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Abstract 
In this study, the effect of algorithm education on pre-service teachers’ computational thinking skills and computer 
programming self-efficacy perceptions were examined. In the study, one group pretest posttest experimental 
design was employed. The participants consisted of 24 (14 males and 10 females) pre-service teachers, majoring 
in Computer Education and Instructional Technology (CEIT). In order to determine the pre-service teachers’ 
computer programming self-efficacy perceptions, the Computer Programming Self-Efficacy Scale was used, 
whereas Computational Thinking Skills Scale was used to determine their computational thinking skills. The 
Wilcoxon Signed-Rank Test was used to analyze the differences between pretest and posttest scores of students' 
computer programming self-efficacy perceptions and computational thinking skills. Throughout the practices, 10 
different algorithmic problems were presented to the students each week, and they were asked to solve these 
problems using flow chart. For 13 weeks, 130 different algorithmic problems were solved. Algorithm education 
positively and significantly increased students' simple programming tasks, complex programming tasks and 
programming self-efficacy perceptions. On the other hand, algorithm education had a positive and significant 
effect only on students’ algorithmic thinking sub-dimension but did not have any effect on other sub-dimensions 
and computational thinking skills in general.   
 
Keywords:  algorithm education, computational thinking, computer programming self-efficacy, pre-service 
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1. Introduction 
The process of creating software that brings technological equipment to life, in other words, the programming 
process, has gained importance today and has emerged as an important skill that every individual should have. 
Teaching processes have been shaped in this framework, and it has been ensured that programming education 
takes place as a course in schools starting from elementary school (Sayın, 2017; International Society for 
Technology in Education [ISTE], 2018). In Turkey, coding education has been included in Information 
Technologies and Software course starting from the 5th grade (11 years old) since 2012. Recently, it has come to 
the agenda to further reduce the age range of coding education and to include this content in all age groups from 
1st grade to 4th grade (between 7-10 years old). 
In short programming can be said as a series of codes written to make electronic devices perform certain functions 
in order to produce solutions to problems (Arabacıoğlu, Bülbül & Filiz, 2007; Blackwell, 2002; Ersoy, Madran & 
Gülbahar, 2011; Yükseltürk & Altıok, 2016). Programming skill is not only a skill required to produce software 
for computers. Students’ high-level skills develop during the programming process. For example, Akçay and 
Çoklar (2016) describe these skills as critical thinking, algorithmic thinking, analytical thinking, problem solving, 
multidimensional thinking, creativity and questioning. There are also studies showing that programming skills 
have positive effects on computational thinking skills (Lye & Koh, 2014; Pala & Mıhcı Türker, 2019; Yıldız & 
Çiftçi, 2017). Computational thinking is a kind of analytical thinking, which includes elements such as problem 
solving, system design and understanding of human behavior based on the concepts of computer science (Wing, 
2006). Korkmaz, Çakır & Özden (2017) gathered the computational thinking skills in five sub-dimension on the 
scale they developed. These skills are creativity, algorithmic thinking, collaboration, critical thinking and problem 
solving. In this study, these sub-dimension of computational thinking skills were used.  
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The programming process takes place in the development stage of the software development process. The 
programming process in this stage consists of four stages. Algorithm development is at the second stage of these 
processes (Çamoğlu, 2018). Akçay and Çoklar (2016) states that the algorithm as the process of developing a 
design that reveals how the computer should work and the process of finding a solution to a problem. According 
to Gökoğlu (2017), the operations performed to solve the problem during the programming process vary according 
to the programming languages but the logic does not change. To this end, students should be given the logic of 
programming before moving on to any programming language teaching. Algorithms form the basis of 
programming logic. In other words, without any programming language, students are taught the logic of 
programming with algorithm. With algorithm, it is possible for the individual to write the processing steps of the 
program in his or her own language, that is, to create the flowchart of the program with the so-called code. When 
the basic steps of algorithm development are examined, individuals should first identify the problem, define the 
inputs and outputs and determine possible solutions. Then, they should parse these solutions into steps and connect 
these steps to each other, that is, building an algorithm (Çamoğlu, 2018). In this process, it is possible that the 
students will benefit from some sub-dimensions of computational thinking skills such as algorithmic thinking, 
problem solving and creativity. 
However, many studies indicated that programming is a difficult process and there are some problems in 
programming education (Arabacıoğlu, Bülbül and Filiz, 2007; Gomes and Mendes, 2007; Esteves and Mendes, 
2004; Hongwarrittorn and Krairit, 2010; Ozoran, Çağıltay and Topalli, 2012; Robins, Rountree and Rountree, 
2003; Saygıner and Tüzün, 2017). The complex structure of the programming language is listed as one of these 
problems (Gomes and Mendes, 2007; Kalelioğlu, 2015). Aşkar and Davenport (2009) state that the programming 
course at the university is perceived as quite difficult by the beginner-level students. Students' initial acceptance 
of programming as difficult can cause them to fail in this course. For example, Altun and Mazman (2012) 
emphasize that students may fail due to the fact that students accept programming as difficult and have low self-
efficacy perceptions. 
In the light of this information, it can be said that with the algorithm education, the student will get the logic of 
programming and focus on the solution process of the problems. In other words, without the complex language of 
programming, it is provided to comprehend the logic of programming and enter the programming course. On the 
other hand, algorithm education is one of the computer science unplugged activities. With computer science 
unplugged activities, it is aimed to teach computer science to students without computers.  
Bell (2014) states that with computer science unplugged activities, students interact directly with content and not 
bothered with unnecessary details. In addition, computer science unplugged enables them to learn how computing 
principles work, providing students with the opportunity of direct observation and experimentation. Computer 
science unplugged activities include many subjects such as algorithms, human computer interaction, artificial 
intelligence, computer graphics, data compression and encryption (Bell, 2014). 
Bell, Alexander, Freeman, and Grimley (2009) state that engaging in activities away from the computer might be 
effective for students because they might see the computer as a tool or toy. Students may think of problems 
encountered as a computer programmer by getting away from the computer. They can learn subjects such as 
algorithms, data compression, graphics algorithms, interface design, and models of computing without technical 
experience. In most cases, students find programming topics impressive. For example, in a study conducted by 
Mıhcı Türker and Pala (2018) with 5th and 6th graders, students stated that coding helped with developing games, 
moving characters, making movies, making robots and having fun. However, although the students have positive 
views on programming, the difficulty of learning programming should be explained appropriately. Therefore, 
computer science unplugged provides students with the opportunity to interact with the topic they find impressive 
without getting into complex programming topics, provides more fun and lasting learning opportunities in different 
contexts such as game-based learning and learning by discovery and help them attain computational thinking skills 
(Kalelioglu, 2017). Kalelioğlu (2015) addressed the difficulties of programming languages during the 
programming process and stated that thinking skills should be supported with different methods for programming. 
In this context, computer science unplugged is important for developing these skills. 
In line with these views, it is possible that students will learn the logic of programming and develop their 
programming self-efficacy through algorithm education by moving away from the complex structure of 
programming languages. On the other hand, students are expected to produce a solution to a problem without 
programming language during this process and to use high-level thinking skills in this way. Therefore, in this 
study, the effect of algorithm education on pre-service teachers’ computational thinking skills and computer 
programming self-efficacy perceptions was examined and answers to the following questions were investigated: 
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1) Is there a significant difference between the pretest and posttest scores of students' computer programming self-
efficacy perceptions? 
2) Is there a significant difference between the pretest and posttest scores of students' computational thinking 
skills? 
 
