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Summary. The rather abrupt changes in velocity gradient which have some- 
times been proposed, notably in the upper mantle and near the base of the 
mantle, have an effect equivalent to that of one or more second-order discon- 
tinuities, where partial reflection occurs due to a change in curvature of the 
wavefront across these discontinuities. The effect is ignored in the classical 
WKBJ approximation to the wave functions, but it can be explicitly demon- 
strated by applying the extended WKBJ method (Langer’s approximation) to 
a piecewise smooth layered model. For the purpose of t h s  study it is 
convenient t o  represent the response of such a model by a generalized reflection 
coefficient. For a model of one or a system of several second-order discontinui- 
ties (approximating a change in velocity gradient over a finite depth interval), 
the reflection coefficient can be perhaps surprisingly large for long-period 
waves near their turning point. It is shown that this effect can significantly 
alter the amplitude decay of sfj waves diffracted around the core, in models 
where a change in velocity gradient near the core-mantle boundary consti- 
tutes a low-velocity zone at the base of the mantle; such models have recently 
been proposed. With the same velocity gradients, the effect on P diffraction 
is less important. The results for SH diffraction in these models support the 
conclusion that a small amplitude decay must be explained by a velocity 
decrease with depth, i.e. a low-velocity zone at  the base of the mantle. 

1 Introduction 

In an Earth model, second-order velocity discontinuities (i.e. discontinuities in the velocity 
gradient) may arise due to model parameterization, and their high-frequency effect has been 
demonstrated in applying geometrical ray theory (Julian & Anderson 1968). It is desirable 
to smooth this effect since it is an artefact of the model, and thls is conveniently done in a 
WKBJ approximation (Chapman 1978). However, for some regions of the Earth, notably 
the upper mantle and the base of the mantle, it has sometimes been proposed that rather 
abrupt changes in velocity gradient occur in a relatively short depth interval. In these cases, 
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5 00 D. J. Doombos 
the model of one or more second-order discontinuities would still be a simplification but, 
in analogy to approximating rapid velocity changes by one or more first-order discontinuities, 
it would be a sensible approximation at relatively long wavelengths. It is the long-wavelength 
effect that we study in this paper. The effect is associated with a change in the curvature 
of a wavefront across a second-order discontinuity. This change is ignored in the classical 
WKBJ approximation, but it is described by the extended WKBJ method (the Langer 
approximation). Following Richards (1976) it is now widely appreciated that the extension 
of the WKBJ method is most important for long waves near their turning point, consequently 
the second-order discontinuity is expected to be most effective in the same circumstances. 
I t  was in fact the analysis of one such wave phenomenon, diffraction around the core, that 
has motivated the present study. Previous studies either implicitly ignored the effect (e.g. the 
extended WKBJ method in a smooth profile which is a version of the so-called full wave 
method), or the effect was taken into account without explicitly identifying it (e.g. the 
reflectivity method in an equivalent flat Earth model). These two different methods give 
very slmilar results in many cases, but a discrepancy has been noted for certain models and 
wave types, e.g. diffracted SH in models with a low-velocity zone at the base of the mantle. 

In Section 2 we consider partial reflection at a second-order discontinuity, and demon- 
strate its significance in cases which are thought to be representative of some recently 
proposed models. A more complete analysis requires calculations in a layered model, and 
Section 3 summarizes the necessary theoretical framework. The basic point here is to 
extend the applicability of the conventional asymptotic propagator matrices ( c t  Woodhouse 
1978; Cormier 1980), but in many applications this can also be considered a means to genera- 
lize the concept of reflection coefficients (cx Kennett 1974). Thus, by constructing generalized 
reflection coefficients for models including one or more second-order discontinuities near 
the  core-mantle boundary, we are able to discuss in more detail the effect on diffraction 
around the core. in Section 4. 

