaks develop in the power spectrum at near the inverse of the peak
in the interval density, and these peaks are the result of regular timing.

3.1. Methods. We analyze spike trains from a previous study [2] that were
recorded extracellularly from single neurons in the motion area, MT, of the visual
cortex of behaving monkeys. The visual stimulus is a 2 sec duration dynamic random
dot display in which one parameter, the motion coherence c, is varied from trial to
trial for a particular neuron. For c 0, dots are plotted randomly. For c 0.5, half
of the dots carry a motion signal in the direction that best excites the neuron being
recorded, and for c I, all of the dots translate in the neuron’s preferred direction.
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For c < 0, the motion signal is 180 degrees opposed to the neuron’s preferred direction.
See Britten et al. [2] for an exact description of the stimulus.

The occurrence times of action potentials recorded during the stimulus are digi-
tized at a lkHz resolution and represented as a function of discrete time having the
values 0 and 1, where 1 represents the presence of an action potential. A segment of
a spike train is shown across the top of Fig. 1. In all analysis presented here, the first
336 msec of the neuronal response during the 2 sec stimulus are discarded to avoid
processing the early transient portion of the response.

The probability density function for the time between consecutive spikes is es-
timated from the neuronal data by the interspike interval (ISI) histogram. ISI his-
tograms show the percentage of all intervals at each discrete time length (integer
values in msec) and are plotted using bars (see Fig. 1, left side).

5_

% oflSI

0

c=0.0

000 
30 60 90 0 40 80 120 0 20 40

ISI (msec) Freq. (Hz) Time (msec)

FIG. 1. Neuronal data vs. theory assuming a fixed refractory period as firing rate changes for
ceil e085. The top trace shows a 1 second segment of a spike train recorded at c 0 stimulation.
The ISI histogram (left column, bars) and the neuronal power spectrum (center column, bars) were
computed from 2 sec duration trials (120 trials at c O; 30 trials at c 4-0.51) with the first
336 msec, containing on-transients, discarded. The upper right plot shows the output firing rate of
the neuron over the range of input levels tested, and the points mark the cases that are studied here
(o hoo tdad dtio). AnatvtZ fo () (o,n (5), (14), d (7))
fitted by eye to the ISI histograms for all 11 input levels plotted in the upper right panel under the
constraint that a and b are fixed. For a particular a and b, the parameter u2 was set for each input
level so that the overall mean firing rate matched the values shown for the cell. The lower right
pZot hoo thfto dtv, A () ( (4)), d ipt dti, y() ( (7)), fo th fit.
Here a 4.0, b 250.0, and the values for 2 may be read from the plot as the maximum values, at

o, oy th pontaZ dts. Abt yo #() ( (00)) bad o thp,t
from the ISI fits are superposed in the center column. (h(t) is taken to be the 6-function.)
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The Fourier power spectrum Sx(w) is estimated for neuronal spike trains by com-
puting a discrete one-sided power spectrum using a standard FFT routine and data
windowing with a triangular (Parzen) window on overlapping data segments (for de-
tails, see Press et al. [12]). The neuronal power spectra are plotted with bars of width
3.9 Hz (resulting from 256 msec duration data segments), the abscissa is truncated
before the 500 Hz cutoff frequency (half of the sampling frequency) to expand the
nonflat region of the spectrum, and the zero-frequency bar is always omitted. All
power spectra are normalized so that the ordinate value 1.0 corresponds to the mean
neuronal firing rate. This normalization is analogous to dividing (8) by . The an-
alytical curves superposed on neuronal power spectra in the figures are described by
Sx(w), a normalized version of Sx(w), which is defined in the Appendix.

3.2. Results. We use the model presented in Example 1 of the previous section,
which defines each interspike interval to be the sum of a refractory component with
a gamma density and an input component with an exponential density. Given the
lack of spatial and temporal correlation in the stimulus signal, it is reasonable to first
model the neuron input component with the exponential density, consistent with a
Poisson process.

For a given neuron, we determine the values of the refractory period parameters
a and b which give the best fit by eye to the series of ISI histograms at all c values
available. Note that a and b do not vary as a function of the input cmonly 2 is
allowed to vary, but is constrained so that

(37) #est(C) ab- +/2-1(c),

where/zest is the measured mean spike rate as a function of input strength c (Fig. 1,
upper right) and the notation u2(c) indicates the input dependence of u.. Figure 1
shows the ISI histograms and their fits f(-) (left column) for a 4.0, b 250.0
(where a/b is the mean ISI in seconds and a/b2 is the variance) at the three c values
indicated by dots in the upper right plot. The lower right panel of Fig. 1 shows
the refractory period density, fl(7"), and the three input densities, f2(T), for the fit
parameters. Roughly half of 58 cells examined showed fits qualitatively similar to
that shown here.

