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Abstract: In this work, we investigated the effect of carbon nanotubes addition and agglomeration
formation on the mechanical and electrical properties of CNT–polymer-based nanocomposites. Six
specimens with carbon nanotubes (CNTs) fractions of 0%, 0.5%, 1%, 2%, 4% and 5% were manu-
factured and characterized by dynamic mechanical analysis (DMA) and four-probe method. The
stress–strain curves and electrical conductivity properties were obtained. Scanning electron mi-
croscopy (SEM) was used to characterize both agglomeration and porosity formation. By employing
micromechanics, through representative volume element (RVE), finite element analysis (FEA) and
resistor network model (RNM), the Young’s modulus and electrical conductivity values were calcu-
lated. The samples’ elastic moduli showed an increment, reaching the maximum value at a CNTs
fraction of 2%, thereafter an adverse effect was caused in the high CNT percentage samples. The
final electrical conductivity seemed greatly altered with the addition of CNTs, reaching the percola-
tion threshold at 2%. The unavoidable formation of CNT agglomerates appeared to influence the
final physical properties. The CNT agglomerates adversely affect the mechanical performance of
high-CNT-percentage samples. Conversely, an exponential increment in the electrical conductivity
was presented as the agglomerates formed networks allowing the transport of electrons through the
tunnelling effect. These phenomena were experimentally and numerically confirmed, showing a
good correlation.

Keywords: nanocomposites; agglomeration; electrical properties; mechanical properties; computational
modelling; multi-scale modelling

1. Introduction

In recent decades, the demand for high-performance materials has rapidly increased.
In several industries, materials with better properties such as mechanical, electrical and
thermal were highly recommended. The use of neat materials was considerably restricted
as they usually exhibited a poor combination of inherent properties. On the contrary, com-
posite materials have the potential to meet new requirements [1–3]. Specifically, polymer-
matrix composites reinforced with carbon nanotubes (CNTs) exhibit excellent physical
properties, i.e., a high resistance to fracture under quasi-static and dynamic loadings, high
fracture toughness, wear resistance to high elastic modulus, and high electrical and thermal
conductivity [4]. This unique combination of properties has attracted considerable interest
amongst the materials research community due to their potential deployment in the ma-
rine and aerospace industries, space structures, and automotive and military applications.
Additionally, they are widely explored in more advanced industries (i.e., structural health
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monitoring and lightning-strike protection) where there is a need for high-performance
multifunctional materials [4–6].

An extensive number of experimental, numerical, and theoretical studies were pub-
lished. Different approaches have been used to explore the influence of CNTs on the final
physical properties of polymer nanocomposites [2]. For instance, electrical properties
can be experimentally studied with four-probe methods and volume resistance measure-
ments. Analytically different models, such as the rule of mixtures, percolation models,
and mathematical models are available [7]. Numerical models are less extensive, and
based on the Monte Carlo method [8–12], resistor-model network [13–18], finite element
analysis [7,19–21] and mean-field homogenization [22,23]. These methods are capable of
predicting the final electrical conductivity. However, electrical conductivity is a complex
phenomenon, where various phenomena take place. When the percolation threshold was
achieved, various sources such as CNTs’ intrinsic conductance, direct contact conductance,
and conductance resulting from electron tunnelling influenced the attainable properties [1].

Regarding mechanical properties, theoretically, the addition of a small fraction of
CNTs can greatly increase the final properties of the neat epoxy [21,24–26]. However,
theoretical models overestimate the final mechanical properties at higher volumes [6,27–29].
Several experimental studies have attempted to achieve the predicted mechanical properties.
Nevertheless, debatable results reveal that a poor enhancement in the effective elastic
properties of the nanocomposites is likely to happen [5,30]. This phenomenon is attributed
to the fact that the final properties rely not only on the properties of the constituents but
also on parameters such as the aspect ratio, orientation, waviness, interfacial properties,
and filler dispersion of CNTs [31–33]. The interfacial characteristics between the polymeric
matrix and the carbon nanotubes often play a critical role in determining the final properties,
i.e., electrical, mechanical, and thermal. The expected properties are often limited and not
achieved, and in many cases, a negative influence on the materials is observed. The reasons
for this are the poor interfacial interaction and the van de Waals phenomena between the
matrix and the nanofillers. Non-covalent functionalization is a method to modify surface
properties and mitigate the potential interfacial problems between conjugated polymers
and carbon nanotubes [19,34–38].