2 Reflection coefficients 
In a vertically or radically inhomogenous medium, the Fourier transformed wavefield may 
be decomposed in surface harmonics, and propagation of displacement and stress components 
(neglecting gravity) may be expressed by 

a,D = iwAD, (1) 
where, separately for P-SV and SH, D is the stress-displacement vector. Let a surface har- 
monic correspond to a fixed ray parameter p ,  then a horizontal wavenumber is wq = wp/r 
in spherical geometry, wq = wp in flat geometry. Then the zero-order approximation to 
the matrix A (e.g. Woodhouse 1978) is identical in the spherical and flat geometry (apart 
from a r-' factor in the radial wave functions). Therefore, in the following we make no 
distinction between these two cases, unless explicitly stated. In an isotropic medium, the 
zero-order approximation implies decoupling of P and SV away from interfaces. Following 
Kennett, Kerry & Woodhouse (1978), the matrix A may be decomposed in eigenvalues and 
eigenvect ors 

A = FAF-', 
where the eigenvectors of A are the columns of F,  and these contain the vertical wave 
functions for P and S. If the wave functions are normalized, coefficients must be attached 
to them, and the matrix F also connects the wave coefficients (in the vector B) with the 
stressdisplacement vector D 

D = FB. ( 2 )  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/64/2/499/567066 by guest on 20 August 2022



Effect o f  second-order velocity discontinuities 50 1 

This representation is in fact equivalent to that in terms of scalar potentials, by Richards 
(1974). Since F satisfies equation (1) it is called a matrizant, or fundamental matrix (e.g. 
Gilbert & Backus 1966). The form of F with up and downgoing waves used in this work is 
given in Appendix A. 

At a solid-solid interface, D is continuous but B is not, and reflection/transmission 
coefficients may be obtained from elements of F evaluated on opposite sides of the interface. 
At a second-order discontinuity, the continuity condition for D is seen, from equation (2), 
to reduce to a continuity condition for the wavefield and its vertical derivative. This requires, 
at least in principle, coupling of up and downgoing waves (reflection), but no coupling 
between P and SV. The reflection/transmission coefficients for P, SV and SH are therefore 
given by sirmlar expressions 

(downward transmission) (4) 

where superscript + and - denote the top and bottom side of the discontinuity, Uuld are up/ 
downgoing wave functions, Auld the up/downgoing wave coefficients, and c"/d the so-called 
generalized cosines which are related to  vertical derivatives of the wave functions (Richards 
1976). Similar expressions for downward reflection and upward transmission follow from 
symmetry considerations; for real angle of incidence, downward reflection equals upward 
reflection in absolute value. 

= = = c;7 = cos i ,  where 
i is the angle of incidence, so in this approximation the second-order discontinuity has no 
effect. However, near a turning point the WKBJ solution is invalid and, following Chapman 
(1974) and Richards (1976), it has become almost common practice to  extend the approxi- 
mation by Langer's solution which, among other things, takes into account the difference 
in curvature of the wavefront on opposite sides of the interface. Fig. 1 illustrates the effect 

In the WKBJ approximation of the wave functions: 
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Figure 1. Reflection coefficients as a function of ray parameter for P and S waves at a period of 32 and 
8 s. The interface is a secondader  velocity discontinuity at radius 3560.7 km, up= 13.661 km SKI, 

~ ,=7 .218kms- ' .  ~- - duJdr = - 0,001, dvp/dr = 0.0019, du:/dr = - 0.0004, du, /dr = 0.001 9. 
-du+/dr=-0.001, dvp/dr=-0.0019, dvl /dr=-0.0004, dv;/dr=-0.0019. ----= dv; I 

dr = - 0.001, dup /dr = 0 ,  dvJ /dr = - 0.0004, du, /dr = 0.  + and - refer to the top and bottom side of the 
interface. 
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b y  giving reflection coefficients for P and S waves, at a second-order discontinuity with 
velocities appropriate for the lower mantle near the core-mantle boundary. The changes in 
velocity gradients considered here encompass those of recently proposed models with and 
without low-velocity zones at the base of the mantle (e.g. Doornbos & Mondt 1979b; Mula 
& Muller 1980; Dziewonski and Anderson 1980). We make the following observations: (1) 
The reflection is a long-period phenomenon; at 1 s period the reflection is insignificant except 
for the trivial case that the turning point is practically at the interface, and it is not given 
in the figure. (2) A change to negative velocity gradient with depth (giving a low-velocity 
zone) is a stronger reflector than a change to positive gradient giving a h&-velocity zone. 
( 3 )  With the same change in gradient, S waves are reflected more strongly than P. Note here 
that because P and S velocities are different, the same gradient in spherical geometry implies 
a different gradient in the equivalent flat geometry. 

