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Abstract Bisphenol A (BPA) is an endocrine dis-

rupting chemical used on a wide range in industry.

Several studies reported that BPA may cause cardio-

vascular disorders in humans and animals. The present

study aims to investigate the effect of BPA on the heart

of adult male rats. The rats received a daily oral

administration of BPA (25 mg/kg for 6 weeks and

10 mg/kg for 6 and 10 weeks). It was found that BPA

at the two studied doses induced a significant increase

in malondialdehyde, and a significant decrease in

catalase after 6 weeks. Moreover, a significant

decrease in reduced glutathione and acetylcholines-

terase (AchE) activity was observed after treatment

with the two doses of BPA throughout the studied time

intervals. The two doses (25 and 10 mg/kg) resulted in

a significant decrease in nitric oxide (NO) levels after

6 and 10 weeks, respectively. A significant increase in

body weight gain occurred in all animals after BPA

treatment. These results suggest that BPA has cardio-

toxic effects which are mediated by the oxidative

stress resulting from the overproduction of free

radicals, the deficiency of NO and the inhibition of

AchE leading to cholinergic activation. The obesity

promoting effect of BPA may also participate in the

observed cardiovascular disturbances.
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Introduction

Bisphenol A (BPA) is one of the world’s highest

production volume chemicals (Ritter 2011) used in

polycarbonate plastics in many consumer products and

epoxy resins lining food and beverage containers (EU

2008). The global population is subject to repeated

exposure to BPA, primarily through packaged food

but also through drinking water, dental sealants,

dermal exposure, and inhalation of household dusts

(Lakind and Naiman 2008) with detectable concen-

trations of metabolites in the urine of [90 % of the

population worldwide (Calafat et al. 2005; Ye et al.

2008). Heat, repeated washing of polycarbonate

products and contact with either acidic or basic

compounds accelerate hydrolysis of the ester bond

linking BPA molecules in polycarbonate plastics and

resins resulting in an increase in the rate of leaching of

BPA (Lim et al. 2009). In addition, another potential

source of human exposure is water used for drinking or

bathing. Studies conducted in Japan (Kawagoshi et al.

2003) and in the United States (Coors et al. 2003) have
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shown that BPA accounts for most estrogenic activity

that leaches from landfills into the surrounding

ecosystem.

BPA has been demonstrated in both in vivo and

in vitro experiments to act as an endocrine disrupting

chemical (vom Saal and Hughes 2005). The actions of

chemicals such as BPA are mediated by endocrine-

signaling pathways that evolved to act as powerful

amplifiers, with the result that large changes in cell

function can occur in response to extremely low

concentrations (Welshons et al. 2003).

In humans, increased levels of BPA in adults have

been correlated with various diseases, health outcomes

and medical conditions. To date, reported health

complications associated with increased levels of

BPA exposure include diabetes (Lang et al. 2008),

cardiovascular disease (Lang et al. 2008; Melzer et al.

2010), altered liver enzymes as increases in alanine

aminotransferase and aspartate aminotransferase

(Lang et al. 2008; Mourad and Khadrawy 2012) and

obesity-promoting effects (Ropero et al. 2008, Tra-

sande et al. 2012; Harley et al. 2013). Contributing to

the potential for altered metabolic homeostasis, BPA

has been shown to alter glucose homeostasis, increase

pancreatic insulin content and induce insulin resis-

tance in adult male mice (Alonso-Magdalena et al.

2006). Moreover, several studies have shown that

BPA induces oxidative stress in vital organs as the

liver, kidney and testis (Bindhumol et al. 2003; Chitra

et al. 2003; Kabuto et al. 2004; Mourad and Khadrawy

2012).