Additionally, the performance of the nanocomposite is undoubtedly affected by the
grade of distribution and dispersion of CNT in the matrices [27,29]. Previous studies
demonstrated that poor CNT dispersions lead to the formation of aggregates and agglom-
eration [21]. These filler aggregation and agglomeration negatively influence the elastic
composite properties [28]. Although various techniques are being employed to obtain a
uniform dispersion and distribution, some level of agglomeration and aggregates are in-
evitable with a high percentage of additives. Deagglomeration methods such as ultrasonic,
stirring, and high shear mixing can only prevent clusters up to lower weight percentage
limits [39]. Their negative effect on the effective properties has been characterized through
experimental studies and microscopic observations. The adverse influence of agglomer-
ation appears to be more devastating in a high percentage of nanofillers. The expected
enhancement is not nearly achieved, and in various scenarios, even a reduction in the
mechanical properties of the neat epoxy occurs [21,27,39].

The effects of the aggregates/agglomerates were evaluated in various analytical [8,29,32,40]
and experimental studies [24,41–43] For instance, Poorsolhjouy and Naei [44] studied the
effects of the volume fraction and grade of dispersion of carbon nanotubes, utilizing a
finite element approach. The model considered six different loading conditions, where
the effective mechanical properties were calculated. The findings suggest that in volume
fractions higher than 5%, larger agglomerations tend to form, and thus the effective proper-
ties greatly decrease. Similarly, Chanteli and Tserpes [21] employed multiscale modelling
using the finite element approach. The FE model was utilized to predict the effect of the
agglomerates on the elastic properties of the nanocomposites. The study showed that
the topology of the agglomerates had a significant effect. Romanov et al. [26] developed
a two-scale model to investigate the effect of agglomerates on inter-fibre stresses. The
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study focused on the size and density of CNT agglomerates and found that a higher stress
concentration was obtained with a higher density. Alian et al. [5] studied the effect of
waviness and agglomerations of CNTs on the bulk properties of nanocomposite based on
the molecular dynamics (MD) approach. The effective bulk properties were found to be
limited as a consequence of the agglomerates. Similar numerical simulations can be found
in [4,30,39,45].

From this brief literature overview, it can be said that the effect of CNTs on the
electrical and mechanical properties of the epoxy matrix was studied. Moreover, the effect
of agglomerates/agglomeration of CNTs on the effective properties of nanocomposite was
also taken into account, mainly through experimental and analytical approaches. However,
there are not enough numerical studies to understand the impact of the agglomeration
phenomena. Thus, in this study, we investigated the effects of small fractions of CNTs
(i.e., 0%, 0.5%, 1%, 2%, 4% and 5%) and the agglomeration formation on the electrical and
mechanical properties using experimental and numerical approaches.

The experimental results were obtained through a dynamic mechanical analysis (DMA)
equipment, where the elastic properties were calculated at a fixed temperature. The
electrical conductivity through the four-probe method. The agglomerates and porosity were
characterized using scanning electron microscopy (SEM) technique. Different percentages
of agglomeration and porosity were calculated. Numerical simulations were carried out,
employing micromechanics using representative volume elements (RVE). A finite element
analysis and resistor network model were conducted using DIGIMAT and MATLAB
software, respectively. The models containing different percentages of nanofillers and a
multiscale approach for modelling the agglomerates were chosen.

This study aims to investigate the electrical and mechanical behaviour of CNT–
polymeric nanocomposites, the influence of small percentages and the impact that ag-
glomerates produce on the attainable properties. This document is organized into the
following sections: Materials and Methods, Results and Discussion, and Conclusions. In
the Results and Discussion section, the results are divided into mechanical and electrical
properties. The former are presented through two different modelling approaches, taking
into account agglomerates and porosity above the CNTs fraction of 2%. For the electrical
properties, the effects of tunnelling distance and the percolation threshold are investigated
through two methods: FEM and RNM. This unique approach explores new methods to char-
acterize the mechanical and electrical properties, finding that the unavoidable formations of
CNTs agglomerates have clear impacts at higher percentages. They negatively influence the
elastic modulus; however, they seem to benefit electron transport through their networks.
The modelling results are in very good agreement with the experimental results.

