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The effect of air preheating in a biomass CFB gasifier using 

ASPEN Plus simulation 

 

Wayne Doherty 
*
, Anthony Reynolds, David Kennedy 
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Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland 

 

Abstract 

 

 In the context of climate change, increasing efficiency and energy security, biomass gasification 

is likely to play an important role in energy production.  Atmospheric circulating fluidised bed (CFB) 

technology was selected for the current study.  The primary objective of this research is to develop a 

computer simulation model of a CFB biomass gasifier that can accurately predict gasifier performance 

under various operating conditions.  An original model was developed using ASPEN Plus (Advanced 

System for Process ENgineering Plus).  The model is based on Gibbs free energy minimisation.  The 

restricted equilibrium method was used to calibrate the model against experimental data.  This was 

achieved by specifying the temperature approach for the gasification reactions.  The model predicts syn-

gas composition, process conversion efficiency and syn-gas heating values in good agreement with 

experimental data from a laboratory rig.  Operating parameters were varied over a wide range.  

Parameters such as equivalence ratio (ER), temperature, air preheating, biomass moisture and steam 

injection were found to influence product gas (syn-gas) composition, syn-gas heating value, and process 

conversion efficiency.  The results indicate an ER and temperature range over which hydrogen (H2) and 

carbon monoxide (CO) production is maximised, which in turn ensures a high heating value and cold gas 

efficiency (CGE).  Gas heating value was found to decrease with ER.  Air preheating increases H2 and 

CO production, which increases gas heating value and gasifier CGE.  Air preheating is more effective at 

low ERs.  A critical air temperature exists after which additional preheating has little influence.  Steam 
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has better reactivity than fuel bound moisture.  Increasing moisture degrades gasifier performance 

therefore the input fuel should be pre-dried.  Steam injection should be employed if a H2 rich syn-gas is 

desired. 

 

Keywords: Biomass gasification; Modelling; Circulating fluidised bed; Gibbs free energy minimisation; 

Equivalence ratio; Steam injection 

 

1. Introduction 

  

Biomass is of major interest as a renewable energy source in the context of both climate change 

mitigation and energy security.  Energy security is of utmost importance and is vital for any country’s 

continued economic growth.  Currently Ireland imports 90% of its energy [1].  According to a recent 

study, oil and gas prices are set to double by 2050 [2].  Also global energy demand is set to more than 

double by the middle of the century, fuelled by the rapid increase in the energy demand of developing 

countries.  Another study, World Energy Outlook [3] predicts similar trends.  This study predicts a 53% 

increase in global energy demand by 2030, 70% of which will come from China, India and other 

developing countries and a 55% increase in carbon dioxide (CO2) emissions.  Biomass gasification 

coupled with other renewable energy options could cut dependency on imported energy and would help to 

ensure energy security. 

Gasification is a process for converting carbonaceous materials to a combustible or synthetic gas 

[4].  It can be considered an upgrading process that takes in a solid which is difficult to handle, strip it of 

undesirable constituents and convert it into a gaseous product that can be handled with maximum 

convenience and minimum cost and can readily be purified to a clean fuel or feedstock for synthesis of 

other chemicals [5].  Gasification occurs when oxygen (O2) or air and steam or water is reacted at high 

temperatures with available carbon in biomass or other carbonaceous material within a gasifier.  The syn-

gas produced can be combusted in an engine or gas turbine to generate electricity and heat or more 

recently syn-gas is considered a candidate fuel for fuel cell applications.  Air gasification produces a poor 

quality gas with regard to the heating value, around 4-7 MJ m-3 higher heating value (HHV), while O2 and 

steam blown processes result in a syn-gas with a heating value in the range of 10-18 MJ m-3 (HHV) [6].  

However, gasification with pure O2 is not practical for biomass gasification due to prohibitively high 
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costs for O2 production using current commercial technology (cryogenic air separation).  This has 

encouraged research of novel gasification processes such as the dual indirectly heated fluidised bed [6-9].  

The modelling of air gasification is conducted in this research work. 

Stoichiometric combustion occurs when all the carbon in the fuel is converted to CO2 and there 

is no excess O2 left over.  The basis of gasification is to supply less oxidant than would be required for 

stoichiometric combustion of a solid fuel.  The resulting chemical reactions produce a mixture of carbon 

monoxide (CO) and hydrogen (H2), both of which are combustible.  The energy value of this gaseous fuel 

is typically 75% of the chemical heating value of the original solid fuel.  In addition, the syn-gas 

temperature will be substantially higher than the original solid fuel due to the gasification process.  The 

process of biomass gasification is represented by the reactions given in Table 1. 