The center column of Fig. 1 shows the measured power spectra of the neuronal
spike trains (bars) and Sx(w) (smooth curve) based on the parameters a, b, 2(c)
(see (100) in the Appendix for an explicit formula for x(w)). The refractory period
causes a dip in the power spectra at low frequenciesuwithout the refractory period,
the spectrum, that of Poisson impulses, would be flat.

Figure 2 shows the results of applying a similar analysis to a neuron that has a
shorter refractory period (a/b 4.7 msec rather than 16 msec) and a wider range
of output firing rates (upper right panel). It is striking that the left (rising) sides of
the ISI histograms are well fit by the same fixed refractory period (a 8, b 1700,
thus it1 4.7 msec, al 1.7 msec) over a broad range of spike rates, particularly
for c 1.0, where the firing rate appears, based on the upper right plot (Fig. 2), to
be saturated. The analytical power spectra (smooth curves on center column plots)
predict the shape change observed in the neuronal power spectra (Fig. 2, bar plots,
center column) as c changes. Again, the values of the theoretical inputs, u2, are
observed as the y-intercept of the decaying exponentials in the lower right plot. Some
small systematic errors appear in the fits, in particular, the right sides of the ISI
histograms tend to have faster than exponential fall off.
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FIG. 2. Neuronal data vs. theory for a neuron (jllT) with a short refractory period and a broad
range of output firing rates. The arrangement is similar to that in Fig. 1. Under the assumption
of a fixed refractory period (a 8.0, b 1700.0), the left sides of the fits to the ISI histograms
(left column) match the data well as firing rate changes (upp_er right) and even after the firing rate
appears to saturate at c 1.0. The analytical curves for Sx(w) (solid lines, center column) give
good approximations to the shape of the neuronal power spectrum. (Forty trials of data were used
at each stimulus level except c O, where 80 trials were used.)

Some cells tend to fire bursts of action potentials [1], as shown in the top spike
train of Fig. 3, which may violate the assumption that the spike train x(t) is a renewal
process. The theory can still be applied by considering bursts to be "events" and
operating on interevent intervals (IEIs) rather than ISis. Following Bait et al. [1], an
event is defined as the longest train of consecutive action potentials that have no ISis
greater than d msec (d 8 msec here). We define the process y(t), composed of 5-
functions at the center of each event, to be the event train corresponding to the spike
train x(t). The event train is plotted beneath the spike train at the top of Fig. 3. The
spike train power spectrum (Fig. 3, center) has a substantial peak near 40 Hz, which
is not present in the spectrum for events. The IEI histogram (lower left, bars) was
fitted to the same mathematical model used in the previous figures, and the analytical
power spectra ?Sy(W) (smooth curves) from this model match closely those estimated
from the event trains. To derive an analytical spectrum for the spike trains, we
define h(t) to be the boxcar function (see inset below the event train in Fig. 3) which
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FIG. 3. Modeling bursts of action potentials as single "events" allows the theory to predict the
peak in the power spectrum which occurs for cells that fire bursts. The top trace shows a spike train

fired by neuron j001. Directly below it is the event train, a series of 5-functions at the center of
each event, where an event is defined as the longest train of consecutive action potentials with no
ISis greater than d msec (d 8 here). The power spectrum of the spike trains at c 0.51 has a

peak near 40 Hz (upper spectrum) while the power spectrum of the corresponding event trains is flat
at frequencies higher than 40 Hz (lower spectrum). This indicates that the large peak observed in
the power spectrum is due to the shape, not the timing, of the events. A model of the IEI histogram
(lower left) based on a refractory lag and an input lag (lower right) leads to an analytical prediction
(w) (smooth curve) of the event power spectrum. When events are modeled by setting h(t) to the
boxcar function shown in the inset below the event train, the analytical expression Sx(co) for the
spike power spectrum predicts the peak observed in the data (upper spectrum). Note that (100) in
the Appendix must be modified to account for the boxcar h(t).

serves as a model for the prototypic event. The analytical spectrum, IH()12y(),
using a deterministic approximation to the variable event shape, provides an excellent
prediction to the location and shape of the peak in the power spectrum. This example
shows that the presence of bursts and an interburst refractory period can combine to
produce a maximum in the power spectrum.

