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Abstract 

This paper aims at investigating how the pricing strategy of European 
airline carriers is affected by code-share agreements on international 
routes. Our data cover several routes linking the main UK airports to 
largest European destinations and includes posted fares collected at 
different days before departure. By analyzing the temporal profile of 
airline fares, we identify three main results. First, code-share increases 
fares especially for early bookers. Second, the higher prices in 
code-shared flights are offered by marketing carriers. Finally, when 
flights are in unilateral code-share, the pricing profile is flatter than 
under parallel code-share. 
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1. Introduction 

Code-share (henceforth CS) agreements are contracts between two carriers in which one airline, 
acting as Marketing Carrier (MC), is allowed to sell seats on a flight operated by the other airline, 
acting as Operating Carrier (OC).1 In recent years, such agreements have become increasingly 
popular. They are a result of the liberalization process which characterizes the airline sector 
worldwide (Brueckner and Whalen, 2000; Brueckner, 2003). 

The large expansion of CS agreements is indicative of their mutual advantage for the 
involved airlines. In addition to providing benefits in the form of cost saving, risk reduction and 
network expansion, CS is relevant because it can pave the way to tighter business cooperations 
such as an alliance or even a merger (Brueckner and Pels, 2005; Gaggero and Bartolini, 2012). 
This is because, to harmonize the activities of the airlines involved, CS comprises the definition 
of a set of commercial and operational agreements concerning, amongst others, pricing, seat 
inventory and frequent flyer programs (Chen and Ross 2000; Iatrou and Alamdari, 2005). 

Because these agreements may reduce the functioning of the market, they are often under 
the scrutiny of antitrust authorities (Gayle, 2007; Gayle and Brown, 2010). In Europe, Article 
101 of the European Treaty prohibits agreements between two or more independent market 
operators which restrict competition. This Article is close to the first Section of the Sherman Act 
(1890) in the US legislation.2 Both sets of norms, albeit with minor differences, accept that CS 
agreements should be allowed, although sometimes by imposing some remedies (e.g. slot con-
ditions or frequency freeze) only if they are in favor of consumers, and, more specifically, when 
the antitrust commission expects that fares do not increase and/or there is not a reduction in the 
competition.3 For this reason, CS agreements are evaluated case by case and decisions are taken 
in terms of the impact on prices or on consumer surplus. 

The theoretical literature has also highlighted the existence of different factors playing in 
favor and against CS agreements. Using a simulation analysis Brueckner and Whalen (2000) 
show that allied partners charge lower fares, thereby increasing consumers' surplus and welfare. 
Brueckner (2001) uses a hub-and-spoke model to show that both consumer and total surplus rise 
after the formation of an alliance. He argues that the benefits of alliances arise because of lower 
fares set by the partner airlines in the interline markets. Park (1997) finds that, depending on the 
size of the market and on the economies of traffic density, complementary alliances increase 
economic welfare, while parallel alliances reduce it. Bilotkach (2005) shows that alliances 

                                                            
1For instance, the Heathrow-Madrid flight BA7056 operated by British Airways is also sold under the code IB3164 
by Iberia. In this example British Airways is the operating carrier, whilst Iberia is the marketing carrier. 
2In some cases companies are allowed to sign cooperative agreements, which allow firms to collaborate without the 
risk of the intervention of the antitrust authority. In Europe, airline industry exemptions are called individual or 
block exemptions, in the US antitrust immunities. In both legislations, the use of exemptions has been largely de-
creasing over time. 
3See for instance Lufthansa/SAS in 1995, British Midland/Lufthansa/SAS in 2001, Lufthansa/SAS/United in 2002, 
KLM/Northwest in 2002, Lufthansa/Austrian in 2002, British Airways/SN Brussels in 2003, British Air-
ways/Iberia/GB Airways in 2003, Air France/Alitalia in 2004, SAS/Austrian 2005. 
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without antitrust immunity are welfare enhancing. While he argues that the impact of alliances 
with antitrust immunity on welfare is ambiguous, he concludes that alliances increase total 
welfare, the larger the spoke-to-spoke traffic relative to traffic between hubs of alliance partners. 
Czerny (2009) demonstrates that interline passengers are better-off under code-share agreement, 
whilst non-interline passengers are worse-off. 