2. Materials and Methods
2.1. Materials and Samples Preparation

In this study, multi-walled carbon nanotubes (MWCNT) purchased from Applied
sciences Inc., Cedarville, OH, USA were dispersed into Epoxy EPON 862 at different
percentages, i.e., 0.5, 1, 2, 4, 5 wt.%. The samples were made using a solvent-based process.
Initially, the CNTs were shear mixed in an ultrasonic bath for 1 h and then the resin was
added under continuing mixing until all solvent was evaporated. Then, the mix was poured
into a silicone mould and hot-pressed in a vacuum. The MWCNT dimensions ranged from
20 nm to 100 nm in diameter and 30 µm to 100 µm in length.

2.2. Experimental Procedure

The mechanical analysis was performed with a dynamic mechanical analyser (DMA)
TA Instruments Q800, New Castle, DE, USA. A cantilever three-point bending mode at
a fixed temperature was utilized. A neat epoxy and MWCNTs samples with dimensions
of 1 mm (length) × 0.0465 mm (width) × 20 mm (thickness) were exposed to stress–
strain curves with a controlled force method. The stress/strain curves were obtained
for each sample, and the elastic modulus was calculated from the straight part of the
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curve. The electrical conductivity was performed using four-probe method measurements
employing Loresta equipment, Willich, Germany. The SEM images were performed using
the instrument SEM HITACHI, S4800, Tokyo, Japan.

2.3. Numerical Procedure

The numerical methodology employed was micromechanics theory. Through the
generation of a representative volume element (RVE), the final Young’s modulus and
electrical conductivity were calculated using DIGIMAT and MATLAB, respectively. The
RVE dimensions were set to 20 µm (length) × 20 µm (width) × 20 µm (thickness). The
shapes of the CNTs were considered cylinders. The diameter of each CNT was set to vary
between 100 nm and 200 nm, and the length was set to change to any value between
30 µm to 100 µm following the manufacturing data. Additionally, random distribution and
interpenetration between CNTs were assumed. The physical properties of the constituents
utilized in the numerical simulations are displayed in Table 1 [27].

Table 1. Properties of the constituents.

Properties Epoxy MWCNT

Density (g/cm3) 1.21 2.1
Young’s modulus (MPa) 1650 500,000

Poisson’s ratio 0.3 0.261
Electrical conductivity (S/cm) 2.1 × 10−7 5 × 101–5 × 105

2.4. Digimat FE Modelling

Nanofillers generation was divided into two different methods. The first stage was
the generation of the samples containing 0.5, 1, and 2 wt.% of carbon (Figure 1). At
this low concentration, the potential agglomeration and its effects on the properties of
samples can be considered negligible. The second stage involves a multiscale approach;
see Figure 2. For this, the RVE of the samples containing a higher weight percentage of
nanofillers was used (i.e., 4, 5 wt.%), as shown in Figure 1. At these high percentages,
bundles of CNT are more likely to occur [30]. These agglomerations directly affect the
physical properties of the nanocomposite [46]. At the macroscale, the bundles form small
marks through the nanocomposites. These spots, at the mesoscale, appear as aggregates
in form of clusters of MWCNT. These aggregates can be seen as white spots, as shown
in Figure 3. Additionally, the porosity by dark grey spots can be seen on the samples.
Consequently, an RVE containing the agglomerations was generated. The dimensions were
set to 20 µm (length) × 20 µm (width) × 20 µm (thickness). The blue semi-spheres in the
image represent the cavities generated by the agglomeration and were modelled as voids.
Inside the semi-spheres, the aggregates are present. The agglomeration was randomly
generated, and interpenetration of the nanofillers was allowed.