1.2 Related Literature 
In this study, the effect of algorithm education on pre-service teachers’ computer programming self-efficacy 
perceptions and computational thinking skills were examined. For example, in a study conducted by Tsai (2019), 
visual programming language was used to teach basic programming concepts to university students. Accordingly, 
students' learning performances and computer programming self-efficacy regarding perceptions were examined. 
After the implementation, students' performances in basic programming concepts and programming self-efficacy 
increased positively. 
Özmen and Altun (2014) conducted a study on students' perceptions of self-efficacy regarding programming. In 
this study, the reasons of failure of teacher candidates in programming course were examined and 12 students were 
interviewed for this purpose. The interview results revealed that students had difficulties in processes such as 
programming knowledge, programming skills, understanding the logic of the program and debugging. Students 
stated that the main reasons for their failure in programming were lack of practice and knowledge and not being 
able to develop algorithms. On the other hand, it is seen that students with high programming experience have 
high programming achievement and high self-efficacy perceptions. 
In another study conducted by Mazman and Altun (2013), self-efficacy perceptions and pre-experience 
characteristics of Computer Education and Instructional Technology Education (CEIT) students were examined. 
In this context, programming courses were given to the students who had taken programming courses before, 
scales were applied before and after the course and the obtained data were analyzed. Accordingly, the 
programming course significantly increased computer programming self-efficacy perceptions in both pre-
experienced and experienced groups, and this increase was found to be higher in the group without prior 
experience. In addition, the difference between self-efficacy perceptions between pre-experienced and experienced 
groups decreased at the end of the programming course. The researchers stated that students' self-efficacy 
perceptions and their previous knowledge played an important role in their achievement in this course. 
In a study conducted by Davidson, Larzon and Ljunggren, (2010), the effect of Introduction to Programming 
course on the change in self-efficacy perceptions of students was examined. Accordingly, individuals’ self-efficacy 
scores did not show a significant change at the beginning and at the end of the programming course. However, 
there was an increase in students' sub-skills such as analysis and solution of simple problems, debugging and 
working principle of computer. 
In the light of the findings obtained in the studies, it is concluded that the students' perceptions of self-efficacy 
increased with the increase of their experience in programming and consequently their success in programming 
increased. Based on these data, it is possible to obtain programming logic and to increase self-efficacy perceptions 
positively without facing problems related to language or abstract structure in programming.  
Pala and Mıhcı Türker (2019) examined the effect of programming education on the computational thinking skills 
of pre-service teachers. In this context, the researchers found that robotic-based programming significantly 
affected students' creativity, algorithmic thinking and critical thinking dimensions and that text-based 
programming had no effect. In a different study, Oluk and Korkmaz (2016) determined a positive relationship 
between programming skills and computational thinking skills. As students' programming skills increased, their 
computational thinking skills also increased. Similarly, as a result of implementations done using programming, 
Fadjo (2012) determined that implementations play an important role in the development of students' 
computational thinking skills and concept knowledge. 
In addition, there are studies showing the effectiveness of programming education on sub-skills comprising the 
computational thinking skills such as problem solving (Kalelioğlu & Gülbahar, 2014; Kukul & Gökçearslan, 2014; 
Somyürek, 2014; Robinson, 2005), creativity (Kobsiripat, 2015).  
 
