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Abstract 

We study the effect of  a singular per turbat ion on certain nonconvex variat io- 

nal problems. The goal is to characterize the limit of minimizers as some perturba-  

t ion parameter  e ~ 0. The technique utilizes the notion of  "_P-convergence" 

of  variational problems developed by DE GtOR6L The essential idea is to identify 

the first nontrivial  term in an asymptotic expansion for the energy of  the perturbed 

problem. In so doing, one characterizes the limit of  minimizers as the solution of 

a new variat ional  problem. For  the cases considered here, these new problems have 

a simple geometric nature involving minimal surfaces and geodesics. 
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Introduction 

We are concerned with the effect of a singular per turbat ion on a nonconvex 

var ia t ional  problem. The goal is to characterize the asymptotic behavior of  mini- 

mizers in the limit as some per turbat ion parameter  e ~ 0; this goal is achieved 

by showing that  the minimizers converge to a limit which solves a new variat ional  
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problem. For  the cases considered here, these new problems have a simple geo- 

metric nature involving minimal surfaces and geodesics. 

Our approach uses a tool developed by DE GIORGI called "F-convergence" 

of  variational problems ([1], [7]). The fundamental idea is to identify the first 

nontrivial term in an asymptotic expansion for the energy of  the perturbed prob- 

lem. In doing so one characterizes the desired limit of  minimizers as a solution of 

a new variational problem, the "F-l imit"  of the perturbed sequence of functionals. 

Before perturbation, the variational problems we study are mathematically 

trivial. Beginning with a functional F :  LI(f2) --~ R (.q Q R", open, bounded) 

given by 

r(u) = f W(u) dx 
g2 

with W=> 0 and W ( t ) =  0 at more than one t, consider the problem: 

(P) inf F(u) 

for u possibly subject to a constraint such as f u dx = c, and for a variety of  
a 

nonconvex W. Problem (P) has a chronic failure of uniqueness for such W: 

a piecewise constant absolute minimizer is determined by any partitioning of the 

domain into regions so as to accommodate the constraint. If, for example, mini- 

mization of F models a physical problem, then this nonuniqueness might be due 

to the neglect of some small effect. Restoring the effect through the addition of 

a singular perturbation might then resolve this failure of uniqueness. Choosing 

e 2 IVu [ 2 as perhaps the simplest possible perturbation, we are led to the functional 

F.(u) ---- f W(u) + e 2 lVul 2 dx 
D 

and the problem 

(P3 inf F.(u). 

u constrained as in (P) 

Our goal is to characterize Uo = lim~_~ o u. (in LI(~)) ,  where u~ is a solution 

of  (P~). 
Since minimizers of  (P) have a purely geometric characterization, one might 

expect the same of the criterion which selects a limit Uo. We shall show that this 

is indeed the case by establishing that Uo solves a new variational problem 

(Po) inf Fo(u), 
u~BV(~)  

where 

(inf F~) = e (ins Fo) + o(e). 

Solutions of  (Po) typically involve a partition of ~ into regions separated by mini- 

mal surfaces or surfaces of  constant curvature. 

Often this partition problem (Po) is easy to solve directly. In that case, the 

technique also yields information on the structure of  constrained minimizers 
and the existence of  local minimizers of (P~). 
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The analysis of the problem by this method clearly differs from the more 

classical approach of matched asymptotic expansions: the focus here is on the 
asymptotic behavior of the energy of (P~) rather than on an expansion for u~ 

itself. Furthermore, in the classical approach one knows (or presumes) the loca- 

tion of a boundary layer, whereas one of our tasks is to determine its locatiom 

The two viewpoints, however, are not unrelated. The identification of (Po) re- 
quires the construction of a sequence of functions {~} which efficiently traverse 

this boundary layer in bridging the zeros of W, in close analogy with the notion 
of an "inner expansion". For a rigorous analysis of (P~) with a Dirichlet condition 

using matched asymptotic expansions, see the work of BURGER & FRAE~KEL ([2]). 

Many others have studied similar problems by this approach. (See e.g. CAGINALP 
[4] and HowEs [17].) 

When it applies, the advantages of the F-convergence technique are nume- 

rous: the problem (Po) determines the location of the interior boundary layer, 
the analysis is considerably easier, and, as will be discussed later (see remark 

(1.14)), the results are immediately adaptable to continuous perturbations of 
(P~). 

An earlier application of this technique to (P~) was carried out by MoDIcA & 

MORTOLA ([22], [23]), who obtained the F-limit for the unconstrained problem 

with various choices of scalar-dependent 14/". Our results generalize this work and 

the approach borrows many ideas from these authors. 
In Section 1, we consider W: R--~ R having exactly two zeroes, a and b, 

and we attach the constraint 

f u dx = e, where a [ f2 l < c < b l O ] 
t2 

(t'1 = n-dimensional Lebesgue measure). A typical minimizer of the unperturbed 
problem (P) might then take the form of Figure 1. GURTIN ([13], [14]) raised the 

question of describing limits of minimizers of (P~) with these conditions as a model 

for obtaining the stable density distributions u for a fluid confined to a container 
/2, within the context of the Van der Waals-Cahn-HiUiard theory of phase transi- 

tions. Recent contributions to this problem include the work of NOVICK-COHEN 

Fig. 1. A Typical Minimizer of  (P) 

Fig. 2. Solut ion of  (Po): Uo = lim~_~ o u~. 
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SEGEL ([24]) a n d  CARR, GURTIN & SLEMROD ([5]). T h e  l a t t e r  g r o u p  o f  a u t h o r s  

prove that in one dimension, stable minimizers of  (P,) are monotone, and their 

limit is a step function with only one discontinuity. 

Our Theorem 1 generalizes this result to /2 C R'. It says that any limit point 

of  (u~} must minimize 

inf Pera  (u : a}, 
u~ B V( ~9) 

W(u(x)) = 0a.e. 
f udx =c 

Q 

where Per a A : perimeter of  A in /2, and BV(/2):  space of functions of 

bounded variation, defined e.g. in ([11]). Thus, as e -+  0 the minimizers of  (P,) 

select a function Uo that minimizes the area of the interface separating the "states 

u : a  and u = b  (see Figure 2). 

Essentially the same result has been proved recently also by MODICA ([20]). 

Section 1 also includes, in Theorem 2, a generalization of  Theorem 1 to a 

spatially dependent W. The associated limiting problem (Po) which Uo solves is 

then a weighted partitioning problem. 

In Section 2 we consider generalizations to vector-dependent W. For  W: 

R 2 -+ R, zero on two disjoint simple closed curves, and positive elsewhere, Theo- 

rem 3 uses the techniques of  _P-convergence to show that a limit of  minimizers of 

(P,) must satisfy the minimal interface criterion which arose in the scalar case. 

Theorem 3 also characterizes the cost--per  unit area along the interface--of  the 

transition made by the minimizers u, :/2--~- R 2; we show that it tends asymptotically 

to the distance between the two zero curves of  IV, measured with respect to a 

degenerate Riemannian metric in the plane derived from W. 

1. Scalar Dependent Energy 

A. Functions of Bounded Variation 

We describe first some of  the basic definitions and properties of  functions of  

bounded variation; we will need these to arrive at the partitioning problem (Po). 

For  a more complete description, see ([l lD. 
Throughout  the paper /2  will be an open, bounded subset of R n with Lipschitz- 

continuous boundary. For  uE L1(/2), define: 

f lVu[ :-- sup f u(x) (V . g(x)) dx. (1.1) 
g~Cl ( ~9,R n) 

[gl~1 

The space of  functions of  bounded variation, BV(/2), consists in those u E Ll(/2) 

for which f [~Tu I < ~ ;  BV(f2) is a Banach space under the norm: 
~2 

fluldx+ f lVul. 
/2 t2 

Notice that [Vu I is not an L 1 function, but rather the total variation of the vector- 

valued measure ~Tu. (See [9], p. 349.) I f  u E BV(/2), the integral of  any positive, 
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continuous function h with respect to the measure 1~Tul can be expressed as 

f h(x) lVTul= sup f u(x) (~7 . g(x)) dx. (1.2) 
D g~ci(D,R n) D 

Ig(x) l ~hCx) 

An important example is the case when u : ZA, the characteristic function 
of a subset ,4 of R n. Then 

f i~Tul = sup f (V " g(x))dx.  
Q geCl(~,Rn) A 

[ g l ~ l  

If  this supremum is finite, A is called a set of finite perimeter in ~2. If  ~A is smooth, 

then by the Divergence Theorem 

f [Vu 1 = H,,-I (~A A O), 

where H "-I is (n - 1)-dimensional Hausdorff measure (surface area measure). 

It is therefore natural to define the perimeter of any subset of D by: 

Pera A = perimeter of A in Q---- f [~7Za I. 
D 

The following two properties, easily proved, will be useful later. 

Proposition 1. (Lower Semicontinuity) ([11]) I f  u,--~ u in LI(D), then 

l im in f  f [~Tu~l ___ f 1~Tul. 
D D 

Proposition 2. (Compactness of BV in L 1) ([11 ]) Bounded sets in the BV  norm are 
compact in the L x norm. 

We now present two technical lemmas; the first is an approximation theorem 

for sets of finite perimeter by sets with smooth boundary. 

Lemma 1. Let ~ be an open, bounded subset of  R n with Lipschitz-continuous bound- 
ary. Let A ~ D be a set of  finite perimeter in D with O <  IAl < [D[. Then 
there exists a sequence of open sets {Ak} satisfying the following five conditions: 

(i) ~A k (h ~2 E C 2, 
(ii) t(Ak A D) d A 1 --* 0 as k --~ oo, 

(iii) Pei-a Ak ~ Pera A as k -+ oo, 
(iv) H'-I(~Ak I% 8D) = O, 
(v) l ak A o l -- I al for all k su~ciently large. 

Here I'1 refers to n-dimensional Lebesgue measure. 

Proof. First extend Za to a function fi E BV(R n) such that 

~(x) : ZA(x) for x E D, (1.3) 

f l~Tt/I ~--- O. (1.4) 
OD 

(See [11], 2.8, 2.16.) 
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Summarizing the argument of GIUST! ([11], 1.24, 1.26), we see that a standard 

mollification of ~ provides a sequence of  C ~ functions (f~} satisfying 

f~ ~ ~ in L 1 , 

lim f IVf, I = f IVh]. 
e~O 12 

Then define sets C~, t --{f~(x)> t}. By use of the co-area formula ([11]) 

and Saao's  Theorem it can be shown that there exist a value of  t E (0, 1) and a 

sequence e k -+ 0 such that 

~Cek,t ~ C ~ , 

ZC,k,t --~ ~A i n  L1(/2), 

Pera  Cek, t ~ Pera A, 

and 

• 8 /2)  = O. 

Such a sequence, which we denote simply by {Ck}, will not, in general, satisfy 

the condition (v). It therefore remains to be shown that the sequence of  sets (Ck} 

satisfying (i)-(iv) can be altered so as to satisfy (v) as well; that is, one must re- 

move some measure from either Ck f~/2 or ~Q \ Ck (whichever is too big) and 

give it to the other without disrupting the smoothness of  the boundary or dis- 

torting too drastically the perimeter of  the boundary in /2. 

To this end, we let E k := Ck f~ /2, and assume without loss of generality 

that I E k [ -  t A I > O .  

Define 

= I g k l -  IAI 

which, by (ii), goes to 0 as k - +  c~. 

Also define 

Lk = 2k , (1.5) 

and impose o n / 2  a grid Gk of  hypercubes [t)k.~Nk of side length Lk with Q~ Q/2 (.:~t Ji= 1 

for all i. Since #/2 is Lipschitz-continuous, there exists a sequence of  grids {Gk} 

such that:  

lim I/2 \ Gkl = 0. (1.6) 

It follows from (1.5) that the measure of any cube in the lattice exceeds the amount 

of  volume which we need to transfer from Ek to /2 \ Ek. In fact, L~, > 22k. 

Selecting the cube 0 k which maximizes 

{IONIA EkI : Q~ E Gk}, 

we split the argument into two cases, depending on whether or not QkQ Ek. 
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Case 1. O k Q Ek. 
Since 2k < �89 I Q k I, one can remove a smooth subset of 0 k, say Sk, having 

volume ;t k and perimeter which goes to zero as k--> o0. Placing this set Sk in  

the complement of Ek yields the desired set Ak :=  Ck \ Sk. 

