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Many insects are capable of performing a wide variety of

sophisticated aerial maneuvers including both sustained

hovering and steady forward flight. In recent years a great deal

of progress has been made in our understanding of the unsteady

mechanisms underlying force production during hovering

flight. Evidence suggests that insects can use a variety of

mechanisms, including dynamic stall (Dickinson and Gotz,

1993; Ellington et al., 1996; Sane and Dickinson, 2001),

rotational lift (Bennett, 1970; Dickinson et al., 1999), wake

capture (Dickinson et al., 1999; Birch and Dickinson, 2003),

and the clap and fling (Weis-Fogh, 1973; Somps and Luttges,

1985; Spedding and Maxworthy, 1986). Most of these

phenomena have been investigated within the context of

hovering and it is not known to what extent forward velocity

modifies the efficacy of these mechanisms.

Robotic models have proved a powerful tool in the

investigation of aerodynamic mechanisms during flapping

flight (Bennett, 1970; Maxworthy, 1979; Dickinson and Gotz,

1993; Dickinson et al., 1999; Ellington et al., 1996; Sane and

Dickinson, 2001). Such models have allowed investigators to

examine the effects of wing rotation as well as wing–wake and

wing–wing interactions. A complication encountered when

studying flapping flight using robotic models is that of isolating

and quantifying the effect of a particular variable, such as wing

rotation or forward velocity, upon force production. One

technique commonly used by researchers to circumvent such

complications is to employ extremely simplified sets of wing

kinematics in order to elucidate and characterize a particular

feature of force production. An example of the effective use of

such a simplified set of kinematics is the study of ‘revolving’

wings (Usherwood and Ellington, 2002a,b) in which a

propeller arrangement is used to isolate the force generation

mechanisms of the downstroke and upstroke from the

complicating effects of pronation and supination.

The effect of advance ratio on revolving wings has been

considered previously in the context of helicopter

aerodynamics (Isaacs, 1946; van der Wall and Leishman,

1994). It is difficult, however, to apply these directly to insect

flight because helicopters use high aspect ratio wings operating

at relatively low angles of attack, conditions atypical of insect
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Recent studies have demonstrated that a quasi-steady

model closely matches the instantaneous force produced

by an insect wing during hovering flight. It is not clear,

however, if such methods extend to forward flight. In this

study we use a dynamically scaled robotic model of the

fruit fly Drosophila melanogaster to investigate the forces

produced by a wing revolving at constant angular velocity

while simultaneously translating at velocities appropriate

for forward flight. Because the forward and angular

velocities were constant wing inertia was negligible, and

the measured forces can be attributed to fluid dynamic

phenomena. The combined forward and revolving motions

of the wing produce a time-dependent free-stream velocity

profile, which suggests that added mass forces make a

contribution to the measured forces. We find that the

forces due added mass make a small, but measurable,

component of the total force and are in excellent

agreement with theoretical values. Lift and drag

coefficients are calculated from the force traces after

subtracting the contributions due to added mass. The lift

and drag coefficients, for fixed angle of attack, are not

constant for non-zero advance ratios, but rather vary

in magnitude throughout the stroke. This observation

implies that modifications of the quasi-steady model are

required in order to predict accurately the instantaneous

forces produced during forward flight. We show that the

dependence of the lift and drag coefficients upon advance

ratio and stroke position can be characterized effectively

in terms of the tip velocity ratio – the ratio of the

chordwise components of flow velocity at the wing tip due

to translation and revolution. On this basis we develop a

modified quasi-steady model that can account for the

varying magnitudes of the lift and drag coefficients.

Our model may also resolve discrepancies in past

measurements of wing performance based on translational

and revolving motion.

Key words: flapping flight, quasi-steady force, unsteady

aerodynamics, insect flight, Reynolds number, insect aerodynamics.
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flight. As a result, they are more amenable to a blade element

model in which sectional force coefficients derived from two-

dimensional (2D) studies are used to predict total aerodynamic

forces. In contrast, insect wings have a low aspect ratio,

approximately 2–10 (Dudley, 2000), and typically operate at

high angles of attack, often greater than 40°. Low aspect ratio

wings revolving at high angles of attack are known to form a

stable leading-edge vortex that is responsible for elevated force

coefficients (Ellington et al., 1996; Dickinson et al., 1999;

Birch and Dickinson, 2001). For this reason, previous models

of insect flight have used mean sectional force coefficients

derived from three-dimensional (3D) studies employing a

revolving wing. These differences between the aerodynamics

of helicopter rotors and insect wings highlight the need for a

rigorous study of the effect of advance ratio on the forces

produced by revolving wings of a shape, speed and angle of

attack typical of insects.

In this study, we characterize the effect of advance ratio on

aerodynamic force generation during forward flight using a

dynamically scaled mechanical model of Drosophila

melanogaster. Forces are measured over a range of advance

ratios spanning the transition from hovering to fast forward

flight. The kinematic pattern we used consists of a wing

revolving in a horizontal stroke plane with constant angular

velocity at a fixed angle of attack. From the instantaneous force

records we estimate the contribution due to added mass and

compare it with theoretical predictions. The added mass

component is then subtracted from the force traces and mean

sectional lift and drag coefficients are calculated. The mean

sectional lift and drag coefficients are found to depend upon

the angle of attack and the velocity profile experienced by the

wing. We show that this dependence upon angle attack follows

the same trigonometric relationships as that of hovering flight.

However, the variation of the force coefficients with velocity

profile is new and implies that modifications

to the quasi-steady model are required in

order to accurately predict forces during

forward flight. We show that the variation of

the force coefficients with velocity profile can

be effectively characterized in terms of the tip

velocity ratio of the wing. A modified version

of the quasi-steady model is presented that

incorporates this variation.