Various empirical papers investigate the effects of CS practices, mostly using US data. 
Park and Zhang (2000) find that consumers were generally made better off by the alliances in the 
North American aviation markets. Armantier and Richard (2006) examine the influence of the 
alliance between Continental Airlines and Northwest Airlines on prices; they find evidence of 
lower prices across markets in which the two airlines establish a code-share agreement. A 
companion study to Armantier and Richard (2006) is conducted by Gayle (2008), who focuses 
on the Delta/Continental/Northwest code-share alliance. He also does not find empirical evi-
dence in favor of collusive pricing on the overlapping routes served by these carriers. The con-
clusion that fares on code-share itineraries are cheaper than in otherwise similar non-code-share 
itineraries is also reached by Ito and Lee (2007). To sum up, most of the existing literature in-
vestigates the role of CS agreements on US routes providing a generally positive influence on 
consumer welfare.  

This paper contributes to the literature on the role of CS in the airline industry in a 
number of ways; first, it focusses on European airline markets and second, it explores whether 
different types of CS agreements are likely to affect not only the level of fares, but also their 
temporal profile. Our data cover several routes linking the main UK airports to some of the 
largest European destinations and include posted fares collected at different days before de-
parture. As discussed in Gaggero and Piga (2011) and Dobson and Piga (2013), looking at how 
fares evolve over time is relevant for consumer welfare because different passengers categories 
(e.g. leisure or business) may be characterized by a different purchasing behavior. In general 
leisure travelers book in advance and business traveler book late. Thus, also in the occurrence of 
no impact on the overall welfare, there can still be a significant re-distributive effects. This issue 
has not been investigated in previous works, because their data structure does not allow to take it 
into account. Moreover, we distinguish the impact of CS on the fare temporal profile studying 
whether the airline under investigation code-shares its flight or not, is the operating carrier or the 
marketing carrier, runs CS under parallel or unilateral operations. 

The econometric analysis is conducted by taking into account the antecedent decision by 
airlines to operate a flight in code-share. First, we estimate the likelihood that two carriers enter 
a code-share agreement, using a probit procedure. In the second step, we use this information to 
“correct” the estimates in the carriers' pricing equation. By analyzing the temporal profile of 
airline fares, we identify three main results. First, code-share increases fares especially for early 
bookers. Second, much of the shift in code-shared flights is due to higher prices offered by 
marketing carriers. Finally, when flights are in unilateral code-share, the pricing profile is flatter 
than under parallel code-share. 

The remainder of paper is structured as follows. The next section surveys the different types 
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of code-share agreements, as well as the reasons generally considered to be effective in inducing 
an airline to do code-share. Section 3 presents the data. Section 4 discusses the empirical model 
and estimation. Section 5 concludes. 

 

2. Code-share practices 

CS agreements may differ depending on a number of various dimensions (Heimer and Shy, 
2006; Whalen, 2007, Ito and Lee, 2007). 

For instance, based on the geography of the route CS may be conducted under “parallel 
operations” when both airlines operate on the route with their own aircraft and are alternatively 
the operating or marketing carriers (e.g., Alitalia and Air France on the route Paris-Rome), 
“unilateral operation” when only one airline is the operating carrier on the route (e.g. Air France 
runs the route Paris-Genoa and Alitalia is the marketing carrier) and “behind and beyond route”, 
which typically involves routes with more than one leg, operated by different carriers (e.g. 
Paris-Palermo with one stop-over in Rome, the first leg Paris-Rome is operated by Air France 
and code-shared by Alitalia, while Rome-Palermo is operated by Alitalia and code-shared by Air 
France). Because under behind and beyond route airlines complement each other, this category 
is also identified with the term “complementary” CS. 

