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The effect of rotary Brownian motion on the rheology of a dilute suspension of 

rigid spheroids in shear flow is considered for various limiting cases of the particle 

aspect ratio r and dimensionless shear rate y/D. As a preliminary the probability 

distribution function is calculated for the orientation of a single, axisymmetric 

particle in steady shear flow, assuming small particle Reynolds number. The 

result for the case of weak-shear flows, y / D  < 1, has been known for many years. 

After briefly reviewing this limiting case, we present expressions for the case of 

strong shear where ( r3 + r3) < y/D,  and for an intermediate regime relevant 

for extreme aspect ratios where 1 < y / D  < ( r 3 + r 3 ) .  The bulk stress is then 

calculated for these cases, as well as the case of nearly spherical particles r N 1, 

which has not hitherto been discussed in detail. Various non-Newtonian features 

of the suspension rheology are discussed in terms of prior conljinuum mechanical 

and experimental results. 

1. Introduction 

In  this paper we continue our earlier study (Leal & Hinch 1971) of the rheo- 

logical effects of Brownian rotations in a dilute suspension of rigid spheroids. 

It proves convenient to consider the theoretical derivation of the bulk suspension 

properties in two parts. Firsb, we consider the influence of the random Brownian 

couples on the creeping motion of the individual particles, for an assumed two- 

dimensional shear flow of the suspension. Second, the relationship between 

measurable bulk rheological properties and the microscale description of the 

suspensionis deduced. This latter part of the problem has recently been throughly 

re-examined by Batchelor (1970). In this paper we focus our discussion on the 

microscale aspects of the rotary Brownian motion effects and on the qualitative 

features of the bulk stress. 
The creeping motion of a small, rigid ellipsoid subjected to simple shear 

flow of a Newtonian fluid is described, in the absence of rotary Brownian motion, 
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by the now classical solution of Jeffery (1922). This solution shows that the par- 

ticle will traverse any one of an infinite family of periodic closed orbits. As the 

particle geometry deviates from spherical, the angular velocity around any of 

these orbits becomes increasingly non-uniform with the particle tending to spend 

the major portion of every orbit period in a particular aligned position. The 

orbit for each particle is predicted to be unchanged for all time and hence to be 

determined by the particle’s orientation at some initial time. 

The action of rotary Brownian motion is a randomizing influence on the par- 

ticle orientation so that the final distribution of orientations represents a com- 

promise between the anisotropic distribution associated with the undisturbed 

Jeffery orbits and the uniform distribution which results from unopposed random 

Brownian couples. We observe thati, under the influence of even the weakestr 

rotary Brownian motion, the steady-state orientation distribution is independenti 

of the initial orientation state. 

The probability distribution function for particle orientation is governed by 

a modified Fokker-Planck equation. The formulation of this advection/diffusion 

equation in orientation space, reproduced in $2, can be traced back at least to 

Boeder (1932). However, he was unable to solve the full equation, and so simplified 

the problem to an ordinary differential equation by assuming that the particle 

orbit lay entirely in the plane perpendicular to the vorticity vector of the un- 

disturbed shear flow. The first step in solving the full advective-diffusion equation 

came with the approximation scheme of Burgers (1938) for the case of strong 

Brownian motion. He computed the first few terms of an asymptotic expansion 

for the orientation distribution function, valid in the limit as the rotary Brownian 

diffusion coefficient D is large. The solution shows that the relatively weak shear 

flow causes little preferential alignment of the particle, i.e. there is only a small 

departure from the totally random state in which all orientations are equally 

probable. At nearly the same time, Peterlin (1938) obtained a solution for the 

orientation distribution function for near-spheres in terms of a slowly convergent 

series of spherical harmonics. He started with the uniform state, and based his 

expansion on the idea that for near-spheres the particle angular velocity is little 

different from the constant rotation of a sphere. Much later, Scheraga (1955) 

employed a digital computer in order to evaluate a very large number of terms in 

Peterlin’s expansion. He calculated orientation-dependent angle averages for 

unrestricted aspect ratios, r ,  and values of y / D  ranging from zero to 200, where y 
is the shear rate. The latter value of 200 essentially represented the limitrs of 

storage capacity for the computer. Other workers (Sadron 1953) obtained a 

representation for the case of near-spheres ( $ 5 b )  which is unlimited with 

regard to the relative strength of the rotary Brownian motion. As will become 

evident, this expression allows an evaluation of the bulk rheological properties 

valid for any value of y /D and hence provides an extremely useful case for com- 

parison with the asymptotic expressions in which y /D is assumed to be either very 

large or very small. 

Much more recently, the case of weak rotary Brownian motion has been con- 
sidered by Leal & Hinch (1971). In  this limiting case, the particles proceed nearly 

undisturbed around closed Jeffery orbits. The first effect of the small Brownian 
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rotations is to eliminate the dependence, noted by Jeffery, of the relative popula- 

tion of different orbits on the initial orientation state of the suspension. By observ- 

ing that, in the steady state, there was no net diffusion of particles out of an orbit 

Leal & Hinch (1971) derived an expression for the first approximation to the 

orientation distribution function, valid for sufficiently weak Brownian motion. 

The main feature of interest in this limiting case is the large departure from the 

uniform orientation state. In  $3,  we develop expressions for the higher order 

approximations which are required for calculation of the full bulk stress tensor. 

A careful examination of the conditions under which this expansion is valid 

suggests the existence of a fourth regime corresponding to intermediate shear 

rates for particles with extreme aspect ratios. When the aspect ratio of the par- 

ticles is either very large (rod-like) or very small (disk-like), we have already noted 

that the particles spend most of an undisturbed Jeffery orbit near a particular 

orientation. It is therefore possible for rotary Brownian diffusion to be negligible 

at nearty all orientations, but comparable with the shear (advection) in a small 

region about this one direction. In Q 4, we derive an expression for the orientation 

distribution function for this intermediate regime by employing the methods of 

matched asymptotic expansions. In  $ 5, the full bulk stress tensor is determined 

from the calculated form of the microstructure for these limiting cases following 

the general procedure outlined by Batchelor (1970). 

A complete set of references on the rheology of suspensions in the presence of 

Brownian rotations may be found in Brenner (1972), of which we draw special 

attention to the review papers of Sadron (1953), as well as the original works of 

Giesekus (1962) and Scheraga (1955). With the single exception of Giesekus’s 

paper, however, these investigations have been solely concerned with calculations 

of the effective viscosity from the dissipation and hence, so far as we are aware, 

the case of strong rotary Brownian motion considered by Giesekus is the only one 

for which a complete evaluation of the bulk stress has been published. In  this 

paper we have included a summary of results for the steady-state bulk stress 

tensor in four general asymptotic cases: that of strong rotary Brownian motion; 

of weak Brownian rotation; of the intermediate regime with extreme particle 

aspect ratios; and of nearly spherical particles with Brownian rotations of 

arbitrary strength. The f i s t  of these cases is essentially that of Giesekus (1962) 

and is presented, in a shortened version, mainly for completeness. The second and 

third are entirely new, with the exception of our previously reported work 

(Leal & Hinch 1971), and comprise the major contribution of the present paper. 