Case 2. (~k \ Ek =l = fJ. 
Then [Q*/5 Ekl <~ I Qk[. I f  N, represents the number of cubes in Gk, it follows 

that 

Nk,-~ 
LT, 

and 

Furthermore, 

LT," 

Qk~ G k 

Inequality (1.8) implies 

levi . .  

[ Q'k ('X EkI ~= " ~  Lk Nk 

Since 

by (1.5), it follows that 

(1.7) 

(1.8) 

- I n \  a l. 

in  \ Gkl 

Nk " 

1 
Now ~-k ~ 2k by (1.5) and (1.?), while [~  \ Gkl -+ 0 by (1.6), so that 

I Qk A E~I > ;t k for sufficiently large k. 

This last inequality asserts that  ok contains enough of Ek to achieve (v). We 
now collapse the cube continuously towards its center through a family Rk of sets 

which have smooth boundary a n d  which satisfy a uniform bound: 

supPera T <  M k for some M k : O(L~-I). ' 
T~R k 

At some point in this process one must obtain a set T;, E Rk with 

If  we remove this set from Ek, the boundary of the resulting set Ek \ T~ will 
fail to be smooth only on an (n - 1)-dimensional set in cgEg A OT~,. Near this 
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~A set, onesmooths the boundaryof  Ek\TT, in such a way as to leave [T~ Ek[=• k. 
Actually, it is conceivable that smoothness could be lacking on a larger set if 8Ek has 

high oscillation while approaching 8T~ tangentially, but this can be averted through 

a slight modification of  Rk; e.g. through a small rotation. 

Now we define Ak :=  Ck \ T~. Recall that E k -= C k f~ Q and note that: 

limksup Pera  Ak ~ likm (Pera Ck + Pera T~) 

__< lira (Pera Ck + Mk), 
k 

so that 

limksup Pera Ak <= Pera A, 

since {Ck} satisfies condition (iii) and Mk : O(L~ -1) -+ O. On the other hand, 

ZAk--~ Za in Ll(I2) so that, by Proposition 1, 

hence we conclude that 

lim infPera  Ak > Pera A ; 
k 

lim Pera Ak = Pera A. 
k - - ~  o o  

, e5 

a 

_3 

f 

b 

~k 

Fig. 3 a. I x C Qk satisfying I T~ f~ E k I : ~k; b. E k \T~ in ~k with boundary smoothed 

Combining Cases 1 and 2, we obtain a sequence (Ak) satisfying conditions (i)- 

(v). 

Note. We could actually find sets with boundary C k, k > 2, by this process, but 

C 2 will suffice for our purposes. 

The next lemma does not concern functions of  bounded variation, but rather 

asserts the existence of  a smooth function measuring the distance from a smooth 

hypersurface to a nearby point not on the surface. 

Lemma 2. Let s be an open bounded subset of  R" with Lipschitz-continuous 
boundary. Let A be an open subset of  R n with C z, compact, non-empty boundary such 
that Hn-I(SA • 80 )  : O. 
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Define the distance function to OA, d : 32 ~ R,  by 

J d is t (x ,A)  x E O \ A  

d(x) = I - d i s t  (x, A) x E A/% ~ .  

Then for  some s > O, d is a C 2 function in (] d(x)] < s) with 

Furthermore, 

IV dl : 1. (1.9) 

lim H"- l ( (d (x )  = s)) = H"-J(OA).  (1.10) 
s-->O 

Proof. When restricted to {0 < d(x) < s) or ( - s  < d(x) < 0), d will be C k 
provided 8A E C k ([10], App. A, and [19]). The triangle inequality yields Id(x) 

- d(y) l <= Ix - Y l; (1.9) then follows from noting that, for x a n d  y on the same 

normal to  OA, I d ( x ) -  d(y)l = I x - y l .  Finally, (1.10) is classical; see e.g. 

MODICA ([20]) for a proof. 

Note. We will later apply Lemma 2 to (ilk} constructed in Lemma I. In the 
proof of (1.10) by MODICA, it suffices to have a C z distance function, which is 

why the same degree of smoothness is desired for 8Ak. We also remark that while 

d(x) is only locally smooth, it is globally Lipschitz-continuous. (Lemma 11 proves 

this fact in a more general setting.) 

B. The Result for  W:  R --~ R 

We consider first a non convex energy density W: R -+ R having the follow- 

ing properties: 
(a) WE C 2. (b) W >_ 0. (c) IV has exactly two roots, which we label a and b, 

with a <~ b. (d) W'(a) = W'(b) = O, W"(a)  > O, W"(b)  > O. (See Fig. 4). 

a b s 

Fig. 4. Graph of I,V 

Restating the unperturbed problem (P) for this W, we begin with the variational 

problem: 

(p) inf f W(u) dx , 
u~L I( F~) 
~ UdX=C 

,f~ -: 
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where c is any number satisfying 

a r O l < c < b l O [ .  

The minimizers of (P) are precisely the set o fL  ~ functions taking only the values 

a or b in such a way as to satisfy the integral constraint. Equivalently, minimizers 

correspond to partitions of Y2 into measurable sets A and B such that a I A[ + 

blBI----e .  
Through the introduction of the singular perturbation e2 [Vu[2, one obtains 

the associated perturbed problem (P~): 

inf f W(u) + ~2 l~7ut2 dx. 
u ~ H ~ ( O )  

f udx=c 
g2 

D 

Let u, denote a minimizer of  (P,). Existence of  such a minimizer can be shown 

using the direct method of the calculus of variations. (In general, minimizers will 

not be unique.) The goal is to characterize Uo = lim,j_+o u,j for anyL~-convergent 

subsequence of  {u,}. A compactness argument asserting the existence of  a conver- 

gent subsequence will be given later using Proposition 2. 

Theorem 1 gives a purely geometric criterion to select the possible limit points 

Uo from the large set of minimizers to (P): a "preferred" solution to (P) is one that 

minimizes interfacial area between the states u = a and u = b. 

Theorem 1. Suppose u,j --~ Uo in LI(.Q) for some sequence of  numbers 

where u,j is a solution of  (P,). 

Then Uo is a solution of  (Po): 

(Po) inf Pera  {u = a}. 
u~ B V( O) 

W(u(x)) = 0 a . e .  

f udx=c 
~2 

ej ----~ 0, 

The proof  relies on correctly identifying the first non-trivial term in an asymp- 

totic expansion for the energy of (P~). It is easy to construct a function in H~(12) 

having energy O(e). Such a function will take on only the values a and b except 

in a transition layer of  width e between the two states. Thus, anticipating the order 

of  the first term, we rescale the problem and consider the functionals F~ : LI(y2) 
R given by 

Ill F~(u) = o ~ W(u) + ~ IVul 2 dx u~ H' (O) ,  f u d x  = c 
t~ 

otherwise. 

At the same time, define Fo : LI(,Q) -+ R by 

W(s) ds Pera  {u -- a} 
Fo(u) ~- 

u ~ By(O),  W(u(x)) = o 

otherwise. 

a.e .~ f u d x ~ e  
D 
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The penalties of  + oo in the two previous definitions allow us to define F~ 

and Fo on LI((2), a space whose topology has desirable compactness properties 

with respect to H l and BV. 
The theorem follows easily from the two properties listed below, which com- 

prise a working definition of  the F-convergence of  a sequence of functionals 

{F~} to a /'-limit, Fo, with respect to the L ~ topology ([7]): 

(i) For  each v E LI(I2), and for each sequence {v,} in LI(f2), 

v,--> v in LI(.Q) implies lim infF,(v~) ~ Fo(v). (1.11) 

(ii) For  each v E Ll(g2), there exists a sequence {gq} in L1(I2) satisfying 

~V-+ v in LI(~Q) (1.12) 

and 

jlim F,j (@9) = Fo(v). (1.13) 

Notation. If  {F,}, Fo satisfy (1.11)-(1.13), we write 

F(LI([2) -) !ira ~ F,(~) = Fo(v). 
Q--~t) 

Remark 1.14. The real advantage of  proving F-convergence, rather than simply 

the convergence of minimizers, is that the results adapt immediately to continuous 

perturbations of  F~. This is clear from (1.11)-(1.13). Thus one can characterize 

the asymptotic behavior of  minimizers of  a whole family of  problems obtained 

from F~ by the addition of  a functional continuous with respect to LI(~2) (e.g. 

f+ w(.) + ug(x) + e [Vul 2 dx for gE L~(Q)). 

Proof of Theorem 1. For  the moment we delay the proof  of  inequality(1.11) and 

the construction of  a sequence yielding (1.12) and (1.13) and show how Theo- 

rem 1 follows from these claims. 

Let Wo E BV(Q) be a minimizer of  Fo. Existence of such a function follows 

from the direct method using the compactness and lower semicontinuity of  BV(O) 
with respect to LI(s (i.e. Propositions 1 and 2). In fact, minimizers will have an 

interface which is analytic and of constant mean curvature for dimension n < 8. 

For  a more complete description of  minimizers of Fo see the work of GONZALEZ, 

MASSARI & TAMANINI ([12]). 
Let {w,j} be the sequence satisfying (1.12), (1.13) for w0. Assuming that the 

minimizers {u,j} converge in L ' (O)  to a limit uo, it follows from (1.11) that 

lim inf F,j(u,) ~ Fo(uo). 

Using that F,j(u~) ~ F,j(w~j), one has 

Fo(uo) < lim inf F,j(u,) < lim F,. (w,) = V(wo). 
= = j---> o ~  J 

Thus Uo must be a minimizer of Fo and Theorem 1 follows. 
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We now return to the task of  proving / '-convergence: (1.11)-(1.13). Before 

proving (1.11), we should make some preliminary observations about the kinds 

of L~-convergent sequences {v,} and limits v that needs be considered. 

If  W(v(x)) :# 0 on a set of positive measure, then Fo(v) = + co. But 

1 
lim inf F,(v,) ~ lim i n f - -  f w(~,(x)) d x  = + o~ 

E D 

as well, so that (1.11) is immediate. Equally simple is the case in which 

for here 

f v d x # c ,  
D 

f v~dx#c 
D 

for all small e, again yielding 

lira inf F~(v~) = + oz. 

Therefore, consider only those v E Lt(Q) satisfying 

W(v(x)) = 0 a.e., f u dx = c. 

Proof of Inequality (1.11). First we assume that the sequence {v,} satisfies 

a < v, < b. (1.15) 

Applying the Cauchy-Sehwarz inequality to F,(v,), we obtain 

F,(v,) >= 2 f ~ / ~ )  [Vv,(x)[ dx. 
D 

Let $ : R - + R  be defined by 

t 

4'(0 ---- 2 f 1/W(s) ,is, (1.16) 
u 

so that 

Faro > f I V*(v,(x))l dx. 
~2 

Then, from (1.15) and the L t convergence of v, to v, it follows that 

r -+ $(v) in L'(Q). 

By the lower semicontinuity shown in Propositon 1, we conclude that 

lim inf F~(v,) >= lim inf f ]Vck(v,) t dx >= f I V4,(v) [. 
D D 
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Now 

[ o {v = a) 
4,(v(x)) 

2 / I/-~-s)ds {v : b}, 

since W(v(x)) = 0 a.e., and therefore 

f I V4,(v)[ = 2 IV(s) Pero {v = a} = Fo(v), 
D 

which establishes (1.11). 
To justify assumption (1.15), we compare {v,) to the truncated sequence {v*} 

defined by: 

Ii " {v,(x) < a) v~* = (x) {a ~ v~(x) ~ b} 

{v,(x) > b}. 

First note that v , -> v in LI(/2) implies that v~*--> v in L'(/2). Also, 

f '  F~(v,) ~ ~ W(v,) --k e IVv~l 2 dx 
D 

. 1 

-- F~(v*) + ~{]o~>b} T W(v3 + ~ tVv~l 2 dx 
{v~<a} 

>__ F~(v*). 

Since the proof  of  (1.11) made no use of  the constraint 

f v~dx : c, 

this last inequality shows that it suffices to consider only sequences bounded as in 

(1.15). 
The proof  of  (1.12), (1.13) involves the construction of  a sequence of  functions 

such as to traverse efficiently a boundary layer while bridging the values a and b. 
Before presenting the proof, we discuss some properties of  the solution z(s) of 
the following ordinary differential equation, which will be used in the construction: 

dz _ I/-W---~ , (1.17) 
ds 

z(O) : �89 (a + b). 