3 A layered model 

Certain model restrictions are implicit in obtaining results as described in the previous section. 
First, Langer's solution requires a classical turning point and hence would preclude zones 
with sufficiently negative velocity gradient with depth (i.e. in flat geometry dv/dz > 0 if z 
is positive upward; in spherical geometry dv/dr > u/r). The restriction can be removed by 
considering that, in flat geometry, the choice of up or downgoing wave is dictated by the 
choice of sign of z coordinate. Simply reversing the z coordinate, or what amounts to the 
same and is also applicable in spherical geometry, reversing the computed vertical phase wr 
with r the usual 'tau function' (Bessonova et al. 1976), leads to solutions with up and 
downgoing wave functions, and their associated generalized cosines, interchanged. The 
validity of this result in spherical geometry czn also be demonstrated by applying an earth- 
flattening transformation. As a final step then, we have to undo t h s  interchange before 
computing reflection coefficients. 

The second point is that single reflection in the model of two half spaces is often an over- 
simplified concept; multiple reflection must be taken into account especially for waves near 
their turning point. In its simplest form this could be done by replacing the downgoing wave 
and its generalized cosine in equations (3) and (4), by a standing wave (Cormier & Richards 
1977). However, a more general layered model would also account for the interaction with 
nearby discontinuities, and it may be used to approximate a pseudo second-order discontinuity 
characterized by a change in velocity gradient over a finite depth interval. Layered models 
have been, and still are being, treated extensively in the literature. A recent review is by 
Kennett & Kerry (1979). In practical applications, the reflectivity method of Fuchs & Muller 
(1971) has been widely used, and in some recent work Langer's approximation is used to 
extend the method (Woodhouse 1978; Cormier 1980). The formal structure of the solution 
is, however, independent of the particular type of wave functions, and only an outline of the 
procedure will be given here. For indexing of layers and interfaces, we refer to Fig. 2 .  

From the fundamental matrices for the individual layers, and the continuity condition 
for stress-displacement across interfaces, propagator matrices (Gilbert and Backus 1966) are 
constructed which relate stress-displacement at the top and bottom interface 

where Po," Po,s are propagator products between interfaces 0-N and 0-s, respectively. 
In the P-SV case, these products of layer matrices generally couple P and SV propagation, 
but if the interfaces are second-order discontinuities, P and SV remain uncoupled and the 
propagator matrix can be partitioned accordingly. The second term in equation ( 5 )  includes 
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Figure 2. lndexmg of layers and interfaces. Au,d, Bu/d are up/downgoing wave coefficients for P and S 
in layer N 

0 interface) 

a source effect by representing it as a dislocation in displacement and stress across a level 
z s ,  a procedure introduced by Hudson (1969). The relation ( 5 )  was given by Kennett B Kerry 
(1979) in a slightly different form. The solution for DN (or at any other level) may now be 
obtained by applying boundary conditions, usually to Do and DN. One usually applies the 
stress-free surface condition to DN, and Do is related to conditions of downward radiation, 
or exponential decay, of the wavefield below zo. Different versions of the solution are given, 
e.g. by Kennett & Kerry (1979) and Cormier (1980). In view of the application in the next 
section, it is also of interest to include the case of a solid-liquid interface. A summary of 
formulae is given in Appendix €3. 

The solutions in the form of equation (B1) and (B2) include the effect of second-order 
discontinuities if these are taken to coincide with interfaces of the model. However, following 
Kennett & Kerry (1979) it may be useful to explicitly identify the reflection coefficients 
from a stack of layers (including second-order discontinuities). Earlier applications to the 
problem of diffraction around the core are from Phinney & Alexander (1966) and Chapman 
& Phinney (1972). If we consider reflection from the layer stack 0, . , . ,N-1 (Fig. 2), 
the procedure differs from the foregoing mainly in that boundary conditions at the top of 
layer N are replaced by radiation conditions in layer N .  The resulting reflection coefficients 
for SH and P-SV are given by equations (B6) and (B7) of the Appendix. In this case, excita- 
tion by a source must be contained in the downgoing wave coefficients Ad ,  Bd. In Appendix C 
these wave coefficients are expressed in terms of the source dislocation vector [D,]’; 
alternative expressions may be found in Kennett & Kerry (1979). 

