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SUMMARY -

An analysis is performed to determine the effects on the rates of
convective heat transfer produced by variations of the surface tempera—
ture with distance along a flat plate. The analysis 1s confined to the
cagse of a low—apeed turbulent boundary layer on a flat plate oriented
parallel to the free—stream velocity. All the physical properties of
the fluid are considered to be constant. The temperature distribution
in the boundary layer and the local heat—transfer rate at the surface
are obtained in the form of definite integrals, with the integrands con~
taining the prescribed surface~temperature variation or its derivative
with respect to the distance along the plate., Numerical evaluation of
these integrals permits application of the results to any type of sur-
face temperature d.stribution that may occur physically.

The basic solution of this analysis, one applying to a stepwise—
discontinuous surface temperature in which the temperature is constant
on either side of the discontinuity, is correlated with a set of exist—
ing experimental data. This work is extended to show that the existence
of a stepwise-discontinuous surface temperature upstream of a plug-type
heat meter makes the results obtained from this type of an instrument
subject to large errors., -

For convenience, algebraic equations are presented for the surface
temperature, the surface temperature gradient with respect to the dis—
tance along the plate, and the local convective heat—transfer rate. .
These equations are in the form of power series, with positive exponents,
in terms of the distance along the plate. When one of the quantities,

- surface temperature or local heat transfer, is specified and the coef-—
ficients and exponents of the particular power series are ewaluated,
the other quantities, together with the total heat—transfer rate, can
be determined directly by substituting these coefficients and exponents
into the respective power series.
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INTRODUCTION

Several experiments and analyses have been performed which indicate
that a variable surface—temperature distribution can produce either a
marked increase or decrease in the local and average convective heat—
transfer rates to or from a surface. In reference 1 an dpproximate anal-—
ysis is described in which the effects on the convective heat-transfer
rates produced by a stepwise-discontinuous surface temperature on a flat
plate were determined. These effects were determined from solutions of
the integral form of the boundary-layer—energy equations for both lami-~
nar and turbulent boundary layers. Further, these solutions were
restricted to the assumption of constant physical properties for the
fluids. It was found that extremely large effects occur in the region
directly downstream of the discontinuity in the surface temperature.

In reference 2, there is described an analysis in which the analyt—
ical solution of the boundary-layer equations was determined for the
compressible, laminar boundary layer on a flat plate. The surface tem—
perature in this analysis was represented by an arbitrary polynomial in
terms of distance along the plate. It was found that even a continuous
surface—temperature variation could produce large effects on the convec—
tive heat transfer in the laminar boundary layer.

In reference 3, there is described an analysis in which the solu-—
tion of the boundary-layer energy equation was determined for laminar
flow on the surface of a wedge. -When the velocity distribution in the
boundary layer was assumed to be linear with the distance normal to the
surface and all the physical properties of the fluid were assumed to be
constant, a solution of the energy equation was obtained analytically
for a stepwise—~discontinuous surface temperature. TFor the case of a
flat plate this solution gives results in agreement with the results of
the solution for the laminar boundary layer in reference 1. This solu~
tion (reference 3) for the case of a stepwise—discontinuous surface tem-
perature was then extended to an arbitrary surface temperature through
the employment of an integral solution similar in idea to that of
Duhamel (reference 4). Recently another analysis (reference 5) was per—
formed determining the heat transfer from a body on which the velocity
at the edge of the boundary layer and the surface temperature vary.

This analysis required the same limiting assumptions as in reference 3
glthough the mathematical details were somewhat different, Again it was
found. from these analyses that the surface~temperature variation influ-
, enced the convective heat—transfer rates comsiderably.

It has also been shown experimentally that a variation in the sur—
face temperature with distance along the surface produces large effects
on the convective heat transfer. In reference 6, an experiment is
described in which the effect of unheated starting sections on the aver—
age heat transfer was determined from a cylindrical probe having a
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constant surface temperature in the heated region and with its axis par-
allel to the free-stream velocity. It was found that the length of the-
unheated starting section does influence the average rate of heat trans—
fer on the remainder of the probe.

In the experiment described in reference T, it was found that val-
ues of the local heat—transfer rates measured on a cone where severe
surface~temperature variations occurred deviated from predictions based
on theories in which the surface temperature is assumed constant. These
results were obtained for both laminar and turbulent boundary layers.

Recently an experiment was performed to determine the effect of a
stepwise—discontinuous surface temperature on the local heat transfer
in the turbulent boundary layer of a flat plate, reference 8.1 These
data show a marked effect on the local heat transfer, and will be cor—
related with the results of the analysis of this paper.

A quantitative determination, either experimental or analytical,
is necessary to reveal the effect of a continuous variation of surface
temperature with distance on the convective heat transfer in the turbu—
lent boundary layer. It is the purpose of this paper, therefore, to
make this determination in an approximate analytical manner subject to
the limiting assumptions of a flat plate, of constant physical proper—
ties of the fluid, and of no frictional dissipation of energy within
the boundary layer.