Fig. 4 demonstrates a case in which a peak in the power spectrum develops from
regular firing rather than from burst firing. Again we reduce x(t) to the event trains
y(t), fit the model to the IEI histograms (left column), and plot the derived power
spectra Sy(W) against the neuronal spectra (right column). The peak in the event
power spectrum is observed to grow as the event firing rate u2 increases. The values
of u2 for c 0.0, 0.51, 1.0 are approximately 25, 50, and 100 events/sec, respectively
(see y-intercepts of the exponential densities in the inset, Fig. 4). In the limit as
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FIG. 4. Spectral peaks due to regular firing are different from those caused by bursts and may
occur for a renewal process as the input rate becomes fast with respect to the refractory period. The
methods of Figs, i and 3 are combined to model the IEI and event power spectrum for neuron e039.
The power spectra (bars, right column) are computed for event trains, and the analytical predictions
y(w) are based on the 6-function model of events to eliminate the peak due to bursts. As the event
rate increases for stronger stimuli, a peak, predicted by the model, develops in the power spectra near
the inverse of the mean IEI. Peaks in the power spectra such as these result from the regularity of
the timing of the events, rather than from the event shape as seen in Fig. 3.

’2 oc, f(T) fl (T), i.e., the interval p.d.f, becomes the refractory period p.d.f. If
f2(T) is regular enough to produce a peak in the power spectrum in this limiting case,
then we may observe peaks as seen in the right column of Fig. 4. However, if f2(T)
is, for example, an exponential distribution (a 1), the power spectrum will remain
flat even as u2 --A comparison of the refractory period p.d.f.’s for the four neurons analyzed in
the previous figures is shown in Fig. 5. The means, a/b, of the gamma densities range
from 4.7-24 msec. Although the means for cell e039 and e085 are 12 and 16 msec,
their standard deviations are 3.5 and 8.0 msec, respectively, indicating the usefulness
of having two parameters for the refractory p.d.f. The range of values here are typical
of those for the 58 cells analyzed.

3.3. Discussion. Figs. 1 and 2 demonstrate that a fixed stochastic refractory
period can be adequate to account for the distribution of interspike intervals across a
wide range of firing rates when the input is assumed to induce the neuron to fire at
Poisson time instants. (However, Turcott et al. [15] report that the refractory period
can change over time in auditory neurons.) The power spectra of the neuronal data in
Figs. 1 and 2 are consistent with the analytical curves from the formula derived here,
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200.
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,- a=12, b=lO00

/a=4, b=250
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Time (msec)
FIG. 5. A comparison of the refractory period densities, fl (T), for the four cells studied in the

previous figures. Although the mean 1 and the standard deviation al of the refractory period often
rise or fall together, the middle two examples here have somewhat similar means, 12 and 16 msec,
but quite different standard deviations, 3.5 and 8 msec. Recall it1 a/b, a a/b2.

(8), for the power spectrum of a renewal process with a specified interval density, f(-).
In particular, the presence of a refractory period causes a dip in the power spectrum
at low frequencies (see also [1]).

Figures 3 and 4 show two ways for peaks to arise in the power spectrum of spike
trains. First, a peak may arise due to the compound effect of a dip at low frequencies
created by a refractory period and the attenuation at high frequencies induced by
firing bursts of action potentials (Fig. 3). The frequency of the peak is a function of
the refractory period parameters and the shape of the bursts, i.e., events, and is not
related to regularity in the inter-event interval. The second type of peak is caused by
regularity in the ISI or IEI density, and this regularity is well modeled as the result of
an increasing firing rate with a fixed refractory period density. Figure 4 demonstrates
this for interevent intervals of a neuron that fires bursts; however, we have observed
the same effect in neurons that fire isolated action potentials.

We have presented two mathematical models of spike trains which can lead to
peaks near 40 Hz in the power spectrum based on the formulas derived here and which
both incorporate the notion of a refractory period. We emphasize that the concept
of refractory period used here is not restricted to a neuron’s intrinsic limitations for
quickly firing a second action potential; we do not know the presynaptic input to
these neurons and cannot distinguish intrinsic from network or input effects which
may cause a paucity of short ISis.