2.5. MATLAB Modelling

The simulation using MATLAB, MathWorks, MI, USA involved two steps. First, the
generation of the 3D geometry representative volume element (RVE) with the nanofillers
is randomly distributed according to the percentages of the weight fraction (Figure 1).
Thereafter, the network was characterized and electrical properties were calculated. The
simulation within MATLAB emphasized the quantm tunnelling effect, which predomi-
nantly affected the final conductivity. Additionally, CNTs were not able to cross each other
or expand outside of the RVE volume. The matrix’s electrical resistivity was considered
negligible. The formation of CNTs networks relies on the minimum distances between two
CNTs, known as tunnelling distance and was calculated using Equation (1). Equation (2)
represents the matrix form of a system with N nanotubes and L junctions between them,
and the conductive faces are shown in Figure 4:
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a, b, c, d, S, T ∈ RN

s, t ∈ R

S = { s× b + (1− s)× a|0 ≤ s ≤ 1 }

T = { t× b + (1− t)× a|0 ≤ t ≤ 1 }

(S, T) =

√
i=1

∑
n
(s× bi + (1− s)× ai − w× ci − (1− w)× di)

2 (1)

I = R×V (2)

Figure 1. Generation of RVEs as a function of the percentage of nanofillers. (a) 0.5 wt.%; (b) 1 wt.%;
(c) 2 wt.% (d) 4 wt.%; (e) 5 wt.%.

Figure 2. Schematic multiscale modelling of CNT agglomerations.
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Figure 3. Low magnification SEM imaging of CNT-based nanocomposite.

Figure 4. 3D resistor network model of CNT randomly distributed.

The formed networks are calculated at every step of the nanofiller generation when
the minimal distances are calculated. If a network is formed the electrical conductivity is
calculated only when the network connects two opposite faces (Figure 4). When this is
achieved, the circuits formed by the CNTs are arranged into a matrix equation. Then, the
circuit equations are solved by Kirchhoff’s circuit laws and node theory [15,16,47].

The matrix I was set to be null except for the first and last elements, which are the
values of the applied electrical potentials of the two faces. V is the electrical potential of
the CNTs, where the first element and the last element are the electrical potentials of the
two conductive faces (Figure 4). The matrix R is used to calculate the resistivity of each
CNT that is only participant in the network of Equation (3), where ljk is the length of the
CNT between the nodes j and k, σcnt is the intrinsic electrical conductivity, and D is the
diameter. The final resistivity and conductivity are calculated using Equations (4) and (5),
where Grve is the effective electrical conductance, Vf 1, Vf 2 are the applied voltages on the
conductive faces, t the RVE’s thickness, and σrve is the effective electrical conductivity of
the nanocomposite [1,10,13,47,48]:
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Rjk =
4l jk

πσcntD2 (3)

Grve =
Itotal(

Vf 1 −Vf 2

) (4)

σrve =
Grve

t
(5)

3. Results and Discussion

In this section, the results are presented separately for mechanical and electrical proper-
ties. Figure 5 shows various characterizations of CNTs agglomerations, CNTs, and interfaces.
This image was utilized to produce an idealized model shown in Figures 1 and 2.

Figure 5. SEM characterization sample CNT 4%wt: (a) CNTs agglomeration, (b) high magnification
of CNT agglomeration, (c) interface adhesion CNT and epoxy resin, and (d) CNTs and porosity
characterization, Yellow arrows represent the Porosity, White allow point the CNTs.

3.1. Mechanical Properties

The elastic modulus was calculated from the straight regions in the curves shown in
Figure 6. The pristine sample poses an intrinsically low Young’s modulus of 1611 MPa.
The enhancement of the elastic properties is achieved with CNTs addition. For instance,
with a small fraction of 0.05 wt.% of CNTs, there is a sharp increment of 800 MPa on the
Youngs’s modulus. This significant increment is caused by the robust interaction between
the epoxy matrix and the MWCNT. Resulting in a great transfer in the mechanical loads
on the interphase/interfacial properties. However, this sharp tendency seems to have
reached a plateau. The subsequent addition of 1 and 2 wt.% triggered the same effect in
the attainable Young’s modulus, with increments of 800 MPa and 900 MPa, respectively.



Polymers 2022, 14, 1842 8 of 17

The upper limit of Young’s modulus is presented in the sample of 1 wt.% with a value of
2450 MPa. These high increments are due to the high aspect ratio of the nanofillers, which
is a crucial factor in the Mori–Tanka and Halpin–Tsai models [24,29,49,50]. The sample with
2 wt.% presented the same experimental and numerical effect, and 2 wt.% was determined
as the value of the percolation threshold.

