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Abstract

Removal of certain organic pollutants from the environment may be difficult due to their poor water solubility and high 
vapour pressure. Particularly, these are factors limiting the use of biological remediation methods because they affect 
the bioavailability of xenobiotics. Therefore, an important issue in the biofiltration of gasses is the removal of hydro-
phobic compounds. This paper presents the results of research showing relation the application of a chosen surfactant 
(betaine) to the efficiency of toluene biofiltration. The research was conducted on a laboratory-scale biofilter. Elimination 
capacity and removal efficiency at different biofilter loads have been researched. The maximum elimination capacity 
was 21.2 and 32.3 g/m3h for the control bed and for the bed to which the betaine solution was applied, respectively. For 
the results of the experiment, statistical analyses and model calculations were performed. The results were compared 
with the reference literature.
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1 Introduction

The removal of hydrophobic compounds is crucial for the 
gas biofiltration. Factors comprising the efficiency of bio-
degradation of pollutants are solubility and bioavailabil-
ity of a given chemical compound, environmental condi-
tions (temperature, availability of oxygen and nutrients, 
the presence of toxic substances, presence of competitive 
impurities), and the degradation potential of microorgan-
isms [1]. The low solubility of pollutants in water affects 
the transport of pollutants in liquid–gas or liquid–liquid 
systems and shows the negative effect in the bioavailabil-
ity of hydrophobic compounds or the possibility of wash-
ing them out, and thus, it limits the possibility of biologi-
cal removal [2]. Most models describing this process are 
applicable only to pollutants highly soluble in water at low 
concentrations levels [3]. Descending removal efficiency 
of some groups of organic pollutants consecutively: alco-
hols > esters > ketones > aromatic hydrocarbons > aliphatic 
hydrocarbons, correlates directly with Henry’s constant, 

which shows that the lower the ratio of pollutants solubil-
ity in water, the less likely the possibility of their biodeg-
radation in the biofilter bed [4, 5]. Therefore, not only the 
pre-purification of gases transported into the filter bed 
is examined, but also a change in the parameters of the 
purification process and modification of the filter bed to 
improve its sorption and degradation qualities (e.g. the use 
of microscopic fungi) [6]. In addition, interactions between 
pollutants in the gas to be treated are investigated, which 
may have a significant, both positive and negative, impact 
on the bioavailability of pollutants and thus, the effective-
ness of the gas treatment process, particularly concerning 
the removal of hydrophobic compounds [7]. It has been 
observed that the treatment of a water-soluble compound 
with poorly soluble compounds may limit the removal of 
the latter   [8] or contrariwise facilitate the transport of 
hydrophobic impurities to the aqueous phase and the 
efficiency of gas treatment [4].
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2  Biofiltration of hydrophobic compounds

Due to the turbulent nature of the gas flow in the bio-
filter, the mass transport in the gas phase takes place 
through convection and diffusion. At the gas–liquid 
interface, the flow becomes laminar and molecular dif-
fusion is prevailing, which is much slower than convec-
tion, and can reduce mass transfer between phases [9, 
10]. The mass transfer between gas and liquid can be 
described by means of the film theory, according to 
which the transport through the interfacial surface takes 
place in two stages connected in series. The relation-
ship between concentrations on gas and water phases 
is determined by Henry’s constant. Once the substrate 
passes to the biofilm followed by passive diffusion or 
actively involving enzymes, the cell membrane is con-
veyed into the cell, where the reaction occurs. Consid-
ering the qualities of biofilms, it might be assumed that 
for hydrophobic pollutants transport between the gas 
phase and the biofilm would occur much faster than 
at the air/water interface. Miller and Allen [11] have 
researched the biofiltration of alpha-pinene on a labo-
ratory scale. The determined division coefficient for 
alpha-pinene for air/biofilm phases was 100 times higher 
than for the air/water phases, which translates into bet-
ter transport in the biofilm rather than in water. Alike, 
the apparent solubility of alpha-pinene in a biofilm is 
greater than in water. However, under the conditions of 
the set process phase, where the phases are balanced, 
these factors do not affect the increase of transport rate 
through the biofilm, and the partition coefficients are 
comparable to the values for the air/water system. That 
example also proves that impurities featuring low water 
solubility can be easily treated by biofiltration mainly 
due to biological transformations of these compounds, 
which are oxidized to more soluble forms [12].