SYMBOLS

8p coefficlents of power series, Op per foot™
gg+28m
A symbol defined by equation (22), foot 140

A coefficients of power series, dimensionless

—1/35
B symbol defined by equation (42), foot

c coefficient defined by equation (25), dimensionless
cb specific heat at constant pressure, Btu per slug, Op
F coefficient in‘eéuation (37), dimensionless

lThe author wishes to acknowledge his indebtedness to Mr., Steve Scesa
and the Department of Mechanical Engineering, University of California,
Berkeley, for their kind permission to use hitherto unpublished data
in this report.
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coefficient in equation (37), dimensionless

local heat-transfer coefficient, Btu per second, square foot, O

local heat—transfer coefficient defined by equation (66), Btu per
second, square foot, OF

average heat—transfer coefficient, Btu per second, square foot, g
coefficient defined by equation (40), dimensionless
summation index, dimensionless

distance along flat plate to point of the stepwise discontinuity of
the surface temperature, feet !

parameter introduced in equation (20), dimensionless

summation index, dimensionless’

Nusselt number (hx/A), dimensionless

function defined by equation (3#), dimensionless

Prandtl number (ucp/x), dimensionless

local heat—transfer rate per unit area, Btu per second, équare foot
total heat—%ransfer rate per unit Width, Btu per second, foot
Reynolds number (uox/v), dimensionless

total length of heated portion of plate, feet

temperature of fluid in the boundary layer, °F

local velocity in the boundary layer parallel to plate, feet per
second

free—stream velocity, feet per second
upper limit of integral defined in equation (48), feet

local velocity in the boundary layer normal to plate, feet per
second

distance from leading edge of flat plate to rear of heated section
following a surface-~temperature discontinuity, feet
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ot

distance along plate from leading edge, feet .

distance normél to plate surface, feet

function defined by equation (65)

temperature ratio defined by equation (38), dimensionless

thickness of the flow boundary layer, feet

thickness of the thermal boundary layer, feet

exact temperature distribution in the boundafy layer for a plate
at constant temperature preceded by an unheated startlng section,
dimensionless

approximate temperature distribution in the boundary layer for a
plate at constant temperature preceded by an unheated starting

section, dimensionless

thermal conductivity of fluid, Btﬁ per second, square foot, O per
foot

absolute viscosity of fluid, pouni-seconds per square foot
kinematic viscosity of fluid, square feet per second

4
mass density of fluid, poundrsecondsz per foot

local shear stress, pounds per square foot
Subscripts

effective property for turbulent flow
free—stream condition

surface condition

" referring to surface of heat-meter plug

referring to surface of surrounding material
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ANATYSIS

General Expressions for the Local Heat-Transfer Rate and
the Temperature Distribution in the Boundary layer

The method of analysis in this paper will be to determine an approx—
imate solution of the boundary—layer energy equation in integral form for
a stepwise—discontinuous surface temperature, and then to extend this
solution to apply to an arbitrary surface temperature by employing an
integral solution similar in idea to that of Dubamel (reference 4).

Boundary—layer temperature distribution.— The energy equation for
the turbulent boundary layer on a flat plate, neglecting viscous dissi—
pation, can be expressed as

Ot ot d ot "
pc 2 v &2 )= — (A, &= 1
P u N ay) a',Y' | e ay> ( )

vhere MAe, p, and cp are assumed to be independent of temperature.
Suppose an exact solution of this equation exists for the case of a
plate which is umheated and at the free-stream temperature t, 1in the
region x <L, and is heated and at the temperature ty 1in the region
X > L. For the region x > L ’

-t
¥ = Q(XJY:L) (2)
to—tw
where
o(x,0,L.) =0

Q(L")Y; L) =1

8(x,»,L) =1

Because of the linearity in temperature t of equation (1), various
solutions may be added to satisfy desired boundary conditions. For
instance, the temperature in the boundary layer on a flat plate which
is maintained at twl, different from t,, for x <L and th’

different from t,, for x >L 1is given by

t = tW2+(tO_tW1)9 (X}Y} O)+(twl—t’w2)e (.XIYJL) (3)
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in the region x > L. Each term'of equation (3) satisfies the energy
equation and the sum of the terms satisfies the desired boundary condi-—
tions; thus, the temperature represented by equation (3) can be con— A
sidered as the formal solution of the problem, The idea underlying equa—
tion (3) may be extended to a large number of temperature discontinuities
by

.