Local existence is clear since ] /W-~  will be Lipschitz-continuous in a neigh- 

borhood of  �89 (a + b). However, by writing 

z(s) 

f 1/IV(r/)~d~7 = s (1.18) 
�89 
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and noting that W0/) > 0 for a < ~ /<  b, one sees that local solutions may be 

extended to all of  R. Furthermore, 

a .< z(s) < b for all s, (1.19) 

and 

In fact, since 

that 

lira z(s) = b, lim z(s) = a. (1.20) 
S ' - ~  O O  8 - q  ~ - -  o O  

W"(a) > 0 and W"(b) > O, it follows from Taylor's Theorem 

where A and B are sets of  finite perimeter in L~ and 

alAl+blSl=c. 

Let _P : =  8A f~ 8B and assume F E  C 2. At the conclusion of the proof  we 

will show that this represents no loss of  generality. 

Recalling Lemrna 2, consider the function d:  f2 --> R, given by 

f dist ( x , / )  xE B 
d(x) 

[ "dist ( x , / ' )  x E A, 

which represents the signed distance to /1. 

Now define a sequence of  functions g, : R --~ R which effect the transition 

v(x) = { ~ x E A  

xE  B, 

1 c 1 
:< ]~7 - a-'----~ for [~ - a f small, 

1 c 2 

=< I~ - b] for I~/ - b l small, 

where cl and c2 are positive constants depending on W. 

This implies the decay estimates: 

I b - z ( s ) l ~ c 3 e  -o's as s - + o o ,  I a - z ( s ) [ < = c a e  c's as s--~ - oo, (1.21) 

where c3 and c4 are again positive constants depending on W. 

Construction of {~,i} satisfying (1.12), (1.13). Let v E LI(~Q). We may immediately 

assume that 

vE SV(~), W(v(x))=O a.e., f v , tx=  c 
D 

(otherwise Fo(v) = oo and the choice Q~ = v for each e achieves (1.12), (1.13)). 

Therefore we may write 
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between the zeroes of  W: 

gXs) = 

b - z  1 

(s - 21/7-) + b 

1/7- (s + 2 I/7-) + a 

s >  21/7- 

1/7 <-- s < 21/7- 

tsl _-< 1/2 

- 2 1 / 2 - - < s - - <  - 1/7- 

* <  - 2 i f ' .  

(1.22) 

Replacing s by d(x), we obtain a sequence {~,} given by 

~(x) = &(d(x)) (1.23) 

Notice that for e small, d(x) is Lipschitz-continuous in (I d(x) l < 2 1/3, so that 

& ~ H'(O). 
As will be shown, this sequence would serve to verify (1.12), (1.13) if 

f & d x = c .  
12 

This, however, is not  generally the case; and the sequence must be altered by an 

additive constant so as to meet the integral constraint. 

We split the argument into three steps, the first of which is to prove that the 

additive constant is O(e). 

Step 1. Claim 

with 

~ -+ v in Ll(f2) (1.24) 

f ~ dx = c + ~,  where ~, = O(e). (1.25) 
12 

From (1.23) 

f ~dx= f vdx + f ( ~ -  v) dx 
12 12 12 

so the claim is that 

{Id(x) 2 

{L~<~,)Ef2~/:_ ~ ( ~  -- V) dx = 0(~) .  
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First consider 

s s {o<a(x)<27~} {o<d(x) <~'} (1.26) 

+ (., = (d(x) - 2 t/2) d~. 
{f2 <a(~) <2~/7) 

In light of (1.21), the last integral is O(e-C'NT). From the co-area formula ([9]) 

f f(h(x)) IVhl ax = f f ( s )  H"- ' {x:  h(x) = s} as, (1.27) 
gt R 

which holds for any Lebesgue measurable f and Lipschitz-continuous h, we find 
for the first integral on the right hand side of (1.26), 

s 
(o <a(~) <1/7} 

f , (z (~ ) - ) -b l  S ,Vdl dx (since IV dl = l  by (1.9)) 
{o<d(~)<~} 

~(\o<szr H=-'{d(x)=s})ilz(+ ) -bids 
111/" ~ 

< f max Hn-l{d(x) 
\ 

: ~o~=_~ = s~),oy I z ( ~ ) -  b lab .  

Then (1.10) and (1.21) imply that 

f z < const. 

Hence 

f (b, - 0 d~ = 0@).  
{0< (x)<2VT} 

A similar argument works for 

( _ 2 ~ f ) < o ) ( ~  ~ - v) dx 

and (1.24), (1.25) follow. 

Step 2. Here we show that, as e -+  0, the energy of {~e} approaches Fo(v), 

Claim: l ima/"1 W(~D + ~ IV~el 2 dx <= Fo(v), (1.28) 
OJ 
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"[o confirm (1.28), first note that 

1 

f - 7 -  w(~D + e IVgl = dx = o, 
{ Id(x) l >21t~ } 

so that, by (1.9), 

f.= f ! w ( g ) §  
{Id(x)l <2~/7} 8 

{Id(x)l <21/7) 

Applying (1.22) and the co-area formula (1.27), one finds that 

~9 

= 

-r  

=V7 

: (+ + W(g,(~)) + ~g~(~) H " - ' { d ( x )  = ~} d~ 

-r : (1 ,~) 
+ W(&(s)) 4- e&(s) H"-i{d(x) = s} as. 

-2!/7 

(1.29) 

= s}ds  

Next, by use of a Taylor expansion about b to approximate W(g,(s)), 

2~ 

: (+ ~ )  __ W(g,(s)) 4- e&(s) H"-i{d(x) = s} ds < 

!17 

max Hn-i{d(x) = s}) 
VZ_~,z21/7 

(y)2] : 2  (s - 2 l/e) 2 + e ds 
. b -  b -  

�9 2 - =  
V7 

for some ~ = ~:(s) near b, and it follows from (1.10) and the decay estimate (1.21) 
that this integral approaches zero with e. A similar approach leads to the same 
conclusion concerning the last integral in (1.29). 
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Turning to the first integral in (1.29), we observe that (1.17) implies 

V7 

S [" (z (+);] : ,, 
-1/7 

_:. _<' ((+)) = f w z H" '{d(x) = 4 as 
-1/7 

---- < - -  f W z ds _ s u p  H n - l { d ( x )  : S} . 

e -1 /7  \lsl <1/~ 

Then, since z is monotone, letting t = z , we find ~lW(t) dt = ds and 
arrive at 

2 I / - ~ ) d t  sup H"- i{d(x )  : s} <=2 I / -W-~dt  sup {{d(x) : s}. 

\z(+) ,,,-<<~ ,, ,--~ 

From (1.10) in Lemma 2, one can pass to the limit as e --~ 0 to conclude (1.28). 

Step 3. It remains to show that the addition of a constant to each ~ so as to satisfy 

the integral constraint will not disturb inequality (1.28). Define 

~ - I ~ 1 "  

It was shown in Step 1 that 17~ = O(e). We now define a candidate for a sequence 

satisfying (1.12), (1.13) through 

Clearly 

f eXx) dx = c, 
D 

but it remains to verify that 

One finds 

f l 12 .~olim F~(~) =< ]i~mo T W(~,) + e iV[, dx.  
D 

(i .30) 

1 
F~(~) = -- W(a + ~) l{d(x) < -2 ~7}I 

E 

f 1 + T w(~ + ~D + ~ [% 1 ~ dx 
0d(x)l <21/7} 

1 
-I- - -  W(b  -i- ~h) l{d(x) > 2 I/2 }1. 

8 

(1.31) 
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The first term in (1.31) can be estimated by Taylor's Theorem: 

__le W(a + ~1~) I{d(x) < - 2 I/F) I ~ ~ W' . . . .  (r ~,2 

for some ~,E ( a -  [~,1, a ~ [~,1), Hence this term approaches zero with e 
since ~/,---- O(e). The last term.in (1.3t) is treated similarly. 

To establish (1.30) thus reduces to showing that 

lim 1 f VTI(W(~ ~ 
~-~  o T~td~ + ~ )  - W(b~)) dx  = O. 

From the Mean Value Theorem we find 

, o e {Idl<21ff} +~, ) - -  W@))dx<: max IW'(s)lfl--Ll{[d(x)l<2r 

for some a > 0 small. Since this approaches zero with e, (1.30) follows. Equa- 

tions (1.24), (1.28), and  (1.30) together with (1.11) imply (1.12), (1.13). 

Our final task is to show that to assume A smooth does not lessen generality. 
We therefore relax this assumption and consider v E BV(~2) where 

f v dx = c, v(x) : { a xE  A 
a b x E ~ 2 \ A ,  

and A is a set of finite perimeter in 12. 

Now let (Ak} be the sequence of approximating sets described in Lemma 1, 

and define {Vk} by 

a xE A k A  0 

Vk(X) : b x E (2 \ Ak. 

Property (iii) of the lemma implies that 

lira Fo(Vk) = Fo(v), 
k.-+ oo 

and from property (ii), v k-+ v in LI(~2). 

A sequence satisfying (1.12), (1.13) with v replaced by Vk exists since OAk is 
smooth. A diagonalization argument then yields a sequence {~%} in Ha(O) satis- 

fying (1.12), (1.13) for a general v E BV(g2). 
This completes the proof of Theorem 1. 

We turn now to the question of compactness for the minimizers of (P,). Some 
additional hypothesis on W seems to be required; it is sufficient to assume that W 
has polynomial growth: 

Proposition 3. Let {u,) be a sequence of minimizers of  (P,). Suppos e that there exist 
positive numbers cl, c2, So and a number p >~ 2 such that 

ct ls[P ~ W(s) ~ c2 ls~ p for lsl ~ so. (1.32) 

Then there exists a subsequence {u~j} which converges to a limit uo in Lt(~2). 
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Proof. Recall the definition of ~ from (1.16). Notice that 4~ is a monotone increasing 

function, and that from (1.32) we have 

r = I /W-~)~ I/~-~ Is[ p.' for Isl ~ So. 

We conclude that ~-~ exists and is uniformly continuous on compact sets in R. 

Letting {v,} denote the sequence {r we seek a uniform BV(12) bound 

on this sequence so as to exploit tlle compactness of B V  in L ~. By comparing the 
energy of {u,} to the energy of the constructed sequence {~,} used in Theorem 1, 

we infer that 

f [Vr I =< F,(u,) ~ F,(O,) < C (1.33) 
t2 

for some positive C. 
Also, from (1.32): 

....... ~ u,(x) 

f ]r I = f f t/W(s)dsdx <_ c3 +c, fu#+'dx 
12 D a 12 

for some positive constants c3, c,. But (1.32) implies that 

fufdx<~ 112[ sg+l---j W(u~)dx<= 1121 s~ + C. (1.34) 
l/ CI 

Since p => 2, it follows that p ~ { p +  1, and so IIr is uniformly 
bounded in e. Thus, by Proposition 2, we may pass to an Ll-convergent sub- 

sequence 

v~ = qb(u~) -+ Vo in L1(12). 

Using the uniform continuity of ~b -1 it is then easy to show that {u,j} = (~b-t(v,)} 

converges in measure. Since the u 9 are uniformly bounded in L p, their convergence 
in L1(12) follows. 

Remark (1.35). One can replace the growth assumption on W in Proposition 2 

with the assumption that the minimizers be uniformly bounded in L~176 a similar 

argument then yields compactness. In dimension n =- 1 such an assumption is 
easily justified from the monotonicity of minimizers (see [5]), For n >-- 2, this 
bound was proved by GURTIN d~ MATANO ([15]). 

Remark (1.36). MODICA ([20]) proves a result very similar to Theorem 1. His 
argument is more general in that it makes no regularity hypothesis on W beyond 

continuity.  However, instead of  establishing the /'-convergence of F, to Fo as 
is done here, he makes use of results by GONZALEZ, MASSARI & TAMANINI ([12]) 
about the nature of minimizers of (Po) to achieve the conclusion of Theorem 1 

without the full /'-convergence. The full /'-convergence is needed in proving 
existence of local minimizers (see [18]). MODICA'S construction of the transition 
layer satisfying (1.12), (1.13) is also Somewhat different, suggesting that there is 
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considerable flexibility in the argument just presented. MOD/CA has also recently 

proved a generalization of Theorem 1 which includes a term f o r  contact energy 

along O~Q ([21]). : . .  