Code-share agreements may also vary according to the seat inventory clause. If the air-
lines decide to operate under “free-flow” or “free-sale” agreement, the information on the cur-
rent seat availability is shared between the airlines and both the OC and the MC are able to sell as 
many seats as they wish upon availability (Vinod, 2005; Abdelghany et al, 2009). Alternatively, 
under the “block-space” agreement there is no real time communication between the OC and the 
MC because the allocation of capacity between the parties is determined in advance, that is, the 
MC is assigned a pre-determined number of seats to sell (Ito and Lee, 2005). Finally, there can 
be minor differences in the way the airlines split the revenues and costs (European Commission, 
2007; Hu et al, 2013). For instance, under behind and beyond route (i.e., when the journey in-
volves more than one carrier) the default approach is to split the fare according to the weighted 
mileage. Alternatively, carriers can agree to specify a fixed revenue amount for each leg of the 
journey. More generally, airlines can make special prorate agreements which can be tailored to 
the case (Brueckner, 2003a, 2003b). A common form of special prorate agreement is the 
so-called net special prorate agreement, which sets the amount to be paid to the airline carrying 
the passenger based solely on the booking class of the passenger. 

There are various reasons why airlines decide to make code-share agreements. A primary 
motivation is that the marketing carrier can expand its flight offer both in terms of destinations 
and schedule without incurring the costs and risks of additional investment in capacity; at the 
same time, the operating carrier is likely to enjoy higher load factors and therefore a higher 
per-seat yield (Dresner and Windle, 1996; Brueckner, 2001). 

Furthermore, CS often involves carriers with usually a strong market position in their 
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own distinct countries of origin; thus, CS may be beneficial to both carriers since they do not 
need to create an own sales network in the other carrier's country. Such partner's network is 
expected to generate additional traffic, which will allow the exploitation of economies of scope 
and density (Brueckner and Spiller, 1994; Caves et al., 1984; Flores-Fillol and Mon-
er-Colonques, 2007). 

CS agreements may create a close link between member companies, which is conducive 
to tighter forms of cooperation, such as a global alliance or a merger (Brueckner and Pels, 2005; 
Gaggero and Bartolini, 2012). Indeed, airlines that have formed a global alliance or merged have 
first started they collaboration by code-sharing their flights (e.g., Air France with Alitalia or 
British Airways with Iberia). 

Previous arguments are positively evaluated by antitrust authorities; however, such other 
reasons as the creation of a joint dominant position, which are against the interest of consumers 
because they are meant to weaken competition, may lie behind the airlines' decision towards 
doing code-share (Bilotkach and Hüschelrath, 2011). Consider the following example: airline A, 
B and C serve an arbitrary route; A flies in the morning, B in the afternoon and C in the evening. 
A and C decide to sign a code-share agreement; this gives more time options to passengers 
choosing A-C rather than B and therefore the product A-C is more likely to be picked, all else 
being equal. Moreover, if A and C decide to share the same frequent-flyer program, the com-
bination of the two carriers becomes even more attractive, especially for business passengers, 
and, hence, A-C are more likely to increase their joint market share. In the long run B may decide 
to exit the route if this market becomes unprofitable. Furthermore, CS may constitute a barrier to 
entry, as a potential entrant D may be threatened by the collusive behavior of A and C (Chen and 
Ross, 2000; Goetz and Shapiro, 2012). A and C will enjoy a joint monopoly position, which may 
induce higher fares and/or lower flight frequency (Richard, 2003) and which, therefore, may 
require the intervention of antitrust authorities. 

The question whether CS reduces or increases fares is investigated empirically mostly 
using US data. Armantier and Richard (2006) check whether fares increase or decrease, fol-
lowing the code-share agreement between Continental Airlines and Northwest Airlines in 1999. 
They use quarterly data on prices obtained from the US Department of Transportation (DOT) for 
the period 1998-2001, so that their sample comprises both the ex-ante and ex-post agreement 
period. They find evidence of lower prices across markets in which Continental Airlines and 
Northwest Airlines code-share, concluding that code-share agreements do not necessarily lead 
airlines to collude. 