4. Derivations. We will now derive the asserted formula for the neuron firing
spectrum, Sx(w).

LEMMA 4.1. For T >_ 0 let f(T) be bounded and continuous except for a nowhere-
dense set of simple jump discontinuities. Let f(’) >_ O, and assume

{1 fork=O,
(38) fo "rf(’r)d’r 2 fork=i,

+ cr2 for k 2,

with # < oo and er2 < oo. Define the Laplace transform

(39) ](s) e-f(’r)d7" (Re s >_ 0).
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Then

(40) Re](s)<l if Res>_0 but s O

and

(41) ](s)-O as Ims+cx) (Res>_0)

and

F /o(42)

Finally, as s 0 in the closed right half-plane, we have

(43) ](s) 1 1

#--- + ff(#-2a2 1)+ o(1).
1

On the imaginary axis, as s iw - O, we have

](i) 1
(44) Re -( 1) + o(1)

](i)

h naa o() O(:)/f o 4f()d < .
Proof. To prove (40), we note that if s a + iw with a _> 0,

(45) 1 Re ](s) (1 e- cosww)f(-)dT.

If f(-) is positive and continuous on the interval a _< - _< b, then f(T) >_ some > 0
for a _< - <_ b, and so

(46) 1 Re f(s) >_ e (1 e- cosw-)d- ( _> 0, -c < w < x)

which is positive unless a 0 and w 0. This proves (40).
The assertion (41) follows at once from the Riemann lemma, since f(-) is abso-

lutely integrable.
To prove (42), we first note that

(47) f2(t) dt <_ M f(t) dt M

if M is an upper bound for the bounded p.d.f, f(t). If we now define f(t) 0 for all
t < 0, then (iw) is the Fourier transform of f(t), and so the identity (42) is just the
Parseval-Plancherel identity.

To prove formula (43), we first note that for Re s >_ 0 and - _> 0,

182T2(48) e-s 1 s- + + -2o(Isl 2) as s - o.

Now the assumption (38) yields

1 a2 s2(49) ](s)-l-#s+(#:+ +o(Isl 2) as s-0.
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Hence,

](s) 1 -1 + (1 +(50)
1 -/(s) #s #[1 ](s)]

-1 + 1 + 1/2(a9- #2)s2 + o(Is)
(51) s + o(sl)
so that we deduce formula (43), namely,

(52) ](s) 1 1
(-: 1) + o(1) s 0.

1 #s

On the imaginary axis, if s iw 0, we have Re (1/ps) 0. Hence, the required
formula (44) follows from (52).

If f() has a finite fourth moment, then its Laplace transform has the form

1 1 3 1
(53) f(8) 1 8 + (2 + G2)82 m38 + m484 + o(8[4),

where m3 and m4 are the third and fourth moments. Then the remainder o(1) in
formula (52) may be replaced by something of the form as + o(Is]2), where a is a real
constant because all the coefficients in (53) are real, so that Re (as) 0 if s iw.
Then we obtain

(54) Re ](iw) 1
(-: 1)+ o(

1

LEMMA 4.2. Let f(7) satisfy the hypotheses of Lemma 4.1. For t 0 let u(t) be
the unique solution of the Volterra integral equation

() (t) f (t) + f()(t- )d (t 0).

Let g(s) aed f(s) be the aplace transforms 4 (t) and f(t). Thee

1 ](s) (Re s > O, s # O)

and

(57) u(t) E fk*(t) (t >_ 0),
k=l

where fk* (t) is the k-fold convolution f (t) , , f (t).
Proof. If we set ul(t)= f(t) and define

(58) un+l(t) f(t) + f(t) un(t) (t >_ O)

for n _> 1, we obtain the convergent series solution (57); this is a standard result for
Volterra integral equations. A simple majorization argument shows that the solution
satisfies

(59) 0 <_ u(t) <_ MeMt

since we have assumed 0 _< f(t) <_ M for all t _> 0.
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If we apply the Laplace transformation to both sides of the integral equation, we
find g(s) f(s)+ f(s)t(s), or

(60) [1- ](s)] t(s)= ](s) (Re s > M).

But j(s) is analytic for Re s > 0 and continuous for Re s _> 0, and formula (40) of
Lemma 4.1 implies

(61) I1 ](s)l > 0 (Re s >_ 0, s :fi 0).

Hence, we may divide (60) by 1 j(s) and use analytic continuation for Re s > 0 to
deduce

(62) (s) (Re s > 0, s = 0).
1- ](s)

This quotient is analytic in the open right hMf-plane, and it is continuous in the closed
half-plane except at s 0, where, by (52),

1 1 #2a2(63) 5(s)= #+( -1)+o(1) as s--0.