Materials and methods

Robotic fly apparatus

We designed a flapping robotic apparatus, similar to that

described previously (Dickinson et al., 1999), in which the

entire wing assembly was capable of linear translation

along the length of a towing tank (Fig.·1A). The drive

system for the two wings consisted of an assembly of six

computer-controlled servo-motors connected to the wing

gearbox using timing belts and coaxial drive shafts. The

wing assembly was mounted on a translation stage

consisting of two custom linear translation rails that were

connected via an idler bar. The translation stage was driven

by a single computer-controlled servo-motor. The wings

were immersed in a 1·m×2.4·m×1.2·m towing tank filled

with mineral oil (Chevron Superla® white oil; Chevron

Texaco Corp., San Ramon, CA, USA) of density ρ
0.88×103·kg·m–3 and kinematic viscosity 115·cSt at room

temperature. Custom software written in Matlab and C

permitted control of the robotic model from a PC. A 2D

force transducer attached to the proximal end of the wing

measured forces normal and parallel to the wing surface.

Each channel of the force transducer consisted of two

parallel phosphor-bronze shims equipped with four 350·Ω
strain gauges wired in a full-bridge configuration. We

designed the force transducer to be insensitive to the

position of the force load on the wing, and varying the

location of the load on the wing resulted in less than 5%

variation in the measured forces. The isometrically
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Fig.·1. (A) Diagram of robotic apparatus. The wing assembly is shown

mounted on linear translation rails above the 1·m×2.4·m×1.2·m towing

tank. (B) Coordinate system for the mechanical wing. Three angles are

used to specify the position of the wing: φ, θ and α. The instantaneous

stroke position, φ(t), is defined as the angular position of the projection of

the wing axis in the stroke plane. The instantaneous stroke deviation, θ(t),

is defined as the angle between the wing axis and the stroke plane. The

instantaneous angle of attack, α(t), is defined as the angle between the

wing’s chord and the tangent to its trajectory.
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enlarged wings of the robotic model were based on the planform

of a D. melanogaster wing. The wings of the robotic model, cut

from an acrylic sheet, had the following physical dimensions:

length (R)=0.25·m, aspect ratio (AR)=0.42, mean chord

(c)=0.06·m, area (S)=0.0150·m2 and width=0.0023·m. The non-

dimensional first and second moments of area of the wing are

r
1
1(S)=0.59 and r

2
2(S)=0.39, respectively (Ellington, 1984b). In

this study only a single wing of the robotic model was utilized,

so the results are not influenced by wing–wing interactions.

Kinematics

In a manner similar to that described previously (Sane and

Dickinson, 2001), the kinematics of the wings are specified by

the time course of three angles: stroke position φ, the angle of

attack α and stroke deviation θ (Fig.·1B). The relatively simple

kinematic patterns used in this study were chosen to isolate the

effects of advance ratio, stroke position, and angle of attack

upon aerodynamic force generation without the additional

complications of rotational forces or wing–wake interactions.

In the first set of kinematic patterns the wing was towed

through the oil at constant forward velocity while at the same

time revolving through a 500° arc at a constant angular velocity

of ±72·deg.·s–1. During each trial we maintained the angle of

attack at a fixed value. Four forward velocities were used in

these experiments: 0, 0.04, 0.08, 0.12 and 0.16·m·s–1. For each

forward velocity the angle of attack was systematically varied

in 10° increments, from 110° to –10° for a total of 96 runs. For

all of these trials, stroke deviation angle was fixed at zero.

Angle of attack is defined as the angle between the wing’s

chord and the tangent of the wing’s trajectory.

In the second set of kinematic patterns the wing was towed

through the oil at constant forward velocity of 0.16·m·s–1 at a

fixed stroke position angle of 0°. During each trial we

maintained the angle of attack at fixed value, which was varied

from –10° to 110° in 10° increments.

Dynamic scaling

Two non-dimensional parameters are required in order to

achieve an accurate dynamic scaling of the forces obtained via

the robotic model: the Reynolds number (Re), and the advance

ratio (Spedding, 1993). The Reynolds number is given by:

and the advance ratio J is given by:

where Vf is the forward velocity and ν is the kinematic

viscosity of the fluid. All of the wing kinematics used in this

study were performed at Re approx. 140, matching the value

appropriate for D. melanogaster (Lehmann and Dickinson,

1997). The advance ratios considered in this study are: ± 0,

1/8, 1/4, 3/8 and 1/2, corresponding to forward flight

velocities of 0, 0.41, 0.82, 1.23 and 1.64·m·s–1 for a fruit fly.

A review of available data on D. hydei (David, 1978) as well

as personal observations of D. melanogaster flying in a low-

speed wind tunnel suggests that this choice of forward flight

velocities spans a range from hovering to the fastest forward

flight.

A third dimensionless parameter that will prove useful in our

analysis is the tip velocity ratio µ:

which is defined as the ratio of the chordwise components of

flow velocity at the wing tip due to translation and revolution.

Over one period of wing revolution µ will range from –J to J

and can be uniquely identified with a given velocity profile

experienced by the wing.

Data acquisition and analysis

Force data from the 2D strain gauges were sampled at

1500·Hz using a Measurement Computing PCI-DAS-1000

Multifunction Analog digital I/O board (Middleboro, MA,

USA) and filtered offline using a zero phase delay low-pass

4-pole digital Butterworth filter, with a cut-off frequency of

3·Hz. The positions of the four servo-motors were acquired

simultaneously using the multifunction card and custom

electronics for decoding the quadrature encoders of the servo-

motors. In this manner it was possible to determine the

instantaneous position of the motors, and thus the wing.

Because the stroke amplitude of most insects is less than

180° the condition when φ is between –90° and 90° is of

particular interest. With this in mind, the stroke length used in

this study was selected to meet two criteria. First, the strokes

needed to be long enough so that there was sufficient time for

the force transients resulting from the acceleration of the wing

to disappear before φ was within the region –90° to 90°.

Second, the strokes needed to be short enough so as not to incur

any wing–wake interactions in this region. Accordingly, we

chose a pattern in which the wing revolved from 250° to –250°
or from –250° to 250°.