C. Generalization to an Integrand with Spatial Dependence 

In this section we adapt the techniques of the previous section to the case 

where the nonconvex integrand contains some spatial dependence. Choosing a 

simple model which preserves the essential two phase nature of the problem, we 

consider 

inf (1.37) ueLl(~) f (u(x) -- gl(x)) 2 (u(x) -- g2(x)) 2 dx, 
f l ldx~c g2 

f2 

where gt, g2:~2 ~ R satisfy g t ( x ) <  g2(x) and  are both bounded in the C 1 

topology, while c is any number satisfying 

f g t d x < c <  f g 2 d x .  
Q 

As before, any solution of (1.37) corresponds to a partition of f2 into two sets 

A and B, where now u(x) = gj(x) in A and u(x) = g2(x) in B, so as to  satisfy 

the constraint. 

Introducing the singular perturbation e 2 1VUl 2, we  let u, denote a solution 

of  the perturbed problem: . ~. , 

inf f (u(x) -- gl(x))2'(u(x) -- g2(x)) 2 + e 2 IVu]2dx. (1.38) 

.~ UdX=C 
Q 

Here again we expect a geometric characterization of Uo = lim~_+0 u~ involving 

interfadal area.  The dependence of the integrand upon x, however, 9hdng- 

es the limiting problem to one which might be called a weighted perimeter prob- 

lem. Define 
g2 (x) 

h(x) = 2 f (s - gl(x)) (g2(x) - s) ds. 
g~(x) 

We now turn to 

Theorem 2. Suppose that ug-+ Uo in Ll(f2) for some sequence of numbers ej ~ O. 
Then uo is a solution of 

inf !h(x) IVZ(.=g,}I. (1~39) 
u~BV(~)  . 

u(x)e{~ ~ (x),g ~(x)la.e. 
~ tgdx~g 

D 

Remark. If  tg{u = g2} is smooth for u in (1.39), we can apply the Divergence 

Theorem to definition (1.2) and so obtain 
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The proof of Theorem 2 follows the same outline as that of Theorem 1. There- 

fore, rather than detailing the whole proof, we present only those parts of the 

argument that involve notable alterations. 

P r o o f  o f  Theorem 2. We define the functionals G,, G : LI(~Q) -+ R by 

G,(v) = 

J~'oo --~(v(x)-g'(x))2(v(x)-g2(x))2+el~Tvl2dx' vEH'(~)'fvdx=C'otherwise, n 

[ f h(x) lVZ~=g,} . vE BV(t2), f v d x =  c, v(x)E {g~(x),g2(x)} a.e. 

Go(v) = / ' + o  ~ 
otherwise. 

Since h(x) is a uniformly bounded, positive function with uniformly bounded 

gradient, it is clear from (1.2) that Go(v) is finite for v E BV(I2), provided 

f v dx = c and v(x) E {gl(x), g2(x)} a.e. 
D 

while Go(v) = oo for any v such that {v ~- g2} is not a set of finite perimeter 

in g2. 
As before, it suffices to establish the/ '-convergence of G, to Go, i.e. the ana- 

logues of (1.11), and (1.12), (1.13). To obtain the analogue of (l. 1 l) we consider 

{v~}, v E L I (~ )  such that v,-+ v in LI(~Q)with 

v E BV(~2), f v dx ~- c, v(x) E {gl(x), g2(x)} a.e. 

Again, in case any of these conditions on v fails to hold, the inequality is trivial. 

We may also assume that gl ~ Ve :~ g2(x) since the truncated sequence 

[ g~(x) {v~(x) < g~(x)} 

L(x) = Ivy(x) {gAx) =< v~(x) < g~(x)} 

1 
[g~(x) {v~(x) > g~(x)} 

satisfies F,(v~) >~ F~(v,) and ve-+ v in La(~). Now define f :  ~ •  R by 

a n d  ~p, : .(2 --~ R by  

f (x ,  s) = 2(s - g~(x)) (g~(x) - s) 

%(x) 

~,(x) ----- g,(fx) f(x, s)ds. 

An application of the Cauchy-Schwarz inequality leads to 

O~(v~) >= f f(x, v,) IVv~[ dx = ,~upR,  ' f f(x, v,) <7v,, a> ax. 
o ( , ) ~J 
Jot~l 
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For fixed a E Col(Q, Rn), l al ~ 1, it follows that 

O,(v,) ~ f f  ~V~p~(x), o(x)} - \ , f )  Vxf(X, s) ds, a(x) dx, 

and an integration by parts yields 

re(x) 

GXv3 >= - f f 
-q g~(x) 

i f(x,  s) (V �9 ~(x))) + (Vxf(x,  s), (~(x)) as dx. 

Using the L ~ bounds on gl, v~,f, Vxf, a and V �9 a, we pass to the limit as e-+ 0 
Thus, 

v(x) 

lim inf G,(v,) ~ -- f f f(x, s) (V.  a(x)) + (Vxf(X, s), a(x)) ds dx 
~2 gt(x) 

g2(x) 

= - f Z(v=g2(x)} f Vx" (f(x, s) a(x)) ds dx 
.o *'t(x) 

= - f z~o=~(x,~ v .  (h(x) ~(x)) dx. 

Finally, taking the supremum over all admissible a, we obtain an expression equi- 

valent to (1.2). Therefore, 

lim inf G~(v,) >= Go(v). 

To construct a sequence {O,i} satisfying the analogues of (1.12), (1.13), i.e. 

~j--~ v in L1(/2), (1.40) 

lim G~.(0~.) = Go(v), (1.41) 
j -~ oo 3 J 

we again first suppose that v E BV(O) takes the form 

with 

v(x) = t{g~(x) x E  A 

Ig2(x ) x E B 

f v d x ~ r  

t2 

and 8A I'~ 8B smooth. 
In constructing the transition layer sequence, the differential equation (1.17) of 

Theorem 1 is replaced by 

?z 
~ s  (x ,  s)  = ( z  - g~(x) )  ( g z ( x )  - z ) ,  

(1.42) 

z(x, o) = �89 (gl(x) + g~(x)) = : ~(x). 
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Since g , ,  g2 are C ~ funct ions we obtain a solution z : .Q • R->R with zE C I ( , - Q  X R) 

([7]). Arguing as before we find that  

g~(x) < z(x, s) < g2(x) for  all s, (1.43) 

lim z(x, s) = g2(x), lira z(x, s) = gl(x), (1.44) 
s ~ > o o  s - +  - -  o o  

the limits on the right being approached  at an exponent ia l  rate. 

We also need an L~(-Q • R) bound  on zx(x, s) (here z x denotes the spatial 

gradient  o f  z). To  this end we note that  

z(x,s) 

d't = s. (1.45) 
j'l (~ _ gl(x)) (g2(x) -- B) 

~(x) 

Differentiat ing bo th  sides with respect  to x and solving the resulting equat ion for  

z x, we obtain  

zAx,  s) = (z(x, s) - g,(x))  (ge(x) - z(x, s)) • 

i~ - g , ) 0  - g2) + Vg2_. d~ 
g(x) 

(~ - -  g t ) (~ : ]  - -  g 2 )  2 
(1.46) 

z(x,s) 

. ] 
- V g ,  _ f  (~ _ g , )2  (g~ _ ~i  " 

g(x) 

Since gx(x) < z(x, s) < g 2 ( x )  by (1.43) and  gt  and g2 are bounded  in the C1(/2) 

topology,  it fol lows that  Zx is bounded  for  any finite s. Passing to the limit as 

s - +  ~ oo in (1.46) and using L 'Hosp i t a l ' s  Rule,  we conclude f rom (1.44) tha t  

l im Zx(X, s) = Vge(X) and lim Zx(X, s) = - V g l .  
8~)" OO S-~" - -  OO 

We thus infer tha t  

sup t Zx(X, s) [ < oo.  (1.47) 
1 2 •  

Reint roducing  the distance funct ion d given by 

{ t -  dist (x, 8A A c~B) x E A 

d(x) = /dist  (x, 8A F~ ~B) x E B, 

one can define a bounda ry  layer  sequence {~} through 

I 
g2(x) {d > 2 l/e} 

~Xx) = z(x, d(x)/O {/at < l/2} 

[g,(x) {d < - 2 r  

where ~ is l inear in d(x) on { I / e <  ]d I < 2 l /~  so as to be cont inuous for  all x. 

F r o m  here on the p r o o f  of  (1.40), (1.41) follows in the same manner  as did 

(1.12), (1.13), except  that  one must  use (1.47) to est imate ] g ~ l  2 in proving  the 

analogue o f  inequali ty (1.28). 
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2. Vector Dependent Energy 

In this section, we consider a generalization of  Theorem 1 to a variational 

problem in which the nonconvex integrand is vector-dependent. In order to 

preserve the "two-phase" nature of  minimizers, we consider a nonnegative inte- 

grand W: R2-+  R which is zero on two disjoint closed curves F~ and  F2, 

where F~ lies in the interior of  F 2 .  " 

As in Section 1, one goal is a characterization of  the limit of  minimizers of  

the perturbed problem. Theorem 3 shows that such a limit will again minimize 

interfacial surface area in .(2. As before, ~ is an open, bounded subset of  R n 

with Lipschitz-continuous boundary. However, this characterization is incomplete 

since the limit problem does not determine where on F t  kg / ' 2  the limit takes 

its values. We also characterize the cost per unit area along the interface of  the 

transition made by the perturbed minimizers from Fx to F 2. The latter is measured 

(asymptotically) by the length of a geodesic that minimizes distance with respect 

to a degenerate Riemannian metric on the plane. This is accomplished in Part  A 

by identifying the F-limit and by proving/ ' -convergence in this setting. In Part  B 

we establish certain properties of the degenerate metric which were needed in 

Part  A, including the existence of geodesics that minimize distance. 

A. Generalization to W: R2-+ R 

Consider first a model in which W is only radially dependent. Let u :, f2 ~ R 2 

and W ( u ) = ( l u l - a )  2 ( I u l - 6 )  2 with 0 < a < b .  Then the unperturbed 

problem is 

inf ( ( l u l  - a)2(lul  - b)2dx, (2,1) 
uELI(~,R2) ~ ' "  

lul=c 
g2 

where a 1•1 < c <  b IOI. 
Clearly any function with range on the circles of radii a and b that satisfies 

the constraint will minimize (2.1). Now introduce the perturbation 

1~ 2 tVUl2 ( =  E 2 IVUl] 2 -~E: 2 ]VU2I 2) 

and let u, denote a solution of 

inf  f ( t u l  - a)2 ( lu l  - b) 2 + e 2 1~TulZdx. 
u~Hl( ~) d 
I i.!=c ~, 

(2.2) 

Proposition4. Suppose there exists a scalar function 
lu~]-->" Ro in La(s Then Ro solves 

inf Per a {R = a}. 
REBV(~) 

R(x)E{a,b}a.r 
f Rdx=c 

D 

RoELX(~) such that 

(2.3) 
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Proof. I f  one writes 

u(x) = R(x)  (cos O(x), sin O(x)) with R :~ 0, 

(2.2) becomes 

inf  f (R(x)  - a) 2 ((R(x)  - b) 2 + e 2 I VR 12 + e2R 2 IV012 dx.  (2.4) 
u~H~(O) 

R d x : c  t 2  

D 

Then from 

u,(x) : R,(x) (cos O~(x), sin O~(x)), 

it is evident that a minimizer must satisfy V0, : 0. The value of the constant 0~ 

is arbitrary without any further boundary conditions or constraint. Since the in- 

fimum in (2.4) must be achieved by a function of the form 

u(x) : R(x)  (cos 0, sin 0), 

with 0C R, RE H~(E2), the problem reduces to the scalar case of Section 1. 

The proposition follows from Theorem 1. 

Thus, the moduli of the minimizers of  (2.2) converge in L1($2) to a solution 

of  the partition problem, and the phase is such as to effect the transition between 

the two zero states of W along a radial path in the plane. 

Remark. The existence of  a subsequential limit Ro follows from Proposition 3. 

Note that since the value of the constant 0, is arbitrary, one cannot expect any 

determination of  the constant phase 0o of the limit of  minimizers Uo----- 

Ro(cos 0o, sin 0o). 