The near-sphere case is new only to the extent that the complete expressions 

for the bulk stress have not hitherto been published. As in the case of strong 

rotary Brownian motions, this near-sphere case is included mainly for tihe sake of 
completeness. Additionally, it is useful because it provides a check on the results 

of the other sections. 
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FIGURE 1. The polar angles. 

2. General equations 
(a)  The orientation distribution function 

We begin by considering a single neutrally buoyant, spheroidal particle suspended 

in an infinite incompressible Newtonian fluid which is undergoing a uniform 

shearing motion defined by 

u = y y ;  v = w = o .  (1) 

Because of the symmetry of the particle, its orientation relative to a Cartesian 

co-ordinate system fixed at  its centre is completely defined by the two polar angles 

el, $, of its axis of revolution as shown in figure 1. In  the absence of inertial and 

Brownian motion effects, Jeffery (1922) has shown that the rotation of a spheroid 

with aspect ratio r is given by 
r2- 1 

r2+ 1 

r 2 -  1 
6 - -  - - sin 28, sin 2$,, 

E r2 + 

where for the simple shear flow (1) both the vorticity in the z direction, 2Q, 

and twice the strain in the 2, y plane, 2E, are equal to the shear rate y. Bretherton 
(1962) has observed that almost all axially symmetric particles will rotate 

according to (2) provided that r is replaced by an appropriate, effective aspect 

ratio. 

To describe the statistics of a particle’s orientation, we follow our previous 

paper (Leal & Hinch 1971, hereafter referred to as I) and introduce the differen- 

tial probability density function N(8, ,  9,) defined such that the probability of 
finding the particle with orientation in the interval [8,,8, + do,] x [$,, q5, + a$,] 
is N(B,, 6,) sin8,dO1d$,. Then, as shown by Boeder (1932), Burgers (1938), and 

subsequently stated by us in I, the steady-state distribution of orientations is 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

Rheological properties of a suspension 687 

governed by the advective-diffusion equation 

div (ywN) = DV2N, (3) 

which simply expresses the conservation of probability in the orientation space. 

Here D is the rotational Brownian diffusion coefficient defined in I, and w is the 

vector y~ = (0, dl, 4, sin el) 
describing the time rate of change of orientation due to the purely hydrodynamic 

motion about Jeffrey orbits. The vector operators in (3) are, of course, defined on 

the unit sphere - the orientation space. The only additional conditions on N are 

the normalization 
~ ~ d 6 1 ~ ~ = ~ i n e l d $ l N ( e l ,  $J = 1 (4) 

plus the constraint that N be everywhere non-negative. The resulting probability 

function N(O1, q51) depends essentially on two parameters- the particle aspect 
ratio r and the non-dimensional measure of the shear strength y/D.  We have 

outlined a number of solutions of the problem represented by (3) and (4) in the 

previous section, some of which are presented here for the first time, and some 

of which have been reported by previous investigators. We shall discuss these 

solutions further in the subsequent sections of this paper. 

Before proceeding to a discussion of the method of calculating the bulk stress 

in a dilute suspension of spheroidal particles, we remark that the solutions of 
(3) and (4) which we shall obtain for simple shear flow can be simply extended to 

many two-dimensional flows. The importance of this extension in enabling our 

resultant rheological expressions to be applied to a wide variety of bulk flows 

is obvious. The generalization is based on the fact that, for a suitable choice of 
axes, any two dimensional flow may be expressed in the form 

u = ( E + Q ) y ,  v = ( E - Q ) % ,  w = O ,  

with strain rate E and vorticity 2Q. Referring back to the orbit equations (2), 

it is clear that the solution of (3) and (4) for simple shear flow also provides the 

solution for the probability density function for more general two-dimensional 

flows provided the parameters y /D and r are replaced by the relative vorticity 

strengbh 2Q/D and an effective aspect ratio r* given by 

The only limitation on the class of permitted two-dimensional flows arises from 

the requirement that the particle orbits be closed, the condition for which is 

( r*)2  > 0. 

Hence, in general, we must require 

E < r 2 + 1  

fz r2-1' 

Although this generalization from simple shear to a wider class of flows has been 

discussed before (Bretherton 1962; Prager 1957; Chaffey, Takano & Mason 1965) 

we believe that its significance for suspension rheology has not hitherto been 

fully appreciated. 

- -  
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(b )  The bulk stress tensor for a dilute suspension of spheroids 

I6 is assumed that the particles are rigid spheroids, the suspending fluid incom- 

pressible and Newtonian, and that the suspension concentration is sufficiently 

small that hydrodynamic interactions among the particles may be neglected. 

Nevertheless, it  is assumed that the necessary length scales exist so that the 

suspension may be considered, in bulk, as a homogeneous fluid. That is, we as- 

sume the existence of a length scale 1 such that the volume l3 is large enough to 

contain a statistically significant number of particles while b is still very small 

compared to the relevant length scale for the bulk flow field. Finally, the particles 

are assumed to be freely suspended and hence to be free of the action of externally 

imposed forces or couples. Following Batchelor (1970), we express the bulk 

(volume-averaged) stress in terms of the volume-averaged velocity and pressure 

fields as 

where rii is known as the particle stress and represents the contribution of the 

suspended particles. The method of calculation of the particle stress is detailed in 

Batchelor (1970) ; here we shall only quote the relevant results. 

Rotary Brownian motion causes two distinct kinds of effects in the theory of 

suspension rheology. First of all, 6he bulk stress is sensitive to the precise dis- 

tribution of orientations and, as we have already pointed out, this distribution 

function is affected by the Brownian rotations. In addition, the rotary Brownian 

motion contributes to the bulk stress in a more direct way by virtue of the effective 

angular velocity associated with the diffusion process across statistical population 

gradients in the orientation probability space. This direct contribution was f i s t  

included by Kirkwood & Auer (1951) and Saito (1951). There still, however, 

remains some confusion as to the need for its inclusion: Takserman-Krozer & 
Ziabicki (1963) and Batchelor (1970) omitted or overlooked this term. For the 

purpose of this paper we have elected to follow Kirkwood and include the direct 

contribution, although we admit there is not available a conclusive justification 

for doing so. Brenner (1972) has recently reviewed the problem of the direct con- 

tribution. 

The direct contribution of the Brownian motions to the bulk stress- in addi- 

tion to their indirect effect via the probability distribution of the particle orienta- 

tion - is included by adding an effective particle rotation resulting fromtihe rotary 

Brownian motion, - DV (log N ) ,  to the hydrodynamically induced rotation for a 

spheroid undisturbed by Brownian motion effects, pv. These yield a net flux in 

the orientation space of 

j = N ( ~ w  - DV (log N ) ) .  (6) 

The particle stress is linear in 6he total particle velocity, and hence it is convenient 

to separate it into two components, 
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a strain part cS representing the contribution from a spheroid undisturbed by 

Brownian motion except in so far as it governs the orientation distribution 

(Batchelor 1970), and an additional part aD due to the effective particle rota- 

tion caused by the Brownian diffusion. 