Gayle (2008), who also focuses on the US market using DOT data, studies the effect on 
fares due to the Delta/Continental/Northwest code-share alliance. Similarly to the finding by 
Armantier and Richard (2006), he does not observe any price increase in the overlapping routes 
served by these airlines. Park and Zhang (2000) analyze four alliances in North Atlantic aviation 
markets (British Airways / USAir, Delta / Sabena / Swissair, KLM / Northwest, and Lufthansa / 
United Airlines) and also provide evidence of fare reductions on the routes served by the allying 
carriers. 
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Ito and Lee (2007) consider a sample of US domestic flights which are operated by a 
single carrier but that also includes information on tickets sold by marketing carriers. In their 
work they identify the importance of unilateral code-share, which they refer to as “virtual 
code-share”. They find that fares on routes characterized by virtual code-share are: (i) above the 
fares under parallel code-share; (ii) below the fares of an operating carrier without code-share. 
Their findings suggest that virtual CS tickets are perceived as imperfect substitutes relative to the 
non-CS tickets. This is because passengers tend to consider the latter as the carrier's brand-name 
premium product, whilst the former as a less desirable generic product. Therefore they conclude 
that virtual code-share can be a form of product differentiation to attract high price sensitive 
consumers. 

A complementary research question addresses whether code-share is associated with 
traffic increase. The empirical literature on this issue practically unanimously finds evidence of 
higher passenger volumes subsequent to a CS agreement (Armantier and Richard, 2006; Bam-
berger et al., 2004; Gayle, 2008; Park and Zhang, 2000). 

 

3. Data 

The analysis relies on two main datasets; the first one contains primary data on posted fares, 
while the second one provides market structure measures derived from secondary data obtained 
from the UK Civil Aviation Authority (CAA). 
 

Table 1: Routes considered in the empirical analysis. 
 

BHX-DUB LGW-GLA LHR-FRA 
BRS-DUB LGW-GVA LHR-GLA 
EDI-DUB LGW-MAD LHR-GOT 
LCY-AMS LGW-MAN LHR-GVA 
LCY-DUB LGW-MUC LHR-HAM 
LCY-GVA LGW-TLS LHR-LIN 
LCY-ZRH LHR-AGP LHR-MAD 
LGW-AGP LHR-AMS LHR-MAN 
LGW-ALC LHR-ARN LHR-MUC
LGW-AMS LHR-ATH LHR-MXP 
LGW-BCN LHR-BCN LHR-ORK 
LGW-BIO LHR-CDG LHR-OSL 
LGW-BRU LHR-DUB LHR-PRG 
LGW-CDG LHR-DUS LHR-ZRH 
LGW-DUS LHR-EDI MAN-DUB 
LGW-FAO LHR-FAO  
LGW-FCO LHR-FCO  
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Fares were retrieved using a web spider specifically designed to capture the fares posted 
by an on-line travel agent, Opodo.4 We collect fares on 49 routes (see Table: 1) with a total of 
1023 operated flights. There are 475 flights in codeshare and 548 flights without agreements. 

For each day between 8 April 2003 and 11 February 2004 and for each flight code pair, 
the spider collected all the round-trip posted fares that a hypothetical consumer would pay if she 
booked her ticket 7, 10, 14, 17, 21, 28, 35, 42, 49 and 56 days before the departure date. We will 
refer to these dates as booking days. In order to avoid such restrictions as the Saturday night 
stay-over, the return leg was set one week after the outgoing flight. The spider also saved the 
time of departure and arrival of each flight code. We define therefore two observations as be-
longing to the same flight in code-share by observing whether they share the same departure and 
arrival times, as well as the same origin and destination airports, but have different flight codes 
specific to each different airline. 