 

Table 1 
Gasification reactions 

Reaction Heat of reactiona Reaction 
name 

Reaction 
number 

Heterogeneous reactions:    
C + 0.5O2 = CO (-111 MJ kmol-1) Char partial combustion (R1) 
C + CO2 ↔ 2CO (+172 MJ kmol-1) Boudouard (R2) 
C + H2O ↔ CO + H2 (+131 MJ kmol-1) Water-gas (R3) 
C + 2H2 ↔ CH4 (-75 MJ kmol-1) Methanation (R4) 
Homogeneous reactions:    
CO + 0.5O2 = CO2 (-283 MJ kmol-1) CO partial combustion (R5) 
H2 + 0.5O2 = H2O (-242 MJ kmol-1) H2 partial combustion (R6) 
CO + H2O ↔ CO2 + H2 (-41 MJ kmol-1) CO shift (R7) 
CH4 + H2O ↔ CO + 3H2 (+206 MJ kmol-1) Steam-methane reforming (R8) 
Hydrogen sulphide (H2S) 
and ammonia (NH3) 
formation reactions: 

   

H2 + S = H2S nrb H2S formation (R9) 
0.5N2 + 1.5H2 ↔ NH3 nr NH3 formation (R10) 
a[10] Negative sign indicates an exothermic reaction and a positive sign indicates an endothermic reaction. 
bnr = Not reported. 

 

The gasification process can be split into three linked processes; pyrolysis (also called 

devolatilisation, thermal decomposition or carbonisation), gasification, and combustion.  Gasification and 

combustion may be combined, for example Di Blasi et al. [11] described gasification as two stages: solid 

pyrolysis and char conversion (gasification and combustion).  Partial combustion is necessary because it 

supplies the heat required by the endothermic gasification reactions.  Pyrolysis occurs in a temperature 

range of 350-800 °C and results in the production of char, CO, H2, methane (CH4), CO2, H2O, tars and 

hydrocarbons.  Tars are extremely undesirable because they represent a loss of efficiency and degrade 

downstream plant equipment.  If temperatures are high enough some tars will be cracked to form H2, CO, 

CO2 and others.  The products of pyrolysis are then used in the gasification and combustion reactions. 
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 To date there has been a lack of research and reporting on biomass gasification, which makes it 

difficult to design plants.  The primary objective of this research was to develop a computer simulation 

model of a CFB biomass gasifier that can accurately predict gasifier performance under various operating 

conditions.  In this paper an original model of a biomass CFB gasifier developed using the commercial 

chemical process simulator ASPEN Plus is presented.  The model presented is based on Gibbs free energy 

minimisation.  The approach assumes that only a limited number of chemical reactions (R1 to R10) are 

required with respect to the prediction of syn-gas composition, gas heating value and process efficiency.  

The influence of operating conditions on gasifier performance was investigated and the results and 

conclusions from these investigations are presented.  

 

2. Methodology 

 

2.1 Gasifier types and selection 

 

The differences between classifications are in the movement of the fuel through the vessel, the 

operating pressures and temperatures and the size and condition of the entering fuel [12].  The primary 

configurations are moving/fixed bed, fluidised bed, and entrained flow.  Atmospheric CFB was selected 

for the current study because of its near commercial status.  This technology is proven for biomass 

gasification, has potential for scale-up (low MW to over 100 MW) and high fuel flexibility.  The 

Värnamo biomass integrated gasification combined cycle (BIGCC) demonstration plant, which operated 

in Sweden from 1996 to 2000, used pressurised CFB gasification technology.  Fig. 1 shows a schematic 

of a typical CFB gasifier. 

 

2.2 Process simulation software 

 

ASPEN Plus was selected for modelling the gasifier.  This simulation package has been used for 

modelling coal and biomass power generation systems in many research projects [13-23].  It is a steady 

state chemical process simulator, which was developed at Massachusetts Institute of Technology (MIT) 

for the US DOE, to evaluate synthetic fuel technologies.  It uses unit operation blocks, which are models 

of specific process operations (reactors, heaters, pumps etc.).  The user places these blocks on a 
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flowsheet, specifying material and energy streams.  An extensive built in physical properties database is 

used for the simulation calculations.  The program uses a sequential modular (SM) approach, i.e. solves 

the process scheme module by module, calculating the outlet stream properties using the inlet stream 

properties for each block.  ASPEN Plus has the capability to incorporate Fortran code, written by the user, 

into the model.  This feature is utilised for the definition of non-conventional fuels, e.g. biomass, 

municipal solid waste (MSW), specific coals and for ensuring the system operates within user defined 

limits and constraints.  User models can be created in Excel or written using Fortran and can be fully 

integrated into the ASPEN Plus flowsheet. 

 

 

Fig. 1. Schematic diagram of a CFB biomass gasifier. 