To obtain the strain part of the particle stress, crs, the velocity gradient of the 
undisturbed flow is first resolved onto the principal axes of the particle a t  one 

instantaneous orientation. One can then employ Batchelor’s expressions, using 

Jeffery’s hydrodynamic solution to evaluate the required integrals over the par- 

ticle. The resulting expression for the particle stress must; then be resolved back 

onto the fixed Oxyz co-ordinates, and the contribution to the bulk average 

stress weighted to account for the probability of finding a particle with the par- 

ticular assumed orientation. 

Since the suspension is incompressible, the normal components of the stress are, 

of course, only determinate within an arbitrary isotropic contribution. Following 

the common rheological practice we shall eliminate this redundancy by consider- 

ing only the normal stress differences & - and aL2 - ai3 in the flow and gradi- 

ent directions, respectively. 

Introducing the angle-bracketi notation for averages, 

the strain contribution to the bulk particle stress is found to be 

C T ~ ~  - 4 = @2,uE{ - 4A(sin4 8, sin 4$,) 

$2 - rg = @2pE{4A(sin4 8, sin 44,)  

+ 3A(sin4 8, sin 2q4) - 2(A - B)(sin2 8, sin 2#,)}, 

+ 3A(sin4 8, sin 24,) - 2(A - B)(sin28, sin 24,)}, 

of, = of.. = @2pE{A(sin4 8, sin2 24,) + 2B(sin2 8,) + 2/13}, I 

where E is the strain rate iy, p is the viscosity of the ambient fluid, @ the volume 

concentration of suspended particles and A,  B are shape coefficients defined in 

terms of the ellipsoidal integrals Ii, Ji given in Batchelor (1970) : 

J3 1 2 A s - + + - - -  
I 3 4  13  4’ 

We note that the symmetry of the orientation probability about = in- assures 
that e3 and gf3 vanish, as expected. 

To find aD the effective rotation in the orientation space, - DV(1og N ) ,  must 

be converted into an effective angular velocity of the particles. Then again 

using Jeffery’s (1922) solution, the stress for a particular instantaneous orienta- 
tion is calculated relative to  an axis system fixed in the particle, resolved back 

onto the fixed Oxyz axis, and weighted. After one integration by parts to remove 

44 FLM 52 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

690 E. J .  Hinch and L. G .  Leal 

A €3 2/13 F 

r2 3 In 2r - L2z 3r2 
r+co 2 

4(ln 2r - f )  r2 (In 2r - +) 

m e 2  
r =  1 + ~  

E + O  
2 9 4  

r+O 

9s 

5 8 12 
- + O ( r )  - - + O ( r )  nr 

TABLE 1. The limiting forms of the stress-shape coefficients for spheroids 

+he differentials of N ,  the diffusion contribution to the bulk particle stress is 
found to be 

gg - C T ~  = Q2pDF {#(sin2 6,) - 1 - $(sin2 61 cos 2$,)], 

.;"z = lgg = Q2pDF {&(sin2 6, sin 2$,)}, 

gg - C T ~  = (D2pDP (#(sin2 6,) - 1 + $(sin2 61 cos a$,)}, ] (10) 

where D is the rotary Brownian diffusion coefficient, and F a shape factor: 

6(r2 - 1) 

r2K3 + K,' 
F E  

The integral functions K,, K ,  were defined in I. Again, symmetry of N with 

respect to 61 causes CT: and gg to vanish. 
These expressions (9) and (10) for the two parts of the particle stress are 

essentially the same as those given by Giesekus (1962). The parOicle contribution 

to the bulk stress tensor would take the same form for arbitrary axially sym- 

metric particles, as well as the spheroids discussed here, although the four shape 

functions A ,  B, F, 211, would not be related to the particle aspect ratio in 6he 

manner described for spheroids. In  addition, it is perhaps worth noting that the 

average particle stress is symmetric as it should be since no net external couple 

is acting on the suspension (Batchelor 1970; Leal 1971). 

For reference in later sections of the paper, we have tabulated various limiting 

forms of the shape functions A ,  B, P and 2/13 in table 1 for spheroids. In  subse- 

quent sections we shall use these formulae together with the expressions (9) and 

(lo), and the solutions of equations (3) and (4) to evaluate the bulk stress for vari- 

ous limiting cases of strong and weak Brownian motion, as well as for the case of 
nearly spherical particles. 

3. The orientation distribution function in the limit of very weak rotary 
Brownian motion 

We have indicated in the introduction to this paper that a number of approxi- 

mate solutions have previously been published for the steady-state orientation 
distribution function N(61, $,) represented by the equations (3) and (4). Of these, 

we call particular attention to the early work of Burgers (1938) and Peterlin 

(1938), which will be utilized in a subsequent section. These prior solutions were 
limited either to the case of nearly dominant rotary Brownian motion, DJy -+ co, 
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or to the case of nearly spherical particles for arbitrary Dly. The other limiting 

case of weak Brownian rotation (D/y  -+ 0 )  was considered recently by the pre- 

sent authors (Leal & Hinch 1971). A physical argument was used to obtain the 

lowest order approximation for the steady-state probability density function 

N in the limit of high shear rates (D/y -+ 0) ,  from which it was possible to find the 

lowest order particle contribution to the effective viscosity p* of the suspension, 

where p* = YlZ/2E. In  order to calculate the f i s t  approximation to the bulk 

normal stresses and further approximations to the bulk shear stresses in the 

suspension, the solution for the distribution function must be carried to higher 

orders of approximation. 

In  this section, we report the extension of our earlier solution to higher orders 

via a formal expansion scheme. Before proceeding to these new results, it is 

worth outlining the main steps of our earlier analysis since their mathematical 

restatement provides the key to an apparent impasse in the formal expansion 

procedure. 
The essence of our argument in I was that, if rotary Brownian motion were 

sufficiently weak, a particle would proceed undisturbed around closed Jeffery 

orbits. The first noticeable effect of the weak Brownian motion would be to yield, 

after some appropriately long time, an equilibrium distribution for the relative 

population of the various orbits which does not depend on the initial orientation 

state of the suspension. 

We begin by introducing C, the parameter labelling separate Jeffery orbits, 

and 7, the phase around these orbits. Fortunately,the orbit period 2ny-1 (r + r-1) 

is the same for all orbits so that the assignment of a single function for the phase 

aroundevery orbit is trivial. Then, in the complete absence of any Brownianmotion, 

the orientation probability density function may be writben (I) in the simple form 

with 

The function g(C, 7) represents the orientation distribution around the orbit G 
and can be evaluated solely from Jeffery’s solution to give 

g(C, T )  = [r sin cos2 O1(r-2sin2 q51 + cos2 q4)4]-1. (12) 

On the other hand, the functionf(C) represents the population distribution of the 

various orbits. As noted earlier, it would depend on the initial orientation state 

in the absence of any disturbance effects: the influence of weak Brownian couples 

renders the distribution determinate, independent of initial conditions. Over a 

time scale corresponding to several orbit periods the orientation distribution 

remains relatively unchanged; however, over the (assumed) much longer dif- 

fusion time scale a considerable redistribution will occur between different orbits. 