Volatile organic compounds present in the gases can 
react with one another, be subject to chemical changes, 
alter one another’s properties, and affect bioavailability 
and the pace of biodegradation. In the case of the bio-
filtration process, these interactions might impact the 
efficiency of the gas purification process significantly, 
especially when removing the hydrophobic compounds. 
For example, as demonstrated by Balasubramanian et al. 
[7], a high concentration of ethanol comprises the deg-
radation of toluene and benzene, while its presence may 
increase the pace of dichlorobenzene removal. Zehraoui 
et al. [13, 14] performed an experiment on biofiltration of 
n-hexane as a model hydrophobic compound. The pro-
cess was carried out with the application of methanol, 
which acted as a solvent increasing the bioavailability of 
the pollutant. The addition of methanol in biofiltration of 

VOCs may have a neutral, positive, or negative influence, 
depending on the type of pollution, bed load, filtration 
material, the availability of nutrients, pH, and tempera-
ture. It should be noted that the high concentration of 
methanol as an easily available carbon source for micro-
organisms may contribute to the inhibition of n-hexane 
biodegradation under the conditions of high bed load 
with methanol. Microbiological analysis has shown that 
methanol can inhibit the growth of microorganisms 
responsible for the degradation of n-hexane, and its 
removal from the system contributed to the diversifica-
tion of microflora and abundance of microbes resulting 
from the biodegradation of n-hexane. Hassan and Sorial 
[4] also chose n-hexane as the object of their research. 
Biofiltration of this compound was carried out with the 
use of benzene. n-Hexane is quite soluble in benzene, 
and thus, in a mixture with benzene its solubility in water 
increases. n-Hexane and benzene were applied to the 
biofilter bed at the volume ratio of 1:2. (Concentration 
was 1:3, respectively.) The maximum removal efficiency 
of n-hexane was 97%. Studies have shown that the pres-
ence of benzene vapours has a significant impact on the 
biodegradation of n-hexane.

Similar results in the form of increasing the solubility 
of hydrophobic impurities and thus their bioavailabil-
ity can be achieved using surface active agents (sur-
factants). Surfactants by reducing surface tension and 
forming micelles improve the bioavailability of organic 
compounds in two ways: by increasing the solubility 
of hydrocarbons and by influencing hydrophobicity 
of the surface of microbial cells [15]. This results in the 
growth of the affinity of microbial cells to molecules of 
poorly soluble organic compounds and facilitates their 
co-dependency [16]. Surfactants demonstrate the high 
selectivity of activities, and by increasing the rate of bio-
degradation of one pollutant, they can simultaneously 
block the growth of microorganisms responsible for the 
degradation of other compounds [17]. For example, 
Tween 80 may cause increased activity of Sphingomonas 
strains inhibiting the growth of Mycobacterium [18]. The 
studies also showed a high dependence on the effec-
tiveness of biodegradation on the type and chemical 
structure of pollutants [19]. Surfactants may, therefore, 
have a positive, neutral, or negative effect on the bio-
degradation of pollutants. Main factors in the selection 
of surfactants are: the hydrophilic–lipophilic balance 
(HLB), critical micelle concentration (CMC), the stability 
of the emulsion created, and the biodegradability of the 
surfactant and its toxicity to microorganisms [20]. Due 
to better biodegradability, anionic and non-ionic sur-
factants are the commonly used ones. In addition, non-
ionic surfactants do not ionize in water, so they can be 
safely dosed on the filter bed together with the medium 
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[21]. A review of research on the use of surfactants in gas 
biofiltration is presented in Table 1. 

3  Materials and methods

Own research on biofiltration of selected pollutants was 
performed on a laboratory scale. The conceptual scheme 
is depicted in Fig. 1. The filtration column was a PVC pipe 
with an inner diameter of 0.1 m, consisting of three parts, 
each of them of 0.5 m high. The column was filled with 

three layers of filter material, each 0.3 m high. (Total height 
of the biofilter bed was 0.9 m.) The installation also con-
tained a pre-conditioning column, 1.0 m high, filled with 
wetted activated carbon. A constant gas stream was estab-
lished at a rate of 750 dm3/h, EBRT: 35 s. Toluene was being 
added to the mixer, in which it blended with the flowing 
air. Gas samples for analysis were taken from four ports 
located at the inlet to the biofilter and after each of the 
three layers of the bed.