'n
th + y [tw(k—-l) - ’ka] g(nyJI-’k__l). (h)
k=1 |
where x >ALk—1' Equation (4) may be rewritten as
n
t =1, 8(x,y,0) + Z twk[a(X:Y)Lk) - G(X)Y’Lk—-l)] (5)
k=1 '

Equation (5) is restricted to x = Ln If n is allowed to increase
indefinitely, the interwal (Lk;—Lk_l) becomes small and equation (5)

may be rewritten in integral form as

X

t(X’Y) = 1o Q(X:Y:O) + f ‘b(L,O) —_— dL (6)
A L
Equation (6) constitutes the general expression for the temperature dis—

tribution in the boundary layer for an arbitrary surface—tem'perature dis—
tribution.

Local heat—transfer rate.— The convective heat—transfer rate per
unit area from a surface, where A = Ag, 1s given by

q=-Ar ot ] (1)
Gyﬁ

" In order to introduce a temperature potential in the heat-transfer expres—
sion, equation (6) is integrated by parts which yields

at(L,o)e aL (8)

t(x,y) = ‘b(X,O) + [fo—-t(0,0)] G(X:Y:O) - j 3L
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after use of the boundary conditions of equation (2). The local rate
of heat transfer obtained by differentiating and substituting equa~
tion (8) into equation (7) is

a(x) = Mt,4(0,0)] .5.9_(5:_5’_:22] . hf 3(L,0) 38 | a1 (9)
oy dL 9y
y=0 o y=0

When the local heat—transfer coefficient'is defined by

h(x,L) = A §§£§LZﬁElI A (16)

equation (9) becomes

X
q(x) = h(x,0) [£(0,0)-t,] +f éﬁi’%‘?l h(x,L) 4L (11)
2 .

Equation (11) comstitutes the general expreséion for the local heat—
transfer rate per unit area. Note that h(x,0) represents the heat—
transfer coefficient on a plate having a constant surface temperature.

It is interesting to note that the local ®eat—transfer rate per unit

area is comprised of the local heat—transfer rate on a plate of constant
temperature, equal to the leading—edge temperature of the plate, plus
corrective terms introduced by the variation of the surface temperature. .

Approximate Solution for a Stepwise-—
Discontinuous Surface Temperature

General solution.— The purpose of this section is to obtain the
value of h(x,L) to be used in equation (11). Because of the complex—
ity of the problem, an exact solution 6, or indirectly h(x,L), cannot
be determined at present and an aspproximate approach is indicated. Thus,
the analysis presented in reference 1 will be repeated herein in a more
general fashion.

The equation Whlch'will be solved is the boundary;layer energy
equation

u(t-to) dy (12)
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The method of solving this equation is to transform it to an ordinary
differential equation in terms of x &as the independent variable

and A as the dependent variable, The resulting differential equation
is then integrated.

Suppose the velocity term wu in the right member of equation (12)
is given by
1/7
y .
—4 - l
(8) (13)

—1/5 1/5 4/5

= 0.37 u v (1k)

where

These are the well-known 1/T~p0wer—law relatlonships (reference 9). 1In
addition, suppose

t't“ = > (15)'

even though % and A may not be of the same order of magnitude. When
the velocity and temperature expressed by equations (13) and (15) are
substituted into the right member of equation (12), there is obtained

after simplification
8/7
E_-—Pr (16)
A dx 5 /7

when A 1s less than 8. It should be noted that for the case of a
constant plate temperature in air A equals 1.25. When the integra—
tion of equation (12) is performed with these limits on the thicknesses
of the boundary layers it is found that the results of the heat—transfer
coefficient differ from those of equation (16) by the order of 0.1 per—
cent. Therefore, even though A 1is greater than © for some cases,
the results of the following analysis are believed to be wvalid over the
entire plate to the order of 0.1 percent for air.

In order to transfcrm equation (16) to an ordinary differential .
equation, it is necessary to express the left member of equation (16) in
terms of the local characteristics of the boundary layer. Many alterna-—
tive expressions may be obtained in this manner. This avoids imposing
a prescribed variation of the heat—transfer coefficient h 1in terms
of the distance along the plate x, which would make the problem
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trivial. To determine which of the altermative solutions is applicable,
correlation of a general solution depending on a single parameter will
be made with the data of reference 8, The wvalue of the parameter which
_achieves the best correlation of the data and the analysis will then be
“used in the remainder of the report.