2. Method 
Examining the effect of algorithm education on pre-service teachers’ computer programming self-efficacy 
perceptions and computational thinking skills, the present study employed one group pretest posttest experimental 
design, one of the quasi-experimental research designs. In this design, the significance of the difference between 
the pretest and posttest values of the groups is tested (Cohen, Manion & Morrison, 2002). In the study, unplugged 
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implementations in the algorithm course made up the independent variable, whereas students' computer 
programming self-efficacy perception and computational thinking skill made up the dependent variable.  
 
2.1 Study Group 
The study was conducted within the scope of Algorithm course during the Spring semester of 2018-2019 academic 
year. The participants consisted of 24 (14 males and 10 females) pre-service teachers studying at the CEIT 
department of a university in Central Anatolia Region, Turkey. The age range of the participants ranged from 19 
to 26, and all of them had programming knowledge. 
 
2.2 Data Collection Tool 
In order to determine the pre-service teachers’ computer programming self-efficacy perceptions, the Computer 
Programming Self-Efficacy Scale, adapted to Turkish by Altun and Mazman (2012), was used. Computational 
Thinking Skills Scale (CTSS), developed by Korkmaz, Çakır and Özden (2017) for undergraduate students, was 
used to determine pre-service teachers’ computational thinking skills.  
The original computer programming self-efficacy scale consists of 32 items and four factors. However, after the 
adaptation and analysis by Altun and Mazman (2012), the Turkish form consists of nine items and two factors, 
simple programming tasks and complex programming tasks. Internal consistency for the scale was .90 for the first 
factor, .94 for the second factor, and .92 for the overall scale, and these nine items explained 80.81% of the total 
variance.  
Computational Thinking Skills Scale (CTSS), developed by Korkmaz, Çakır and Özden (2017) for undergraduate 
students, was used to determine pre-service teachers’ computational thinking skills. The scale has 29 items and 
five dimensions, creativity (eight items), algorithmic thinking (six items), collaboration (four items), critical 
thinking (five items) and problem solving (six items). The scale is a five-point Likert one. Internal consistency 
coefficient Cronbach's alpha values were .84 for the creativity dimension, .86 for the algorithmic thinking 
dimension, .86 for the collaboration dimension; .78 for the critical thinking dimension, .72 for the problem solving 
dimension and .82 for the overall scale. The explained variance for all factors was 56.1%.  
 