The equilibrium distribution f(C) is reached when the net diffusional flux across 

each orbit reaches zero, i.e. when 

D $  -dl aN = 0 
orbit an 

for each orbit. This integral constraint permits the calculation of f(C). The 

reader is referred to our earlier paper (I) for the details of that calculation - some 
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of which is incidently reproduced below-together with a discussion of the re- 

sults and a comparison with available experimental data. 

To obtain higher approximations, we pose a formal expansion in the small 

parameter D / y  : 

E.  J .  Hinch and L. G .  Leal 

N = N o + U N l + f ) 2 N 2 + . . . .  Y (14) 

Substitution into the equations (3) and (4) yields a zeroth-order problem 

V .  (wN,) = 0 (15) 

V.  (wN,,,) = V2Nn. (16) 

together with the higher order problems 

These functions N, are subject to normalization conditions 

We note that, having removed the highest order derivative from the lowest 

order problem, some non-regular behaviour must be expected in the expansion. 

For the present time, we choose to ignore this point and proceed to attempt a 

solution of the regular expansion scheme above. Subsequently, we shall examine 

the conditions for validity of this solution, and discuss the solution for N in 

a singular regime. 
In  order to proceed, a general inversion scheme is required for the advection 

operator V . (wN).  This can essentially be constructed by transforming from the 

polar angle co-ordinate system (O,, $,) to the non-orthogonal natural co-ordinates 

for the orbiting particle (C, r )  using the Jeffery orbit solutions 

8, = tan-l[C(cos2r+r2sin2r)~],] 

q5, = tan-1 [r tan r ] .  

The details of this transformation are discussed in I, where we have also defined 

the metrics h(C, r ) ,  k(C,  r )  and Dhe angle a(C, r )  specifying Che skewness of the 

co-ordinate lines. In  this non-orthogonal system the equation (3) becomes 

(17) 

a 
- (hk sin a N )  Y 

(r + r-l)  hk sin a ar 

- c o t a q ,  ac (18) 

where h, k and a: are to be regarded as known functions of C and r. In this 

co-ordinate system, the inversion of the advection operator reduces t o  a simple 

integration, though of course the price paid for this simplicity in the advection 

term is the added complication in the Laplacian operator. 

Employing (18), the problem for the lowest order approximation No is reduced 

t o  a 
- (hk sin a No) = 0 .  
a7 
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The solution is simply fo ( C )  N -- 
O - hksina 

(19b) 
1 

subject to the normalization 

Hence, our formal expansion procedure has recovered the Jeffery orbit distribu- 

tion (12),  but leaves us with the unknown relative distribution between the vari- 

ous orbits, fo (C) .  Mathematically, this indeterminacy is a result of the absence 

of the highest order derivatives in the governing equation. Physically, the orbik 

distribution is determined by the Brownian diffusion process, which is not pre- 

sent at this lowest level of approximation. 

Leaving fo(C) temporarily unknown, we proceed to the second approximation 

N..  In  terms of the (C, r )  co-ordinate system the problem is 

fo(C) dC = z. so" 

cot a - ""1 a7 
-(hksinaN,) a = ( r+ r - l ) [L [ - - -  k aNo 
a7 aC hsina aC 

c o t a q ) .  (20) ac 

The equabion (20) can again be integrated with respect to r hence yielding an 

expression for Nl determinate up to another arbitrary orbit distribution function 

fl(C): the solution of the homogeneous equation. Clearly, as they stand, the 

equations at each order of approximation are not sufficient to determine the 

unknown distribution over the possible orbits. A closure at each level follows, 

however, from the observation that r is a periodic variable so that for Nl 

Nl(C,7):= N1(C,7+2n). 

The integration of equation (20) over r from 0 to 27r thus leads to the integral 

condition on No 

hsinaac 

The physical implication of this condition is simply that to the order of ap- 

proximation represented by No, the diffusional flux across particle orbits must be 

constant in the steady state. The more restrictive statement that this constant; 

flux must, in fact, be zero follows by integrating (21) with respect to C and using 

the symmetry of the distribution about C = 00 (0, = +n), 

cot a- N0d7 = 0. 1:" (&& a7 a )  

This is precisely the condition (13)  and allows a calculation offo(C). In  order to 

conserve space, we refer readers to our earlier paper for the details of this calcula- 
tion and merely note the solution 

fo(C) = const. C(HC4 + K C 2  + M )  F-3, (23)  
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FIGURE 2. Contours of No for r = 16. 

plus the obvious analytic continuation of P into K 2  < 4HM. The parameters H ,  
K ,  and M are defined as 

r2 7 1 r2+ 1 
H ( r )  = r 2 + 1 ;  K(r)  =-+-+--’ H ( r )  = - 

4 2 472’ r2 * 

The constant of integration in (23) is found from the normalization condition 

(1  9b). Anindication of the general form of the distribution function No is contained 

in the contour plot of No for r = 16 shown in figure 2 .  Particularly noteworthy 

is the strong population peak for particles nearly aligned with the flow, 

el = +1 = in. 

The explanation for this peak is that for large r nearly all of the possible Jeffery 

orbits (those for C 9 r-l where I & -  g31 % r-l when 8, = 4r-f - see I) have the 

majority of the orbit period occurring with 5 r-l. The implications of this 
peaked distribution with regard to the validity of the regular perturbation ex- 

pansion will be discussed in the next section. 

Having determined No, the calculation of Nl proceeds as follows. We note, first; 

of all, that the non-homogeneous part of (20) is an even function of 7. Thus, if 

t The angles 8, and $3 are defined in figure 1. 
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FIUURE 3. Contours of N ,  for r = 16. 

the r integration for Nl is carried out from r = 0 to some arbitrary value ( < 2 ~ ) ,  

the resulting expression for Nl will be an odd function of r.  Hence, both the nor- 

malization condition (20) and the integral constraint on N,, corresponding to (21) 

which arises at the next order of approximation, will be satisfied if and only if 

the homogeneous solution fl(C) vanishes identically. It may be shown that 

(sin 47) C2 + 7 sin 27 
r 2 - 1  4r 1 N,hksina =a[ - r y ( s i n 2 r ) ~ 4 - -  ( r2-  1)2  

dC2 32r2 

sin 27) ~2 sin 47 - - 
3 ( r2-  1)2  r 4 -  1 

32 r2 4r2 

3(r2- 1) 
(sin 27) C4 

3(r2- 

4r2 
-- '1 sin 2.1 +& [ - 7 

sin27 . (24) 
3(r2 - 1) 

sin 47 + - sin 27 Cz+ - 1 "-' ) 4,,.2 +(--- 32 r2 4r2 

3 (r2- 1)2 

We illustrate contours of the distribution function Nl for r = 16 in figure 3. 