In order to obtain these alternative expressions for h in terms
of local characteristics, it is necessary to restrict the analysis, for
the moment, to the case of a constant surface temperature. For the case
of a constant surface temperature, the Colburn analogy between local
heat—transfer rate and skin friction (reference 10) is

b (pr)®/® = I (17)
PuGCy Puq

The right member of equation (17) is expressed, from 1/7—power—law con—
siderations, as

T _ = 0.0225 uo--1/4 V1/4 6—-1/4 (18)'
(¢}

Further, it is shown in appendix A that for the case of a constant sur-
face temperature the ratio of the thickness of the thermal boundary
layer to the flow boundary layer is given by

% - (er)” " (19)

When equations (17), (18), and (19) are combined so as to express h/A
in terms of Pr, 3, and A, the variables which appear in equation (16),
there results

. 8/a (o9—=8m) _ 1l4am
%=o.0225 V—°> Py 48 A * & (20)

The thermal boundary—layer thickness was introduced into this equation
by raising both sides of equation (19) to the m—th power. Equation (20)
constitutes a general expression for the local heat—transfer coefficient
in terms of the local boundary—layer characteristics and the Prandtl
number. Although this equation was derived for heat transfer from a
plate at a constant surface temperature, it will be assumed to apply to
the case of a flat plate with the region x <L unheated and at the
free—stream temperature. It is interesting to note that there are
limits on the possible wariation of the parameter m. For /insta.nce 5
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in equation (20) when m is less than -1/4 it is found that the heat—
transfer coefficlent increases with an increasing thermal boundary--layer
thickness. When the parameter m is greater than 9/28, it is found
that the heat—transfer coefficient increases with a decreasing Prandtl
number. These variations are in contradiction with existing knowledge
concerning convective heat transfer. The values of the parameter m
must, therefore, lie in the interval -1/4 <m < 9/28.

When equations (16) and (20) are equated, there results after sim—
plification

) 28m+4 _ 11+28m
48 L A=px® p 28 (21)
dx 10x :
where
7m+l L \— 39t+t2sm _ 39+28m
A = (0.2025)(0.37) 7 (-VQ> 140  pr 48 (e2)

Equation (21) is of the Bernoulli type which can be integrated to yield

. 28
224m4-312 lsam+-273 39+28n '1 394280
A = [ }TQ A< x 280 -1 280 x 280 ) _l (23)

when the boundary condition A =0 at x =1 is imposed. Equation (23),
therefore, gives the thermal boundary—layer thickness on a plate which is
unheated and at the free-stream temperature t, for x <L and is
heated and at the temperature t, for x > 1. When equation (23) is
substituted into equation (20) there results

- 7+28m
. a/5 28m39 7 gotzem
u 1 i
Bk _omy (%) w0 1o (B (21)
A v X
The coefficlent in equation (2h) is given by
32 sam-1 7+28m
_ 39+28m 35+2em 39+28m
C(m) = (0.0225) (0.37) (0.0778) (25)

In 'Ehe range -1/% < m < 9/28 the wvalue of C(m) is essentially con—
stant and equal to 0.0288. It is apparent from equation (24) that when
m is greater than —1/4 and when x approaches I the effect is to
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increase the local heat-transfer coefficient many fold, When L equals
zero this equation degenerates to the customary heat—transfer expression
based on the 1/7—power laws for velocity and temperature distribution
(reference 11).

Correlation with experiment.— To determine which wvalue of m makes
equation (24) more nearly conform to the measurements, comparison is made
of this solution with the data of Scesa in reference 8. The data of
reference 8 were determined in & well—controlled experiment on a flat
plate oriented parallel to the free-stream velocity. Free-stream speeds
of 50 to TO feet per second were employed. The plate had an unheated
starting section which was followed by a heated section in which there
was an additional temperature discontinuity. All the basic data except
those from heater elements which can be considered guard heaters are
plotted in figure 1, It is observed that the data lie consistently above
the theoretical line for a plate at a constant temperature.

The temperatures in the heated region of the plate are defined as
tw, and ty, upstream and downstream from the temperature discontinuity,
and the temperature of the unheated starting section is t,, the free—
stream temperature. The length of the unheated starting section is 1;,
and the distance from the leading edge of the plate to the temperature
discontinuity in the heated portion of the plate is L». The local heat—
transfer rates per unit area are then given, respectively, by

q = h(x,L1)(tw,~to) (26)

for I <x S»Lg, and
@ = h(x,L1) (b ~to) + h(x,L2) (ty 4y, ) (27)

for x> L. The heat—transfer coefficients in this experiment were
defined in terms of the local temperature difference between the surface
and the free stream. The Nusselt numbers corresponding to those meas—
ured in each of these regions are given by equation (24) as

7+28 m
SomoS  ~ So¥Eem

Fu = (Nu)L=0 [1 —@-})T] (é8)
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and
tW __to Ll —TO-—- so+28 m
Nu = (Nu) I S [l - —-> ] +
. 1=0 | twz—to x
7+28m
28mfe9 ~ Sissm
two—twy Lz \ 740
WoTMWa |4 _ (22 (29)
th—tO X 4

If the general solution, equation (24), yields results which conform to
experiment, then the experimental Nusselt numbers divided by the brack—
eted quantities should yield experimental Nusselt numbers which corre—

spond to (Nu)L_O. These adjusted data are shown for two values of the

parameter m, m =0, and m = 9/28, in figures 2 and 3, respectively.
It should be noted that m = —1/4 corresponds to the data of figure 1,
that is, the bracketed quantities are equal to unity. The value m =0
apparently correlates the data very well. This corresponds to the
results of reference 1, that is, the local heat-—transfer coefficient is
dependent on the thermal boundary—layer thickness and the Prandtl number
and is independent of the flow boundary-—layer thickness, For m =0
equation (24) becomes

—7/39

4/5 1/8 38/40 .
Bt - o008 () T rr [1-(2) ) (30)

A

Equation (30) will be used in the remainder of the analysis.