The UK CAA provides census monthly data for the full set of flights operated between 
the UK and Continental Europe during the period April 2003-February 2004. This dataset con-
tains such information as flight frequency, available seats and passenger flows; we use this in-
formation to construct a measure of market concentration at route level, as well as the number of 
max/min routes operated by the carrier at the endpoints of each route. Moreover, information 
contained in the CAA database allows us to distinguish between the operating and marketing 
carriers on code-shared flights. Indeed, the CAA reports only the statistics for the flights man-
aged by the operating carrier; we can therefore classify in the Opodo dataset whether an ob-
servation for a code-shared flight refers to either the operating carrier or the marketing one. 
Distances are collected from the World Airport Codes' web site;5 the daily price of jet fuel is 
obtained from Thompson Reuters data base;6 Population density by NUTS-3 regions is down-
loaded from Eurostat. 

Table 2 reports the main descriptive statistics of the variables used in the whole analysis. 
A full list carriers and number of routes in this sample they operate, differentiating whether in 
code-share or not, is provided in the Appendix (Table 7). 
  

                                                            
4See www.opodo.co.uk, which is owned and managed by Aer Lingus, Air France, Alitalia, Austrian Airlines, 
British Airways, Finnair, Iberia, KLM, Lufthansa, and the global distribution system Amadeus. Thus, fares listed on 
Opodo are likely to represent the official prices of each airline; Opodo may however not report promotional offers 
that an airline may post on its own website. 
5See: http://www.world-airport-codes.com. 
6See http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm. 
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Table 2: Descriptive statistics. 
 
Variable Mean Std. Dev. Min Max 
Price (in £) 68.58 33.10 22.35 431.15 
BookDay 0.55 0.30 0.00 1.00 
Marketing carrier 0.13 0.34 0.00 1.00 
Parallel 0.66 0.48 0.00 1.00 
Morning (6am-10am) 0.19 0.39 0.00 1.00 
Late morning (10am-2pm) 0.25 0.43 0.00 1.00 
Afternoon (2pm-6pm) 0.27 0.45 0.00 1.00 
Evening (6pm-0am) 0.28 0.45 0.00 1.00 
Distance (in 1000 Km) 0.80 0.42 0.24 2.42 
Fuel price (100$ per gallon) 0.78 0.05 0.67 0.90 
Hub 0.66 0.47 0.00 1.00 
Population density (geom. mean endpoints) 0.28 0.19 0.05 0.99 
HHI route 0.57 0.19 0.31 1.00 
Business pax share 0.33 0.17 0.00 1.00 
Code-share 0.26 0.44 0.00 1.00 
Pax shr route/citypair 0.45 0.22 0.02 0.83 
Max # routes at endpoints 22.70 17.73 2 54 
Min # routes at endpoints 4.15 4.42 1 18 
Number of allied airlines 1.72 0.72 0.00 4.00 
 

 
 

4. Descriptive analysis 

To gain a better understanding of the structure of our data, and to complement the econometric 
analysis in the next section, we now show some descriptive statistics on inter-temporal pricing 
under CS. 

For each booking day, Table 3 reports the percentage of times that the fare posted by the 

operating carrier ( ocP ) is strictly larger or smaller than £5 relative to that of the marketing carrier 

( mcP ); such an amount is deemed to define an economically significant difference. The same 

table also reports the proportion of cases when the difference between the two fares is within the 

/ −  £5 range. We observe that the operating carrier is generally cheaper than the marketing 
carrier. The table also shows that, as the departure date approaches, the proportion of cases 
where the fare posted by the MC is strictly and significantly larger than the fare posted by the OC 
tends to increase. 
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Table 3: Price operating carrier - Price marketing carrier 

 
Booking day 5£PP mcoc −<−  55 £PP£ mcoc ≤−≤− 5£PP mcoc >−  

7 55.00% 31.37% 13.63% 
10 55.10% 33.35% 11.55% 
14 55.17% 31.92% 12.91% 
17 54.85% 33.26% 11.89% 
21 54.56% 33.92% 11.52% 
28 52.87% 37.55% 9.58% 
35 49.83% 41.90% 8.27% 
42 47.20% 44.86% 7.94% 
49 46.22% 46.13% 7.65% 
56 45.40% 46.80% 7.80% 
    

Average 51.24% 38.80% 9.95% 
 
 
Figure 1 reports the average fare for each booking day in the full sample and in three 
sub-samples based on the type of carriers and on the absence/presence of a CS agreement. 
 