There has been increasing interest in the concept

that oxygen free radicals and nitric oxide (NO) play an

important role in the pathogenesis of cardiovascular

diseases (Das 2000). The cellular sources of reactive

oxygen species (ROS) generation within the heart

include cardiac myocytes, endothelial cells, and

neutrophils (Tsutsui et al. 2009). The heart has the

highest oxygen uptake rate within the human body,

consuming about 0.1 ml O2/g per minute at basal rates

(Antoni 1991). To meet the demand for synthesis of

ATP by oxidative metabolism, cardiac myocytes have

the highest volume density of mitochondria in the

entire body. Under physiological conditions, small

quantities of ROS are formed during mitochondrial

respiration, which, however, can be detoxified by the

endogenous scavenging mechanisms of myocytes.

However, when the production of ROS exceeds the

capacity of antioxidant defenses, oxidative stress

might have a harmful effect on the functional and

structural integrity of biological tissue. ROS cause

contractile failure and structural damage in the

myocardium (Tsutsui et al. 2009) possibly through

the oxidation of membrane phospholipids, proteins,

and DNA (McCord 1985).

Acetylcholinesterase (AchE) is an important com-

ponent of the heart’s cholinergic system; it is known to

regulate the cardiac parasympathetic responses by

controlling acetylcholine levels (Hoover et al. 2004).

Normally, AchE rapidly and efficiently degrades

acetylcholine, thereby terminating its signaling action

(Lefkowitz et al. 1996).

Nitric oxide as a gaseous free radical acts like a

neurotransmitter and effective cardiovascular modu-

lator. This gas plays a fundamental role in cardiovas-

cular physiology and pathophysiology (Shah et al.

1999). Within the cardiovascular system, NO partic-

ipates in the regulation of coronary blood flow and

tension of vessel wall (Roy et al. 2005).

Several investigators found that higher BPA con-

centrations were associated with cardiovascular diag-

noses (Lang et al. 2008; vom Saal and Myers 2008;

Melzer et al. 2010) and incident coronary artery

disease (Melzer et al. 2012). In addition, Asano et al.

(2010) reported that BPA in the micromolar range

activates Maxi-K (KCa1.1) ion channels in human

coronary smooth muscle cells in culture to a degree

sufficient to hyperpolarize the membrane potential.

Echocardiography identified concentric remodeling in

all BPA-treated males (Patel et al. 2013). The authors

found that systolic and diastolic cardiac functions

were essentially similar, but lifelong BPA enhanced

male and reduced female sex-specific differences in

velocity of circumferential shortening and ascending

aorta velocity time integral while diastolic blood

pressure (BP) was increased in all BPA females. They

suggested that continual exposure to BPA impacts

cardiac structure/function, protein expression, and

epigenetic DNA methylation marks in males and

females.

Bae et al. (2012) reported that exposure to BPA is

associated with increased BP and decreased heart rate

(HR) variability, which are risk factors of cardiovas-

cular disorders. They found that the risk of hyperten-

sion increased with increasing concentrations of BPA

in participants who had not reported previous history

of hypertension. The authors suggested that these

results have important implications in public health
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perspectives because of the almost ubiquitous usage

and exposure of BPA.

The FDA recently indicated some concern about the

safety of BPA and announced that more research is

needed (Erickson 2010). Health Canada (2008) has also

banned it from baby bottles. Similarly, the American

Endocrine Society recommended further research on

endocrine-disrupting chemicals including BPA, citing a

strong basis for concern about possible links between

these chemicals, obesity, and related disorders (Dia-

manti-Kandarakis et al. 2010). However, there is to-date

no literature available on the effect of BPA on cardiac

oxidative stress parameters and AchE activity.

The present study aims to investigate the effect of

the daily oral administration of BPA at two dose levels

(25 mg/kg for 6 weeks and 10 mg/kg for 6 and

10 weeks) on some oxidative stress parameters as

malondialdehyde (an indicator of lipid peroxidation),

reduced glutathione and NO levels and catalase and

glutathione-S-transferase (GST) activities in the heart

of adult male albino rats. In addition, the effects of the

two doses of BPA on cardiac AchE activity and body

weight of rats were also determined.