Average heat—transfer coefficient determined from particular
solution.— In many cases it is desirable to know the average heat—
transfer coefficient over a region at constant temperature preceded by
an unheated starting section. The total heat transferred in the region
per unit width is given by

W ~W
Q= f q(x)dx = f h(x,L) (%) dx (31)
L L

The symbol W represents the distance from the leading edge of the
plate to the rear of the region considered. The average heat—transfer
coefficient over this region is defined as

Q

h=

(32)
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When equations (30), (31), and (32) are combined there results

B(W,L) = h(W,0) g‘; S{z}w) (%;—) (33)

where

( ) f o T (1 g yT/ee g (34)
®

Equation (34) was evaluated numerically and the results are shown in
figure 4.

The experimental data obtained by Jakob and Dow (reference 6) on
the average heat transferred from a probe in axial air flow preceded by
unheated starting sections corresponds, in form, to the results obtained
from equations (33) and (3%). It cannot be assumed tacitly, however,
that the data obtained from probes should compare identically with
theory based on a flat plate. In particular, the data cobtained on the
probe for a constant surface temperature were about 13 percent lower
than corresponding theoretical or experimental results on a flat plate.
As any theoretical comparison of probes and flat plates indicates that
the rate of heat transfer from the probe should be the greater, there
appears to be some unexplained reason for the low values of the data.
In view of this, no extensive comparison of the data and the results of
the present analysis are made. A single comparison for the case of an
unheated starting section reveals that 'E/h(W 0) = 1.37 from the Jakob
and Dow results, while the corresponding result from the present analy—
sis is h/h(W 0) = 1.45, This comparison is favorable when considera—
tion is made of the questions expressed previously concerning the com—-
parison of results from probes and flat plates.

Particular solution applied to general single surface—temperature
discontinuity.— When the region of the plate preceding the temperature
discontinuity is at a temperature twl other than the free-stream tem—

peratufe, the local and average heat—transfer coefficients in the region
L< x< W at a temperature th are glven by

7/39

- | Yato  tur by L \P2/4° 3
B(E) = Bx,0) {2 e T -5 (35)
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o 5 L—(L/W),‘" 5] o ko (L) (L) Tegby |
(W,L) = h(W,0) i + - "
—(LM)  tus~to 39 1~(L/W) tug—to

(36)

For certain applications in a small region (W-L) it is interesting to
know the ratio of the average heat—transfer coefficient to the local
heat—transfer coefficient which would prevail at the center of the region
if the plate were at a constant temperature. This ratio is obtained by

dividing equation (36) by h <‘-’J-2ﬂ‘-,0>

_BOLL) e (T YTt (L) St (37)
h ’EiL.,o> <W tWZ—to <W tw2_to
2
where F(L/MW) and G(L/W) were evaluated numerically. If
Q= ¥ (38)
th_tO
equation (37) may be rewritten as
________h(:’li) =‘F(L/W) + BH(L/W)z (39)
&
where
H(L/W) = ¢(L/W) — F(L/W) (ko)

The numerical values of F(L/W) and H(L/W) are plotted in figure 5. -

Extension of Approximate Solution to the Problem
of an Arbitrary Surface Temperature

Boundary—layer temperature distribution.— The approximate temper—

ature distribution determined from equations (15) and (23) with m =0
is
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o = By (k1)
< 312/280 273/280 39/280 >41/39 '
X L X

where

B=115u 1/55 v 1/35 PNEYEE (k2)

At the outer edge of the boundary layer 6' becomes equal to unity;
therefore, equation (41) is valid only in the region

7 312/280 273/280 839/280 25/39
s () T ) 43)

For values of y greater than given by the inequality (43)

6t =1 (L)
For the range of y indicated by the inequality (43)

1/7 x 389/280 L—l /40

' _ 3 7 - ()
oL 10 ( 812/280 273/280 89/280) 43/39
X - L b4
For greater y
B _ o (46)
OL

When equations (41), (45), and (46) are substituted into equation (6)
there results

89/280 _—1/40
s = 2" f : IR A R

o4 /:35 8lz/280 _ ;273/280 39/2so> 48/39

(&7)
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7
where 280/273
: U = <x273/28°~—-339/4 yse/as:x—ee/zsé> (48)
1/7 4/35 : ) ,
When By /T . x / it is apparent from equation (48) that U =0, and

consequently from equation (47) +t(x,y) = t,. It is not obvious, however,
that the left member of equation (%7) equals the prescribed surface tem—
perature at y = 0. It is shown in appendix B that equation (L47) does
satisfy the boundary conditions at y = O.