The force measured by the strain gauges at the base of the

wing can be decomposed into gravitational, inertial and fluid

dynamic components. The gravitational component of the

measured forces is due to the mass of the wing and the mass

of the sensor, and may be calculated and subtracted from the

measured forces. In practice the subtraction was determined by

moving the wing through sample kinematic patterns at very

low velocity, for which the aerodynamic and inertial forces are

negligible, and fitting the functions for the parallel and normal

measured forces:

G||(α) = A|| cos(π/2–α) + B|| (4)

and

G⊥(α) = A⊥ sin(π/2–α) + B⊥ . (5)

The functions were used to compute the gravitational forces

experienced by the wing for each kinematic pattern, which

were then subtracted from the measured force records.

The inertial component of the measured forces consists of

two components: the action of the acceleration forces on the

,µ=
V  cos(φ)f

Rφ
(3)

,J =
Vf

R|φ|
(2)

Re =
R|φ|c

ν
, (1)
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mass of the wing and sensor, and the added mass of the fluid

around the wing (see equation·21). The contribution of the

acceleration forces of the wing and sensor masses to the total

measured forces for the robotic apparatus are negligibly small

(Sane and Dickinson, 2001). The added mass component

experienced by the wing was estimated from the data obtained

when φ was between –90° and 90° in the following manner.

The force produced by the wing consists of the sum of the

translational and added mass force components. The

translational force component is typically proportional to the

square of the flow velocity. Because the flow velocity is a

symmetric function of stroke position, the translational force

component Ft should also be a symmetric function, and thus

Ft(φ) should be equal to Ft(–φ) for equal angles of attack. The

added mass force is proportional to the acceleration of the flow

in the direction normal to the surface of the wing. As the

acceleration of the flow is an antisymmetric function of stroke

position, the added mass force component Fa should be an

antisymmetric function of stroke position, and thus Fa(φ)

should be equal to –Fa(–φ) for equal angles of attack. This

observation shows that the difference between the force

measurements at stroke positions φ and –φ can be attributed

solely to added mass component of the forces because the

translational force components cancel. Thus, for fixed angle of

attack the added mass force can be estimated by:

Fa(φ) = G[F(φ)–F(–φ)] , (6)

where F(φ) and F(–φ) are the force measurements normal to

the wing at stroke positions φ and –φ, respectively.

The translational component of the forces was isolated by

subtracting the estimates of the forces due to added mass from

the measured forces. The instantaneous mean force coefficients

for lift and drag were then calculated using:

and

where FL is the measured lift, FD is the measured drag, r1
1(S)

is the non-dimensional first moment of wing area and r2
2(S) is

the non-dimensional second moment of wing area.

Equations·7 and 8 were derived from blade element theory

and take into account the changing instantaneous velocity

profile experienced by the wing. When µ is equal to zero the

usual mean force coefficients used for a stationary revolving

wing (Osborne, 1951; Sane and Dickinson, 2001; Usherwood

and Ellington, 2002a) are obtained:

and

In the limit that µ approaches infinity, equations 7 and 8

become typical mean force coefficients used in wind tunnel

studies:

and

The force coefficients given in equations 7 and 8 can be

viewed as functions of two parameters: the angle of attack α
and the tip velocity ratio µ. The variation of the lift and drag

coefficients with angle of attack for hovering flight is known

to be well approximated by trigonometric expressions

(Dickinson et al., 1999). In order to determine if these

relationships are still approximately true, normalized lift and

drag coefficients were derived for each angle of attack α. The

normalized lift coefficient is defined by:

and the normalized drag coefficient is defined by:

where maxµ and minµ are the maximum and minimum,

respectively, for the given α over all µ for which there is a

measurement.

In order to examine behavior of the lift and drag coefficients

as a function of tip velocity ratio, µ, the measured lift and drag

coefficients were fit via least squares, for each µ, to the

following equations:

CL(α,µ) = K0(µ)sinαcosα (15)

and

CD(α,µ) = K1(µ)sin2(α)+K2(µ)·, (16)

where K0(µ) is drag coefficient amplitude function, K1(µ) is lift

coefficient amplitude function, and K2(µ) is drag coefficient

offset function. Provided that for each µ the lift and drag

coefficients approximately follow the trigonometric

relationships with respect to α, the variation of the lift and drag

coefficients will be effectively captured by the variation of

K0(µ), K1(µ) and K2(µ). The expressions for lift and drag

coefficient given in equations·15 and 16 are periodic functions

of α. The amplitude of the periodic relationships are given by

K0(µ)/2 and K1(µ), respectively, and these functions will be

referred to as amplitude functions. The second term in the drag

coefficient expression, K2(µ), gives the offset of the periodic

relationship from zero and is referred to as the offset function.

Quasi-steady model

In this section we extend the quasi-steady model for

hovering flight (Sane and Dickinson, 2001, 2002) to the

special case of forward flight consisting of a revolving wing

CD,norm(α) =
max

CD(α ,µ)–minµ{CD(α,µ)}

µ{CD(α,µ)}–minµ{CD(α,µ)}
(14),

CL,norm(α) =
max

CL(α,µ)

µ{CL(α,µ)}
(13),

CD =
2FD

ρSV f
2
cos2φ

. (12)

CL =
2FL

ρSV f
2
cos2φ

(11),

CD =
2FD

ρS(Rφ)2
r

2
2 (S) 

(10).

CL =
2FL

ρS(Rφ)2
r

2
2 (S)

(9),

(8)CD = 
2FD

ρS(Rφ)2[r
2
2 (S)+2r

1
1(S)µ+µ2]

,

CL = 
2FL

ρS(Rφ)2[r
2
2(S)+2r

1
1(S)µ+µ2]

(7) 
,

W. B. Dickson and M. H. Dickinson
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translating at constant forward velocity. For simplicity we

assume that the angle of attack α, the angular velocity of the

wing , and the forward velocity Vf, of the wing are all

constant. Further, we set the deviation angle θ to zero so that

the stroke plane is horizontal. In our model the instantaneous

force generated by the wing is represented by the vector sum

of two components:

F = Fa + Ft , (17)

where Fa is the force due to the added mass of the fluid and Ft

is the instantaneous translational force.