Generalization. Our model problem reduced to the scalar case because Wwas only 

radially dependent and the phase 0~ of u~ was constant. To generalize the problem 

we distort the radial dependence and consider W = T 2, where T:  R 2 --* R has 

the following properties: 

T 6  C 2, T :  0 only on FI  L / / 2 ,  

where / ' l ,  Fz are two disjoint simple closed curves on the plane that admit C 3 

regular parametrizations 0~: [0, 1]--> FI,  fl: [0, 1] - ->/2 ,  respectively. Further- 

more, we assume FI  C interior of  F2 and 

T >  0 in ~ ,  (2.5) 

where ~ denotes the subset of  R 2 lying exterior to F~ but interior to F2. Finally, 

we suppose 

[~TT(y) t ~: mo for y E t ~  ( ~  F~ k J / 2 )  for some mo > 0. (2.6) 

The unperturbed problem is now 

inf ( T 2 ( u )  dx.  (2.7) 
u~L~(.Q,R 2) 
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Ul 

Fig. 5. T = 0 o n  F~ U/ '2  

Its solutions u are in one-to-one correspondence with the partitions of g2 into 

sets A and B such that u(x) E Fx on A and u(x) E F2 on B. Choosing the usual 
perturbation, we obtain the perturbed problem: 

inf fT2(u) + e 2 [Vu[ 2 dx. (2.8) 
u~H I(.D,R 2 ) 

As in Section 1, any Ll-convergent subsequence of minimizers must converge 

to a solution of the F-limit problem, so that the task is to evaluate this F-limit. 

However, in contrast to the scalar case, we are as yet unable to prove the compact- 

ness of minimizers (see Remark (2.30)). 
We begin by defining the rescaled sequence of functionals H~:L'(f2)--> R 

through 

H~(u)=l(lT2(u)-~Te[Vu[2dx otherwise.UEHl(f2'R2) 

The proposed limit functional Ho : LI (~)  -+ R is given by 

where 

12L(_y) Ver~ {u E/ '1} 
Ho(u) 1 I+ oo 

T(u(x)) = 0 a.e., Z{,+rl) E BV(g2) 
otherwise, 

t2 

L(r) f I (t)l dt. 
tt 

L(y) is defined for 7 : [t,, t2] --~ ~ Lipschitz-continuous, and y is a minimizer 

of - 
inf L(y). (2.9) 

$'(tt)Ert 
y(t2)~F~ 

The existence of y is proved below, in Lemma 9. 

Theorem3.  

= 
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Thus 

(i) for each vE La(Q), and for each sequence {v,} in La(Q), 

v, -+ v in L 1 ( Q) implies lim inf H,(v~) ~ Ho(v); 

(ii) for each 

(2.10) 

v E La(Q) there exists a sequence {~j} in LI(Q) satisfying 

~j--~ v in L1(Q), (2.11) 

lim Hs.(e,.) = Ho(v). (2 .12)  
j->- ~ J J 

As a prerequisite for the proof, we remark on the kinds of  La-convergent 

sequences {vs} and limits v that need to be considered in demonstrating the in- 

equality (2.10). 

One may immediately assume 

T(v(x)) = 0 a.e. in Q,  

since otherwise vs-+ v implies that lim H,(v,) = c~. Hence we assume v takes 

the form ~-+o 

ta(x) x E A 

v(x) = { ~b(x) x E B, 

where A ~ B =  Q and a, bELa(g2) with a : A - - > l " l ,  b : B - - * / " 2 .  

Concerning the sequence {v,}, one may suppose v, E Ha(O) since otherwise 

H,(v,) = c~. In fact, one may suppose v, E C ~ since Ca(Q)  is dense in Ha(O). 

In proving (2.10) we make use of  properties established in Part  B of this 

section concerning the degenerate Riemannian metric dr defined by 

t2 

dr(Y a, Y2) = inf ( T @ ( t ) )  [~)(t)] dt for Yl, Yz E ~ (2.13) 
~ Lipschitz- 

. I I  
continuous 
~'(t 1)=Yl 
y(t2) =Y2 

and the associated "distance to /"~", given by 

h(y) = inf dr(yo, y). 
Yo~Ft 

In particular, we note that h is Lipschitz-continuous in ~ (and therefore differen- 

tiable a.e.), and that 

IVh(y)l = T(y) for a.e. yE 9 .  (2.14) 

These facts are confirmed below in Lemma 11. 

Now define 

~h(v~(x)) for {v~ E ~} 
g~(x) L 

~0 elsewhere. 

Then the restriction of g~ to {v, E ~} is a Lipschitz-continuous function satis- 
fying 

Vg~(x) = Vyh(v~(x))" Vxv~(x) a.e., (2.15) 
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so that, in view of (2.14); 

]Vg~ I < T(v,(x))]Vv~(x)  I for a.e. xE {v,E ~}. (2.16) 

Since v,-+ v in LI(,Q), it follows that g,--+ h(v(x)) in Ll(O), where 

h(v(x)) = 0 in A, h ( v ( x ) ) >  L(y)  in B. (2.17) 

As a final preliminary to the proof, observe that, for fixed tE (O,L(y)) ,  (2.17) 

implies 
g ~ ( x ) - h ( v ( x ) ) > t  in { g , > t ) \ B ,  

h(v(x)) - g,(x) > L(y)  - t in B \ {g, > t } .  

Thus 

f Ig~(x) - h(v(x))[ dx = ~g~ ._  Ig~(x) - h(v(x))[ dx 

>= min { t ,L(y)  - t} ]{g,(x) > t }AB[  = min  { t ,L(y)  - t) f ]X{g,>t} - Zsl dx.  
- -  - -  . Q  

Consequently, X(g,>t}---~ZB i n L l ( O ) a s  e--~0 for all t E ( O , L ( y ) ) .  

Proof of (2.10). To establish (2.10), we note first, using (2.16), that 

>= f __I T2(v,(x) ) + e IVv, I 2 ,Ix 
{o<g~<L(2) } e 

>= 2 f r(v~(x)) ]vv~] .x 
{0<gs<L(2)} 

=> 2 f IVg:x) i dx.  
{O<g~ <L(z)} 

Next, we apply the co-area formula for B V  functions ([11], pg. 20). Since the sup- 

port of IVx{g~>t}[ C_ {g[=  t}, we arrive at 

L(e) 

H,(v,) >= 2 f -  f I VZ(g,>t}I dt 
0 {0 <Re <L(~)} 

Fatou's Lemma and Proposition 1 (lower semi-continuity) now yield: 

L(V) 
lim inf He(v,) ~ 2 f -  lim inf f [VX{e,>t}[ dt 

0 0 

L(v) 
=> 2 f -  y IVz, l at 

0 

= 2L(y) Pero B = 2L(y) Pera A = Ho(v) .  

This establishes (2.10). .... :: 
It remains to construct a sequence of functions satisfying (2.11) and (2.12). 

Toward this end, we insert here a remark about the solution of the following 
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differential equation, which will be used in the boundary layer: 

----_dz T(7,j(z)) , z(0) = �89 (2.18) 
ds I;~,j(z) I 

For  any t~ > 0, 76 : [0, 1] --* R z is a C 1, regular curve that minimizes the distance 

between _r'l and / '2 in the metric dra(yl, Y2) given by 

t2 

dr~(yl, y2) --- i n f  f (T(~,(t)) + ~) I~,(t) ldt. 
? ( t l ) = Y t  
~'( t~)=y2 t t 

The existence of  such a geodesic is demonstrated in Lemma 4. For the purpose 

of  the construction, t~ is chosen equal to ej, although it would suffice to admit 

any J ---- t~(ej) that approaches zero with % 

Since the value of  dr, is independent of parametrization, we require ),,j to 

have constant speed, take 

l~,j(t)] = s~j----- Euclidean arclength, 

and write y,j(0) = a , j E / r ,  and y,j(1) ----- b~jE ['2. For  tE (0, 1), y , j E ~  and 

y,j tends uniformly to Z (see Lemma 9). Finally, Lemma 6 asserts that s~ < c~, 

where c~ is a positive constant independent of e. 

Denote by z,j the solution of (2.18). From (2.18) follows 

z , .  �9 

r J  lT"J(r/--~)! " (2.19) 

J r(~j(~)) ~ -- ~ 

For  r/E (0, 1), the integrand is positive and has singularities at the endpoints of  
this interval. Furthermore, Taylor's Theorem yields 

T(y,j01)) ---- I(VT(y~j(O)), ~)~j(~)) l l1 - ~/I for some ~ E (~/, 1). 

It then follows from the estimate (2.86) of  Lemma 10, proved below, that there 

exist positive numbers ~ and ~,  independent of  e, such that: 

T(y,j(~)) ~ ~ I 1 - ~[ provided 1 - ~ --__ ~ ~ 1. 

A similar estimate holds for r/ near 0. We now conclude from (2.19) that 

lim z~.(s)= 1 (2.20) 

l i m  z,j (s) = O. (2.21) 

In fact, our estimate implies 

]1 - z,j(s) l ~  ce -~  as s--~ oo, (2.22) 

where b is another constant independent of  e. An analogous statement applies 
to the rate of  convergence of  the limit (2.21). 

Proof  of (2.11), (2.12). The proof  now proceeds in two steps. In the first, one sup- 

poses that v takes on only two values; in the second, the construction is adapted 
to cope with a more general v. In either case, we may assume T(v(x)) -~ 0 a.e. 

and g(o~r~ E BV(s since otherwise Ho(v) = oo and the construction is trivial. 
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Step 1. Assume v takes the form 

ao E F t  x E A 
v(x) = 

bo E 1"2 X E B, 

where AL/  B = ~ ,  ZAE BV(f2) and y ( 0 ) =  ao, 7 ( 1 ) =  bo. As in the scalar 

case, one may also assume without loss of  generality that P : =  OA A 8B is 
smooth (see Lemma 1). 

Using Lemma 2, we introduce the distance function d:  ~9 -+ R by means of  

/dist (x, P)  x E B 

d(x) = { ~ -  dist ( x , / ' )  x E A, 

and define the construction {~} by the formula 

ev(x)= 

a,y for {d(x) < - 2  t/X} 

(d(x)l~ for {]d(x)l < I/X} 
~'J (% ~-Tj t t 
b,j for {d(x) > 2 ]/~}, 

(2.23) 

with O,j linear in d(x) for {]/Tj ~ I d(x) ] =< 2 l/X}, so that O,j is continuous and in 

H t ( ~ ) .  Note that the uniform convergence of  7~y to 7 (Lemma 9) implies that 

a~j-+ ao and b~j--~ bo, so that (2.11) is immediate. 

To prove (2.12), write 

1 
= - -  7 2 ",%) f_e, (,,, (=,, (d(x)~/ 

\ ey l l }  
{ Idl <l/ej} 

+ ej ~'V zv zv \ e~ ! IVd[ 2 dx (2,24) 

+ ~ f linear piece. 
{~/Tj<[d[ <2~/7j} 

First consider the integral of  the linear piece over {r < a < 2 r 

f lr=(e v) + t%l 2 
{VTj<a<2@ ej 

= - - T  2 (d(x) - 2 ]/7) + by 

[ b~j - 7~j(% [Vdl 2 ,ix. 
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Since [Vd I = 1 for ej small by (1.9), the estimate (2.22) implies that the integral 
above approaches 0 as e~ ~ 0. The same is true of 

/ 2 j  linear piece. 

Then we use (2.18) and the co-area formula (1.27) to arrive at 

limj_+ oosup H,j(e,j) = lim sup ej (,ajf e~j z,j \ ej I1 / 

2 ~'J 2 / 
----lim sup--ej _ ~  T /y, j (z,j ( + ) ) ) H " - ' { d ( x ) =  s} ds. 

Making the change of  variables ~ = z 9 , we obtain with the aid of (1.10), 

lim sup H~y(O,y ) ---- lim sup 2 f ~ T(7,y(B)) lT,y(~) I H"-I(d(x) = ejze~, l ( r / )}  d~/ 

I 

lim sup 2 ( sup H"-I{d(x) -=-- s}) / T(7,,(~))[~;~,(~)l a~/ 
\l,lz~ 

= 2H"- '(1") limsup L(e,j ) = 2 Pera(v E 1",} L(_?,), 

since lim L(7,,) = L(~,) from (2.85). Combining this inequality with the reverse 

inequality from (2.10) yields (2.12). 

Step 2. To establish (2.11), (2.12) for a general v consider v E L ' (O)  satisfying 

= la(x) for x E A 

v(x) ~b(x) for x C B, 

where A W B = Y 2 ,  zaEBV(O) ,  a : A - + 1 " , ,  b : B - +  1"2. Without loss of  
generality, again assume 1" : =  c~A W 0B is smooth. Further, we extend a(x) 
ao ---- 7(0) for x-~ A and b(x) ~ bo = 7(1) for x.~ B whenever it is necessary 

to consider these functions on points beyond their original domains of definition. 
Recall the assumption that 1", and 1"2 admit C 3 parametrizations o~: [0, 1] 

--~ 1"1, /3 : [0, 1] -+ 1"2, which are 1-1, surjective maps restricted to [0, 1). 
In the construction of  a sequence {0,j} satisfying (2.11), (2.12) in this more 

general setting, our strategy is as follows: first smooth a(x) and b(x) away from 1" 
using mollification, the mollification radius being dependent on the distance to 1"; 
then bridge from a,j to b,j across 1" by using the construction (2.23). 