Local heat—transfer date.— The general expression for the local
heat—transfer rate is obtained by substituting the local heat—transfer
coefficient given by equation (30) into equation (11)

p-4 39/40- ~7/39
g = h(x,0) {£(0,0) — %4 +f -51‘%:9)- {1 -@i) } aL} (49)
. _ o

For an arbitrary surface—temperature distribution it is necessary
to evaluate the integrals in equations (47) and (49) numerically. There
is, however, a type of surface distribution for which the local heat—
transfer rate can be determined easily by analytical treatment. This
will be shown in the next section.

Surface—temperature distribution represented by power series.— Let
the surface temperature be represented by

t(x,0) - t, = Z a,x* n>o0 (50)

where n 1is not necessarily an integer. When equation (50) is differ—
entiated with respect to x +there results '

i =) (51)
n

The substitution of equation (51) at x = L into equation (49) yields

2= b(x,0) lag + f Z nann_l [1_<£>39/40]—7/89 N ()

This equation may be rewritten as

39/40 _ 7/39

= h(x,0) {ag+ z nanfx L [1 —<—f—{‘—> ] aL ) (53)
n o]
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o

89/40

Letting a = (L/ ) allows transformation of the integral terms of
equation (53) so that the equation reads :
1 2% —7/39
q = h(x,0) | ag + — E: nanx \/P oS8 (1<) da} (54)

The integral terms of this equation are Eulerian integrals of the first
kind (reference 12), the values of which are given by the Beta function
which may be expressed in Gamma functions as

fl ion /30 _ > ( )

) (55)
r(
39 39

where mn 1is greater than or equal to zero. The values of the Gamma
functions may be obtained from tables in reference 13. In view of equa-

tion (55), equation (54) becomes
eae

n T

(56)

q = h(x,0) | ag + %g

39 39

When the recursion equation

r(y+1) = yr(y) (57)

%

is used, equation (56) may be rewritten as

5)1 (%)

2 = 1(x,0) ) (58)
n

<'39 39

It is apparent that once the type of surface—temperature distribution
is specified, that 1s, values of ay specified, the distribution of

the local heat—transfer rate per unit area can be determined directly
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from equation (58). The total rate of heat transfer per unit width Q
is obtained by integrating equation (58) from x = 0 to x = s

iy (-—h—Q n+1> T <3—2-
- 5(s,0) z +17_\39 39 (59)
2 n+l T _1’9..1.1. + 3=
39 39

The term - -ﬁ(s ,0) 1is the average heat—transfer coefficient for the case
of a constant surface temperature determined from the expression

- . 4/5 .
h( S{O)S = 0.036 <uv_o_s_> Prlls (60)
For convenience, equations (51), (52), (58), and ~(59) are plit in

the dimensionless form
n
0
8x0) _ y An<§-> (61)
to L S
n

R ( ) 2 < > (62

n
q i |
to b(x,0) Z AHYD<§> (63)
_a . y ¥ (64
tosh(s,0) Z \; Z n+l ) n )

In these equations

| Ge)e ()
i I1<_3"9" 39>

(65)
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The term. v, is plotted as a function of n  in figure_6. If the heat—

transfer coefficient for the case of a variable surface temperature is
defined in terms of the local temperature difference ‘

* q
t(x,0) — t, (66)
then E o
X .
* AY \=
h - _m_nm\s

(67)

Inspection of the right member of equation (67) reveals several inter—
esting facts. For a problem in which the denominator has a local value
of zero, the numerator will be finite in all but a very exceptional case;
thus h*/h(x,o) will be infinite at this point. For another case the
numerator may be zero locally while the denominator will probably be
finite; thus h*/h(x,0) will be zero at this point. It is seen, there—
fore, that h*/h(x,0) can attain any numerical value, depending on the
problem considered. '

In summary, it is noted from equations (61), (62), and (63) that the
values of the coefficient A, may be determined by a prescribed distri-—
bution of surface temperature, a prescribed distribution of the surface
temperature gradient, or a prescribed distribution of the local heat-—
transfer rate per unit area. Once the coefficients A are evaluated

from the prescribed quantity the other two guantities, together with the
total heat—transfer rate, can be determined directly.