The filtration material consisted of coconut fibre with 
the addition of coarse pearlite at the volume ratio of 1:1 
(porosity: approx. 0.6). In order to feed the biofilter bed 
with biogenic salts, the mineral medium of fertilizer gran-
ules was added. The installation operated under the ambi-
ent conditions, with a room temperature between 293 and 
298 K. The filter bed was regularly moistened in order to 
sustain its humidity at about 60%. The pH of the bed was 
also supervised and sustained at level 6. The study used 
the indigenous microflora inert for the filter material. In 
order to determine a general number of microorganisms 
and determine the number of yeasts and moulds, the sur-
face culture method was applied on the regular nutritive 
agar and Sabouraud agar dextrose 2%, respectively. The 
results of microbiological research on colonization of the 
filter bed were indicated in cfu/g d.m. (colony-forming 
units per 1 g of dry matter of the filter bed). Toluene was 
chosen as a model compound for the kinetics of the bio-
filtration process of volatile organic compounds. A betaine 
solution was added to the filter bed at the consecutive 
concentrations: 1.0, 2.0 and 3.0 g/dm3. The solutions were 

Table 1  Application of 
surfactants in gas biofiltration

Author Applied surfactants Removed pollutants

Miller et al. [22] Brij 35 Toluene

Miller et al. [23] Triton X-100 Toluene

Sówka et al. [24] β-Cyclodextrin Toluene

Cheng et al. [25] SDS n-Hexane

Tu et al. [26] Saponins n-hexane

Wang et al. [27] Tween 20 Ethylbenzene

Cheng et al. [28] Biosurfactants α-Pinene

Song et al. [29] Triton X-100 Styrene

Ramirez et al. [21] Brij 35, Brij 58, Brij 78, Tween 20, Tween 40, 
Tween 60

Methane

Wu-Chung and Hong-Yuan [30] Brij 30 Toluene

Wu-Chung and Hui Zheng [31] Brij 35 Toluene

Hassan and Sorial [32] Triton X-100, Tomadol 25-7 n-Hexane

Park et al. [33] LA5, LA7, Span 20, Tween 20, Tween 81 Toluene

Liu et al. [34] SDS Chlorobenzene

Dhamwichukorn et al. [35] Triton X-100, Brij 35, Brij 58 α-Pinene, methanol

Kastner et al. [36] Pluronic F68 n-Hexane

Kim et al. [37] Alfonic 810-60 Trichloroethylene, 
tetrachloroeth-
ylene

Fig. 1  Research installation scheme: 1—column for gas pre-condi-
tioning, 2—mixer, 3—filter bed, 4—ports
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dosed on the 32nd, 46th and 60th days of the biofiltration 
process, respectively. At the same time, a control series 
was performed with the bed moistened only with water.

4  Results and discussion

Research results of the effect of various concentrations of 
betaine at various bed loads on the biofiltration efficiency 
of the air contaminated with toluene vapours are shown 
in Fig. 2. For each measuring series, the toluene load was 
gradually increased. A significant decline in the effective-
ness of air purification was observed for the increasing 
toluene load values. The results obtained were compared 
to the control series (biofiltration of toluene without the 
addition of surfactant—the bed moistened with water) 
(Fig. 3). The maximum elimination capacity was 21.2 and 
32.3 g/m3h for the control bed and for the bed to which 
the betaine solution was dosed.

The results of quantitative research on colonization of 
the bed by microorganisms showed no toxic influence of 
surfactant on the microflora of the biofilter. An increase 
in the total number of microorganisms was observed 
from 50 × 106 (the control bed) to 19 × 1  07 cfu/g d.m. (the 
bed after betaine application) and fungi from 33 × 106 to 
11 × 107 cfu/g d.m., respectively (Table 2).

From the results obtained, the relationship between 
the elimination capacity and the load of the bed with 
toluene was determined with the use of the Leven-
berg–Marquardt method. The following function used in 

the Michaelis–Menten equation was chosen to describe 
the process of biodegradation of chemical compounds:

where v—elimination capacity, g/m3 h; Oz—loading rate, 
g/m3 h; a, b—function coefficients.