When the reflected wavefield is represented in terms of scalar potentials we have, e.g. for 
P at level z : 

@(z) = AuUu(z) 

@GI = RK(z,) Uu(z,) Uu(z>, 

and equations (B7), (Cl)  and (C3) may be used to find 

(6) 

where R is the reflection coefficient Au/&, and K(zs )  Uu(z,) is the excitation function. This 
is the form of Richards (1973) which has been used in previous applications of ‘full wave 
theory’ (e.g. Mondt 1977; Cormier & Richards 1977; Choy 1977;Doornbos & Mondt 1979b). 
Finally, it may be recalled that all solutions discussed here correspond to one surface harmonic, 
so the various factors in equations like (6) depend on w and p although this has not been 
brought out in the notation. These solutions are to be substituted in inverse transformations, 
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504 D. J. Doornbos 
a rather complete account of which has been given by Chapman (1978). In the applications 
of  full wave theory, the inverse transformation involves an integration in the complex ray 
parameter plane, following Richards (1973). 

4 Diffraction around the core 

It  is of interest to consider a second-order discontinuity in the neighbourhood of a first-order 
discontinuity, first because such models actually have been proposed (e.g. Dziewonski & 
Anderson 1980), and second because first-order discontinuities have associated with them 
diffracted waves, and these waves satisfy the requirements for second-order discontinuities 
to be effective. One of the clearest examples of such a model, with one of the most observed 
and studied diffraction patterns, is the region near the core-mantle boundary. Observations 
bearing on this region have sometimes been controversial, as have the models inferred from 
them (e.g. Doornbos &Mondt 1979b; Okal&Geller 1979;Mula & Muller 1980). Seismological 
effects of various proposed anomalies in the core-mantle boundary region have been discussed 
b y  Doornbos & Mondt (1979a); the effect of second-order discontinuities was not considered. 
I t  is the purpose of this section to demonstrate this effect for recently proposed models, 
by  presenting results for the diffraction pattern as it is usually analysed, i.e. in the form 
of phase velocity or d T / d A ,  and exponential decay per unit of epicentral distance. To 
compute these parameters, equation (6) has been used in an inverse ray parameter trans- 
formation (cJ: equation 9 of Doornbos & Mondt 1979b). 

We have obtained results for perturbations of two reference models, PEM-C of Dziewonski, 
Hales & Lapwood (1975) and PREM of Dziewonski & Anderson (1980); the effect was 
similar in these two cases. Of the results obtained, we present those which are thought to 
be representative of recently proposed models, and which are illustrative with regard to the 
effect discussed here. It was observed in Section 2 that the effect is more significant for Swaves, 
at long periods, and in models having a velocity decrease below the second-order discontinuity. 
These inferences are confirmed here, and these cases will be given more attention than others. 
Another important model parameter is the thickness of transition zone; a very thin zone 
might be 'transparent' to long-period waves, in a very thick zone diffraction may not be much 
affected by the second-order discontinuity. The models we discuss here have a 75 km thick 
transition zone; they are shown in Fig. 3. Observational parameters of long-period diffracted 
waves have been obtained usually from records roughly in the epicentral distance range 
95"-135". We compute d T / d A  and decay y as a function of frequency, over the same 
distance range. Results are shown in Figs 4 and 5, and we wdl discuss some of the main 
features. 

It is now well established that for subcritical velocity gradients (i.e. du/dr < u/r), the 
decay y is smaller if the velocity is more decreasing toward the core-mantle boundary. 
Ignoring the effect of a second-order discontinuity, one would expect y to be minimal for 
velocities near the critical gradient. If the velocity decreases more with depth, i.e. has a super- 
critical gradient, no turning point exists in the low-velocity zone and the ray-geometrical 
shadow boundary shifts backward to shorter distances. In that case the effect of a second-order 
discontinuity will be to create the conditions for a waveguide in the low-velocity zone, and 
the decay may, at least at some commonly observed frequencies, be very similar to decay 
with subcritical gradients but without a second-order discontinuity. In Fig. 4 this is dustrated 
for SH by comparing models (2) (solid line) and (4) (dashed line). Including the effect of the 
second-order discontinuity in model (2) (dashed line) increases the SH decay in the distance 
range considered here. This explains a discrepancy between SH results by Fuchs & Muller's 
(1971) reflectivity method and by the full wave method (Mondt & Pootjes 1980), whde for P 
diffraction no such discrepancy was observed (Mula & Muller, private communication). The 
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Figure 3. Velocity models of the lower mantle. The reference model (PEM-C) which is labelled (1) for 
both P and S, is perturbed to  produce secondader discontinuities. The velocity perturbations have 
been chosen to give for P and S the same velocity gradients in the transition zone. 