 

2.3 Uncoupling the gasification process 

 

To model a CFB gasifier using ASPEN Plus, the overall process must be broken down into a 

number of sub-processes.  For example a model may include the following zones: drying and pyrolysis, 
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partial oxidation, and gasification.  The modeller may choose to model each of these zones separately or 

combine them in one unit.  Fig. 2 shows the overall gasification process broken down or uncoupled into 

its sub-processes.   

 

 

Fig. 2. Uncoupled CFB gasification process. 

 

The drying and pyrolysis zone simulates the first stage of gasification and produces char, H2, 

CO, CH4, CO2, H2O, other hydrocarbons, and tars.  These products are then either burnt or gasified.  The 

partial oxidation zone simulates the burning of char as well as some H2 and CO, which generates the heat 

required for all the sub-processes.  This heat is represented by broken lines in Fig. 2.  A percentage of the 

heat generated is lost from the system and products other than heat from this zone include CO, CO2, and 

H2O.  The third zone, the gasification zone, simulates the gasification reactions, reactions such as the 

Boudouard, the water-gas and the methanation.  The products of both the partial oxidation and the 

gasification zone are fed into an additional zone.  This zone sets the final syn-gas composition, which is 

composed mainly of H2, CO, CO2 and some CH4.  In this zone the chemical equilibrium of the 

gasification reactions is restricted in order to give a realistic syn-gas composition.  The final zone, box 5, 

represents the CFB cyclone separator, which separates out and recycles the solids entrained in the gas. 
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3. Modelling 

 

3.1 ASPEN Plus flowsheet 

 

 Fig. 3 displays the CFB biomass gasifier ASPEN Plus flowsheet.  Table 2 presents a brief 

description of the unit operation blocks shown in Fig. 3.  It gives the ASPEN Plus name, that is the name 

given to each unit operation block by the software developers, the block ID, which is the name given to 

each block by the user and a short description. 

 

 

Fig. 3. ASPEN Plus flowsheet of biomass CFB gasifier. 

 

Table 2 
Description of ASPEN Plus flowsheet unit operation blocks presented in Fig. 3 

ASPEN 

Plus name 

Block ID Description 

RYIELD BRKDOWN Yield reactor – converts the non-conventional stream ‘BIOMASS’ into conventional components 
SEP2 CSEP Separator – extracts a portion of the carbon contained in the fuel so that it remains un-reacted 
 ASHSEP Separator – separates the inert ash from the gas to allow removal from the system 
 CYCLONE Separator – simulates the CFB cyclone by separating out a specified percentage of the solid carbon 
 CSEP2 Separator – extracts a portion of the carbon to simulate carbon loss in the ash, with the rest recycled 
RGIBBS GASIF Gibbs free energy reactor – simulates drying and pyrolysis, partial oxidation, and gasification 
 GASIF2 Gibbs free energy reactor – restricts chemical equilibrium of the specified reactions to set the syn-

gas composition 
HEATER HEATER Heater – increases the temperature of the un-reacted carbon to the reactor temperature 
 GASCOOL Cooler – simulates syn-gas cooling to a typical gas cleanup temperature 
MIXER CMIX Mixer – mixes the un-reacted carbon separated in block ‘CSEP’ with the syn-gas 
 ASH-CARB Mixer – mixes the carbon lost with the ash before leaving the system 
FSPLIT QSPLIT Splitter – splits the heat available from syn-gas cooling in ‘GASCOOL’ into two heat streams with 

one of them representing the heat lost from the gasifier 
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3.2 Model description 

 

 The main model assumptions are: steady state conditions, zero-dimensional model, isothermal 

(uniform bed temperature), drying and pyrolysis are instantaneous in a CFB [24, 25], char is 100% carbon 

(graphite), all of the sulphur reacts to form H2S [6], only NH3 formed no nitrogen oxides considered [6, 

12, 23], cyclone separation efficiency is 85% [26], 2% carbon loss in ash [27], and heat loss from the 

gasifier is equal to 3% of the total heat input [16, 28, 29]. 

 From Fig. 3, the stream ‘BIOMASS’ was specified as a non-conventional stream and the 

ultimate and proximate analyses were inputted.  The stream thermodynamic condition and mass flow rate 

were also entered.  The block ‘BRKDOWN’ yields are set by a calculator block, which in turn determines 

the mass flow of each component in the block outlet stream ‘ELEMENTS’.  The enthalpy of this stream 

will not equal the enthalpy of the feed stream ‘BIOMASS’, as the enthalpies of the individual constituents 

that make up a fuel do not equal the enthalpy of the fuel because chemical bonds etc. are not taken into 

consideration.  The energy value of any heat stream leaving a block is equal to the block heat duty, which 

is equal to the difference in enthalpy between the inlet and outlet streams.  Thus, the heat stream 

‘QBRKDOWN’ was inserted to add back the enthalpy loss to the system. 