For a wing revolving at instantaneous angular velocity and

moving forward at velocity Vf, the magnitude of the sectional

flow velocity is given by:

V(r) = |r + Vf cosφ|·, (18)

where r is the spanwise location of the wing section (Fig.·2).

The instantaneous acceleration of the flow is the same for each

wing section, i.e. it is independent of the spanwise location r,

and is given by:

V(r) = –Vf | | sinφ . (19)

For an infinitesimally thin wing the existence of an acceleration

in the flow implies that there will be an added mass component

to the force experienced by the wing that will be proportional

to the acceleration of the flow in the direction normal to the

surface of the wing:

V(r) sinα = –Vf | | sinφ sinα . (20)

The magnitude of the added mass force used in this model is

based on an approximation derived for the motions of an

infinitesimally thin 2D flat plate in an inviscid fluid (Sedov,

1965). In a manner similar to that described by Sane and

Dickinson (2001) we adapted it to the case of a 3D wing

revolving at constant angular velocity and translating with

forward velocity Vf through the fluid. The magnitude of the

force due to the added mass, which acts normal to the wing

surface, is given by:

where r is the non-dimensional spanwise wing position and

c(r) is the non-dimensional mean chord. Thus, the constant of

proportionality is given by:

and has units of mass. It is known that for identical

kinematics and geometry the added mass forces scale in

proportion to the other aerodynamic forces (Sane and

Dickinson, 2001). Thus, provided that the Reynolds number

is the same, the contribution of the added mass on the wing

of the robotic model and the wing of a fly should be identical.

Under the quasi-steady assumption, the translational force

term Ft depends solely upon the instantaneous angle of attack

and velocity profile experienced by the wing. Ft can therefore

be expressed in terms of the mean sectional force coefficients

in the following manner:

FL = GρSCLR2 2[r2
2(S)+2r

1
1(S)µ+µ2] (23)

and

FD = GρSCDR2 2[r2
2(S)+2r

1
1(S)µ+µ2] , (24)

where the mean sectional force coefficients, CL and CD, are

functions of the instantaneous angle of attack α and the

instantaneous velocity profile, which is uniquely determined by

the tip velocity ratio µ. An appropriate expression for the

dependence of the mean sectional force coefficients upon α
and µ can derived under the following assumptions. First, each

wing section is considered to be an infinitesimally thin 2D flat

plate. Second, the component of the force resulting from

pressure differences acts normal to the surface of the plate with

a magnitude proportional to the projected chord of the plate

perpendicular to the direction of flow. Third, the effect of skin

friction is represented by a constant additive drag force. Under

these three assumptions, the mean sectional lift and drag

coefficients may be written as follows:

and

where the ki,j are unknown constants that are determined via a

,CD =
k1,2+2k1,1µ+k1,0µ2

r
2
2(S)+2r

1
1(S)µ+µ2

sin2α +
k2,2+2k2,1µ+k2,0µ2

r
2
2(S)+2r

1
1(S)µ+µ2

(26)

CL =
k0,2+2k0,1µ+k0,0µ2

r
2
2(S)+2r

1
1(S)µ+µ2

sinα cosα (25)

0

1ρπc
2R

4
c(r)2dr , (22)

Fa = –
Vf |φ|sinφsinαρπc

2R

4
c(r)2dr , (21)

0

1

Vf

φ<0

Vf

–φ

φ<0 φ

A

B

Vf

V
f cos(φ)

Vf

rφ

rφ

Vf c
os(φ

)

Fig.·2. Diagram of sectional flow velocities. The wing is travelling

through the fluid at forward velocity Vf. (A) Downstroke. The wing

is sweeping into the incident flow. The magnitude sectional flow

velocity at wing position r is given by r +Vfcos(φ). (B) Upstroke. The

wing is sweeping with the incident flow. The flow velocity at wing

position r is given by –r –Vfcos(φ).
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least-squares fit to a suitable data set. Detailed derivations of

equations·25 and 26 are given in the Appendix.

Results

The lift and drag traces for a range of advance ratios and

different angles of attack are shown in Figs·3A–D and 4A–D.

Regions where the wing is between –90° and 90° roughly

approximate the phase of a downstroke or an upstroke between

wing rotations and are highlighted in gray. The stroke length

for each experiment was selected to ensure that transient

effects due to the starting accelerations had diminished to

negligible levels by the time the wing was within the

highlighted regions. The stroke mimics a downstroke or an

upstroke when the angular velocity of the wing is equal to

72·deg.·s–1 or –72·deg.·s–1, respectively.

The forces shown in Figs·3A–D,·4A–D vary with time as the

wing sweeps through the background flow. Because the

angular velocity of the wing is constant, the stroke position

of the wing is a linear function of time. Thus, the forces in the

figures may alternatively be viewed as varying with stroke

position. Such a view explicitly ignores any time dependence

in the flows and forces. This simplification is justified,

however, because the effect of the initial stroke position did

not measurably influence the φ-dependence of the forces. Thus,

while exhibiting a dependence upon φ, the forces showed no

intrinsic time dependence once the transients due to the starting

accelerations decayed. Because the flow velocity at each wing

section is a function of the stroke position, φ, the aerodynamic

forces experienced by the wing also depend upon φ. During the

downstroke, when the wing sweeps against the net flow, the

sectional flow velocities increase from r| | to r| |+Vf as φ goes

from –90° to 0°, and then decrease to r| | again as φ goes from

0° to 90°. The lift and drag forces, which depend on the square

of the flow velocity, reflect these changing velocities reaching

a maximum near φ=0°. During the upstroke, when the wing

sweeps with the background flow, the flow velocities decrease

from r| | to r| |–Vf as φ goes from 90° to 0°, and increase to

r| | as φ goes from 0° to –90°. Again, the effects of the

changing sectional flow velocities are reflected in the force

traces. As expected, the effect of stroke position on force

production is greater as advance ratio increases.