= 8 . 8 r  ' ' , , , , 4 R r  , , 

,'I 05 

Figure 4. Decay spectra and dT/dA for P and SH in the distance range 95"-135", for the models in 
Fig. 3. y measures decay per degree of epicentral distance, and frequency points 1, . . . ,8 correspond to 
0.015625,. . . , 0.125 Hz in steps of 0.015625. Results are labelled corresponding to the models. 

; Effect of secondader  discontinuity ignored; - - - - - - - - - - - : effect included. 
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90 110 130 

DISTANCE (deg) 

Figure 5. Amplitude decay of S H  in the distance range 90"-140", at  the frequency 0.046875, for the 
models in Fig. 3.  Results are labelled corresponding to  the models. __ : Effect of second-order 
discontinuity ignored; - - - - - - - - - - : effect included. 

increased decay may be ascribed to partial reflection off the top of the transition zone. At 
larger distances the wave-guide effect becomes more important and the decay is smaller, but 
observations are not usually made in that distance range. The change of amplitude decay 
with distance is shown in Fig. 5,  for one typical long period (near 20 s). By comparing 
models ( 2 )  and ( 3 )  (dashed line) in Figs 4 and 5, it is also shown that the long-period effect 
is rather similar for a 'pseudo' second-order discontinuity, where the change in velocity 
gradient occurs over a finite depth interval which is short compared to the wavelength. 

The effect of increased decay is obtained only in low-velocity zones; in high-velocity 
zones on the contrary, the effect is to decrease the decay (c t  model 5 ) ,  although it remains 
always hgher than for the standard model. In all these cases there is also an effect on dT/dA 
(Fig. 4); in general, higher decay corresponds to lower dT/dA and vice versa. This effect 
would be difficult to identify, however, since dT/dA also depends strongly on the absolute 
velocity values, not just the gradients. For example, the difference in dT/dA for diffracted 
SH in the PEM-C and PREM models is about 0.1 s deg-'. 

Finally, Fig. 4 shows that for recently proposed models, the effect on P diffraction is of 
lower importance. It may become important for zones with very low velocities ( c t  model 4), 
bu t  such drastic changes have not been proposed lately. dT/dA for long-period P is virtually 
the same in all these models. 

5 Conclusions 

Partial reflection at a second-order, or pseudo second-order velocity discontinuity may be 
a significant phenomenon for long-period waves near their turning point. In an Earth model 
it is more significant for S than for P waves due to the lower S velocities, and it is more 
significant if the model includes a low-velocity zone in which the velocity decreases with 
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Effect o f  second-order velocity discontinuities 507 
depth. The effect is ignored in the classical WKBJ method, but not in the extended method 
which takes into account difference in curvature of wave front on opposite sides of the 
discontinuity. Calculations in a layered model are necessary to demonstrate the effect, and 
they explain certain differences noted between results for SH waves with the 'classical' 
reflectivity method (which takes the effect into account but does not explicitly identify it) 
and a version of the so-called full wave method which ignores layering; the restriction to 
subcritical velocity gradients (i.e. du/dr < U/T) in that version can also be removed. 

The interpretation of long-period SH waves diffracted around the core has been the 
subject of some discussion in recent years, and it may be of interest to summarize the most 
important effects from an observational point of view, of proposed (pseudo) second-order 
velocity discontinuities near the core-mantle boundary: If the change in velocity gradient 
constitutes a low-velocity zone in which the gradient is subcritical, the effect on SH is t o  
increase the amplitude decay in the usually observed distance range (-95"-135"). If 
the gradient becomes supercritical, the wave-guide effect of the low-velocity layer may be 
sufficient to give low-decay values, comparable to what is obtained for a subcritical low- 
velocity zone with the second-order discontinuity absent (or ignored). These results together 
with actually observed low-decay values, continue to stress the concept of a low-velocity 
zone at the base of the mantle. The effect on long-period diffractedpwaves is less important, at  
least for velocity gradients which are in the range of recently proposed models. 
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Appendix A: Fundamental matrices 
The forms given by different authors are sometimes different due to different arrangement 
and normalization of stress-displacement and wave coefficients. Therefore, we give here the 
forms as used in the present work. The wave coefficients we used, A ,,/,j for up/downgoing P, 
BUld for up/downgoing S waves, are related to the scalar potentials in Richards’ (1974) 
representation of displacement. At a fixed ray parameter p and omitting the horizontal 
phase factor exp(iopx) in flat geometry, or exp(iwp6) in spherical geometry: 

@ = (Auuu  + A d u d ) ,  

J,=- (B, V, + B d  Vd) ,  

where Uuld, V,,, are up/downgoing wave functions for P and S, respectively. 