 The function of the next block is to simulate carbon conversion by separating out a specified 

portion of the carbon from the fuel.  Reported carbon conversion for CFB gasifiers in the literature ranged 

from 90 to 99% [29-32].  Before this carbon can be mixed with the gas downstream it must be brought up 

to the gasifier temperature, which is accomplished using the block entitled ‘HEATER’.  The un-reacted 

carbon represents solids contained in the product gas that must be removed by the CFB gasifier cyclone 

or other solids removal steps downstream.  In reality there would also be fly ash and bed material 

entrained in the gas but these components cannot be modelled in ASPEN Plus.  Thus, in this model the 

solid carbon that remains in the syn-gas represents all solids. 

 The streams ‘ELEM2’, ‘OXIDANT’, and ‘RECYCLE’ enter the block ‘GASIF’, where 

pyrolysis, partial oxidation, and gasification reactions occur.  The mass flow of air entering the reactor is 

set using a design specification, which varies the oxidant mass flow rate so that a specific gasifier 

temperature is achieved.  Alternatively, the air mass flow is set by a calculator block that calculates the air 

flow using a user specified equivalence ratio (ER).  ER is defined as the ratio of the actual oxidant mass 

flow rate to the stoichiometric oxidant mass flow rate.  Most existing fluidised bed biomass gasifiers 
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operate in the ER range 0.2-0.45 [33].  All the sulphur in the system reacts with H2 to form H2S.  Due to 

the low contents of sulphur in the fuel, inaccuracies of this simplification are negligible [6].  The 

simplification that only NH3 is formed and nitrogen oxides are omitted was adopted in this work.  This 

assumption has been applied by others such as Pickett [12]; Schuster et al. [6]; and Zhu [23].  Char, which 

is a product of pyrolysis, is assumed to be 100% carbon (graphite).  Demirbaş [34] reported the elemental 

analysis of various wood chars and the carbon content ranged from 90.5 to 92.1 wt. %, therefore the 

assumption is valid. 

Ash removal is simulated in the model using the unit operation block ‘ASHSEP’.  The material 

stream ‘TOGASIF2’ is fed to the unit operation block ‘GASIF2’, which is an ‘RGIBBS’ reactor.  

‘RGIBBS’ reactors allow restricted equilibrium specifications for systems that do not reach complete 

equilibrium.  Specifying the temperature approach for each reaction results in restricted equilibrium, 

which means that the syn-gas composition can be adjusted to match data reported in the literature.  This 

approach is well established, it was introduced by Gumz [35].  Reactions (R7), (R8), and (R10) were 

specified in the ‘RGIBBS’ reactor. 

 The next block mixes the un-reacted carbon that was separated upstream with the gas from 

‘GASIF2’ and its product stream is fed to a separator that simulates the operation of the CFB gasifier 

cyclone.  The block ‘CYCLONE’ was specified so that it removes 85% of the solid carbon from the gas 

stream [26].  Zhang and Basu [26] investigated the operation of a CFB cyclone by experiment and 

developed a model that predicted the cyclone collection efficiency for different particle diameters and gas 

velocities and showed that the efficiency ranged from 70 to 100%.  The average value of 85% was used in 

this work.  The bottom outlet stream from ‘CYCLONE’ with the stream name ‘SOLIDS’ is composed of 

solid carbon only and is sent to a separator block ‘CSEP2’.  The top outlet stream, which is called 

‘SYNGAS’, is composed of all the gases from ‘GASIF2’ and a small amount of solid carbon (15% of the 

un-reacted carbon).  This material stream represents the final output, i.e. the product gas from the gasifier. 

‘CSEP2’ splits the ‘SOLIDS’ stream into a recycle stream ‘RECYCLE’, that is sent back 

through the gasifier, and another stream named ‘CLOSS’, which represents the carbon lost from the 

system in the ash.  The recycle was added because in a real CFB gasifier, inerts (bed material and fly ash) 

and un-reacted char are collected in the cyclone and re-injected into the reaction zone of the gasifier via 

the return leg (see Fig. 1).  The ‘CSEP2’ split fraction is set by a calculator block using the specification 
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that the ash exiting the gasifier contains 2% carbon [27].  The stream ‘CLOSS’ is then mixed with the ash 

in the block ‘ASH-CARB’. 