Figure 6. Experimental stress–strain curves of nanocomposites with different percentages of CNT.
(a) Epoxy. (b) 0.5 wt.%. (c) 1 wt.%. (d) 2 wt.%. (e) 4 wt.%. (f) 5 wt.%.

The adverse effect on properties is evident at fractions of 4 and 5 wt.%, as shown in
Table 2. The vast decrease in mechanical properties has a high difference of 1700 MPa in
comparison with the 2 wt.% sample. Additionally, its final value is still less than the value
obtained with the pristine epoxy. The adverse effect caused a reduction of 1000 MPa. A
similar effect takes place with the addition of 5 wt.%. Although the decrement is slightly
less, the damaging effect is significant severe, and the reduction is still higher than 1500 MPa.
The reason for this is that, at these higher values, a poor distribution and dispersion are
inevitable, and the formation of agglomerates/agglomeration and porosity occurs, as
shown in Figure 5. Although there are methods to avoid such phenomena, the formation
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of agglomeration, aggregates and porosity are unavoidable. The poor dispersion and
agglomeration produced points of defects and stresses [25,39].

Table 2. Youngs’s modulus calculation.

Samples Experimental FEA 20% 30% 40%

0 wt.% 1611 1611 - - -
0.5 wt.% 2420 2131 - - -
1 wt.% 2450 2320 - - -
2 wt.% 2392 2416 - - -
4 wt.% 659 679 1040 679 478
5 wt.% 751 719 950 719 536

These defects act as small voids producing a large decrease in mechanical properties
(Figure 5). The agglomerates/aggregates were simulated in a form of small bundles and
spheres, emulating porosity, as shown in Figures 1 and 2. A finite element analysis was
performed assuming that the area occupied by the aggregates also had small cavities and
voidness, as shown in Figure 7.

Figure 7. Aggregates/agglomeration of CNT in RVE matrix.

The effect of the agglomerates was simulated throughout different percentages of the
voidness. The voids were only introduced at samples with fractions of 4 and 5% wt, as the
experimental results showed a decreasing trend (Figure 8). The percentages of voidness
only occupied the area where the simulated agglomerate took place. The void percentages
were calculated as shown in Figure 5. The image was divided into squares, and the volume
occupied by the void was calculated. The first percentage shown in Figure 8 is 20% where
the decrement starts to produce a negative effect.

In Table 2, the results of different percentages of the void are summarized. The
numerical simulations showed that the trend of voids could replicate the decrement in
the elastic modulus presented in the experimental studies. The addition of 20%, 30% and
40% of the void produces the expected decrement in the elastic properties. This trend was
confirmed as the volume increased. Furthermore, the three percentages of voidness follow
a close pattern to the experimental data. The results obtained in the model with the highest
voidness, i.e., 40%, presented a very high decrement in the Young’s modulus. Additionally,
it seems that the 30% of the void predicted the Young’s modulus experimental trend,
showing that the model is capable of predicting the decrement effect. The three models
are presented and compared in Figure 8. Finally, the most accurate model is presented in
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Figure 9, where it can be observed that the model with 30% of voids perfectly matches the
experimental results.

Figure 8. Evolution of the experimental elastic modulus for different void percentages.

Figure 9. Experimental and numerical elastic modulus.

3.2. Electrical Properties

The four-probe experimental results of every specimen are shown in Figure 10. The
expected low electrical conductivity of the pristine epoxy sample is exponentially altered
with the MWCNT addition. At each increment of fillers fraction, there is a considerable
increment in the final electrical conductivity. The addition of 0.5 wt.% produced a resistivity
increment of two orders, from 2.123 × 10−7 (S/cm) to 2.123 × 10−5 (S/cm). This phe-
nomenon was confirmed with a fraction of 1 wt.%, achieving a final electrical conductivity
of 5.195 × 10−4 (S/cm). Thereafter, there was a sharp increase in the conductivity at 2 wt.%,



Polymers 2022, 14, 1842 11 of 17

where the value increased to 0.2512 (S/cm). At this percentage, the percolation threshold
was achieved. Thereafter the addition of CNTs induced small increases in the final electrical
properties, where 3.472 (S/cm) and 5.549 (S/cm) were achieved at 4 and 5%, respectively.
This phenomenon is portrayed in Figure 6, where the percolation threshold is highlighted
with a red line. The percolation threshold is a phenomenon that is related to the formation
of carbon nanotubes networks [22].