The main contribution to Nl is clearly near the aligned orientatiion where No 

was sharply peaked, and corresponds to a shift of the overall distribution 
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toward a position of smaller 7 just prior to complete alignment. The main 

accumulation and deficit near the aligned position are simply understood in 

terms of a balance between diffusion away from that position which, to first, 

order, occurs with equal probability in either the pre-aligned or post-alignmenb 

direction and the advection effect, which acts with unit probability in the single 

direction of undisturbed rotation about a Jeffery orbit. The two weaker regions 

of accumulation and deficit at smaller values of O1 are a result of cross-orbit 

diffusion away from the aligned state. 

For arbitrary values of the particle aspect ratio r ,  the normalization of fo(C) 
cannot be achieved analytically and so no further simplification of the expres- 

sion for Nl is possible. The limiting cases where r 3 1, r < 1, r - 1 = 8, correspond- 

ing approximately to rods, disks and near-spheres, however, allow reduction of 

the preceding formulae to simpler forms. The main interest of the near-spheres 

is that they permit a check of our analysis against the results of Sadron (1953)) 

who obtained analytic expressions for N in this case for arbitrary values of D/y. 
Since we shall discuss the general near-sphere case in a subsequent section, there 

is no need to reproduce here the results for the limited subcase D/y  -+ 0. For rod- 

like particles, we have shown in I that 

so that, following a little algebra, the limiting form for N to O(D/y) is found to be 

+O - . (25) 

This shows that the correct measure of weak diffusion for r > 1 is Dr3/y < 1 

instead of D / y  < 1 as implied in (14). A simple physical argument, essentially 

requiring the minimum value of the local PBclet number for orientation space 

advective-diffusion t o  be large, led the authors to speculate precisely this result 

in their earlier paper. We shall return to this matter in the next section. In terms 

of original (el, #1) variables the expression (25) becomes 

(3 
1 1  c 

hk sin an (4c2 + I)% 

Dr3 15 sin 27( 1 - cos 27) C4 

(4C2+ 1 ) 2  
"-- (1 +- 

y 

1 
- [4 sin2 el (cos2 #1 + r-2) + cos2e1]-* 
nr qe,,  #,) 

Dr3 15 sin 2 ~ ) ~  (1 + r-4 - C O S ~  c $ ~ )  sin4 8, (cos2 #1 + r4)3 
[l+- 

(4 sin2 O1 (cos2 $1 + r2) + cos2 
+...I. (26) 

Y r  

In  the case of disk-like spheroids (r 1)) 

and the first two approximations to N in D/y  give 

Similarly to the case r - f q  the appropriate measure of weak diffusion for 

r < 1 is D/yr3 < 1. 
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4. The orientation distribution function in an intermediate regime of 
weak Brownian motion D/y < 1, (y/D)* < r+r-l 

In  the previous section we considered an approximate solution for the orienba- 

tion distribution which was based on a regular perturbation expansion in the 

small parameter D/y. A significant characteristic of this solution is that the dis- 

tribution becomes very sharply peaked in the vicinity of 8, - N in for large 

values of the aspect ratio, r B 1. This reflects the fact that the particles spend 
most of an undisturbed Jeffery orbit nearly aligned with the flow. Similarly, 

the distribution for r 4 1 becomes sharply peaked near 8, N in, q51 N 0. In- 

tuitively, it seems possible that, in these extreme cases, rotary Brownian diffusion 

effects could be negligible at  nearly all orientations provided D/y  < 1, but never- 

theless be of comparable magnitude with the advection effects in a small region 

of orientation space near the alignment direction. Confining our attention 

momentarily to the case of rods, we note that the particles spend nearly all of 
their total orbit period 277r/y within a small angle? 63 5 r--1 of full alignmen6 

with the flow. For the effects of diffusion to remain small in this region of large 

gradients in orientation probability requires that the appropriate local PBcleti 

number Dr3/y be small as stated in the preceding section. The violation of this 

condition when D/y is small requires a singular perturbation expansion for the 

distribution function. In  this section, we consider the case D/y < 1, but y /D < r3. 

The condition D/y < 1 ensures that diffussion is negligible nearly everywhere, 

while y /D < r3 (or (y /D)  < r-3 for disks) implies that diffusion is, nevertheless, 

as important as advection near the special orientation of particle alignment. 

For simplicity we shall only consider the derivation of the probability density 

function for the extreme form of rod-like spheroids. The disk-limit (r < 1) is 
entirely identical provided q5, is rotated by in. We begin by changing from the 

(el, 9,) polar co-ordinates to the (03, q53) co-ordinates which are centred on the 

The rotation of a spheroid about undisturbed Jeffery orbits is then described by 

alignment direction 8, = q5 , - 1 .  - 2~ Th ese angles are illustrated in figure 1. 

(28) 

(29) 

i 
8 7 (r2 sin2 e3 + cos2 e3) sin +3, 
3 -  r 2 + l  

$3 = --r2+1. y (cot e3 cos q53). 

Now as Burgers (1938) also observed, these equations are considerably simplified 

for slender rods, r % 1, becoming 

8, - - y sin2 e3 sin $3, 43 N 0, 

provided only that sin 8, 2 r--1, i.e. the particle orbits reduce to g53 = constant, 

except for a very small region near the aligned direction. 
Now consider the singular region at  O3 N 0. In  this region, it is assumed that 

the effects of advection and diffusion are of equal importance, hence that the local 
PBclet number is of O( 1) .  Suppose we denote the length scale appropriate to this 
region AO, = 6. Then it follows from (29) that the corresponding velocity scale 

t See figure 1 .  
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should be $2, and so for the local PBclet number yd3/D to be of order 1 we 

require 
6 =  o(--) D f  . 

The condition Dr3/y % 1 is clearly equivalent to the statement that the (D/y ) f  
singular region is of much greater extent than the O(r-l) subregion in which the 

rotation differs significantly from (29). As a first approximation, +he rotation 

represented by (29) therefore may be assumed valid in both the outer advection 

and inner advection-diffusion regions. The smaller region of O(r-l) is diffusion 

dominated and, as is customary for physical space boundary-layer problems, it 
can be neglected at  the first-order approximation. 