Added mass

Because the flow velocity experienced by each wing section

varies with time it will experience an added mass force. This

acceleration is the same for each wing section and is given by

equation·19. In Fig.·5, we plot the added mass force estimated

using equation·6 as a function of the absolute value of the

acceleration. The theoretical estimate for the added mass force

(equation·21) is shown for comparison. The magnitude of the

added mass force is quite small compared to the aerodynamic

forces and approaches the noise limit of our measurements for

low accelerations. However, the trend is quite clear and the

match between the theoretical estimate and the measured

values is reasonable. The theoretical estimate of the constant

of proportionality that relates acceleration to force is 0.96·kg,

whereas a linear regression to the data collected in all 96 trials

yields an estimated constant of proportionality of 0.98·kg,

which is statistically indistinguishable from the theoretical

value. This result suggests that added mass forces account for

the slight asymmetry in the lift and drag forces about φ=0,

which is evident in Figs·3 and 4.

Angle of attack

Using equations·7 and 8, lift and drag coefficients were

constructed from the force traces, after subtracting the

added mass component. Previous studies of hovering flight

(Dickinson, 1996, 1994; Ellington and Usherwood, 2001),

observed that, aside from a small contribution due to skin

friction, the translational component of the force experienced

by the wing is approximately normal to the surface of the wing.

Fig.·6 shows a plot of force angle, the angle between the total

force vector and the wing’s surface, versus α for all 96 trials.

At angles of attack above about 15° the force is approximately

normal to the surface of the wing. This suggests that for high

angles of attack differences in pressure normal to the surface

of the wing dominate force production. For small angles of

attack less than 15°, the force angle is less than 90°, an effect

that can be attributed to skin friction.

Prior studies of revolving or flapping model wings

(Dickinson et al., 1999; Usherwood and Ellington, 2002a,b)

have shown that the mean sectional lift coefficient is

proportional to sin(α)cos(α), whereas the mean sectional drag

coefficient, minus skin friction, is proportional to sin2(α). The

quasi-steady model presented earlier in equations·25 and 26,

suggests that for a fixed tip velocity ratio µ, these functional

relationships will still hold. However, the constants of

proportionality in the relationships are, in addition, functions

of the tip velocity ratio in the case of forward flight. To test

whether or not this approximation is valid, we calculated the

normalized lift and drag coefficients using equations·13 and

14 (Fig.·7A,B). Plots of the functions 2sin(α)cos(α) and

sin2(α) are shown for comparison. Agreement between the

normalized coefficients and the trigonometric functions is

quite close. This suggests that the mean sectional lift and drag

coefficients during forward flight behave in a manner

analogous to that during hovering with respect to angle of

attack, provided the effects of tip velocity ratio are properly

taken into account.

Tip velocity ratio

Given that the lift and drag coefficients obey the

trigonometric functional relationships given by equations·15

and 16 with respect to angle of attack, the task of determining

the effect of tip velocity ratio µ is reduced to characterizing the

amplitude and offset functions K1(µ), K2(µ) and K3(µ). In

Fig.·8 we plot the drag coefficient versus lift coefficient for

several tip velocity ratios. A fit of equations·15 and 16 for each

tip velocity ratio is shown for comparison. For angles of attack

greater than approximately 30°, both the lift and drag

coefficients decrease with increasing tip velocity ratio. For the

W. B. Dickson and M. H. Dickinson
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drag coefficients at small angles of attack, this trend is

reversed. Also shown in Fig.·8 is a fit of equations·15 and 16

to hovering data from Birch et al. (2004). The values of the lift

and drag coefficients from the hovering data coincide with the

lift and drag coefficients from the zero tip velocity ratio case.

In general equal tip velocity ratios, regardless of the advance

ratio, result in equivalent force coefficients. However, at higher

advance ratios a greater range of tip velocity ratios is achieved

during each stroke.

The quasi-steady model, equations·25 and 26, suggests that

an appropriate functional form for the amplitude and offset

functions is that of a rational function whose numerator and

denominator are second order polynomial functions of µ. The

values of K0(µ), K1(µ) and K2(µ) estimated from the data are

shown in Fig.·9. Included in the figure for comparison are least-

squares fits of the functions:

to the estimated K1(µ), K2(µ) and K3(µ). The agreement

ki,2 +2ki,1 µ+ki,0 µ2

r
2
2(S)+2r

1
1(S)µ+µ2

(27)
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Fig.·3. Instantaneous lift traces. The regions where the stroke position of wing is between –90° and 90° are highlighted in gray and roughly

approximate the phase of an upstroke, =–72·deg.·s–1, or downstroke, =72·deg.·s–1, between wing rotations. Angle of attack α is held constant
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1/2, respectively. (Aii–Dii) =–72·deg.·s–1, advance ratio equal to 1/8, 1/4, 3/8 and 1/2, respectively.
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between the curve fits and the estimated functions is quite

close, suggesting that the functional relationship provided by

the model captures the behavior of the data with respect to µ
remarkably well.

Fig.·10 shows a plot of the lift coefficients versus drag

coefficients as a function of angle of attack for a non-revolving

wing, with a constant forward velocity of 0.16·m·s–1 and a fixed

stroke position angle of 0°. For this set of kinematics both the

advance ratio J and the tip velocity ratio µ are essentially

infinite. The quasi-steady model with coefficients determined

by the fit to the first set of kinematic patterns, with µ between

–0.5 and 0.5, can be extrapolated to predict the lift and drag

coefficients for the non-revolving wing by taking the limit of

equations·25 and 26 as µ approaches infinity:

CL = k0,0sin(α)cos(α) , (28)

and

CD = k1,0sin2(α) + k2,0 . (29)

Plots of equations·28 and 29 are shown in Fig.·10 for

comparison. The predicted and measured coefficients agree

reasonably well and the extrapolation of the quasi-steady

model accurately captures the trend as µ approaches infinity.