Figure 10. Experimental samples’ electrical conductivity.

The simulations were performed using DIGIMAT FE and MATLAB. The simulations
focused on the intrinsic electrical conductivity of CNTs, contact resistance and maximum
tunnelling distance. A poor electrical conductivity was considered negligible in the resistor
network modelling. Using MATLAB and the resistor network theory, the percolation
probability was investigated. First, the influence of maximum tunnelling distance between
the nanotubes was investigated. Three different distances were analysed, i.e., 0.3 µm,
0.4 µm, and 0.5 µm. For every sample, 50 runs of simulations were performed, a total of
750 simulations. The percolation probability for every distance is shown in Table 3.

Table 3. Percolation probability for different tunnelling distances.

Samples D1 = 0.3 (%) D2 = 0.4 (%) D3 = 0.5 (%)

0 wt.% 0 0 0
0.5 wt.% 8 10 10
1 wt.% 12 18 26
2 wt.% 47.27 98 98
4 wt.% 96 100 100
5 wt.% 100 100 100

The addition of the CNTs fraction affects the probability of the percolation threshold
at each tunnelling distance. Nevertheless, the percentages considerably diverge for all
distances. The noticeable effect on the percolation probability is shown in Figure 11,
which demonstrates the volume at which the percolation threshold was influenced by the
tunnelling distance [1,20,51]. The distance of 0.3 µm was pre-set following the high aspect
ratio of MWCNT. At this distance, a high percolation probability of 96% was found at the
4%wt of fillers aggregation. A percolation of 100% was achieved at 5% of each investigated
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distance. Additionally, the different percentage increases the percolation probabilities of
samples from 8% to 12% and 47%. The RVE containing 2%wt has close to a 50% percolation
probability. The distances of 0.4 and 0.5 µm are also shown in Table 3. Both distances
showed a 10% probability with a small fraction of 0.5%wt. The increase in probability is
seen in each sample. For instance, RVE containing 1 wt.% showed an 18% and 6% increase
from the last distance. Thereafter a sharp increment occurred around 2 wt.%, where a
probability of 98% was obtained. At a 4 µm distance, the probability is 100% for 4 and
5%wt. The distance of 5 µm showed the same values of 4 µm, aside from the RVE with a
1 wt.% fraction. This is because, if the distance is higher, more CNTs are considered to be
form networks. The percolation threshold is also clearly achieved around the percentage
of 2%wt. In Figure 11, the percolation threshold for the distances is shown in blue and
red lines. The blue line portrays the percolation threshold for distances between 4 µm and
5 µm. Although, these two distances show a similar curve profile, and the final electrical
conductivity was highly altered, as shown in Table 4 [12,18,52].

Figure 11. Percolation probability with different tunnelling distances.

Table 4. Electrical conductivity (S/cm) results.

Samples Experimental FEA D1 = 0.3 D2 = 0.4 D3 = 0.5

0 wt.% 2.123 × 10−7 2.123 × 10−7

0.5 wt.% 2.123 × 10−5 2.15 × 10−7 4.9 × 10−2 7.774 × 10−2 1.68 × 10−1

1 wt.% 5.195 × 10−4 1.167 10−6 8.13 × 10−2 2.361 × 10−1 3.7754 × 10−1

2 wt.% 0.2512 0.222 0.9300 1.5609 1.366
4 wt.% 3.472 3.160 2.658 2.7572 4.161
5 wt.% 5.549 5.2190 4.2644 5.2208 5.32

The value of the electrical conductivity of each value and each distance was calculated
using resistance by disordered media theory [15,16]. These values are shown in Table 4 and
present the average value after every simulation iteration. The RVE models with different
distances present two different predictions of behaviour. At each distance, the models are
not accurate for predicting the final conductivity below the percolation threshold. This dis-
agreement is because the RNM does not take into account matrix electrical resistance. Thus,
experimentally, the attainable electrical conductivity is close to the matrix. Nevertheless,
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above the percolation threshold at each distance, the values are in good correlation with
the experimental data.