Materials and methods

Materials

Animals

Adult male Wistar albino rats weighing 120–180 g

were used as experimental animals. The animals were

obtained from the animal house of the National

Research Center (Cairo, Egypt). They were main-

tained on stock diet and kept under fixed appropriate

conditions of housing and handling. All experiments

were carried out in accordance with the research

protocols established by the Animal Care Committee

of the National Research Center (Cairo, Egypt), which

followed the recommendations of the National Insti-

tutes of Health Guide for Care and Use of Laboratory

Animals (Publication No. 85-23, revised 1985).

Chemicals

Pure BPA powder was purchased from Sigma (St.

Louis, MO, USA) and suspended in distilled water.

Reagents used for the measurement of the different

parameters were also obtained from Sigma (USA).

Experimental design

A total of 40 animals were divided randomly into 4

groups. Group (1) served as control and received an

oral administration of distilled water, five times a

week, throughout the experimental protocol. They

were divided to group 1–6 W which received distilled

water for 6 weeks and group 1–10 W which were

administered distilled water for 10 weeks. In Group

(2), rats were administered orally with 25 mg/kg of

BPA daily for 6 weeks. Animals of groups (3) and (4)

received an oral administration of 10 mg/kg of BPA

for 6 and 10 weeks, respectively. The doses of BPA

were administered five times a week. The higher dose

of BPA (25 mg/kg) in this study was chosen on the

base of previous studies (Bian et al. 2006; Richter

et al. 2007). A group of the control animals was

sacrificed simultaneously with each group of the

treated animals.

Handling of tissue samples

Both treated and control animals were sacrificed after

being fasted. The heart of each animal was quickly

removed, washed and rapidly weighed and frozen until

analyzed. The heart tissue was homogenized in 10 ml

of ice cold phosphate buffer (50 mM pH 7.4, 0.1 %

triton X and 0.5 mM EDTA). The homogenates were

centrifuged at 1,753g for 15 min at 4 �C using a high

speed cooling centrifuge (Type 3 K-30, Sigma, Oste-

rode-am-Harz, Germany). The clear supernatants were

separated and used for analysis.

Methods

Determination of lipid peroxidation

Lipid peroxidation was assayed by measuring the

thiobarbituric-acid-reactive substances (TBARS) in

heart homogenates, using the method of Ruiz-Larrea

et al. (1994) in which the TBARS react with thiobar-

bituric acid to produce a red colored complex having

peak absorbance at 532 nm and analyzed in a Helios

Alpha Thermospectronic (UVA 111615, Cambridge,

England) spectrophotometer.
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Determination of reduced glutathione

Reduced glutathione (GSH) was determined in heart

tissue by Ellman’s method (1959). The procedure is

based on the reduction of Ellman’s reagent by –SH

groups of GSH to form 2-nitro-S-mercaptobenzoic

acid, the nitromercaptobenzoic acid anion has an

intense yellow color which can be determined spec-

trophotometrically at 412 nm. GSH concentration was

calculated by comparison with a standard curve.

Determination of nitric oxide level

Nitric oxide levels, measured as nitrite, were determined

using Griess reagent according to the method of

Moshage et al. (1995), where nitrite, a stable end product

of the NO radical, is primarily used as an indicator for the

production of NO. Nitrite is converted to a deep purple

azo compound after the addition of Griess reagents. The

purple/magenta color developed is read at 540 nm. The

quantity was measured via a standard curve.

Determination of enzyme activities

Catalase activity was measured using the Biodiagnos-

tic Kit No. CA 25 17 (Giza, Egypt) which is based on

the spectrophotometric method described by Aebi

(1984). Catalase reacts with a known quantity of

hydrogen peroxide and the reaction is stopped after

1 min with catalase inhibitor. In the presence of

peroxidase, the remaining hydrogen peroxide reacts

with 3,5-dichloro-2-hydroxybenzene sulfonic acid and

4-aminophenazone to form a chromophore with a

color intensity inversely proportional to the amount of

catalase in the sample. The absorbance was measured

at 510 nm.