EXAMPIES

Plug-Type Heat Meter

Convective heat—transfer rates at a surface are often measured con—
veniently by determining the heat—transfer rate to or from a plug which
is thermally isolated from the surrounding material. The plug can be
used as a steady-state device in which heat is generated electrically
and the temperature of the plug is maintained constant. The usual prac-
tice, however, is to use the plug as a transient device by measuring. the
temperature—~time history of the plug. The local heat—transfer rate '
through the surface of the plug is represented by the product of the
rate of change of temperature and the thermal capacity of the plug.
Regardless of the convenience of using such a device, the present
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analysis indicates that the measurements are subject to certain inherent
errors in addltlon to those which may arise from imperfect thermal iso—
latlon.

It is not possible to design a simple plug—type heat meter which
will always maintain a temperature identical to the temperature of the
gsurrounding material. If an extremely thin insulating material is used
between the plug and the surrounding material, a surface-—temperature dis—
continuity will occur at the seam of the plug and the surrounding mate—
rial, If the instantaneous surface temperature of the plug is defined
as t., while the surface temperature of the surrounding material to the
leading edge of the plate is denoted tg it is apparent that equations

(36) through (L40) are applicable to thls prdblem, where tp = ty, and
’Gs—twl

It is desirable to know how well a plug-type heat meter measures
the local heat—transfer coefficient which would exist at the position of
the center of the plug if the plate were at a constant temperature.
Equation (37) is directly applicable to this problem. For example, sup—
pose the instantaneous temperatures of a heat-meter plug, the surrounding
material, and the free stream are 125° F, 100° F, and 200° F, respec—
tively. The dimensions of the plug are L = 24 inches and W 25 inches.
It is found from equation (38) that z = -0.33, and L/W = 0.96. From
equation (39) and figure 5

= o0.62 (68)

Thus,kthe plug—type heat meter measures a heat—transfer coefficlent which
is only 62 percent of the local heat—transfer coefficient which would

have existed at the position of the center of the plug had the plate been
at a constant surface temperature.

Although this example is arbitrary, the conditions are by no meahs
implausible. It should be noted from equation (39) that more severe
surface—temperature conditions can result in negative values of,

B(W,L)
n(w+/2,0)’ }
would be in a direction opposite to that which would normally prevail on
a plate having a constant surface temperature. These results indicate

that extreme caution should be exercised in the interpretation of the
data obtained by plug~type heat meters.

which means that measurement of'heat transfer by a plug
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Constant Heat—-Transfer Rate

Suppose it is desired to maintain a surface—temperature distribu—
’;ion such that the local heat—transfer rate per unit area is constant
along a plate, From equation (30) it can be seen that h(x,0) is

inversely proportional to the l/5—-—power of x. Equation (63) can there—
fore be written as

q =t Q(s,o) <§>—1/5 z Ay ¥n<§->n (69)
n

It is apparent that to maintain q constant, n must bave the value
1/5 only. Equation (69) becomes

q = t, h(s,0) Ay 5 Y, sy (70)
Therefore,
4
Ayjs = (1
/5" 15 1(s,0) Y, s )

The required surface-~temperature variation as given by equation (61) is

t(x,0) =14 _a <2I.>l/5 (72)
t, to b(5,0) T, 5 \5 "
Further
h*
[ES———— = 1, 6
w0y s 0 (73)

This latter equation indicates, from the values of figure 6, that the
local heat—transfer coefficient on a plate baving a constant heat—

transfer rate differs from that on a plate at a constant temperature
by only 6 percent.
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Surface Temperature Represented by Polynomial

Suppose the temperature distribution on a flat plate is given by

. f.‘ﬁ_(_ié.:;(ll = 1.5 + o.5<§> ('74)

Then in equation (61), n =0 and n=1, and A =0.5 and A; =0.5.

From equation (63) and figure 6, the local heat-transfer rates are given
by

— 3 -0.5+0.612 <§> (73)
to h(x,0) s

The ratio of the local heat—transfer coefficient to thé heat—transfer
coefficient which would exist if the plate were at a constant surface
temperature is

*

h*  _ 0.5 + 0.612(x/s)
h(x,0) 0.5 + 0.5(x/s)

(76)

The values of the members of equations (74) and (75) are plotted in
figure 7. It can be observed that although the temperature variation
along the plate increased the over-all temperature difference between
the plate and the free stream by 100 percent, the local heat—transfer
coefficient differs from that on a constant—temperature plate by a maxi-
mum of about 11 percent.