In order to keep H,j(O,j) finite, the mollification of a(x) and b(x) must be effected 

in such a way as to leave the values of the functions on 1"1 L/1"2- To this end, we 
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introduce the L 1 map q, : .(2-+ [0, l) defined by 

[ g - m ( a ( x ) )  

q,(x) = it~n -~ (b(x)) 
t "  

Now let ~ E C~(R ~) satisfy 

w( f 0 ~ <  1, ~ ( x ) =  lxl), s u p p o r t ~ C { } x  l <  1), ~(x) d x =  1, 
R n  

and iet 

so that 

for {d(x) < _e,/4.} 
for {d(x) > e TM} 

elsewhere in R ~. 

f ,7~(x) = 1. 
R n  

Then define 

& := ~ ,  q, = f rh(x -- y) q~(y) dy. 
R n  

(2.25) 

Claim. t ,  : ~ ~ [0, 1) is smooth and has the following properties: 

L 1 ( A )  ~ . L I ( B )  -- 
offh) - - - - "  a, /~(t0 - - - - "  b, (2.26) 

Id(x)[ < 4e l / z~  t~(x) = 0 for e small, (2.27) 

lime f IV, t,12:dx = O. (2.28) 
e---~ 0 Q 

To prove (2.26), note first that 

f I~,(t~(x)) - a(x)t dx <= I~'lLoo f It,(x) - o,-'(a(x))J dx. 
- A . A 

Hence it will suffice to show that the quantity on the right tends to zero with e. 

From the triangle inequality follows 

It, - o~-l(a)]L,(a)~ [~/~ * (q, -- o~-l(a))]L'(a)~- l~" * g-l(a) -- ~162 

Since the last term clearly approaches zero, we only need to show that the same 

is true of the first term on the right hand side of this inequality. Now 

/ L f ~ ( x -  y ) (q~(y)--o~-l(a(y))dy[dx 

f f B,(x - y) I q,(Y) - ~-a(a(y))ldy dx 
A { ~ l ] 4 < d ( y ) < O }  

<= f [o~ -~ (a(y)):[ f ~7,(x -- y) dx dy = O(e't'). 
{ _ e l l 4 < d ( y ) < O }  A 
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The second part of (2.26) follows similarly. To confirm (2.27), suppose 
I d(x) I <: 4t�89 Then 

t,(x) fq~(x y)e-"~(~-i-~) ( A )  = - dy = f q,(x - y) e-~"~ dy. (2.29) 
Rn {lyl < e  1/3} 

Now 

[d(x)[ :< 4#  implies I d(x - y ) [ ~  4s �89 + e ~. 

But for e sufficiently small, 4e 1/2 + e I/3 < E1/4, so (2.25) and (2.29) imply (2.27). 
Finally, to prove (2.28), note that since 

support ~ Q {Ix t < e1/3}, 

one has 

[Vt(x) t ~= CE -1/3 

where c depends on ~, but not on e. Then 

]Vt~(x) 12 __< c ~  '/3 

and (2.28) follows. 
We now define a sequence {O,j}6 HI(I2) which will serve to verify (2.11), 

(2.12). 

Let O~j(x) := 

o~(tej(x)) 

a (d(x) + 4 ~/~)) 

fl ( ~  (4 l / ~ -  d(x))) 

[~(t~j (x)) 

for {a(x) < - 4  I/Z} 

for { - 4  I/~ =< d(x) <: - 3 I/~} 

for {Id(x)l < 3 I/~} 

for (3 1/~ ~ d(x) <: 4 I/Z} 

for {d(x) > 4 I/~}, 

where ~flx) is given by (2.23) and ~j, ~j are defined by 

o,(~j) = %, ~(;~j) = b~j. 

The continuity of b,j along Id(x) t = 4 I/Z is guaranteed by (2.27). 

The verification of (2.11) follows from (2.26) since 

f I6~j(x) - v(x) idx = 
D 

f [o,(%(x)) - a(x) idx + f Ifl(%(x)) - b(x) ldx + O(|/Z). 
A B 
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To obtain (2.12) we infer by calculation that 

H,j(~,j) = ej f [o~'(t~j(x))l 2 [Vt,j(x)l 2 dx 
~,~<-4VZj~ 

-~- ej f Ifl'(tsj(x))l 2 IVt,j(x)12 dx 

-r , x~/~ <d(x)&4 I/V)/| lv d[2 dx 

+ fr  (e,j(x)) + IV%l dx. 
~td, 7j) ej 

The first two of  these integrals approach zero with e because of  (2.28). The 

next two terms involve bounded integrands taken over sets of measure O(I/~-) 

and hence also approach zero. Therefore, 

lira H~.(~,.) : lim 1, 1 T2(O,j ) + ejlTr ]2 dx : 2L(y )ae ro  (v E F1}, 
j---~ ~X~ J J j - + a o  J _ -  e j  - " 

{Idl <3Vej} 

as was shown in Step 1. This completes the proof  of  Theorem 3. 

Remark (2.30). The failure of  (0~) to converge in our model problem (2.4) emerges 

here as well. This is reflected in the fact that the F-limit Ho does not characterize 

where on F1 W Fz a minimizer takes its values. At present, this indeterminacy 

is a hindrance in proving compactness of minimizers of H~, as well as in proving 

the existence of  local minimizers (see [18]). Presumably, a clearer description of 

the limits of minimizers could be obtained by finding one more term in the ex- 

pansion of the minimum energy with respect to e. Nonetheless, Theorem 3 does 

give a partial characterization of the limit points of  minimizers of  H,. 

Remark (2.31). We have presented Theorem 3 without an integral constraint, such 

a s  

fluldx-- c, 

in order to simplify the proof  and focus on the identification of the / ' - l imi t  Ho. 

Such a constraint could be included in a similar manner as in Theorem 1. 

B. Properties of the Degenerate Metric dT 

This section establishes the existence of distance-minimizing geodesics and 

other related properties of the degenerate Riemannian metric dr  (see 2.13) given 
by @2 = T 2 dx 2, which were used in Part  A. The approach adopted is as follows: 
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first we prove the existence of geodesics y~ that minimize distance in the metric dr~ 

given by dy 2 = (T -k t~) 2 dx 2 ; then we obtain a uniform bound on the Euclidean 

arc-length ofy~;  finally, we pass to the limit as t~--~ 0 and obtain a geodesic in 

the metric d r . 

Begin by letting 9 '  denote an open, bounded subset of  R 2 with ~ C 9 ' .  

Then, for y E R  2 and 0 > 0 ,  we define the map T a : R  2-->R by 

iT(y) + a 
To(y) = 1�89 a 

with Tee  C2(R 2) and satisfying 

�89 a < T~(y) < 

Next define the functional Lo by 

y ~  

y C R 2 \ ~ "  

for y r  ~ ' \  ~ .  

(2.32) 

t2 

La(~) = f T~(y(t))l~(t)ldt (2.33) 
Ii 

for y : [q,  t2] -+ R 2 Lipschitz-continuous. Note that the value of  L~(y) does not 

depend on the parametrization of  Y- 

We can now introduce a (nondegenerate) Riemannian metric on the plane dry, 
which is, in fact, conformally equivalent to the standard one: 

dr~(yl, yz) = inf L~(y). (2.34) 
~ ( t l ) = y t  
y(t2) =Y2 

The first task is to establish the existence of geodesics that minimize distance 

with respect to dro. This follows from the Hopf-Rinow Theorem once it is shown 

that the plane endowed with this metric is geodesically complete. A geodesic is 

an extremal for La, and thus must satisfy the Euler-Lagrange equation 

"(§ I);[ VT~(y) = ~ -  T,(r) . (2.35) 

Lemma 3. (Geodesic completeness) Every locally defined solution of (2.35) can be 
extended to a solution defined for all t in R. 

Proof, I t  is useful to write (2.35) as a first-order 4 • 4 system with a view toward 

appeal to standard existence and extension theorems. This process is simplified 

by seeking a solution for which Iy(t) I ~ c > o. Such a solution to (2.35) must 

satisfy 

C 2 UTa(y) = (VTo(y)" y) )" + Ta(y) y,  (2.36) 

which we wish to solve for y(0) = p, 7)(0) = v, p, v E R 2 and c chosen equal 

to tv 1. Writing , / =  (*/1, */2, */3, */,) = (Yl, Y2, ~'1, ~'2), (2.36) has an equivalent 
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representat ion as the first order  4 • 4 system 

c 2 OlT0(r/~, ~72) - VT0(Th, 7/2)" (r/a, r/4) r/3 
r/' = f ( r / )  ----- r/z,r/,,, To(r/l, ~2) ' 

c z O2T0(r/1,r/=) -- VT~(r/,, r/z ) �9 (r/a, n4) ~4~ 

To(r/. ~2) 

(r/3(0), r /4 (0 ) )=  v as initial conditions. Here  ~ with (~h(0), 7/2(0)) = p, 

0 
, ~ 2  - -  

Now TnE C 2 and f rom (2.32) it follows that  f (~)  = (r/a, ~4, 0, 0) for  (Bx,7/2) 

E R 2 \ ~ ' .  Thus we conclude that  f is a globally Lipschitz-continuous function.  

Hence the local solution of  ~' ----f(~) has a globally defined extension ([6]). 

It  remains to show that  any solution of  (2.36) does indeed have constant  

speed. Let  7 be the local solution o f  (2.36) with c = Iv t and consider the inner 

product  o f  ~) with bo th  sides o f  (2.36): 

Thus,  

Iv 12 vro(~) �9 ~ = (vTo(~) �9 ~) l~ [2 + ro(~) ~ .  ~. 

d 2 (I v 12 - 1~)12) VT0(~) �9 ~) ----- ~ -  I)'1 �9 (2.37) 
Td~,) 

Viewing (2.37) as an equat ion determining 17)12 with initial condi t ion [~,[2 (0) 

= Iv ] 2, one sees tha t  local uniqueness o f  the solution to this differential equa- 

t ion implies I~' t 2 ~ I v 12. This completes the p roo f  of  Lemma 3. 

Using Lemma  3, we can assert: 

Lemma 4. (Hopf-Rinow)  Given any points Yx, Y2 E R2, 
y : [tx, t2]--> R 2 with y(t l )  = 71, 7(t2) = Y2, such that 

d~0(yl, y2) = L0(r). 

there exists a geodesic 

This is a classical result proved,  for  example,  in HERMANN ([16]) and Do-  

CARMO ([8]). 

Next consider the variable endpoint problem 

inf  do(yx, Y2). (2.38) 
yl~-F't 
y2~/'2 

One seeks a geodesic tha t  achieves this infimum. Define Ha : / 'x • I'2 ---> R by  

Ho(Yl, Y2) = inf  Lo(y). 
y(tl)=Yl 
~(ta) =y2 

This map  is cont inuous for  all (Yx, Y2) in the compact  set / '1 •  and hence 

achieves its min imum at some pair  (ao, bo) with ao E / ' 1  and b~ E / ' 2 -  Lemma  4 

then guarantees the existence of  a geodesic )'o : [0, to] --~ R 2, such that  yo(0) = ao, 
y~(to) = bo and Lo0'o) achieves the infimum in (2.38). It  must  also be true tha t  



246 P. STERNBERG 

ye(t) E ~ for 0 < t < to, for otherwise it would not be a minimizer of (2.38). 
The following lemma asserts that yo satisfies a transversality condition at its end- 
points. 

Lemma 5. The geodesic 7o minimizing (2.38), at both of  its en@oints, satisfies the 
condition 

Po II VT(To). (2.39) 

P r o o f .  D e f i n e  a family of competing curves by a map 

k(s, t) : [0, 1 ] x [0, to] -+ -@ 

satisfying 

where, as before, 

7o(0) -= ao. 

k(so, t) = 7o(t), (2.40) 

k(s, O) = a(s), (2.41) 

k(s, to) = ?n(to), (2.42) 

cv : [0, 1 ] - - > / ' l  is a parametrization o f / ' 2  and o~(~) = 

Since ?o minimizes Lo, 

~---~Lo(k(s , t))ls=~ ~ = O. 