Glutathione-S-transferase was assayed by the

method of Habig et al. (1974) which measures the

conjugation of 1-chloro-2,4-dinitrobenzene with

reduced glutathione. This conjugation is accompanied

by an increase in absorbance at 340 nm, the rate of

increase being directly proportional to GST activity.

The procedure used for the determination of AchE

activity in the heart was a modification of the method

of Ellman et al. (1961) as described by Gorun et al.

(1978). The principle of the method is the measure-

ment of the thiocholine produced as acetylthiocholine

is hydrolyzed. The color was read immediately at

412 nm.

Determination of body weight

The body weight was measured daily for each rat then

the body weight gain was estimated by subtracting the

initial body weight from the final body weight for each

rat.

Statistical analysis

The data were expressed as mean ± standard error of

mean (SEM). All variables were tested for normal

distribution and compared using analysis of variance

(ANOVA) followed by the Duncan multiple range test

when the F test was significant (p \ 0.05). All

analyses were performed using the statistical package

for social sciences (SPSS) software in a PC-compat-

ible computer and the significance was set at p \ 0.05.

Results

ANOVA revealed significant differences between the

four groups in all tested parameters. As shown in

Fig. 1, the oral administration of BPA at the two dose

levels (25 and 10 mg/kg, five times a week) resulted in

a significant increase in malondialdehyde (MDA)

levels after 6 weeks when compared to the control

values. Moreover, MDA levels in animals receiving

25 mg/kg of BPA also showed a significant increase

when compared to animals administered 10 mg/kg of

BPA. However, a significant decrease in GSH levels

below the control values occurred after the two doses

of BPA, recording -20.72 % after the administration

of 25 mg/kg of BPA for 6 weeks and -46.85 % and

-27.93 % after treatment with 10 mg/kg of BPA for 6

and 10 weeks, respectively. Moreover, the oral

administration of 25 and 10 mg/kg of BPA (five times

a week) decreased catalase activity in the heart by

17.95 and 22.47 % (p \ 0.05) after 6 weeks, respec-

tively. However, the only significant increase in GST

activity was obtained in rats treated with the highest

dose level of BPA (25 mg/kg) for 6 weeks, recording

39.26 % above the control.

As clear from Fig. 2, cardiac NO levels recorded a

significant decrease after the administration of 25

mg/kg of BPA for 6 weeks (-20.46 %) and 10 mg/kg

for 10 weeks (-15.91 %) as compared to the control

levels. Meanwhile, the oral administration of BPA for

6 weeks (five times a week) decreased AchE activity
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by 21.14 % after administration of the highest dose

(25 mg/kg) and by 22.26 % after administration of the

lowest dose (10 mg/kg) when compared to the control

values. In addition, a decrease in AchE activity by

19.78 % was recorded after the daily oral administra-

tion of 10 mg/kg of BPA for 10 weeks.

As indicated by ANOVA, the oral treatment with the

two tested dose levels (25 and 10 mg/kg, five times a

Fig. 1 The effect of BPA on malondialdehyde (MDA) and

reduced glutathione (GSH) levels and the activities of

glutathione-S-transferase (GST) and catalase in the heart of

male albino rats. G1 control, G2 BPA-treated (25 mg/kg for

6 weeks), G3 BPA-treated (10 mg/kg for 6 weeks), G4 BPA-

treated animals (10 mg/kg for 10 weeks). Asterisk Significant

difference with respect to the control, Number sign significant

difference with respect to the highest dose (25 mg/kg)

Fig. 2 The effect of BPA on acetylcholinesterase activity

(AchE) and nitric oxide (NO) levels in the heart of male albino

rats. G1 control, G2: BPA-treated (25 mg/kg for 6 weeks), G3:

BPA-treated (10 mg/kg for 6 weeks), G4: BPA-treated animals

(10 mg/kg for 10 weeks). Asterisk Significant difference with

respect to the control
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week) resulted in a significant increase in body weight

gain after all investigated time intervals (Fig. 3). The

body weight gain showed an increase from 11.43 ±

0.6 g in the control rats to 34.63 ± 2.31 g after the

administration of 25 mg/kg of BPA and was increased

to 37.33 ± 2.64 g after treatment with 10 mg/kg for

6 weeks. After 10 weeks, the body weight gain

increased from 23.67 ± 1.67 g in control rats to

47.47 ± 1.04 g after 10 mg/kg of BPA.

Discussion

The present study revealed that BPA administration

induced a state of oxidative stress in the heart of rats as

evident from the increase in MDA levels and decrease

in catalase activity at the two tested doses (10 and

25 mg/kg) after 6 weeks and the decrease in GSH

levels after the administration of the two doses of BPA

at all tested time segments. Increased lipid peroxida-

tion may indicate an increased oxygen free radical

generation. BPA induces ROS production and signif-

icantly compromises mitochondrial function.

Catalase is an enzyme that converts hydrogen

peroxide into hydrogen oxide. Therefore, the present

results suggest that the exposure to BPA induces

overproduction of hydrogen peroxide in the heart. The

reduction in the activity of catalase may be due to the

exhaustion of the enzyme in attempting to eliminate

the hydrogen peroxide generated after the exposure to

BPA. This may also be due to enzyme inactivation

caused by excess ROS production in mitochondria and

microsomes (Pigeolet et al. 1990).

Glutathione provides a first line of defence against

ROS, as it can scavenge free radicals and reduce H2O2

(Pastorea et al. 2003). The present study revealed a

significant decrease in GSH levels after BPA admin-

istration at the two dose levels (25 and 10 mg/kg) for

different time intervals. It is clear from the percentage

differences that BPA (10 mg/kg) for 6 weeks pro-

duced a larger effect than BPA (25 mg/kg) for

6 weeks and BPA (10 mg/kg) for 10 weeks. This

pattern is typical of the non-monotonic dose–response

curves that have been reported for many actions of

BPA (Vandenberg et al. 2006; Alonso-Magdalena

et al. 2008; Hugo et al. 2008; Vandenberg et al. 2009).

There are currently 18 published reports of inverted-U

dose response curves (vom Saal 2006).

It may be concluded that GSH, in the present study,

is consumed during the conversion of hydrogen

peroxide into hydrogen oxide. The peroxide is readily

converted to the hydroxyl radical which may be

involved in the observed decrease in GSH levels as

GSH itself is also a general hydroxy-radical scaven-

ger. This finding is supported by various studies

demonstrating that glutathione is reduced in the tissues

by oxidative stress (Sian et al. 1994; Melchiorri et al.

1996).

Glutathione-S-transferase catalyses the conjugation

of GSH with several compounds produced in vivo

during oxidative stress. In the present study, a

significant increase in GST activity occurred at the

high dose level of BPA (25 mg/kg for 6 weeks). This

may eventually lead to the consumption of GSH

during the generation of glutathione-S-conjugates by

GSTs thus lowering the level of total intracellular

glutathione after prolonged treatment. The present non

significant changes observed in GST after 10 mg/kg of

BPA suggests that GSH is utilized in the degradation

of H2O2 resulting from the generation of ROS after the

two time intervals.

In the present study, a significant decrease was

obtained in NO levels in the heart of rats having

received an oral administration of 25 mg/kg of BPA

for 6 weeks and 10 mg/kg for 10 weeks (five times a

week).