CONCLUSIONS

The conclusions of this report are subject to certain limitations
inherent in the assumptions of the analysis. The following assumptions
have been used:

1. All physical properties of the fluid are constént.

2. Frictional dissipation of energy within the boundary layer is
negligible.

3. The velocity distribution in the boundary layer is of the
l/7—power form,
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4, The temperature distribution in the boundary layer is of the
l/7—power form even when ‘the thermal boundary-layer thickness differs
considerably from the flow boundary—layer thickness.,

5. The local heat—transfer coefficient determined on a plate having
a constant surface temperature applies to a plate having a variable sur—
face temperature when it is expressed by an equation based on the local

flow and thermal boundary—layer thicknesses instead of the distance along
the plate. "

Although the analysis based on these assumptions is correlated with
experimental data, this is not a verification of the individual assump-—

tions of the analysis, but rather, is a justification of the use of the
end results,. ‘

The foregoing analysis, together with the examples cited, has indi-—
cated that a variation in the surface temperature with distance along a
flat plate influences the local convective heat transfer to an extent
which depends on the type of variation. In general, a sudden surface—
temperature Jjump, or discontinuity, produces extremely large increases
or decreases in the convective heat transfer directly downstream of the
position of the discontinuity. From this it can be concluded that meas—
urements by a heat meter of the plug type can, in most instances, deviate
considerably from the heat transfer which would normally exist at the
location of the instrument. A continuously variable surface temperature
was shown, in general, to have a smaller effect on the convective heat
transfer than a sudden temperature discontinuity. For instance, it was
shown that the local heat—transfer coefficient on a plate having a con-—
stant heat—transfer rate along the surface, with the necessary l/5~power
variation of the surface temperature, differs from that on a plate with
a constant surface temperature by only 6 percent. For the case of con—
tinuously varying surface temperatures, large effects on the local heat—
transfer coefficient are expected only where the surface temperature
approaches that of the free stream at a point other than the leading
edge of the plate.

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Feb. 9, 1951,



NACA TN 2345 25

APPENDIX A

RATIO OF BOUNDARY-LAYER THICKNESSES ON PLATE
WITH CONSTANT SURFACE TEMPERATURE

If the 1/7-power—law velocity distribution

HON )

is substituted into the von Kfrmin momentum integral for a flat plate

4 r®
A f u(ugu) dy (a2)
P dx o

o] 1/7 1/7
. |
I ORIESHOMESE

When the indicated operations are performed, there results

there results

T

7
o T T (Ak)

k1S

Similarly, if the 1/7—power temperature distribution

177
=t _<Z
=6 2

and equation (Al) are inserted into the integral form of the energy
equation

C
n="0 & [ y(ety) ay (46)
ty-t, dx ‘
* To
theré results
8/7
a/ 7 A )
h = pC. V. | = e A
*°p Yo I\ 7 177 (A7)
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when 1%, 1is constant and it is postulated that © is greater than A.

For a constant surface temperature the Colburn modification of the /‘
Reynolds analogy 1s expressed as

. 2/3
.__E.__‘(Pr)a ° — (A8)

PCp U, pu,

When equations (Al) and (A7) are substituted into equation (A8), there
is obtained

a 2/s /7 } _a
L | ) =g (29)
Therefore
2/3 A?/7
(Pr) 77 =5 +C (A10)

For the case of a constant surface temperature, both the thickness of
the thermal and flow boundary layers are zero at the leading edge of the
plate; thus, C equals zero in equation (Al0) and

= (er) /"% (a11)

o 1>
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APPENDIX B

VERIFICATION OF BOUNDARY CONDITION
Equation (47) in the text is

39/280 L—-:L /40

4/35
</

£ i
t(x,y) = BY1/7 —_— i%f t(L,0) x
100 (x

where

U = <x273/2ao _ p39/4 yas/es £—39/280

>éao/27s

To simplify the integration let
o = <X312/2ao _ 1278/280 x39/280> yn

or

_ _ 273 0 x39/280 /40,0

do
280

When the terms of equation (B4) are transposed

Xse /280 _—1/40

L dL =-59-yfndm
39

From equation (B3) it can be found that

o 40/39
89/40 _—
L = (X /40 £ 39/zaoy—n o

With this transformation of the variable, equation (B1) becomes

312/280 273/280 _39/280 ) 43/39J

27

(B1)

(B2)

(3)

(Bk)

(B5)

(B6)
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_ Byl/ v to
t(x}Y) /35
x * ', 40/39
89/4 _n+3s/28
YB B Yy % [ (21:39/4o__'x—:a9/28<Jy-;:1(p . ,O] y—n+1/7dq> ,
39 ) 43/39 —481/39 '
alz/zson U £ (B7)
X ¥
When n = -39/28, equation (B7) reduces to
1/7
B t
't(x,y) = _.‘Y_...._.__Q -
4/35
* /39
40
89/4 '
39/40 —B9/280 88/28
N (e K P
39 . 43/39
312/280 P
- S
2
yse/ 8
At y = 0, equation (B8) becomes
88/4
B t(x,0)d9
t(x,0) = ——-—f ~asjas (B9)
39 & P
On integration, equation (B9) becomes
39/4
-4 /39

(B10)

©0

t(x,0) = %g £(x,0) %2 ®

which reduces to the identity

t(x,0) = t(x,0) (B11)
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Figure 4.— Values of P&-} defined by equation (34).
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Figure 7 - E ffect of variable surface temperature on
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problem.
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