 The stream ‘SYNGAS’ is fed to a cooler entitled ‘GASCOOL’ that cools the gas to the required 

gas cleanup temperature of 375 °C [36].  The energy that would be lost through cooling could be 

recovered by generating steam or by supplying heat for air preheating.  The heat stream ‘QCOOL’ 

represents the energy that could be recovered during gas cooling.  This stream is fed to ‘QSPLIT’, which 

is used to split the heat stream ‘QCOOL’ into two heat streams ‘QLOSS’ and ‘QSTEAM’.  Two 

calculator blocks are used, one calculates and sets the amount of heat loss ‘QLOSS’ and the other 

calculates and sets the amount of heat available for steam generation or air preheating ‘QSTEAM’.  The 

heat loss from the gasifier is assumed to be 3% of the total heat input [16, 28, 29]. 

 

3.3 Model validation 

 

 The model was validated against the experiments of Li et al. [27], which were conducted on a 

pilot scale air-blown biomass CFB gasifier.  The fuel used for model validation is hemlock wood.  The 

ultimate and proximate analyses for the wood are given in Table 3. 

 

Table 3 
Ultimate and proximate analyses of hemlock (wood) 

Ultimate Analysis (dry basis)a   

Carbon wt. % 51.8 
Hydrogen wt. % 6.2 
Oxygen wt. % 40.6 
Nitrogen wt. % 0.6 
Sulphur wt. % 0.38 
Chlorine wt. % 0.0 
Ash wt. % 0.4 

 wt. % 100 

   

Proximate Analysis (dry basis)   

Volatile Matterb wt. % 84.8 
Fixed Carbonc wt. % 14.8 
Asha wt. % 0.4 

 wt. % 100 

   

Moisturea wt. % 11.7 
   

HHV (dry basis)a MJ kg-1 20.3 
a[27]. 
b[37] Material: wood, fir, western hemlock and ID-number: 242. 
cDetermined by difference. 

 

Li et al. [27] reports results for six experimental runs using hemlock wood as input fuel.  The 

input data for three of these runs (run 4, 6 and 7) were entered into the model and the predictions were 

found to be in good agreement with the reported results.  For example for run number 4 the model 
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predicts the following syn-gas composition: 3.23% H2, 72.82% N2, 8.9% CO, 15.04% CO2 and 0.01% 

CH4 and for the same input data Li et al. [27] reports 3.0% H2, 68.4% N2, 9.6% CO, 17.1% CO2 and 1.9% 

CH4.  Experimental run number 7 [27], was chosen for a detailed comparison and analysis.  The input 

data for run number 7 are as follows: input fuel stream mass flow - 33.626 kg h-1, gasification temperature 

- 991 K, and gasification pressure - 1.05 bar. 

Table 4 compares the experimental results (run 7) as reported by Li et al. [27] to the model 

predictions using the input data presented above.  The model predictions are in good agreement with the 

experimental data.  For example H2, CO and CO2 are predicted within 2.5% and N2 is under-predicted by 

6.8%.  However the CH4 is over-predicted, which causes an error in the calculation of the gas heating 

value and ultimately the CGE.  The under or over-prediction of methane is quite a common problem for 

modellers; the product gas of fluidised bed gasifiers generally contains tar, which is not considered in 

equilibrium models, and much more hydrocarbons (especially methane) than predicted [38].  Also, the 

model done by Giltrap et al. [39] which is a steady state model of a biomass downdraft gasifier, over-

predicts CH4 by a substantial amount.  The low operating temperature (991 K) results in high CH4 content 

and the CH4 content decreases rapidly with temperature (at ~870 °C the model predicts virtually zero 

CH4).  This is further discussed in section 4. 

 

Table 4 
Experimental results versus model predictions 

 Experimental 

(run # 7) 

Model 

Gas compositiona   
H2 5.5 5.53 
N2 59.5 55.42 
CO 16.6 16.79 
CH4 3.4 7.65 
CO2 15.0 14.62 
   
HHVb 4.82 5.87 
   
CGEc 71.4 62.61 
aVolume %, dry basis. 
bMJ m-3, dry basis at 0 °C and 1 atmosphere. 
c%. 

 

4. Sensitivity analysis and discussion 

 

 The model described was used to perform sensitivity analyses.  The effects of varying ER, 

temperature, level of air preheating, biomass moisture and steam injection on product gas composition, 

gas heating value, and CGE were investigated.  During the sensitivity analyses the model input data was 
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kept the same as for model validation (run 7 input data), which was presented in section 3.3, with one 

parameter being varied at any given time.  The CGE (ηCGE) is a means of indicating the performance of a 

gasifier and is defined as: fuelfuelgasgasCGE HHVmHHVm ⋅⋅= && /η .  Where 
gas

m&  and 
fuel

m&  are the 

mass flow rate (in kg s-1) of the gas and fuel respectively and HHVgas and HHVfuel are the higher heating 

value (in kJ kg-1) of the gas and fuel respectively. 