Nitric oxide is a free radical synthesized by the

nitric oxide synthase (NOS) (Cannon 1998). All three

NOS isoforms such as constitutive (nNOS and eNOS)

and inducible (iNOS) are expressed in the cardiovas-

cular system (Kelly et al. 1996). Although normal

endothelial release of NO through endothelium-

derived NO (eNOS) reaction mediates physiologic

vasodilation, excessive release through iNOS

Fig. 3 The effect of BPA on the body weight gain of male albino

rats. G1–6W control after 6 weeks, G1–10W control after 10 weeks,

G2 BPA-treated (25 mg/kg for 6 weeks), G3 BPA-treated (10 mg/

kg for 6 weeks), G4 BPA-treated animals (10 mg/kg for 10 weeks).

Asterisk Significant difference with respect to the control
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induction may play a role in regulating BP (blood

pressure), HR (heart rate) and endogenous antioxi-

dants in septic shock (Petros et al. 1991). Acute or

chronic administration of NOS inhibitors has been

shown to cause BP elevation and changes in HR in

normal rats (Tribulová et al. 2000).

It is known that NO is deeply involved in vascular

pathologies, such as hypertension (Moncada et al.

1991; Ignarro et al. 1999). It is hypothesized that

chronic NO-deficient hypertension and alteration in

HR is associated with depletion of antioxidants and

oxidative injury to the heart (Husain and Hazelrigg

2002). In addition, deficiency in eNOS has been shown

to promote the development of heart failure postmyo-

cardial infarction (Scherrer-Crosbie et al. 2001).

Melzer et al. (2010) postulated several mechanisms

by which BPA might increase the risk of cardiovas-

cular disease, including reduced NO bioavailability,

altered vascular reactivity to endothelin-1, oxidative

stress and inflammation.

It may be postulated that the decreased level of NO

under the effect of BPA in the heart may result in

vasoconstriction which in turn may lead to decreased

blood supply to the cardiac tissue. This may lead to a

state of myocardial ischemia and consequently oxidative

stress. Moreover, the decreased NO availability may

represent one of the most important mechanisms under-

lying the reported CVDs related to BPA administration.

In the present study, a significant decrease in the

activity of AchE enzyme was observed in the rat heart

after the oral administration of 25 mg/kg of BPA for

6 weeks and also after the administration of 10 mg/kg

of BPA for 6 and 10 weeks.

Acetylcholinesterase (AchE; acetylcholine acetyl-

hydrolase EC 3.1.1.7) hydrolyzes acetylcholine and

thereby terminates the action of this neurotransmitter

at the cholinergic neuroeffector junctions of the heart.

Very few evidences suggest that inhibition of AchE is

mediated by oxidative stress (Wyse et al. 2004). This

was supported by the notion that hydroxyl radicals are

involved in the AchE inhibition (Tsakiris et al. 2000).

Thus, the present inhibition of AchE activity may be

related to the state of oxidative stress induced by BPA

in rat heart.

Pant et al. (2011) found that BPA decreased the rate

and force of atrial contractions simultaneously and

depressed the functioning of the pacemaker cells and

the contractile machinery of the heart. Decreased rate

and force of contractions can be due to the activation

of cholinergic system or NO (Deshpande et al. 2008;

Kanoo et al. 2009). From the present data, it may be

postulated that the deficiency in NO levels together

with the increased cholinergic activation resulting

from AchE enzyme inhibition induced by BPA

administration may lead to the previously reported

reduction in the rate and force of cardiac contractions.

There are considerable data linking oxidative stress

and ROS to the physiology and pathophysiology of

CVD (cardiovascular disease) (Sugamura and Keaney

2011).

In addition, elevated levels of oxidative stress

markers are detected in several pathologic conditions

of cardiovascular disorders, including hypertension,

ventricular hypertrophy, atherosclerosis, and conges-

tive heart failure (Carlos et al. 1998; Keith et al. 1998;

Miller et al. 1998; Harjai 1999).

Both experimental and clinical studies suggested

that the generation of ROS increases in heart failure

(Hill and Singal 1996, 1997; Mallat et al. 1998). Levels

of lipid peroxides and 8-iso-prostaglandin F2a, the

major biochemical markers of ROS generation, have

been shown to be elevated in the plasma and pericar-

dial fluid of patients with heart failure and are also

positively correlated to its severity (Mallat et al. 1998).