The results of modelling are presented in Fig. 4. The cor-
relation coefficient R was 0.979 for the series with betaine 
applied and 0.736 for the control series. The Michae-
lis–Menten equation best describes the biodegradation 
of water-soluble compounds. It can be concluded that the 
better the solubility of the pollutant, the better the model 
fits the given equation. According to the research [38], in 
case of contaminations which dissolve poorly in water, the 
mass transfer resistance on the gas phase is greater than 
in case of hydrophilic compounds, which cause the pace 
reduction in the biodegradation process and the reduc-
tion in the time at which the primary reaction takes place 
and thus accelerates the transition to a zero-order reaction 
phase. It can be concluded that betaine improves the solu-
bility of toluene in water and increases its bioavailability, 
which improves biofiltration efficiency. Considering the 
maximum achievable biofiltration rate, the values of the 
boundary of the discussed function should be compared 
(with  Oz → ∞ the limit equals the “a” coefficient). The maxi-
mum elimination capacity of toluene in the model was 
75 g/m3h.

The review of papers concerning the use of biofiltra-
tion in the purification of gases contaminated with toluene 

v =
a ⋅ Oz

b + Oz

Fig. 2  A relationship between the elimination capacity and removal efficiency and the bed load of toluene for biofilter with betaine
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vapour shows that the parameters of the process, the 
type of filter material and the inoculation (or its lack) of 
the bed and the type of inoculated microorganisms have 
a significant influence on the removal efficiency. These 
results are in a large discrepancy in the results obtained. 
In the analysed works, using inert materials, the maximum 
elimination capacity was: 2.2 g/m3h for a ceramic bed [39], 
40.3 g/m3h for stone filling [40], 70 g/m3h [41] for a vermic-
ulite-based bed and 6.8 g/m3h [42], 90 g/m3h [43] or even 
360 g/m3h [44] for polyurethane foam. For biofilters filled 
with organic material in which the bed was inoculated, 
the maximum toluene elimination capacity obtained was, 
e.g. 33 g/m3h [45], 82 g/m3h [46], 122 g/m3h [47] or even 
873 g/m3h [48]. The biofilters operating under reduced pH 
conditions in which microscopic fungi were responsible 

for the degradation of toluene are considered unique 
[49]. The obtained maximum elimination capacity, using 
various filtration materials, amounted to 2 g/m3h [50] and 
72–95 g/m3h [51]. According to the authors, the standard 
values of biofiltration rates on an uninoculated bed are 
normally between 14 and 55 g/m3 [47, 52–54]. While com-
paring the results of the experiment among the measure-
ment series carried out under identical conditions shows 
significant differences in the obtained maximum elimina-
tion capacity, comparing them to the results in which the 
input parameters were different can serve to optimize the 
biofilters working conditions. The obtained results of our 
own research, both for the control series and for the meas-
urement series with the application of a surfactant, are 
within the given range of maximum values of biofiltration 
of toluene in installations without the inoculation of the 
bed with microflora.

5  Conclusions

Due to the current nature of the issues concerning the 
purification of flue gases, in this field, researches seek 
to optimize the working conditions of biofilters and to 
maximize their effectiveness. In this work, research and 
evaluation of the effect of the application of betaine on 
the biofiltration kinetics of toluene as model contamina-
tion in biofiltration of volatile organic compounds was 

Fig. 3  A relationship between the bed load rate and elimination capacity compared to the control series

Table 2  Results of the quantitative research of microbial coloniza-
tion of the biofilter bed

Measuring series The number of 
microorganisms 
(cfu/g d.m.)

Bacteria Fungi

Initial filter bed 31 × 104 43 × 104

Filter bed after the adaptation period 98 × 108 85 × 107

Control filter bed (day 66th) 50 × 106 33 × 106

Bed after the application of betaine (day 66th) 19 × 107 11 × 107
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conducted. The maximum elimination capacity was 21.2 g/
m3h for the control bed (bed moistened with water, with-
out the addition of a surfactant) and 32.3 g/m3h for the 
bed to which the betaine solution was applied. The mod-
elled limit for the biofiltration rate of toluene using Betaine 
is 75 g/m3h. It can be concluded that betaine increases bio-
availability toluene and improves biofiltration efficiency. 
In the given range of concentrations, no toxic effect of the 
surfactant on the biofilter density of microflora was noted. 
The increase in the colonization of the bed with betaine in 
relation to the control bed was observed. In comparison 
with other authors results obtained by using different sur-
factants, using betaine in own research showed the best 
elimination capacity, but it is necessary to repeat the tests 
on a larger scale and for a mixture of gases also containing 
other components.
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