 

4.1 Effect of ER and gasification temperature (Tg) 

 

 The influence of ER on product gas composition is illustrated in Fig. 4.  Tg depends on the 

amount of air fed to the gasifier, i.e. it is controlled by the ER.  As a result, varying ER or Tg will have the 

same effect on product gas composition, heating value, and CGE.  For this reason only ER is plotted 

against product gas composition, heating value and CGE.  The corresponding temperatures for each ER 

are also given.  In Fig. 4 H2, H2O, CO, CO2, and CH4 are plotted, with H2S and NH3 omitted, first of all 

because of their very low content and second because they would be removed by downstream air 

pollution control equipment in a gasification plant.  All gas components are plotted on a dry basis except 

for water vapour.  The nitrogen (N2) content is not displayed; its value may be calculated by summing the 

other components and subtracting this from 100%.  The N2 content varied between 53 and 61% over the 

ER and Tg range.  The most interesting point from Fig. 4 is that both H2 and CO reach a maximum at an 

ER of 0.35 or at a temperature of 874 °C.  After this peak their contents decrease steadily.  H2O increases 

over the whole range but experiences a small decrease close to the point of maximum H2 and CO.  CO2 

decreases rapidly up to an ER of 0.35 and then increases slowly.  CH4 decreases and eventually reaches 

zero between an ER of 0.4 and 0.45 or a temperature of 1046 and 1195 °C.  These trends may be 

explained as follows: 

• The Boudouard reaction (R2) is endothermic; therefore as the temperature rises, so does the amount 

of CO2 reacted with char to produce CO.  For ERs up to 0.35 sufficient char is available for the 

Boudouard reaction but for ERs greater than this there is insufficient char, so CO decreases and CO2 

increases. 

• The water-gas reaction (R3) is endothermic, which means for increasing ER and temperature CO 

and H2 production are increased and more char and H2O are consumed. 
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• The methanation reaction (R4) is exothermic, which means as ER and Tg increase the production of 

CH4 decreases, which in turn leaves more H2 in the gas. 

• The CO is reacted with available O2 (R5) producing CO2. 

• H2 is reacted with available O2 (R6) producing H2O.  This reaction produces more water than is used 

up by the reactions (R3) and (R8) because the H2O content increases over the whole ER and 

temperature range.  The slight drop in H2O occurs at an ER of 0.34 and a Tg of 837 °C.  One 

possible explanation would be that at a sufficiently high temperature reaction (R8) begins to 

consume more water than is produced by reaction (R6); however, this trend is short-lived because 

the other reactant required for this reaction, CH4 is decreasing rapidly. 

• The CO shift reaction (R7) being exothermic, produces less CO2 and H2 at higher temperatures, 

which means less CO and H2O are consumed. 

• The CH4 is reduced by the steam-methane reforming reaction (R8).  This reaction is endothermic 

meaning the forward reaction is favoured as temperature increases.  Hence, CH4 and H2O decrease 

while H2 and CO increase. 

 

 

Fig. 4. Effect of ER on product gas composition. 

 

 Commercial fluidised bed biomass gasifiers operate in the temperature range 800-1000 °C, 

which for this model corresponds to an ER range of 0.33-0.38.  ER values higher than 0.3 have to be used 

to get tar contents below 2 g m-3 [40].  Taking these points into consideration the authors recommend 

operation at ER = 0.34 to 0.35 or Tg = 837 to 874 °C. 

 The influence of ER on product gas heating value and CGE is shown in Fig. 5.  The gas HHV on 

a mass basis and the CGE on a HHV basis are plotted against ER.  It is evident that the heating value 
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decreases with increasing ER.  The HHV is high for low ERs due to the high CH4 content.  The CGE 

increases between an ER of 0.29 and 0.34, it reaches a maximum value of 66.1% at an ER of 0.34 and 

then decreases steadily.  It is worth noting that the point of maximum CGE corresponds to the point of 

maximum H2 and CO content in Fig. 4.  The CGE for an ER of 0.31 as reported by Li et al. [27] is 

indicated on the plot.  It is indicated for comparison with the model prediction at the same ER value. 

 

 

Fig. 5. Effect of ER on gas HHV on a mass basis and CGE on a HHV basis (▲: indicates CGE as 

reported by Li et al. [27]). 

 

4.2 Effect of air preheating 

 

 Air preheating is a means of increasing the conversion efficiency of the gasification process.  