Use of (2.40) shows that 

~ k _  ~)o ~ ( ~  ) 
fo  I~l VT(7~) " ~s (SO, t) -}- (T(To) -}- 6) ~ -~- ~s k(Sn, t) dt = O. 
0 

Integrating by parts yields 

o -- ' -~s (so, t ) )  dt (2.43) 

(T(Ta(t)) + O) ( ~k )]'o 
+ [ro(t)[ ~ )g t ) ,~  (~o, t) o = o. 

Since 7~ solves (2.35), the integral in (2.43) vanishes. From (2.41) and (2.42) 
follows 

and 

~ k _  
(so, o) = ~ ' (~)  

~ k _  
(so, to) = Us  (r~(to)) = o.  
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Then (2.43) implies 

Since 

we have 

~' t - % ( O )  ' <i'+(~ ~"(;+)> = O. 

= o ,  

~ I1VT(7o) at t = O. 

Choosing a family of  curves with a variable endpoint along F2 yields the 

corresponding condition at t = te, and (2.39) is established. 

In order to assert the existence of  a distance-minimizing geodesic between 

/'1 and / '2 for the metric dr  defined by (2.13), one must pass to the limit as 

-~ 0 along ()'e}. The following lemma establishes the compactness necessary 

to obtain a subsequential limit curve. 

L e m m a  6. Let so be the Euclidean arc-length of  ~ .  Then there exists c~ > O, 

independent of  ~, such that se < cl for all ~. 

The proof  of  Lemma 6, which we present later, relies on Lemmas 7 and 8 

below. Lemma 7 gives uniform bounds on the arc-length of  ~'e when the curve 

is n e a r / ' t  o r / ' 2 .  We then show in Lemma 8 that once 7e departs from the bound- 

aries, it never again comes too close. This conclusion supplies a bound on the arc- 

length of  the middle piece of  Ye- 

Assume 7e ." [0, se] -+ ~ is parametrized by Euclidean arc-length. To analyze 

?e near F~, we introduce local coordinates (u, v) in a tubular neighborhood of  Fa : 

y : (yl,  Y2) = M(u, v) : =  0~(u) d- vn(u). (2.44) 

Here 0r : [0, L~] ~ / ' x  is taken be to parametrized by Euclidean arc-length and 

n(u) is the unit normal to / ' t  at offu), pointing into ~ .  Since 8 ~  is smooth and 

compact, a uniform interior disk condition holds along ~ :  for each y E 8~,  

there is a disk Dy of  radius ry such that 

A \ = y 

and such that inf G = / z  for some /z > 0. In particular, for all y E ~ ,  
ye O~ 

1 
I k I < - - ,  (2.45) 

# 

where k = k(u) represents the curvature of  ~ at y. The coordinate map M 

defined by (2.44) is a C2-diffeomorphism for 0 < v < / t .  (See [10], Appendix A, 

as well as [19]). 
In this neighborhood of  I'1, let ze(s) = (ue(s), re(s)) and define 7" by 

M(z+(s)) = ye(s) (2.46) 
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and 

/~(u, v) = T(M(u, v)). (2.47) 

Consider the function 2e : R --> R given by 

/q(s)  
2e(s) -- be(s ) , (2.48) 

in which the superior dots indicate differentiation with respect to s. The quantity 

2e measures the tangential speed of ~'e relative to the normal speed with respect 
to / '1 .  Thus 2e small means that ~,~ is progressing efficiently away from/ '~ towards 

/2 -  The following lemma enables us to bound the arc-length near / i .  

Lemma 7. There exists a number c2 E (0, it), independent of  t~, such that 

12e(s) I ~ �89 for 0 _< s ~ min {s : ve(s) = c2}. (2.49) 

This estimate is needed to prove 

Lemma 8. There is a positive number c3 independent o f  ~ such that 

dist (ye(s), I'1) ~ ca, (2.50) 

provided s ~ min {s : dist (ye(s), I'1) = c2}, where "dist" refers to Euclidean 
distance. 

Proof of Lemma 7. The proof of Lemma 7 is split into three steps: first, we derive 

a differential equation satisfied by 2e; then we use this to obtain a differential 
inequality; finally, we integrate this inequality to obtain (2.49). 

Step 1. To derive a differential equation for 2e, note first that 2e(0) = 0 since 
(2.44), (2.46) imply 

r~(s) = ue(s) od(u6(s)) + re(s) be(s) n'(ue(s)) -}- be(s) n(ue(s)). (2.51) 

By (2.39), re(o) is orthogonal to ~'(ue(0)), while re(0) = 0, so that 

o = (re(o) ,  ~ ' (ue(0)))  = ue(0) (~'(ue(0)),  ~ ' (ue(0)))  = u g 0 ) ,  

the primes denoting differentiation with respect to u. 

It then follows from (2.48) that 2e solves the initial value problem 

2e be/Je - /lebe ue 2 ~e 
(be) 2 -- be ve (2.52) 

2e(0) = 0. 

Now, since ~'e is an extremal for the functional Le, ze must be an extremal for the 
functional 

z-+ f (T(z) -}- ~) ~ M(z(t)) dt. 
t l  
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Setting the first variation equal to zero, we obtain the Euler-Lagrange equation 

d 
where M ( z ~ ) :  ~ M(z~(s)) and JM is the Jacobian matrix of the coordinate 

map M. Since I~t(z~)l -- I~1--  1, the equation reduces to 

V~(z~)= d - ((7~(z~) + a) M(z~))  JM(z~) 

o r  

VT(z6) = (VT"(zo), ~ )  M(zo) JM(zn)+ ( f (z~)  + 8) M(z~) JM(Zo). (2.53) 

Use of (2.46) and (2.51) yields 

)~/(z~) = / i~a '  + t;an + (v~ii~ -}- 2/t~ba) n' -F (tJ~) 2 a "  -~ v~(/ts) ~ n",  

while (2.44) gives 

M,(zn) = od(u~) q- von'(uo), Mv(zn) = n(un). 

Applying the Frenet equations ([9]) 

oJ' = kn, n" = - k o d ,  ,(2.54) 
we can calculate 

~I(z~) S~(z~) = (<M(z~), M.(z~)>, <M(z~), M~(z~)>). 

2~I(z~) JM(Z~) = (()l~/(Zo), M,(za)), (~r(zn), Mv(za)))i 

In this manner we arrive at 

~t(z~) J.(z~) = (u~(1 - kv~) ~, ~ ) ,  (2.55) 

M(zo) JM(z~) : (~(1 -- kve) 2 - (1 - kvn) (2kun/'~ + k'vn(it~)2), 
(2.56) 

i)o-F k(/q) z (1 - kv~)), 

where 

" L k" = ~ u  (k(u))  =.  . 

Note that a ~ C ~ assures that the signed curvature k defined by (2.54) is C x. 
Substituting (2.55), (2.56)into th~ Euler-Lagrange equation (2.53)and solving 

for/ ia and iJn, one finds that 

~'. - <V7  ~, } ,>  (1 --  kvo) 2 h~ ~a 

it~ ---- (7"(z,~) + t~) (1, -- kva) ~ + (1 - kvo--~)' (2.57) 

ba = I"(z~) + t) - k(itn)z (1 - kvo), (2.58) 
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where 

and 
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al" v)] , aT  v)[ , 7:. = Vu(U, 7:o = ~ ( u ,  
I(u.v) = (u.~.v ~) I(u.v) = (u ~.v , )  

~ .  : =  2kit,b, + k'va(t~,) 2 . (2.59) 

Note  that  the (u, v) coordinates are only defined for v < / z ,  so that  1 - kvo > 0 
by (2.45). Thus /i, is finite. Substitution from (2.57) and (2.58) yields 

Since 2. = it./b., one arrives at 

L = -  ~u 
(T(zo) + ~) (1 -- kv.) 2 i:. 

This completes step 1. 

+ o~. + 2~k(h.) 2 (1 - kvn) 2 

(2.60) 

Step 2. We now estimate the terms on the right side of  (2.60) to obtain differen- 

tial inequalities that  control 26 . 
F rom here on we shall restrict our attention to (s : v~(s) <= #/2), so that  (2.45) 

implies 

�89 ~ 1 - k% <= 3 .  (2.61) 

According to Taylor 's  Theorem and (2.61), there are positive constants c4 and 

# 
vl ~ -~-, such that  

(7"(u., vS- -+ -~ i -O-  k%) 2 < 2 <- c, (2.62) o) + 7 E(Z + 

for 0 ~ v, ~ v~, since T(ue, 0) : 1"u(ue, 0) = 0, while To(u,, 0) : ]XTT(a.) ] 

:> m.  by (2.6). It also follows from (2.6) that  there are positive constants cs 

and e6 satisfying 

~o(u,. v~) Tv(u~. 0) + O(v,) 

~(u,. v~) + ~ ~(u~. 0) + ~ + ~o(~. 0) v. + O(v~) 

[VT(a.) [ + O(v.) 
= ]VT(a,) I v~ + ~ +O(v]) (2.63) 

C5 > - -  
= c6v. + 6 



Singular Perturbation on Nonconvex Variational Problems 251 

for 0 --< v6 ~ vl, in which a6 : =  7~(0). We emphasize the fact that vl, c4, c5, c6 
are constants depending on T and its derivatives, but independent of ~. 

Using (2.51), the Frenet equations, and the fact that ~,n is parametrized by 
arc-length, one obtains 

(h~) 2 (I - kv~) 2 + (b~) 2 = 1. (2.64) 

In view of (2.59), this implies the existence of another positive constant, c7, in- 
dependent of ~, such that 

[to~] < c7, (2.65) 

since k, k'  are continuous functions on the compact set/ 'a,  and hence are bounded. 

To establish (2.49), first consider 2n restricted to 

{s : 0 ~ 2n(s') =< 1 for all s' E [0, s]}. 

This may contain only s = 0 if 2n(s) < 0 for all smaU s =~ 0. 
Using the definition of 2~ and (Z64), one is led to 

1 
v2 ~ -- (1 + (1 - kv~) 2 22). (2.66) 

Thus (2.61) leads to 

I 
~ (1 -k- ~ 22) < 4 (2.67) 

for 2n(s) restricted as above. Not ing  that b~(0) = 1 implies ha(s) > 0 for the 

values of s under consideration, one draws from (2.66) that 

1 
m ~ v0. (2.68) 
vn 

We now apply the preceding estimates to control 26 in (2.60). Estimates 

(2.61), (2.62), (2.64), (2.65), (2.67) and (2.68) combine to yield an L ~ bound 

on the first and third terms in (2.60): 

7'u -~-to o -I- ~,nk(//~) 2 (1 - kv,)  2 (2.69) 

(/~(zo) d- ~) (1 - kva) 2 ba (1 - kv~) bn 

~ d- 2(c7 + I k IL~) 
vo bn < 2c4 -+- 4c 7 --~ 4 I k IL~ :-- c8, 

where the last equality defines the positive constant % 
On applying (2.63) and (2.68) to (2.60), one arrives at the desired differential 

inequality 

C5~ 0 
~.~(s) ~ c6v~ + ~ 2~(s) + c8 (2.70) 

for 2~ restricted to {s : 0 ~ 2a(s') ~ 1 for all s' E [0, s]}. 
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It could be the case, however, that 20(s) ~ 0 as z0 departs from F~. Enter- 
taining this possibility, consider ;to restricted t o  {s: - 1  =< ; t0 ( s )~  0 f o r  all 
s' E [0, s]}. Then inequalities (2.67) and (2.68) still apply, and combine with (2.63) 
and (2.69) to imply the differential inequality 

~o > c~bo 
= covo %------------~2to - c8. (2.71) 

Step 3. We now integrate inequalities (2.70) and (2.71) to obtain (2.49). 

First suppose 2o remains nonnegative as zo departs from F~. Then (2.70) applies. 
Multiplying (2.70) by (c6vo %- ~)~'/~, one has 

d 
7s (;to(c6vo + ~)c,/.) < cs(covo + ~)c,/..  