From Table 4, a comparison of the final conductivity was produced and is shown
in Figure 12. The three distances show a similar curve profile to the experimental trend.
According to the simulated values, the RVE with more accurate values is the model with
a tunnelling distance of 0.4 µm. This model is highly accurate above the percolation
threshold. At 2%wt of additives, the model overestimates the final value; however, just a
small difference of 1.25 (S/cm) was found. On the other hand, there is an underestimation
of the models at 4% and 5%wt, which is considered negligible. Finally, the values of the
5 µm distance showed the same phenomenon. The RVE is accurate in the final electrical
conductivity prediction. The values show a high prediction at and after the percolation
threshold. These values are similar to the 4 µm distance. The difference at 2%, 4% and
5%wt were 1.11, 0.69 and 0.22 (S/cm), respectively, showing good accuracy in the model.

Figure 12. Comparison of electrical conductivity of MATLAB simulations with experimental data.

The electrical conductivity was also simulated using a finite element approach, and
the RVE was considered, as shown in Figure 1. The calculated values are shown in Table 4.
The values were calculated following the average after each simulation iteration at the axis.
The probability percolation values were not calculated. Instead, the simulation calculated
the final electrical conductivity of each sample. As previously discussed, the RVE models
were also not accurate below the percolation threshold. A finite element analysis overesti-
mated the intrinsic conductivity of a single MWCNT, producing an inaccuracy below the
percolation threshold. However, above the percolation threshold, there is high accuracy
of the final values. At 2%wt, where the percolation is achieved, the predicted value is
0.222 (S/cm) in comparison with the experimental data of 0.2515 (S/cm). This difference
is negligible. Similarly, the model predicts and matches the experimental data at 4% and
5%wt with 3.160 (S/cm) and 5.219 (S/cm), respectively. In Figure 13, the values are shown
along with the experimental data and the best fit from MATLAB simulations. A dotted blue
line is used to show the percolation threshold for the three sets of data. Both simulation ap-
proaches follow the trend of the experimental data, as depicted in Figure 13. The numerical
modelling, along with the experiments, suggests that the percolation threshold is achieved
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at around 2%wt, confirming that, at low percentages of addition, there is a percolation
achievement due to the formation of the cluster [53–55]. The formation of clusters is due to
the unavoidable formation of agglomeration and tunnelling distances [54,56,57]. Moreover,
the impact of high aspect ratios is more influential at a lower percentage of nanofiller
addition [22].

Figure 13. Electrical conductivity of MATLAB and Finite Element with experimental data.

4. Conclusions

The effect of CNT agglomeration on the mechanical and electrical properties of poly-
mer nanocomposites MWCNT was investigated through experimental and numerical
approaches. The latter was simulated using two simulation approaches, a finite element
analysis and resistor network model. Mechanical properties were determined using a
multiscale approach to simulate the agglomerates and their effects on physical properties.
The formation of agglomerates and the porosity highly influence the physical properties
of the samples. The mechanical properties seemed to lead to a negative effect at a higher
percentage of additives. The specimens with 4% and 5%wt presented a decrease in Youngs
modulus. This decrease was analysed through numerical modelling studies. Conversely,
the electrical properties showed an exponential growth with the nanofillers’ addition. The
experimental data showed that at 2%wt percolation threshold was achieved. At this low
percentage, the network formation highly affects the final properties. Thereafter, the addi-
tion of 4% and 5% did not significantly increase the electrical conductivity of the sample,
showing a conductivity plateau. Additionally, this study shows the accuracy of numerical
tools to predict the physical properties of polymeric composites. Additionally, the agglom-
erates and the formation of porosity were not desired for mechanical properties; however,
the electrical properties seemed to benefit as the formation of networks triggered a percola-
tion threshold at lower percentages of addition. Finally, in the quest to find multifunctional
composites with optimum and enhanced properties, CNT–epoxy nanocomposites with
2%wt appear to be good candidates for several applications.
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