To derive the appropriate governing problem in the inner region, we introduce 

the stretched variable 

and the distribution function properly scaled to be consistent with the con- 

centration of the probability at the two singular regions 8, = 0 and 8, = n, or 

P = (Y/D)*83 (30) 

The governing advection-diffusion equation for M is simply derived using (29)) 

(30)) (31) and (3): 

l a  i a aiw i a2M 
--(p3sin$5,M)+-- p- +--= 0, 
Pap  P a p (  8,) P”@ 

and the normalization condition (4) becomes 

The scaling (30), (31) and the governing equation (32) were actually discovered 

by Burgers (1938), with the difference that our condition Dr3/y % 1 causes his 

coefficient P to vanish. In  spite of the simplification inherent in these equations, 

Burgers was unable to obtain a satisfactory solution, partly because he failed to 

appreciate the nature of the interaction between solutions in the inner and outer 

regions as specified by the matching conditions. In  particular, as p -+ co and one 

enters the overlap region, the advection term in (32) must dominate, giving 

M(P? $3) -+ P-39($3) as P -+ co, (34) 

in which g($,) is an unknown function. Recast in terms of the outer variables, 

we have 

In the outer region (which comprises all of the orientation space outside the 

regions where sin 6, 5 (D/y)*) advection dominates and the equation (3) becomes 

(y  sin3 8, sin $, N )  - 0. 
i a  

sin 8, aB, 

The outer solution subject to (35) is therefore 
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This outer solution imposes the final conditions on the inner equation, for 

since the singular region at 8, - 0 is mirror-imaged at e3 N n-, it follows thati 

9($43) = g( - $43) = s(n - $43). (38) 

The problem for the first approximation to the orientation distribution function 

in this intermediate, weak Brownian diffusion regime has been reduced to the 

solution of (32) subject to the normalization (33) and the matching condition (34), 

in which the unknown function g(q53) possess the symmetries (38). 

We have outlined a scheme for obtaining the first approximation to N in this 

intermediate regime. Higher order corrections arise from several sources in 

addition to the obvious one of systematically extending the matched asymptotic 

solution to include the neglected terms in the basic equations for each region. 

First, normalization applied to the uniformly valid composite expansion over the 

whole orientation space contributes a correction of O(D/y). The neglected devia- 

tion of the velocity field from the assumed form (29) in the O(r-l) subregion 

would produce an additional correction of O(r--ly*/D*). Finally, at higher orders 

of approximation, it is also necessary to consider a strip Isin+,I < O(r-l) from 
which orbits do no6 enter into the singular region. 

The solution of (32) subject to (33), (34) and (38) for the unknown functions M 
and g cannot be obtained by analytical means. Hence, two numerical methods 

have been utilized. Since these represent standard techniques, whose details are 

unessential to our discussion, we will only sketch their application to the present 

problem. 

First, a straightforward finite-difference scheme was used, which would have 

been conceptually uninteresting except for the problem of transforming the 

matching condition for large p into a boundary condition suitable for numerical 

computation. The difficulty, of course, lies in the fact that the $43 dependence 

inherenb in g(q53) is apriori unknown and must somehow be obtained as part of 

the solution, apparently producing a hopelessly circular calculation. One ap- 

parent ‘solution ’ would be simply to put the computational outer boundary pa 

at sufficiently large values so that g(qj3)/p: - 0 in the numerical sense, thence 

calculating the field M ( p ,  q53) with zeros as the outer boundary condition. This 

procedure is unsatisfactory for several reasons. First, it effectively ignores the 

interaction between the inner and outer solutions and hence violates the very 

spirit of the singular perturbation procedure. Second, it is numerically im- 

practical since the instabilities inherent in the rapidly increasing advection 

velocities at  large p severely limit the maximum pa allowable for reasonable 

computational properties. In  addition, the function g(&)  which is critical to the 

bulk stress calculation is left undetermined. These difficulties were minimized by 

relating the matching condition, and hence g($43), to an overall integral property 

of the solution M .  This relationship is simply derived by integrating equation 

(32) once with respect top from p = 0 t o p  = pa, using the asymptotic representa- 

tion M = g(q5)/p$ to evaluate the integrated expressions at the outer boundary. 

This allows g($43) to be calculated from an assumed solution for M .  An obvious 

iterative process is thus possible. One iteration consists of the calculation of a 
convergent solution for M using an assumed functional form for g($43) to supply 
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boundary conditions at pm, followed by a re-calculation of g(q53) from this new 

solution for M .  In  principle this procedure could be used to generate solutions 

of high accuracy provided the whole scheme converges. The solutions which we 

actually calculated were of only limited accuracy for two reasons. First, and most 

important, the necessary computation time was found to be excessive so that our 

calculations were terminated after only two complete iterations. Second, the 

co-ordinate singularity at p = 0 was rather poorlyresolved by our finite-difference 

scheme. In  view of the rather modest convergence after our two iterations we 

felt further refinements in the treatment at the origin to be unwarranted. The 

initial input for these calculations consisted of g(43) = 0 with the outer boundary 

located at pm = 11. 

Because of the necessity of terminating the calculations after only two complete 

iterations and the difficulties in dealing with the co-ordinate singularity, we 

considered it necessary to check the results using a Galerkin scheme. This 

alternative approach also suffered from certain deficiencies. First there was no 

obvious set of complete orthogonal polynomials for the radial direction which 

fitted into the matching condition. Second, it was found that the usual method 

of Galerkin, being equivalent to  reducing the mean-square error in satisfying the 

equation, did not place sufficient emphasis on the solution for large p to prevent 

the Laplacian term from dominating, which then caused a constant to be selected 

as the solution. This difficulty was overcome by minimizing $he mean-square 

fructional error calculated by dividing the local error by the local value of M .  
This mean-square fractional error was reduced from a value of 45 using a one term 

approximation for M to 5 when the number of included functions was increased 

to 7. The results of these calculations for M are plotted in figure 4. Moderate 

agreement was found between this and the numerical solution and this could 

presumably be improved by calculating both of the solutions to higher 

accuracy. 

As in the regular perturbation case, the solution here predicts a population 

peak very near the aligned position with a slight skewness in favour of the pre- 

aligned orientations relative to the post-alignment positions. It should be 

remembered that in spite of the qualitative resemblance of the results in figure 4 

with those shown in figures 2 and 3, the peak in the orientation density function 

is really much stronger for the present intermediate regime since the scale of the 

entire inner region shown in figure 4 is only O(D/y)*. 
Combining the results of this and the preceding section with the earlier 

calculations of Burgers’ (1938) and of Peterlin (1938), it  is possible to calculate 

the bulk stress for a number of limiting cases. These calculations are reported in 

the following section. 

5. Calculations of the bulk stress 

(a) Strong Brownian motions, D/y  % 1 

We have already indicated, in the introduction, that in spite of the heavy study 
of rotary Brownian motion effect on rheological properties of dilute suspensions 

of rigid spheroids only Giesekus (1962) has actually considered the full bulk 
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stress tensor. His calculations were carried out for the limiting case of very strong 

rotary Brownian motion, and are summarized here before we proceed to similar 

calculations for the weak Brownian motion problem. 