2.3 Data Analysis 
Russell and Purcell (2009) stated that parametric tests should not be used with groups less than 30, and that when 
the size of the group is smaller (n<30), the data do not meet normality. Gosling (1995) stated that when the 
distribution of the universe is unknown and when the group number is small (n<30), the normality cannot be 
adequately met, and suggested the use of non-parametric tests. Ploger and Yasukawa (2003) suggested that 
parametric techniques should be used when the groups are large (n> 30) and the normality is met. Since the number 
of groups included in the study was less than 30, non-parametric tests were used to compare between pretest and 
posttest scores of students. In this respect, the Wilcoxon Signed-Rank Test was used to analyze the differences 
between pretest and posttest scores of students' computer programming self-efficacy perceptions and 
computational thinking skills. 
 
2.4 Implementation Process 
The implementation process of the study was conducted with 24 pre-service teachers who were studying in the 
CEIT department of a university in Central Anatolia during the 2018-2019 academic year. First, scales were 
administered to the pre-service teachers, and then the process was continued by presenting various algorithm 
problems for 13 weeks. Each week, 10 different algorithmic problems were presented to the students, and they 
were asked to solve these problems using flowchart. A total of 130 different algorithmic problems were solved.  
The problems were prepared by researchers using three different algorithm books (Çamoğlu, 2018; Tungut, 2016; 
Vatansever, 2015). The problems were approved by two experts. According to this, questions about sequential 
operations, conditional states and repetitive structures are included in the algorithm problems. The students 
exchanged information with their groupmates during the solution process and discussed the solution with them. 
At the end of the process, the scales were applied to the participants again, and the data obtained were organized 
for analysis. 
 
3. Results 
3.1 Is there a significant difference between the pretest and posttest scores of students' computer programming 
self-efficacy perceptions after the algorithm education? 
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Within the scope of the study, in order to determine pre-service teachers’ computer programming self-efficacy 
perceptions, Computer Programming Self-Efficacy Scale was administered. The scale was comprised of two 
dimensions and nine items. Descriptive analyzes were conducted in accordance with the responses given by the 
pre-service teachers to the items, and the results are presented in Table 1. 
 
Table 1. Descriptive statistics regarding pre-service teachers’ programming self-efficacy perceptions 

 Dimension Item 
Number N Lowest Highest 𝑋" ss 

Before 
Implementation 

Simple programming tasks 3 24 5 21 14.41 5.44 
Complex programming tasks 6 24 6 36 20.29 9.10 

Total Programming self-efficacy 
perceptions 9 24 11 57 34.70 13.76 

After 
Implementation 

Simple programming tasks 3 24 12 21 17.79 3.07 
Complex programming tasks 6 24 7 40 24.79 7.56 

Total Programming self-efficacy 
perceptions 9 24 21 61 42.58 9.99 

 
According to Table 1, while pre-service teachers’ mean scores of simple programming tasks were 𝑋"=14.41 before 
the implementation and 𝑋"=17.79 after the implementation, pre-service teachers’ mean scores of complex 
programming tasks were 𝑋"=20.29  before the implementation and 𝑋"=24.79 after the implementation. In addition, 
pre-service teachers’ computer programming self-efficacy perceptions were 11 at the lowest before the 
implementation and 21 after the implementation, whereas pre-service teachers’ computer programming self-
efficacy perceptions were 57 at the highest 57 before the implementation and 61 at the highest after the 
implementation. 
 
Table 2. Pre-service teachers’ programming self-efficacy perception pretest posttest score analysis  

Dimension Test Ranks N Mean Total Z p 

Simple 
Programming 
Tasks 

Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

4 
16 
4 
24 

4.25 
12.06 

17 
193 

-3.30 .001* 

Complex 
Programming 
Tasks 

Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

8 
16 
0 
24 

8.13 
14.69 

65 
235 

-2.43 .015* 

Programming 
Self-Efficacy 
Perception 

Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

6 
17 
1 
24 

6.42 
13.97 

38.5 
237.5 

-3.03 .002* 

* p < .05        

 
Table 2 presents the results of Wilcoxon Signed-Rank Test done to determine whether pre-service teachers’ 
computer programming self-efficacy pretest and posttest scores differ significantly. Accordingly, there is a 
significant difference in pre-service teachers’ pretest and posttest scores in all dimensions. However, since positive 
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ranks were taken as baseline and the z value was negative, the difference was in favor of the posttest (p<.05; zsimple: 
-3.30; zcomplex:-2.43; ztotal: -3.03). In other words, algorithm education significantly increases pre-service teachers' 
computer programming self-efficacy perceptions.  
 