Since ;to(0) = 0, we can use (2.67) and integrate this inequality to find 

s 

;to(s) (covo(s) + ~)c,/. <= c8 f (c:gs')  + ~)c,/c6 ds" 
0 

< 2c8 f (cavo(s') + 6) c~/c" bo(s') ds'. 
0 

Thus one arrives at 

m m ;t0(s) (covo(s) %- O)c,/c, < 2c8 [(C6/3O(S) ~_ O)c,/co+t (~c,[co+l] 
- -  C5 -~ C 6 

2c8 
< ~ (c6vo(s) + ~)c,/ .+i 
--C5 %- C6 

Consequently, 

~Cs %- c6l (C6V~ %- ~)" (2.72) 

We conclude that if 2o(s) remains positive as zo departs from Ft ,  then 

;to(s) ~ �89 (2.73) 

provided 

C5 -[- C6 { C5"+- C6 } 
< 8C-----~- and 0--<s--<min s : v ( s ) - - - - o r  vo(s) = v l  �9 

8c6c8 

If, instead, ;t0(s) remains negative as z0 departs from -Pt, the same analysis 
as before yields 

;t,(s) > - ( ] (covo(s) + = ~c5 + c d  
(2.74) 
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so that in this case, 

provided 

An(s) ~ - � 89  (2.75) 

__c5 + c~ { ___c5+c6 } 
< 8c8 and 0--<s--<min s:vn(s) 18c6c8 or v~(s)= vl �9 

Finally, 20 might change sign before v0 reaches the value 

. fc5 + c6 / 
m m /  8~e~ ' vii  . . . .  

Thus, there may be one or more positive parameter values {~0) such that 2n(zo) ---= 0, 

while 

�9 [c5 + c6 
vo(v,) < m m /  8~6cs ' vl}. 

In this case we repeat the preceding argument using (2.70) or (2.71) on each para- 

meter interval between successive zeroes of 2n, depending on the sign of 20 in each 

interval, and we again reach eventually the conclusion that 12n(s)[ __< �89 
Combining (2.73) and (2.75) with the preceding remark, we infer (2.49)with 

tr Jr- C 6 
c2 = min ( 8--c6c; ,v l j  

Proof of Lemma 8. To show that once yn departs f rom/ '1 ,  it never again comes too 

close in the sense of (2.50), we suppose otherwise and seek a contradiction�9 Thus, 

we suppose that for all positive ~ /<  c2 there exists a ~ > 0 and a parameter 

value 

~ > min {s: dis t (~'n(s), F1) : c2} 

such that 

dist (Va(s0), F1) =- r/. (2.76) 

I f  y0 is to minimize L~ among all curves joining T' 1 to / 2 ,  then in particular it 
must yield the lowest value of  Lo calculated between its initial point an and any 

intermediate point p on its graph, when compared to any other curve joining F1 
to p. We now construct a competing curve that gives a lower value to Lo under the 

hypothesis (2 .76) .  
For each ~ < c2 there must exist a constant ~0 where 

~'~(~0) = M(~0,  7 ) .  

Define the competing curve in (u, v)-coordinates by 

(a(s) :----- (if0, s) for 0 ~ s =< r/. 
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/ •  ~Compet~ng 
Fig. 6 

Then, using (2.44) and the Mean Value Theorem, one has 

d 
L~(r = / (T(~a) + ~)[-~s M(da, s)lds 

0 

Hence 

= f To(uo, ~(-d., s)) s ds + ,~ 
0 

for 0 ~ ~=< ~/. 

Ln(r < max I Tv(u, s)[.  �89 ~2 + tS~. (2.77) 
= se[O,c2] 

, 11 "t it On the other hand, the parameter must have values to, ta, wl h 0 < t~ < to < 7~o, 
such that 

dist (yn(t~), -Pt) = vo(t~) = �89 c 2 (2.78) 

and 

dist (yo(t'~'), I'~) = vo(t'~') = c2. (2.79) 

Restricting )'6 to s E [0, ~],  we then infer that 

Lo(~,~) = f r6 ,# ) )  ds 
0 

t t  
ta  

>= f T@#)) as 
t~  

__> min T(y) (t~' -- t'~). 
- -  c 2 / 2 ~ d i s t ( y ,  F D ~_ c2  

Thus, because of (2.78) and (2.79), 

Lo(y~) > ( min T(y)~ �89 c2 
= ~ ~dist(y,/'D ~c2 J 

since the arc-length of y~ between y~(t~) and F(t'~') cannot be less than v~(t'~') - -  

v~(t;). 
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Comparing (2.77) to this last inequality, one concludes that 

( min T ) ~ /2~ , ( y . r~ )~ ,_  _ (y )  �89 c2 --<-- ~t0.~lmax 17~(u, s)1 �9 �89 + &/ 

for all ~ /<  e2, if Yn is to minimize Ln. Finally, choosing ~ sufficiently small, one 
arrives at a contradiction and (2.50) is proved. 

We can now establish a uniform bound on the arc-length of {~,~}. 

Proof of Lemma 6. Lemma 7 permits a reparametrization of  z~(s) with vn as the 
new parameter. A uniform bound on the arc,length of  this initial piece of  the 
curves {Tn} for 0 ~ vn _--< c2 is now immediate: 

C2 ~ C2 
f 1 dvnl alva = f 1/1 + I~,l 2 
0 0 

C2 

f i/1 + (�89 dv~ 
0 

The argument leading to Lemma 7 and Lemma 8 can be repeated without 
alteration to establish estimates analogous to (2.49) and (2.50), valid in a neighbor- 
hood of  F2. 

This leads to the conclusion that for 76: [0, s0]-+ 9 ,  parametrized by arc- 
length, there are values s~ and s** of the parameter with 0 < s~ < s** < s~ 
such that 

s* ~ -5-  c2, (2.81) 

s0 - s** :< ~ c2, (2.82) 

rain {dist (Xo(s), F1), dist (yo(s), F2)) _--> e3 for s* --< s --< s~'*. (2.83) 

We have yet to obtain a uniform bound on s** - s*, which is the arclength 
of  the middle piece of  ~,n. Let l ( t )  be the parametrization of  a line segment that 
minimizes the Euclidean distance between F t  and /'2, and let d be its length. 
Then, 

On the other hand, by (2.83), 

min T ) - s*). >= dis,t~,~u)_~c~ (Y)(s** 
k ye~ I 
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Thus Ln(7~ ) <= Lo(I) implies the uniform bound 

(2 max T(y)) d 

s~* - s* < ' - -  Y~--Y-~ - - ~ -  . 

( min T(y)] 
/ d i s t ( y , t % ~ )  _ ca ] 
\ y ~  / 

Writing s~ = s* + (s** - s*) + (sa - s**) and using the last inequality 

together with (2.81), (2.82), we obtain the desired uniform bound on the arc- 

length of  )'6. This completes the proof  of  Lemma 6. 

One can now pass to the limit as t~ ~ 0. 

Lemma 9. There exists a subsequence {~@} converging uniformly to a limit Z' 

which is a minimizer of (2.9) and satisfies the Euler-Lagrange equation: 

I_ylVT(_y)=~- T(7_) in ~. 

S 

Proof. Reparametrizing 7~ by setting t = - - ,  we obtain a sequence of  curves 
s a  

7~ : [0, 1 ] ~ ~ which according to Lemma 6, obeys ] dTddt I = sa < cl. Apply- 

ing the Arzelh-Ascoli Theorem, one infers the uniform convergence of a sub- 

sequence ~,oj, to a Lipschitz-continuous limit ~,. 

To see that y does indeed minimize (2.9), let ~ : [q, t2] -+ 9 be any Lipschitz- 

continuous curve with ~(tl) E -Pt and ~(t2) E /'2. Since ~'~ minimizes Lo, it fol- 

lows that 
t2 

L~(~,~) < L~(8) = L(O + a f l~(t) l dt 
tl 

so that 

l imsup Ln(~) ~ L(~). 

On the other hand, the uniform convergence of {y@} to _7 implies that 

lim inf s~. > ]~)(t) I a.e. 
j - + o o  J = _ 

Thus, appealing to Fatou's Lemma, one has 

1 

hjm~nfLnj(y@ ) = lim inf f T(y@) ly@(t) l dt 
J o 

1 

f lim.inf T(7~) s@ dt 
0 J 

1 

f r (y )  I~,(t) I dt : L(7 ). 
0 

We conclude that L(y) =< L(~), and so ~, is a minimizer of (2.9). 
B ~ 

(2.84) 
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The regularity of  7 now follows easily upon introduction of geodesic polar 

coordinates. Invoking the L-minimizing property of 7 just established, one shows 

that between any two points of ~, the curve must in fact coincide with the geodesic 

joining these points ([8], pg. 292). Thus 7 must satisfy the Euler-Lagrange equa- 
tion for L. 

Corollary. 

lim L(~.)  = L(y). (2.85) 
j - +  oo j _ 

Proof. Since V minimizes L among curves joining/ '1  t o / 2 ,  it is immediate that 

lim/nfL(~,~) ~ L(_~). 

But, since ~,~j minimizes L~j and _y is Lipschitz-continuous, it follows that 

l imsup L(V,~j) ~ lim sup L,~j(7,~j) ~ lim sup L~flZ ) = LO'). 

Hence (2185) holds. 

Having established the existence of a geodesic in the d r  metric that j o ins / ' 1  

a n d / 2 ,  we turn to two final results which were needed in Part A. The first is a 
uniform estimate of the angle ~)~ makes with ~7T(7~ ). 

Lemma 10. There are positive numbers s and ~,  independent of ~, such that ~ : 
[0, 1] ~ ~ satisfies 

[(VT(~(s)),~(s))]>=~ i f O _ < s _ < ~  or 1 - 2 _ < s _ < l .  (2.86) 

Proof. This assertion follows from (2.39) together with Lemma 7, which supplies 

a uniform bound on the amount by which 7~ can stray from the normal direction. 

Now consider the function measuring distance to F1 in the dr metric, h : 
R given by 

h(y) = inf dr(yo, y) (see (2.13)). 

Lemma 11. The function h is a Lipschitz-continuous function on ~ satisfying 

]Vh(y) l = T(y) a.el (2.87) 

Proof. Let y E ~ .  With the aid of the Hopf-Rinow Theorem one obtains a 

sequence of  curves {fl~} minimizing 

inf L60'). 
r ' ( t D ~ / ' t  
~(t~) =y 

Minor modifications of  the argument employed to prove Lemmas 6-8 enable 
t• 

one to conclude that f Ifl, I d t  is uniformly bounded in ~, which ensures the 
t t  
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compactness necessary to obtain a limiting geodesic fly(t), as in Lemma 9. Thus, 
for all y E 9 ,  there is a geodesic between/ '1 and y that minimizes distance in the 

dr metric. 
Now let yl  and Y2 lie in ~ and let fly,(t) and fly2(t) be the corresponding 

geodesics. Also, let l ( t ) = ( 1 -  t) y l + t y 2  for 0--<t--<l .  We suppose y~ 

and Y2 are sufficiently close together that /(t)E ~ for all tE [0, 1]. Then, 

h(Yl) = L(t3y~) ~ L(fy,) + L(I) = h(y2) + L(l). 

Similarly, h(y2) <= h(yl) + L(I). Thus, 

I h(yz) - h(y~) [ <: L(1) 

1 

= f T(l(t)) lY2 - Yl [dt 
o 

ITIL~176 lY2 -- Yt t' 

so that h is (locally) Lipschitz-continuous and therefore differentiable almost every- 

where in ~ ([9]). 
Now let y be a point of differentiability of h and let fly : [0, 1] E 9 be a geo- 

desic that minimizes distance. Let (x,} E 9 be any sequence converging to y 
and set l,(t) = (1 - t ) y  + tx. for tE [0, 1]. Repeating the argument above, 

we find that 

I h(x,,) - h(y)  l 
f T((1 - t ) y  + tx.) dt; 

I x . -  yl o 

consequently, 

lim [h(x,) - h(y),~l T(y). (2.88) 
Ix .  - y i  

Further, defining the sequence of points yn = fy(1 - 1 ) ,  we see that fly : 

O, 1 - -+ N must be a geodesic between/'1 and y,, that minimizes distance. 

Therefore, for some t*E~l" - 1 , 1 ~ "  using ageneralization of the  Mean Value 
\ n / 

Theorem (see e.g. [3]), one has 

1 1 - 1  

h(y) - h(y~)---- f T(fly(t)) ['fly(t)l dt - f " T(fly(t)) I/~y(t)[ dt 
o o 

1 

= f T(fly(t))lt~y(t)ldt 
l - !  

n 

1 

= T(fly(t*)) f I/]y(t)[ dt, 
l - !  

n 
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[h(y) - h(y~)] ~ T ( f l y ( t * ) ) l Y  - Yn l ,  

259 

lim I h(y) - h(yn) L> 
~-~oo lY Y~ [ : T(y). 

This inequal i ty ,  toge ther  with (2.88), impl ies  (2.87). 
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