Giesekus (1962) employed an expansion for the distribution function N in 

terms of the small parameter y / B  to caIculate the angle averages in (9) and (lo), 
yielding expressions for the t~wo parts of the article stress us and gD which 

can be written as 

I 
2 

+ 0 ( ~ 3 / ~ 3 ) ] ,  

y r2-16(2A+7B) 

) (39) 
1 r2-1 

Several features of interest are inherent in these expressions and should be 

noted here. These are most conveniently presented by introducing three shape 

factorsff(r), ff(r) andff(r), which allow the full particle stress (w' = as+ oD) to 

be re-expressed : 

As required, the normal stress differences are even functions of y .  We note 

that this forces them to be O(y/D) and so an order of magnitude smaller than the 

additional shear stress. We have followed Giesekus and plotted the shape func- 

tions in figures 5 and 6 as a function of r. In  addition, we show the limiting forms 

for rod-like, disk-like and nearly spherical spheroids. The analytic expressions 
for the shape functions in these limiting cases are given in table 2. Both of the 

normal stress differences are non-zero provided r + 1, hence violating the Weissen- 

berg hypothesis. However, the streamwise component is considerably the larger 

of the two. We finally note that, since the expansion of the distribution function 

N for small y /D essentially represents an expansion in small departures from 

equilibrium, we can recast the formulae (40) into the second-order fluid form 

(7 = - p ' I + 7 , 4 - 7 , A , + a , 4 ,  

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

E .  J .  Hinch and L. G .  Leal 

i 

-9 -1 -5  - 3  -1 1 3 5 I 9 

X 

FIGURE 4. Contours of the distribution function M in the boundary-layer 
co-ordinates. X = p cos Y = p s i n  #s. 

r+O 
32 1 

15n r 
-- 4 1  8 1  

217~ r 105n r 
-- 

TABLE 2. The stress-shape factors for strong Brownian motions 

in which Ai are the well-known Rivlin-Ericksen tensors. The coefficients for this 

rotary Brownian motion second-order fluid are 

70 = I" + @ft"(rfl ,  

7 2  = P@[f?(4 -fis(r)l/2a 

a1 = I.@>[f?(4l/Q 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

Rheological properties of a suspension 703 

300 

I00 

10 

3 

0.01 0.03 0.1 0.3 1 3 10 30 

T 

FIGURE 5. The shear-stress functionf:(r) as a function of particle aspect ratio. 

r 

FIGURE 6. The normal-stress functionsff(r) andfg(r) as a function of 
the particle aspect ratio. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

704 E. J .  Hinch and L. C. Leal 

where D-l can be interpreted as the relaxation time for the fluid. A similar identi- 

fication with the second-order fluid models of continuum mechanics was inherent 

in the work of Giesekus. 

In  the subsequenk portions of this section, we shall extend the class of suspen- 

sion parameters where the full rheology is described to include both the cases 

of weak rotary Brownian motion, and nearly spherical particles for rotary Brown- 

ian motion of arbitrary strength. The former are of particular interest since the 

large departures from orientational equilibrium provide a strong contrast with 

the near-equilibrium, second-order fluid theory discussed above. Taken together, 

the cases of strong and weak rotary Brownian motion allow a qualitative descrip- 

tion of the rheological behaviour of the suspension over the complete range of 

shear rates, even with r considerably different from 1. The near-sphere case does 

not seem to have appeared explicitly in print before, although the orientation 

distribution function has been known for some time. It is included here mainly 

because it provides a convenient check on our limiting results, as well as an in- 

structive bridge of the intermediate region of rotary Brownian motion where 

neither Giesekus’s (1962) work nor the weak Brownian motion theories are valid. 

(b )  Near spheres, r - 1 

For spheroids whose shape differs little from spherical it is possible to obtain 

an approximate solution of the orientation distribution function which is valid 

for all shear rates leading, as indicated previously, to  explicit nonlinear con- 

stitutive equations which hold from the strong Brownian motion limit considered 

above to the weak Brownian motion limit to  be presented in the next portion of 

this section. The expression for the distribution function utilized here is originally 

due to Peterlin (1938), and is based on the qualitative observation that the un- 
disturbed shear flow will only cause small departures from the uniform orienta- 

tion state so long as the effective measure of the strain rate E(r2 - l ) / ( r2  + l) is 

small compared with either the vorticity or the inverse Brownian relaxation 

time. 
To recover Peterlin’s solution one formally expands in the small parameter 

The zeroth-order problem is then 

At the lowest order of approximation, the spheroids are spheres. Any axis of a 

sphere can be a principal axis, so that the orientation of ‘the’ principal axis must 
be purely random. Thus with normalization we have 

No = 1/4n. 
At subsequent orders 

i a  a 
(sin2 8, cos 8, sin 2$1 N,) + - (cos 2$1 N,) 

Wl 
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To solve this equation, it is most convenient to  express the known right-hand 

side in terms of the eigenfunctions of the left-hand side operator. These eigen- 

functions are spherical surface harmonics and the eigenvalues are complex. To 

the order of (r2- l ) / ( r2+  l), the orientation distribution function is simply 

= (42) - + ~1 3 sin2 O1 sin {2& - tan-1 (y/6D)} 

4n [ (:'+I) 2[1+(6D/y)2]* 

The angle averages can be calculated to the relevant approximation to yield 

the two parts of the stress tensor. Writing r = 1 + e, these are 

Hence 

4 2 - 4 3  = @PY[ -&ez1+(6D/y)2 sD/y + 0(~3)]  . J 
The shear stress is most conveniently discussed in terms of the effective viscosity 

p*, the shear stress divided by the shear rate, 

P* = P [  1 + @( $ + e Z ( 2  +; ( y;g;;)2))] + . . .] . (45) 

We note several interesting features of this expression. First, the effect of particle 

non-sphericity is very weak, producing only a quadratic, O(e2),  departure from 

the value for perfect spheres. Interestingly, although the numerical variation is 
small, of order e2@, the dependence of ,u* on y shows a shear-thinning character, 

with a zero-shear limiting viscosity ,u { 1 + @(+ +me2)} and high shear limiting 

value of p{ l+  @(: + &eZ)}. 

The shear dependence of the normal stress differences is shown in figure 7. 

As the shear rate increases, the normal stress differences initially rise quadratic- 
ally from the limiting value of zero for very small shear rates, however, as the 

shear rate increases further, they both tend to limiting values which are in- 

dependent of y. So far as we are aware, this interesting shear-dependent behaviour 

of the normal stress differences has not been previously noted. A second feature 
of the normal stress differences is the fact that their ratio (uI1 - r33)/(433 - uz2) 
retains a constant value of six, independent of y. Thus while the Weissenberg 

4s F L M  52 
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FIGURE 7 .  The shear dependence of the normal stress differences for a 

suspension of near-spheres. 

hypothesis is not valid, the streamwise normal stress difference nevertheless is 

found to be considerably larger than the normal stress difference in the velocity 

gradient direction. 

( c )  Weak Brownian motion, (r3 + r3) D / y  < 1 

In  $3, we obtained an expression, valid to second order, for the steady-state 

orientation distribution function. For general values of the aspect ratio, the angle 

averages required in the bulk stress calculation must be evaluated numerically. 

We have tabulated the results of these computations in table 3. For comparison, 
we also give values calculated from asymptotic formulae corresponding to the 

limiting forms of the distribution functions (25) and (27). Examining these results 

in conjunction with the expressions (9) and (10) for vs and vD, respectively, we 

immediately note that No contributes to the shear stress portion of and to 

the normal stresses of vD, while Nl contributes only to the normal stress portions 

of rX. It is instructive, once again, to express the results in terms of new shape 

4 1  - 4 3  = @Py{(~/r)fiW(r) + 0 P 3 / Y 3 ) h  

4 z  - 4 3  = @ P 7 w / r ) f r f r f  + W”lr”1. 