3.2 Is there a significant difference between the pretest and posttest scores of students' computational thinking 
skills after the algorithm education? 
Within the scope of the study, in order to determine pre-service teachers’ computational thinking skills, CTSS was 
administered. The scale was comprised of five dimensions and 29 items. Descriptive analyzes were conducted in 
accordance with the responses given by the pre-service teachers to the items, and the results are presented in Table 
3. 
Table 3. Descriptive statistics of students’ computational thinking skills  

 Dimension Item 
Number N Lowest Highest X$  ss 

Before 
Implementation 

Creativity 8 23 24 40 34.21 3.84 
Algorithmic Thinking 6 23 6 29 17.26 6.94 
Collaboration 4 23 6 30 13.82 5.95 
Critical Thinking 5 23 4 20 14.69 3.92 
Problem Solving 6 23 12 25 18.00 3.60 

Total  Computational Thinking 29 23 82 142 98.00 14.31 

After 
Implementation 

Creativity 8 23 26 40 34.86 3.55 
Algorithmic Thinking 6 23 6 30 20.34 7.13 
Collaboration 4 23 8 27 12.56 5.22 
Critical Thinking 5 23 13 20 14.17 3.66 
Problem Solving 6 23 6 25 19.26 4.01 

Total Computational Thinking 29 23 79 125 101.21 12.92 
 
Table 3 shows that one pre-service teacher’s scale results were considered invalid, and the analysis was continued 
with 23 pre-service teachers. According to this, pre-service teachers’ mean scores of computational thinking skills 
were 𝑋"=98.00 before the implementation and 𝑋"=101.21 after the implementation. In addition, pre-service teachers’ 
computational thinking skills were 82 at the lowest before the implementation and 79 after the implementation, 
whereas pre-service teachers’ computational thinking skills were 142 at the highest 57 before the implementation 
and 125 at the highest after the implementation. 
 
Table 4. Pre-service teachers’ computational thinking skills pretest posttest score analysis  

Dimension Test Ranks N Mean Total Z P 

Creativity Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

6 
11 
6 
23 

9.83 
8.55 

59.00 
94.00 
 

-.831 .406 

Algorithmic Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

3 
17 
3 
23 

11.50 
10.32 

34.50 
175.50 

-2.64 .008* 

Collaboration  Post Negative Ranks 14 9.43 132.00 -1.49 .135 
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Pre Positive Ranks 
Equal 
Total 

5 
4 
23 

11.60 58.00 

Critical Thinking Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

9 
10 
4 
23 

11.50 
8.65 

103.50 
86.50 

-.343 .732 

Problem Solving Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

4 
15 
4 
23 

12.75 
9.27 

51.00 
139.00 

-1.77 .075 

Total Post 
Pre 

Negative Ranks 
Positive Ranks 
Equal 
Total 

8 
14 
1 
23 

9.88 
12.43 

79.00 
174.00 

-1.54 .123 

* p < .05        

 
Table 4 presents the results of Wilcoxon Signed-Rank Test done to determine whether pre-service teachers’ 
computational thinking skills pretest and posttest scores differ significantly. Accordingly, there is a significant 
difference in pre-service teachers’ algorithmic thinking pretest and posttest scores. Since positive ranks were taken 
as baseline and the z value was negative, the difference was in favor of the posttest (p<.05; zalgorithmic: -2,64). 
However, there was no significant difference in pre-service teachers’ computational thinking skills and sub-
dimension comprising this skill (p>.05).    
 