On the other hand, depletion of GSH and GSH/

GSSG ratio in blood has been reported to be a good

marker in hypertension (Vaziri et al. 2000; Husain

2002). It is clear that ROS may contribute to myocyte

injury resulting from ischemic–reperfusion (Zweier

et al. 1987), reduction of endogenous antioxidants in

the myocardium (Hill and Singal 1997), and the

remodeling response (Dhalla et al. 1996).

Several reports found a link between urinary BPA

concentrations and prevalence of heart diseases using

2003–2006 NHANES data, suggesting an association

between BPA exposure and CVD (Lang et al. 2008;

Melzer et al. 2010). Recently, Pant et al. (2011)

reported that acute exposure to BPA depressed cardiac

activity even up to the stage of asystole. They suggested

that the decreased contractility may lead to coronary

insufficiency. There is also a recent study suggesting

that exposure to BPA, measured in serum, is associated

with atherosclerosis (Lind and Lind 2011) and athero-

sclerosis development (Olsén et al. 2012).

It may be concluded that the increase in lipid

peroxidation and the reduction in the antioxidant

mechanisms, NO level and AchE activity in the heart

after the daily oral administration of BPA at the
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present dose levels may lead to the generation of ROS

and the development of a state of oxidative stress

which may underlie the CVDs linked to BPA

exposure.

The present data revealed an increase in the body

weight gain of animals treated with the two doses of

BPA (25 and 10 mg/kg) for different time intervals.

These results are consistent with those of other

investigators who showed that perinatal BPA exposure

increased body weight relative to controls (Rubin et al.

2001; Miyawaki et al. 2007). In addition, several

investigators confirmed that BPA has a role in weight

gain and the development of obesity (Newbold et al.

2009; Rubin and Soto 2009; Shankar et al. 2012).

Trasande et al. (2012) found that among 6–19-year-

olds participating in NHANES, increasing urinary

BPA concentrations were cross-sectionally associated

with increased body mass index (BMI) z-score and

increased odds of obesity. Moreover, in a low-income

Mexican–American population, Harley et al. (2013)

found that higher BPA concentrations in children’s

urine at 9 years of age were associated with increased

odds of obesity and increased BMI z-score, waist

circumference, and percent body fat at the age 9.

Recently, Li et al. (2013) reported that exposure to

high BPA level may contribute to childhood obesity.

The authors suggested that BPA could be a potential

new environmental obesogen and that widespread

exposure to BPA in the human population may

contribute to the worldwide obesity epidemic.

Thus, the present increase in body weight gain

emphasizes the ability of BPA to promote obesity

which in turn could exacerbate many of the metabolic

and cardiovascular disorders reported after BPA

exposure.

This effect of BPA could be explained by the report

of Hugo et al. (2008) who showed the ability of low

levels of BPA to decrease adiponectin release from

human adipose tissue explants. Adiponectin is known

to play a positive role in cardiovascular health.

Another possible explanation of enhanced weight

gain in BPA-exposed animals is an increase in food

intake as the estrogenic action of BPA can affect

neuronal circuits that control appetite by acting on the

hypothalamus (Wade and Schneider 1992). The above

data confirm that BPA exposure could be a major

public health concern in relation to the epidemic of

childhood and adult obesity (Laron 2004; Reilly

2005).

In conclusion, it is evident that BPA has an adverse

effect on the heart of rats which is mediated princi-

pally by the generation of ROS and reduction of

antioxidant defenses of the heart aggravating a state of

oxidative stress. The concomitant reduction in NO

levels and AchE activity and the increase in body

weight may contribute to the cardiovascular distur-

bances resulting from BPA. It is clear that these

pathological conditions may occur after prolonged

exposure to BPA even at extremely low levels which

raises the demands for prohibiting the use of BPA in

plastic industries.
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