The sensible heat in the air causes a rise in the gasification temperature, which in turn influences the 

product gas composition, causing an increase in the production of combustible gases, H2 and CO.  This 

change in syn-gas composition affects the gas HHV and hence the gasifier CGE.  Air preheating offers an 

alternative and more economical approach than oxygen blown systems [41].  The overall efficiency of the 

process on a thermal basis would be increased if the heat required for air preheating was recovered from 

the gas cooling section of the plant.  Use of high temperature air as an oxidant achieves downsizing of the 

plant [42].  Downsizing is achieved because a smaller volume of air is needed to bring the gasifier to the 

required operating temperature, which in turn reduces the size of the reactor and gas cleanup system 

needed. 

 The influence of air preheating on the reactor or gasification temperature Tg was investigated 

over the complete ER range.  It was found that Tg increased almost linearly with air temperature (Ta) for 
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all ERs.  It was discovered that a limit on the level of air preheating exists for each ER.  This level is 

limited by the effectiveness of the heat exchange equipment used to transfer the heat from the syn-gas to 

the air but it is also limited by the operating temperature constraint of fluidised beds.  Fluidised bed 

biomass gasifiers should not be operated over 1000 °C, so as to ensure that the ash melting temperature is 

not reached, which would cause agglomeration and de-fluidisation.  It was found that at high ERs air 

preheating is limited to a low level, e.g. at an ER of 0.37 a Ta no more than 114 °C would be 

recommended because the corresponding Tg is 987 °C whereas for an ER of 0.29 the air could in theory 

be heated to 825 °C as the Tg stays below the limit at a value of 978 °C. 

 The influence of Ta on product gas composition is shown in Fig. 6.  The product gas composition 

for an ER value of 0.29 is plotted against Ta.  The gas composition changes reflect the change in the 

gasifier temperature.  The rising temperature promotes the products of the endothermic reactions, (R2), 

(R3) and (R8), and simultaneously the reactants of the exothermic reactions (R4) and (R7).  A detailed 

discussion on the effects of gasifier temperature was given in section 4.1.  The major conclusion drawn 

from this sensitivity analysis is that Ta has a greater influence on the product gas composition for low 

ERs.  For an ER of 0.29 CO and H2 content increases 17.3 and 15.8 percentage points respectively over 

the Ta range whereas for an ER of 0.34 CO and H2 content increases by only 2.7 and 1.8 percentage 

points respectively over the same temperature range.  It was also found that Ta has a significant influence 

on composition only up to a certain level, after which additional preheating has little effect.  For an ER of 

0.29 this Ta is high at a value of ~560 °C but for an ER of 0.34 it is significantly lower at ~200 °C.  This 

finding agrees with published work [43, 44].  Lucas et al. [43] reported that the H2 rises with increasing 

air preheat temperature but exhibits no rise between 700 and 830 °C.  Yang et al. [44] refers to a critical 

Ta above which air preheating is no longer efficient if the purpose is to maximise the yield of gaseous 

products.  This critical Ta for CO and H2 was reported as 530 °C.  The results of this work indicate a 

critical temperature of ~560 °C for an ER of 0.29. 
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Fig. 6. Effect of Ta on product gas composition for ER = 0.29. 

 

The influence of air preheating on product gas heating value and CGE is shown in Fig. 7.  The 

gas HHV on a mass basis and the CGE on a HHV basis, plot (a) and (b) of Fig. 7 respectively, were 

plotted against Ta for the complete range of ER.  As expected, the gas heating value increases with Ta.  

The increase is in line with the gas composition change for each ER, i.e. the increase is greater for low 

ERs than for high ERs due to the greater change in gas composition for low ERs.  The CGE trends are in 

agreement with the changes in gas composition and HHV.  Ta has a significant influence on CGE at low 

ER values.  Its influence ceases for ERs greater than 0.35.  As already seen for gas composition, Ta has a 

significant effect on CGE only up to a certain level, after which additional preheating has little influence.  

For an ER of 0.29 this Ta is high at a value of ~650 °C but for an ER of 0.33 it is significantly lower at 

~290 °C.  For an ER of 0.34, which is a point of interest because it was the point of maximum CGE for 

gasification without air preheating, the CGE increases from 66.1 to 67.2% for a Ta of ~110 °C and then 

increases by a lesser degree to 67.7% for a Ta of ~200 °C. 
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Fig. 7. Effect of Ta on (a) gas HHV on a mass basis and (b) CGE on a HHV basis for complete ER range. 

 

4.3 Effect of biomass moisture and injected steam 

 

 The effect of fuel bound moisture on gasifier performance for ER = 0.34 is shown in Fig. 8 (a).  

The moisture level was varied over a realistic range for woody biomass (5 – 30%) and as expected 

increasing the moisture content degrades gasifier performance.  Both syn-gas HHV and gasifier CGE 

reach their maximum level, 5.138 MJ kg-1 and 73.81% respectively, at the lowest moisture content (5%).  