4. Discussion  
In this study, the effect of algorithm education on pre-service teachers’ computational thinking skills and self-
efficacy perceptions related computer programming were investigated. In this context, a 13-week implementation 
process was carried out with 24 pre-service teachers (14 males, 10 females). Each week, 10 different algorithmic 
problems were presented to the students and they were asked to solve these problems using flow chart. A total of 
130 different algorithmic problems were solved. The students exchanged information with their groupmates during 
the solution process and discussed the solution with them.  
In this study, the effect of direct programming logic on pre-service teachers’ computational thinking skills and 
computer programming self-efficacy perceptions were examined without any programming language because 
many programming languages cause negative attitudes in students with their abstract and complex structure 
(Gomes & Mendes, 2007; Kalelioğlu, 2015). 
In this direction, the study results show that algorithm education positively and significantly increases students' 
perceptions of simple programming tasks, complex programming tasks and programming self-efficacy. Similarly, 
related literature put forth that students' computer programming self-efficacy perceptions are positively affected 
as a result of adequate understanding of programming logic by students (Jegede, 2009; Mazman & Altun, 2013; 
Özmen & Altun, 2014; Tsai, 2019). On the other hand, it is possible to come across studies that do not show a 
significant change in students' self-efficacy after programming education (Davidson, Larzon & Ljunggren, 2010).  
Bell, Alexander, Freeman & Grimley, (2009) stated that students do not deal with the difficulty of programming 
and mobilize their computational thinking skills through computer science unplugged. Similarly, Kalelioğlu (2015) 
pointed out the importance of computer science unplugged in the development of high-level thinking skills. Within 
the scope of the present study, algorithm education was offered using computer science unplugged. At the end of 
the implementation process, it was found that the algorithm education positively and significantly affected the pre-
service teachers’ algorithmic thinking skills. However, it had no effect on other sub-skills and computational 
thinking skill in general. Significant differences in algorithmic thinking are expected. On the other hand, it is 
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surprising that there was no significant difference in other sub-dimensions and overall score. It was expected that 
an increase in algorithmic thinking skill would affect creativity, collaboration, critical thinking, problem solving 
and computational thinking skill in general. Yet, no significant difference was found because during the algorithm 
education, students were allowed to work together in a collaborative environment, and they were able to find 
solutions to problems together. During the process, students discussed the solutions with a critical eye, and they 
created new solutions. This is believed to be due to the abstract progress of the implementations. It is thought that 
more clear data can be obtained by comparing the implementations in which the students can be more active in 
different researches and the implementations in which the process of solving algorithmic problems can be carried 
out passively. 
The studies examining the relationship between programming education and computational thinking skills show 
that robotic programming education (Grover & Pea, 2013; Lee et al., 2011; Pala & Mıhcı Türker, 2019; Penmetcha, 
2012; Repenning, Webb and Ioannidou, 2010) and visual-based programming education (Fadjo, 2012; Howland 
& Good, 2015) are effective on students’ computational thinking skills. In addition, both robotic and visual-based 
programs (Khanlari, 2013; Kobsiripat, 2015) have positive effects on algorithmic thinking sub-dimension 
(Penmetcha, 2012), critical thinking skill sub-dimension (Blanchard, Freiman & Lirrete-Pitre, 2010; Chambers, 
Carbonaro, Rex & Grove, 2007), collaboration sub-dimension (Khanlari, 2013; Miller & Nourbakhsh; 2016) and 
problem solving skill dimension (Atmatzidou & Demetriadis, 2012; Khanlari, 2013; Petre & Price, 2004; 
Robinson, 2005; Rogers & Portsmore, 2004). This is believed to be due to the fact that these platforms have a 
more concrete structure and are easier to understand programming logic. In future studies, it is possible to compare 
all three methods of implementation by using different groups. In addition, this study was conducted with a limited 
sample because of the size of class. However, it is assumed that other latent variables such as projects in other 
courses taken during the study period do not affect dependent variables. Similar implementations can be carried 
out with larger experiment groups and control groups. 
In addition, in different studies, algorithm development through digital applications can be investigated. Thus, the 
effect of digital applications on pre-service teachers' self-efficacy and computational thinking skills can be 
examined. Similar studies can be reported in different age groups. Then, the success of these students towards 
programming can be examined.  
 
5. Conclusion 
It is possible to increase the self-efficacy of programming positively by learning the logic of programming by 
moving away from the complex structure of programming languages. In this respect, algorithms that are included 
in computer science unplugged activities and aim to give students the logic of programming without complex 
language structure gain importance. The student is required to identify the problem, to define the inputs and the 
outputs, and to determine the possible solutions during the algorithm creation stage. The next step is to parse these 
solutions into steps and associate these steps with each other. In this process, it is possible to utilize and develop 
various high-level thinking skills. Computational thinking is among these high-level thinking skills. In the light of 
this process, the effect of algorithm education, which is one of the computer science unplugged activities, on 
students' self-efficacy perception and computational thinking skills was examined in this study.  
The results show that; algorithm education increases students' self-efficacy perceptions related programming in a 
positive and meaningful way. In this way, after the algorithm education, self-efficacy related programming can be 
increased and students can start programming with more positive perspectives. On the other hand, there was no 
significant difference in the students ' computational thinking skills. However, only the algorithmic thinking, a 
sub-dimension of computational thinking, increased significantly and positively. 
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