(46) 

These shape functions are plotted in figures 8 and 9. Additionally, corresponding 

approximate forms for rod-like (r $ 1)) near-spherical and disk-like (r < 1) 

spheroids, displayed in table 4, have also been included in these figures. Finally, 

for comparison, we have also shown the numerical results obtained by Scheraga 

(1955) for y /D = 60. Of course, when y / D  = 60, the condition y / D  $ ( r 3 + r 3 )  
holds at  best for 4 < r < 4 so that it is impossible to expect agreement between 

Scheraga (1955) and our own results for the weak Brownian motion limit when r 
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r 

FIGURE 8. The shear-stress fr is shown as a function of particle aspect ratio r by the continu- 
ous curve. The dashed curves are asymptotic forms. Schieraga's numerical results at 
y/D = 60 are shown by the dotted curve. 

r-tco 

r =  I + E  

S - t O  

r + O  

1 r4 

4lnr 
-- 0.315: 

Inr "(L) 

TABLE 4. The stress-shape factors for weak Brownian motions 

is much different from unity. Finally, we note that, for extreme r,  the strain par6 

of the stress tensor dominates the diffusion part because the very slow rotations 
associated with the aligned orientation amplify the gradients of No and hence 

cause iVl to be two orders of magnitude in r larger. 

Before discussing these results in more detail, it is useful to consider the nature 

of the bulk stress in the intermediate range. 

(d) The intermediate regime, Of? < 1, (r/D)% < r + r-l 

We have considered, in $4, the solution for the steady-state orientation distribu- 

tion function in the intermediate regime where D/y  < 1 but the particle aspect 

ratio is extreme. Three integrals of the solution are required for the angle averages 
to be used in the bulk stress tensor. The numerical values calculated from our 
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FIGURE 9. The normal stress functionsfy(r) andfr(r) as a functionofparticleaspect ratio. 

approximate solutions for rods are 

The angle averages obtained from the matched asymptotic expansion (31) and 

(35) are hence (sin2 8,) N 1, (sin2 0, cos 24,) N - 1, 

(COS28,) N ( D / y ) * d F  = 2(D/?)+, 

{sin4 8, sin2 2#1) N (o/y)*  = 2(D/y)*, 

- +(sin4 8, sin 44,) N (sin4 8, sin 24,) N (sin2 8, sin 24,) 

N (D/y)*4If = 0.4 (D/y)) .  
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The results for disks are obtained by replacing $1 by + &T. In  the calculation 

of the bulk particle stress, the direct Brownian diffusion contribution is negligible 

because the small rotation rates amplify the gradients by order (y/D)+. The limit- 

ing forms for the bulk particle stress are 

Combining these various limiting expressions for the bulk stress, it is possible to 

piece together a qualitative picture of the rheological behaviour of the suspension 

for arbitrary shear rates y and aspect ratio r. This is discussed in the following 

section. 

6. Conclusions 

In  the previous section, we have derived expressions for the bulk stress for 

various limiting cases of particle shape and shear strength. When the particles 

are nearly spherical, iti was shown that the suspension exhibits shear-thinning 

with constant limiting values of the effective viscosity €or very large and very 

small y/D,  and in addition, that the normal stresses would increase quadratically 

with y for small y/D,  eventually approaching a value dependent on D only for 

y / D  sufficiently large. Although this behaviour is interesting, the departures 

from equilibrium are small, so the results differ very little, numerically, from those 

for spherical particles. 

While a continuous description of stress variation with strain rate is not; 

possible for the general case where r is not near to unity, we can achieve quali- 

tative feeling for the variation of the stress components by piecing together the 

limiting cases of very strong, very weak and intermediate strength rotary Brown- 

ian motion. First of all, Giesekus (1962) showed that for sufficiently small values 

of y / D  the shear stress increases linearly with y, corresponding to a constant low- 

shear effective viscosity, while the normal stresses are an order of magnitude 

smaller than the extra shear and increase as y2. The streamwise normal stress 

difference is consistently larger than the transverse difference. 

On the other hand, when y is so large that the weak Brownian motion approxi- 

mation is valid, r3 + r-3 < y/D,  the shear stress is again a linear function y. The 

corresponding limiting value of the effective viscosity is, by inspection of tables 2 

and 4, smaller for all r than that for the strong Brownian motion limit of Giesekus 

(1962). Moreover, for extreme aspect ratios this shear thinning represents a large 

change (by a factor r )  in the additional effective viscosity. This reflects the high 

degree of particle alignment with the flow a t  large shear rates together with the 

fact that the disruption of the basic shear flow is minimized for such an orienta- 

tion. Note that a similar alignment process for weak Brownian couples in axi- 

symmetric flow causes strain thickening (Takserman-Krozer & Ziabicki 1963). 
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Even more interesting is the fact, obvious from (46)) that the normal stress for 

sufficiently large y / D  are found to be constant independent of the shear rate and 

considerably larger than those calculated in the strong Brownian motion case. 

The normal stresses are again found to be an order of magnitude in ( r3 + r3) D / y  
smaller than the particle contributions to the shear stress, essentially a result of 

the fact that the normal stresses must be even functions of the shear rate. Even 

without the results in the intermediate regime, it is now clear that the suspension 

for general r behaves very much like that for r N 1, with the exception that the 

magnitude of shear thinning and of the normal stress increase are both greatly 

enhanced. 

Last, a portion of the transition region between the high and low shear limiting 

results is illustrated by our intermediate regime. Here, the intrinsic effecbive 

viscosity decreases with increasing shear strength as (D/y)* while the normal 

stress components increase like (y/D)*. Particularly surprising in view of Che two 

limiting cases is the comparable magnitude of the particle-induced shear and 

normal stresses. In  addition, we note that the second (transverse) normal stress 

difference vanishes for rods to the order considered in this regime. To compare our 

results in this intermediate regime with the numerical calculations of Scheraga 

(1955), we have plotted in figure 8 the particle-induced shear stress at y / D  = 60 

calculated from equation (48) for the limiting cases r + 00 and r + 0. It is not 

obvious whether the apparent discrepancies should be ascribed to inaccuracies 

in the calculated angle averages (47), or whether the numerical convergence of 

Peterlin’s power series (commented on by Scheraga) is suspect, at y / D  = 60. 

Finally, it  is of interest t o  reinterpret the shear-thinning phenomenon as a 

temperature dependence of the effective viscosity at  a constant shear. If the 

temperature variations of the ambient fluid are sufficiently small, then the sus- 

pension could actually show an increase of the effective viscosity with tempera- 

ture because D increases. Alternatively, addition of rigid particles with a suitable 

distribution of aspect ratios could, in principle, be used as a way of producing 

lubricating oils with viscosities which are independent of ambient temperature. 
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