Let us consider the repeated random firing of a single neuron. We call each firing
an event .

In probability theory, the equation (55) is called the renewal equation, and its
solution u(t) is called the renewal density. Suppose that an event , like neuron
firing, occurs at successive instants tj (-oc < j < oc). For a stationary renewal
process we assume that the successive lags tj -tj_l are i.i.d, random variables. If the
p.d.f, of each lag is f(-), then the associated renewal density u(t) has the following
meaning: if an event $ is observed at the instant s, then u(t)dt is the probability that
some later event $ will occur in an infinitesimal time dt about the instant s+ t. Thus,
t is just the time between two occurrences of $.

The later event may be the first, the second, or in general, the kth event after
the initial event. Indeed, fk*(t)dt is the probability that the later event is the kth
subsequent event, and so the renewal probability u(t)dt is equal to the sum of all the
probabilities fk*(t)dt for k 1, 2 That is the meaning of the identity (57).

Example 2. If the independent lags tj -tj-1 -j have the common p.d.f, f(T)
e then

(64) ](s)= " (s)-
](s) - (Res>0, s=0). +

and so the renewal density u(t) is identically equal to the Poisson frequency .
Under general conditions, we will show that the renewal density u(t) tends to the

average event frequency as t - cx. Here we define the frequency as the limit

N
(65) , lim

T--*cx T

where N is the number of events that occur in time T. With probability 1 this limit
exists, and

N N
(66) - lim lim =-,

N--- tj+N tj N--+cx Tj+ -- 2_ TjWN

where # is the expected value of every lag -k.
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We now define u(t) u(-t) for t < 0. We will motivate this definition in
Lemma 4.4.

LEMMA 4.3. Under the conditions of Lemmas 4.1 and 4.2, u(t) #-i as
t +oc; and the even function u(t) has the Fourier transform

(67) U(w) 2ruS(w)+ G(w) (-c < w < c),

where G(w) is the even, continuous, square-integrable function

(68) G(w) 2Re
](iw) (w 0), G(0) u2a2 1.

Proof. Define the even function g(t) u(t) u
has the Laplace transform

(-oc < t < oc). This function

where we use (44) to define

(70) t)(0) lim t)(s)=
1

s-,0 (g2a2 1).

With this definition, the function (s) is analytic for Re s > 0, continuous for Re s >_
0, and square-integrable on the imaginary axis.

For s iw we have the Laplace transform

(71) [7(iw) t(iw) " Liw
g(t)e-it dt

But the even function g(t) has the Fourier transform

i? Jl(72) G(w) g(t)e-it dt

Therefore, since g(t) u(t)- is real valued,

(73) G(w) 2Re g(t)e-it dt 2Re O(iw)

But formulas (69) and (70)imply, for s iw,

(74) 2Re [(iw) 2Re

(75) u2a2 1 (w 0),

where (69) implies (74) because Re(u/s) 0 for s iw O.
The last three formulas yield the asserted formula (68) for the Fourier transform

of the even, continuous, square-integrable function g(t) u(t) u (-oo < t < oc).
Formula (67) for the Fourier transform follows because the constant v has the Fourier
transform 27ruS(w). Finally, the Riemann-Lebesgue lemma yields the limit

(76) 9(t) G(w)eiWtdw --+ 0 as t --* +oo. 0

g(t)[eit + e-it] dt.

(-< < , w#0)

(--oo <: w oo).

(--oo w oo).

(69) t(s) (s) /(s)
(Re s >_ 0),

s 1- ](s) s
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LEMMA 4.4. For a stationary renewal process, let u(-) (- >_ O) be the renewal
density discussed in Lemmas 4.2 and 4.3. Let -oc < s < t < oc, and let ds and dt be

differentials about the instants s and t. Let u be the average frequency of the events $
in the stationary renewal process. Then an event $ occurs in ds with probability ds;
events $ occur in both ds and dt with probability u(t- s)ds dt.

Proof. By stationarity, the probability that an event $ occurs in ds must equal
ds, where is the average frequency of the occurrences of $. Now the definition of
the renewal density implies this for the conditional probability:

(77) P{$ occurs in dt $ occurs in ds} u(t s)dt (t > s).

Since P{$ occurs in ds} ds, we deduce

(78) P{$ occurs in ds and $ occurs in dt} uds. u(t- s)dt (t > s). [

In the last formula the function u(t- s) has been defined by the renewal equation
only for t- s > 0. But the joint probability of events in both ds and dt is defined for
all s - t as a symmetric function. Therefore, for all distinct s and t,

(79) P{$ occurs in ds and $ occurs in dr} ds. u(It- sl)dt.