W. B. Dickson and M. H. Dickinson

Fig.·4. Instantaneous drag traces. The regions where the stroke position of wing is between –90° and 90° are highlighted in gray and roughly

approximate the phase of an upstroke or downstroke between wing rotations. Angle of attack α varied from –10° to 100° in steps of 10° for

each advance ratio. (Ai–Di) =72·deg.·s–1, advance ratio equal to 1/8, 1/4, 3/8 and 1/2, respectively. (Aii–Dii) =–72·deg.·s–1, advance ratio

equal to 1/8, 1/4, 3/8 and 1/2, respectively.
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Discussion

We used a dynamically scaled model to measure the

instantaneous lift and drag forces produced by a

simultaneously revolving and translating wing. The results

enable us to characterize the effect of advance ratio in the

absence of rotational forces and wing–wake interactions. The

force produced by the wing can be decomposed into two parts:

an added mass force and a translational component. The added

mass component of the force was measured using the

asymmetry in the forces with respect to stroke position and

closely matched theoretical predictions (Fig.·5). Lift and drag

coefficients for the translational force component were

constructed after subtracting the contribution due to added

mass. The lift and drag coefficients follow simple

trigonometric relationships with respect to angle of attack: the

lift coefficient is proportional to sin(α)cos(α) and the drag

coefficient to sin2(α) (Fig.·7). The amplitude and offset of the

these relationships is not constant, but depends upon the

velocity profile experienced by the wing. As the velocity

profile is completely determined by the tip velocity ratio, we

demonstrated that it is possible to characterize the dependence

of the force coefficients on the velocity profile in terms of the

tip velocity ratio. The fact that the lift and drag coefficients

depend upon the tip velocity ratio implies that modifications

of the quasi-steady model are required in order accurately to

predict forces during forward flight. To this end a modified

quasi-steady model that is capable of incorporating the

dependence of the force coefficients on the tip velocity ratio

was introduced. Finally, it was shown that the modified quasi-
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steady model generalizes in the correct manner as the tip

velocity ratios become large, as in the case of pure translation.

Added mass forces

The added mass forces estimated from experimental data

closely agree with the theoretical predictions made using

equation·21. Both the measured and predicted forces were

quite small in magnitude and represent less than 10% of the

total force generated by the wing. Also, over the course of an

actual stroke cycle they would average to zero so that net their

effect on average forces is insignificant. Nevertheless, it is

possible that they remain large enough to play a role in the

delicate force and moment balance that takes place during

aerial maneuvers.

For the kinematics considered in this study, the theoretical

predictions of the added mass force, based on an

approximation given in Sedov (1965), match the estimates

from experimental data quite well. It has been shown, however,

that for some types of wing kinematics this is not the case.

Birch and Dickinson (2003) considered the forces produced by

a back-and-forth flapping pattern in which the time course of

stroke position is a filtered triangle wave. They observed that

the time course of the forces generated at the start of a stroke

were not well matched by the same added mass model

considered here. This discrepancy held even for impulsive

starts, when wing–wake interactions are not present. A

significant difference between the two cases is that magnitude

of the peak acceleration in the back-and-forth pattern was

approximately 10 times greater than those of the revolving and

translating wing in this study. Thus, it appears the Sedov model

is reasonably accurate for the more gentle accelerations but

underestimates forces during higher accelerations.

Translational forces

The quasi-steady model of the translational force

coefficients, equations·25 and 26, is based on a blade element

derivation. In this treatment, the sectional force coefficients

vary with spanwise location, a dependence embodied by the

functions kj(r) in equations·A1 and A2. In contrast, previous

work on revolving wings under hovering conditions have

employed mean sectional force coefficients that are assumed

constant with respect to spanwise location (Sane and

Dickinson, 2001; Usherwood and Ellington, 2002a). In the

zero advance ratio limit such an assumption is not detrimental,

because for a given angle of attack the mean sectional force

coefficients are not sensitive to variations in velocity provided

that the dependence of the sectional force coefficients on span,

regardless of form, does not vary over the range of velocities
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considered. However, the simplification does not hold at finite

advance ratio. With the addition of forward velocity, the mean

force coefficients may become sensitive to variations in the

flow velocity profile experienced by the wing. Even assuming

that the functional dependence of the sectional force

coefficients upon span remains the same, the mean force

coefficients may depend upon the instantaneous velocity

profile experienced by the wing. Only in the special case where

the sectional coefficients are constant with respect to span does

the dependence of the mean force coefficients upon the

velocity profile disappear. This effect complicates the analysis

of forward flight and was the reason we adopted a more general

approach here. Theoretical considerations that take into

account the effect of tip vortices (Katz and Plotkin, 2001) as

well as recent experimental results (Birch and Dickinson,

2003) suggest that for each angle of attack the sectional force

coefficients do indeed depend upon span. The exact form of

this dependence, and whether for each angle of attack the

sectional force coefficients are dependent or independent of the

velocity profile, is not yet known.

Mean sectional force coefficients determined from zero

advance ratio data as a function of angle of attack are available

for various wing planforms and at various Reynolds numbers

(Sane and Dickinson, 2001; Usherwood and Ellington,

2002a,b; Birch et al., 2004). For this reason it is interesting to

compare the total force coefficients estimated from the

forward flight data using equations·25 and 26, with those from

hovering data. The force coefficients from hovering data agree

with the coefficients from forward flight data when the tip

velocity ratio µ=0. For angles of attack typical of insect flight

(30–90°) at tip velocity ratios <0, the lift and drag coefficients

are greater than those during hovering flight, and at tip

velocity ratios >0 the lift and drag coefficients are less than

those during hovering flight. For low advance ratios (<0.1),

this discrepancy can probably be ignored without incurring

too much error. However, as advance ratio increases

modifications are required in order to predict forces

accurately.