(Al) (P waves) 
1 

-iwp 
(SV and SH waves) 

The representation, in the form of equation (2) of the main text, becomes for SH: 

where u,,, T~,, are displacement and stress components, p is rigidity and D,/d are the genera- 
lized cosines for S: 

Du/d 

P = ‘ @ z  vu/d)/(iU vu/d). ~~ 
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Effect o f  second-order velocity discontinuities 509 

In the notation of equation ( 2 ) ,  the wave coefficient vector B has here the elements Bu, B d ,  
and the matrix F has been decomposed to display more explicitly the role of the up and 
downgoing wave functions Vu,  v d .  

Similarly, for P-SV: 

where p is density, u = 2q2 -l/p2, q = p in flat geometry, q = p / r  in spherical geometry, 
and c u / d  are the generalized cosines for Y .  
For a liquid, the fundamental matrix reduces to a 2 x 2 matrix. 

Although the notation for stress-displacement components in equations (A2)  and (A3) 
is that conventionally taken in a Cartesian coordinate system, the asymptotic relations hold 
more generally, e.g. in cylindrical and spherical coordinates. 

Appendix B: Response of a layered model 

For the free surface displacement response we follow the representation of Cormier (1980), 
with minor modifications. The meaning of the propagator matrices P,J and PNs = P&, 
the fundamental matrix below the bottom interface F,, and the source vector [D,]', is as 
in Sections 2 and 3. 

For SH: 

G ~ , N  = E T P o , ~ .  

For P-SV 

GO,N = Pi,N(El ET - E2ET) PO,N 

where, with a radiation condition below the bottom interface 
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With an exponential decay condition below the bottom interface: 

ET -1 0 0 

E g H = ( 1 > - 1 ) F 6 1 ( Z O ) ,  F, (20 1. 
[ E j p s v =  1: 0 1 -I/ 

For  a solid-liquid bottom interface: 

E$H = (0, 1)) 
and for P-SV with, e.g. a radiation condition 

Here Fo is the 2 x 2 fundamental matrix of the liquid. 
The specific form of ET, ET, E; reflects our choice of up and downgoing wave functions 

in the fundamental matrix F, equations (A2), (A3). A different choice would give different 
combinations of rows of F, ' (cf Cormier 1980). The propagation of minors of F- ' , i.e. 
EIET - E2,ET, has been discussed by Cormier and others, e.g. Menke (1979), Abo Zena 
(1979), Schwab & Knopoff (1972). 

To obtain reflection coefficients from the layer stack 0, . . . , N - 1  (Fig. 2), the stress dis- 
placement vector at the interface N-1 must be related to a radiation condition in layer N 
above this interface. This relation is given through the fundamental matrix of this layer. 
Apart from this additional matrix multiplication, the structure of the solution is rather 
similar to that of the displacement response. The reflection coefficients are given as ratios of 
wave coefficients. For SH 

(Bu/BdN)= -G:,N- lFN(ZN- l )  

For P-SV 

with GT, G defined in equations ( B l )  and (B2). 
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Appendix C: Excitation functions for the wave coefficients 
Applying equation (2) on opposite sides of the source level we have 

[D, 1' = F(z, [B, I!, 

where all functions are evaluated at the source level, and [B,] 
coefficients across this level. Applying the radiation condition 

denotes the jump in wave 

Ad+ = A ;  =Bdf =B;  = 0 ,  

(no 'inward' radiation) we obtain 

B: = F-'(z,)[D,]?, 

where, for SH 

B i T  = (B i ,  -B;), 

for P-SV 

B; 
The inverse fundamental matrix may be decomposed: 

F-' = WK, 
where W is diagonal with elements -o/( uu/d(c" t c d ) )  and - P i {  V"/d(& +Dd)}. For 
asymp to tic functions: 

+T 
= (A;, -Ad, B:, -Bd),. 

77 
o/luu/d(cu + c d ) }  =-oud/u ,  

4 

where we have normalized the wave functions as in equation (23) of Richards (1  976). Then 
we have the excitation coefficients 

For P-SV 

I ud 

The various quantities appearing in these expressions have been defined in Appendix A. 
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