If we now define u(-) u(-7) for all - < 0, we may write u(It-sl) u(t-s) u(s-t)
for all s : t, and we may use the formula (78) even for t < s.

We are now ready to derive the power spectral density of the shot noise generated
by the firing instants {tj} and the wave form h(t). For simplicity, assume that h(t)
is bounded, continuous, and absolutely integrable. Later it is easy to extend the
result to other wave forms such as the Dirac &function. (As h(t) approximates the
&function, its Fourier transform approximates the constant function H(w) 1.)

THEOREM 4.5. Let {tj} (-oc < j < oc) be the random firing instants of the
stationary renewal process discussed in the preceding lemmas. Let h(t) be a bounded,
piecewise smooth, absolutely integrable function, with Fourier transform H(w). Define
the associated stationary shot noise

(80) x(t)= E h(t-tj).
j---- (X)

Then x(t) has the expected value

(81) E[x(t)] u h(’)d7 H(0),

where the instants {tj} have average frequency ,; and x(t) has the power spectral
density

(82) Sx(w) u,H(w),2 {27ruS(w) + l + 2Re
](iw) }1 -- -w)where f(s) is the Laplace transform of the common p.d.f, f(-) of the i.i.d, random

lags -j tj tj_ 1. In the last formula, for w near zero we assert

(83) 1 + 2Re
](w) u2a2 + o(1) as w -- O,
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where a2 is the lag variance, and where o(1) may be replaced by O(w2) if the lags -have a finite fourth moment.
Notation. As usual, we have defined the power spectral density as

(84) S(:) R(7)e-i’d7 (-oc < w < ),

where R(w) is the autocorrelation

E [x(t)x*(t- < <
In our application ll the functions x(t), h(t),.., are rel, but for possible use in other
applications, we will do the following derivation for complex-valued functions. We use
the asterisk for complex conjugates: (a + ib)* a- ib.

Proof. Let (t) and 2(t) satisfy the sme conditions as h(t). Let {tj} be the
set of random instants when the recurrent event g occurs. Then

(86) E (t) u (t) dt
j

and, by Lemma 4.4,

+

The functions (t) and (t) are absolutely integrable, and the continuous, even
renewal density (t) tends to u as t , so that (t) is bounded. Therefore, the
integrals converge.

Now, for- < < , set

(88) () h(t- ), () h* (t-- ).
Then, according to (70), we have

(89) x(t) (tj), x*(t 7) 2(tk),
j k

and so the preceding formulas yield

(90) E[z(t)] u h(t- )d,

+ u h(t )h* (t r )d.

If we replace t by , t by , and t by in the integrands, we get

(92) E[x(t)] =. h(a) da,

+ u h()h*(- )d.
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If we take the Fourier transform of Rx(-), we get

(94) Sx(w) uH(w)U(w)H*(w) + lH()l 2,

Using the formula (67) for U(w), we get

(95) Sx(w) lH(w)12 {2ruh(w) + l + 2Re
](iw) }

where ](s) is the Laplace transform of the lag p.d.f, f(T). Finally, we use formula
(44) from Lemma 4.1 to prove the required formula (83), where, p-1. F1

5. Appendix. The spike-rate normalized power spectrum x(w) is derived from
formula (8) by setting h(t) 5(t), dividing by the mean spike rate, , and subtracting
the &function term. Thus,

(96) x(W) 1 + 2Re
](iw) (-oc < w < oc, w 0),

where =(0) ,2a2, as defined by continuity in equation (10). Let the interval
density f(T) be defined as the convolution of a gamma density, given in (14), and an

exponential density, given in (17), so that its Laplace transform ](s) is, as given in
formula (20),

( b )
a

2 (Res_>0).(97) ](s)= b+s r,2+s

Then, ](iw)-

(98)

pei, where

atan-l(w/b) + tan-l(w/2),

and

(b2 2F’oJ2)a/2 ID’22 -it-oJ2
(99) p

b .
Under the previous assumption8 and definitions, an explicit expression for S(w) i8

p cos 1
(100) g=(w) 1 + 2p2 2pcos + 1

(-co < w < oc, w 0).

Equation (100) depends on only a, b, and u and is the expression for the analytical
curves superposed on the neuronal power spectrum histograms in the figures in this
paper (except for-the top spectrum in Fig. 3, which uses a different definition for
h(t)).
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