The quasi-steady model, with coefficients derived from

finite advance ratio data, was found to extrapolate fairly well

to steadily translating wings (Fig.·10). The model as currently

posed attributes the difference in force coefficients entirely

to the effect of the instantaneous velocity profile on the

constant spanwise distribution of sectional force coefficients.

In particular, it is assumed that the the spanwise distribution

of sectional forces coefficients for a given angle of attack

does not itself depend on the velocity profile. This is probably

not entirely true. However, it appears to be a reasonable

approximation for tip velocity ratio between –0.5 and 0.5. It

also captures the trend correctly at high advance ratios.

Validation of this assumption will require measurements

of the spanwise loading of a wing at various tip velocity

ratios.

Interest in the possible role of unsteady effects in insect

flight was stimulated in large part by the comprehensive

analysis of Ellington (1984a), in which he tested the

feasibility of quasi-steady models using a ‘proof by

contradiction’. He compared available experimental

measures of the maximum steady-state lift coefficients in the

literature with the values required to support hovering flight

based on body morphology and simplified wing kinematics.

His conclusion was that experimental values were typically

too low to account for the forces required to sustain flight,

thus justifying a search for unsteady effects that might

account for the elevated performance of insect wings under

flapping conditions. However, the conclusions of Ellington’s

thorough analysis are in conflict with recent studies

demonstrating that revolving wings create constant force in

the Reynolds number range used by insects (Dickinson et al.,

1999; Usherwood and Ellington, 2002a). More specifically,

although revolving wings separate flow and create a leading

edge vortex, this flow structure is stable over many chord

lengths. Given these recent results it is perplexing why

Ellington’s metanalysis demonstrated an insufficiency of

quasi-steady models based on previous measures of force

coefficients on real and model wings in steady translating

flow. The results of our analysis offer a possible explanation

for this discrepancy. Namely, that the maximum steady-state

lift coefficient depends upon the velocity profile experienced

by the wing, and use of lift coefficients from steadily

translating wings, with essentially infinite tip velocity ratio,

leads to an underestimate of the possible lift for a flapping or

revolving wing. From these results it is clear that unsteady

mechanisms may not be required in order to explain the force

balance for a hovering insect, but only that the appropriate

force coefficients be used.

Implications of kinematics

During steady forward flight it is likely that an insect must

adopt appropriate wing kinematics to balance lift, thrust and

body moments at each forward velocity. Several studies

(David, 1978; Willmott and Ellington, 1997) that have

examined the relationship between forward flight speed and

body angle found an inverse correlation, such that the angle

between the insects body and the horizontal plane decreases

with increasing flight speed. Further, in a study of Manduca

sexta, Willmott and Ellington (1997) demonstrated that there

is a positive correlation between stroke plane angle and

forward speed. During forward flight the angle of attack, and

thus the instantaneous forces produced, depend strongly upon

the stroke plane angle. From these studies it is clear that wing

kinematics, at least via changes in stroke plane angle, do

indeed vary in a systematic manner with forward velocity.

Without a comprehensive understanding of force production

for arbitrary wing kinematics over a suitable range of advance

ratios it is difficult to interpret how the observed changes in

wing motion effect the appropriate force and moment

balance.

In order to keep things as simple as possible the kinematics

employed in this study all had a stroke plane angle of zero,

which we know to be unrealistic. It is not yet known how

changes in stroke plane angle will further modify the measured
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lift and drag coefficients. Further studies are required to

determine the combined effect of forward velocity and nonzero

stroke plane angles.

Appendix

An appropriate functional representation of the mean

sectional lift and drag coefficients can be derived as follows.

First, each wing section is considered to be an infinitesimally

thin 2D flat plate. Second, the component of the force resulting

from pressure differences acts normal to the surface of the plate

with a magnitude proportional to the projected chord of the

plate perpendicular to the direction of flow. Third, the effect

of skin friction is represented by a constant additive drag force.

Under these three assumptions, the sectional force coefficients

may be written as:

C ′L(r) = k0(r)sin(α)cos(α) , (A1)

and

· C·′D(r) = k1(r)sin2(α) + k2(r)·, (A2)

where the functions k1(r), k2(r) and k3(r) describe the

dependence on the spanwise location of the wing section.

The sectional lift and drag forces as a function of non-

dimensional spanwise location of the wing section are then

given by:

F ′L(r) = Gρc(r)CL(r)[rR +Vfcos(φ)]2·, (A3)

and

F ′D(r) = Gρc(r)CD(r)[rR +Vfcos(φ)]2·. (A4)

Integrating the sectional lift and drag forces along the span

of the wing and substituting equations·A1 and A2 for the

sectional lift and drag coefficients yields the following

expressions for the magnitudes of the total lift and drag forces

experienced by the wing:

FL = GρSR2 2(k0,2+2k0,1µ+k0,0µ
2)sin(α)cos(α) , (A5)

and

FD = GρSR2 2[(k1,2+2k1,1µ+k1,0µ
2)sin2(α) + (k2,2+2k2,1µ+k2,0µ

2)]·,

(A6)

where

Equating the expressions for lift and drag given by

equations·23 and 24 and by equations·A5 and A6, respectively,

and then solving for the lift and drag coefficients, yields the

desired expressions for the mean sectional lift and drag

coefficients:

and

List of symbols

AR aspect ratio

A|| parallel gravitational force amplitude constant

A⊥ normal gravitational force amplitude constant

B|| parallel gravitational force offset constant

B⊥ normal gravitational force offset constant

c(r) chord length

c(r) non-dimensional chord length

c mean chord length

CL mean sectional lift coefficient

C′L(r) sectional force coefficient

CL,norm(α) normalized lift coefficient

CD mean sectional drag coefficient

C′D(r) sectional drag coefficient

CD,norm(α) normalized drag coefficient

F instantaneous aerodynamic force

Fa added mass force

Fa magnitude of added mass force

FD total drag

F ′D(r) sectional drag

FL total lift

F ′L(r) sectional lift

Ft translational force

F(φ) force measurement normal to the wing at

stroke position φ
G||(α) gravitational force parallel to wing

G⊥(α) gravitational force parallel to wing

J advance ratio

k1(r) sectional lift amplitude function

k2(r) sectional drag amplitude function

k3(r) sectional drag offset function

ki,j lift and drag coefficient integrals/fit

coefficients

K0(µ) drag coefficient amplitude function

K1(µ) lift coefficient amplitude function

K2(µ) drag coefficient offset function

r radial position along wing

r non-dimensional radial position along wing

r
1
1(S) non-dimensional first moment of wing area

r
2
2(S) non-dimensional second moment of wing area

R wing length

Re Reynolds number

S wing area

Vf forward velocity

V(r) sectional flow velocity

α(t) instantaneous angle of attack

angular velocity of the wing

φ(t) instantaneous stroke position

µ tip velocity ratio

θ(t) instantaneous stroke deviation density of 

fluid

ν kinematic viscosity

τ reduced time t| |R(c)–1
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W. B. Dickson and M. H. Dickinson



4281Effect of advance ratio on aerodynamics

References
Bennett, L. (1970). Insect flight: lift and rate of change of incidence. Science

167, 177-179.
Birch, J. M. and Dickinson, M. H. (2001). Spanwise flow and the

attachment of the leading-edge vortex on insect wings. Nature 412, 729-
733.

Birch, J. M. and Dickinson, M. H. (2003). The influence of wing–wake
interactions on the production of aerodynamic forces in flapping flight. J.

Exp. Biol. 206, 2257-2272.
Birch, J. M., Dickson, W. B. and Dickinson, M. H. (2004). Force production

and flow structure of the leading edge vortex on flapping wings at high and
low Reynolds numbers. J. Exp. Biol. 207, 1063-1072.

David, C. T. (1978). Relationship between body angle and flight speed in free-
flying Drosophila. Physiol. Ent. 3, 191-195.

Dickinson, M. H. (1994). The effects of wing rotation on unsteady
aerodynamic performance at low Reynolds numbers. J. Exp. Biol. 192, 179-
206.

Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic
and aerial locomotion. Am. Zool. 36, 537-554.

Dickinson, M. H. and Gotz, K. G. (1993). Unsteady aerodynamic
performance of model wings at low Reynolds numbers. J. Exp. Biol. 174,
45-64.

Dickinson, M. H., Lehmann, F. O. and Sane, S. P. (1999). Wing rotation
and the aerodynamic basis of insect flight. Science 284, 1954-1960.

Dudley, R. (2000). The Biomechanics of Insect Flight. Princeton University
Press, Princeton, New Jersey.

Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I lift and
power requirements. Phil. Trans. R. Soc. Lond. B 305, 1-15.

Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. II.
morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 17-40.

Ellington, C. P. (1984c). The aerodynamics of hovering insect flight. III.
kinematics. Phil. Trans. R. Soc. Lond. B 305, 41-78.

Ellington, C. P. and Usherwood, J. R. (2001). Lift and drag characteristics
of rotary and flapping wings. Progr. Aeronaut. Astronaut. AIAA 195, 231-
248. Reston, Virginia: American Institute of Aeronautics and Astronautics,
Inc.

Ellington, C. P., vandenBerg, C., Willmott, A. P. and Thomas, A. L. R.

(1996). Leading-edge vortices in insect flight. Nature 384, 626-630.

Isaacs, R. (1946). Airfoil theory for rotary wing aircraft. J. Aeronaut. Sci. 13,

218-220.

Katz, J. and Plotkin, A. (2001). Low-Speed Aerodynamics. Cambridge, UK:

Cambridge University Press. 

Lehmann, F. O. and Dickinson, M. H. (1997). The changes in power

requirements and muscle efficiency during elevated force production in the

fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1133-1143.

Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift

generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J.

Fluid Mech. 93, 47-63.

Osborne, M. F. M. (1951). Areodynamics of flapping flight with application

to insects. J. Exp. Biol. 28, 221-245.

Sane, S. P. and Dickinson, M. H. (2001). The control of flight force by a

flapping wing: Lift and drag production. J. Exp. Biol. 204, 2607-2626.

Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing

rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol.

205, 1087-1096.

Sedov, L. I. (1965). Two-Dimensional Problems in Hydrodynamics and

Aerodynamics. New York: Interscience Publishers.

Somps, C. and Luttges, M. (1985). Dragonfly flight – novel uses of unsteady

separated flows. Science 228, 1326-1329.

Spedding, G. R. (1993). On the significance of unsteady effects in the

aerodynamic performance of flying animals. Contemp. Math. 141, 247-272.

Spedding, G. R. and Maxworthy, T. (1986). The generation of circulation

and lift in a rigid two-dimensional fling. J. Fluid Mech. 165, 247-272.

Usherwood, J. R. and Ellington, C. P. (2002a). The aerodynamics of

revolving wings. I. Model hawkmoth wings. J. Exp. Biol. 205, 1547-1564.

Usherwood, J. R. and Ellington, C. P. (2002b). The aerodynamics of

revolving wings. II. Propeller force coefficients from mayfly to quail. J. Exp.

Biol. 205, 1565-1576.

van der Wall, B. G. and Leishman, J. G. (1994). On the influence of time-

varying flow velocity on unsteady aerodynamics. J. Am. Heli. Soc. 26, 25-

36.

Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals,

including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230.

Willmott, A. P. and Ellington, C. P. (1997). The mechanics of flight in the

hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J.

Exp. Biol. 200, 2705-2722.