The gas heating value and CGE decrease over the entire moisture range, for comparison HHV = 3.338 MJ 

kg-1 and CGE = 44.24% at a moisture content of 30%.  These trends are a direct result of changes in the 

syn-gas composition with moisture.  The rising H2O content is the main cause for the decline in syn-gas 

HHV.  CO and CH4 are shifted and reformed respectively with the additional H2O decreasing their 

contents and producing CO2.  There is little change in H2 content at this ER however at lower ERs H2 

content was found to increase with moisture level.  Similar performance trends were seen for other ERs 

but maximum gasifier performance was predicted for an ER range of 0.34 to 0.35. 
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 The influence of steam injection on gasifier performance for an ER of 0.34 is illustrated in Fig. 8 

(b).  The steam injection rate was varied from 0 to 10.5 kg h-1 [27].  The syn-gas HHV decreases only 

slightly from 4.69 to 4.62 MJ kg-1 and gasifier CGE increases from 66.1 to 66.5%.  This small increase in 

CGE is due to increased syn-gas mass flow rate.  As was seen for increasing moisture level, steam 

injection causes a rise in H2O content, which results in a lower syn-gas HHV.  CO and CH4 are shifted 

and reformed respectively with the additional H2O decreasing their contents and producing CO2.  The 

most important effect of steam injection is the rise in H2 content, in this case H2 increases by 3% (13.7 to 

16.7%) over the range of steam injection.  The gasifier temperature will decrease with increasing steam 

injection due to the highly endothermic reforming and water-gas reactions (R3 and R8) unless heat is 

supplied from an external source.  A decrease in temperature is undesirable as this would degrade gasifier 

performance and could lead to high tar yield.  Similar performance trends were seen for other ERs but 

maximum increase in H2 content was predicted for an ER range of 0.34 to 0.35. 

 

 

Fig. 8. Effect of (a) biomass moisture content and (b) steam injection rate on product gas composition, 

gas HHV on a mass basis and CGE on a HHV basis for ER = 0.34. 
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 The main conclusion from the analysis above is that injected steam, although chemically 

equivalent, has better reactivity than fuel bound moisture.  A possible reason for this is that the time it 

takes to bring the moisture up to the gasifier temperature is greater than the residence time and therefore 

the moisture does not participate in the chemical reactions.  This finding agrees with other work [27].  

The results indicate that the input fuel should be pre-dried to ensure low moisture content and if a H2 rich 

syn-gas is required steam injection should be employed.  Air preheating should be considered when using 

high moisture fuels and steam injection because air preheating causes an increase in the gasifier 

temperature (see section 4.2), which would in turn offset both fuel pre-drying and the temperature 

decrease as a result of steam injection. 

 

5. Conclusions 

 

 A computer simulation model of a circulating fluidised bed biomass gasifier was developed 

using ASPEN Plus.  The model was calibrated against experimental data.  The restricted equilibrium 

method was used.  In addition the results obtained from the sensitivity analyses are in good agreement 

with published work.  Therefore, it may be said that the model is capable of predicting accurately gasifier 

performance over a wide range of operating conditions.  The effects of varying ER, temperature, level of 

air preheating, biomass moisture and steam injection on product gas composition, gas heating value, and 

CGE were investigated, the results of which revealed the following: 

• Without air preheating, the optimum operating conditions were found to be: ER = 0.34 to 0.35 and 

gasifier temperature = 837 to 874 °C. 

• The syn-gas heating value decreases with increasing ER. 

• Without air preheating, the CGE reaches a maximum value of 66.1% at an ER of 0.34. 

• Air preheating increases the production of combustible gases, H2 and CO, which increases the 

product gas heating value and the gasifier CGE. 

• Air preheating is more effective at low ERs.  It should not be used for ERs greater than 0.35. 

• A critical Ta exists after which additional preheating has little influence.  This temperature is high for 

low ERs and low for high ERs. 

• For ER = 0.34, which is the point of maximum CGE for gasification without air preheating, the CGE 

increases 1.6 percentage points for a low level of air preheating (Ta = 200 °C). 
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• If economical, the gasifier could be operated using very high temperature air, which would mean it 

could operate using a low ER.  A lower ER means reduced volume and hence, the size and cost of the 

gasifier, gas cleanup system and other plant components would be reduced. 

• Steam has better reactivity than fuel bound moisture. 

• Increasing moisture degrades gasifier performance therefore the input fuel should be pre-dried. 

• Steam injection should be employed if a H2 rich syn-gas is desired. 

 

In a future study, the biomass gasifier model presented here will be integrated with a high 

temperature fuel cell stack model and balance of plant models all developed in ASPEN Plus. 
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