 
Figure 1: Mean price vs. Days before departure. 
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The figure shows that the pricing curve generally increases through time, it flattens in the 

period 20-10 days before departure, and then it continues its positive trend. Apart from this 
discontinuity, the shape of the pricing curve is very close to an exponential path.7 

Interestingly, by comparing the two bottom diagrams, which respectively refer to the 
operating carrier in CS and to the marketing carrier (which by definition is in CS), we observe 
that the pattern is quite similar, but the fare range is shifted upwards in the case of the marketing 
carrier. This result provides preliminary evidence, which will receive further attention later in 
the econometric analysis, that, for a given flight, the price posted by the marketing carrier is on 
average higher than the one posted by the operating carrier, irrespective of the booking day. This 
finding seems to run contrary to the idea that CS eliminates double marginalization, as often 
stated in the literature (Brueckner and Whalen, 2000; Brueckner, 2001; Brueckner, 2003; 
Bamberger et al., 2004; Chen and Gayle, 2007; Gayle, 2013; Ito and Lee, 2007). 
 

5. Econometric analysis 

While the previous section has already brought evidence that code-share agreements appear to 
have significant effects on prices, the econometric analysis can also yield more robust insights 
on the relationship between code-share and the airlines' inter-temporal pricing behavior. We will 
do so by distinguishing how the temporal profile varies when, relative to non-CS flights, we 
consider flights i) in CS; ii) operated by an OC and/or MC; iii) running under parallel or uni-
lateral CS. 

5.1. Methodology 

In order to study the impact of code-share on the temporal profile of fares, i.e. how posted prices 
vary in accordance to the number of days before departure, we choose to model the temporal 
profile of fares using a log linear relationship, as suggested by the approximation in Figure 1. 
Moreover, we normalize the booking day period on the unitary interval, so that all the temporal 
effects are captured by a single variable, unlike other papers that use separate dummies to 
measure how fares evolve over time (Bilotkach, 2005; Gaggero and Piga, 2010; Dobson and 
Piga, 2013). This approach facilitates adding interaction terms between the time variable and 
other regressors identifying different types of CS agreements and thus simplifies considerably 
the interpretation of the ensuing results relative to the case where each booking day is repre-
sented by a separate dummy variable. 

Our econometric analysis also addresses another, more serious econometric aspect. 
Simply put, the decision to operate a flight in CS is not independent of factors that may affect the 

                                                            
7We exploit this characteristic in the econometric analysis, where we assume that the relation between prices and 
time before departure can be approximated by a straight line, once applying the logarithmic transformation to fares. 
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setting of fares. Code-share agreements do not occur at random and are usually affected by some 
observable and unobservable characteristics which make the regressors and the error term in the 
price equation correlated (Brueckner, 2003b). Therefore, we need to correct for the selection bias 
because, in this case, the use of the standard Ordinary Least Squares (OLS) estimator does not 
guarantee consistent estimates of the coefficients in the price equation.8 More specifically, an 
airline faces a sequential decision: in the first stage the carrier chooses whether to engage into a 
code-share agreement; then, in the second stage, it sets the fares. The setup we analyze corre-
sponds to the classical econometric selection model, first discussed in the seminal work by 
Heckman (1979), and subsequently in several other works (Puhani, 2000; Baffoe-Bonnie, 2004). 
To correct for the selection bias, we implement the procedure described in Greene (2003, p. 
978): 

Step 1: Use a probit model to evaluate the factors affecting an airline's decision to engage 

in a CS agreement : ( ) ( )1111
ˆ|Pr β′Φ== XXYp , where Φ  is the cumulative normal distribution. 

Step 2: Calculate the inverse Mills ratio using the estimated values of the probit model 

( ) ( )1111
ˆ/ˆ ββφλ ′′ Φ= XX , where φ  is the density normal distribution. 

Step 3: Estimate by OLS the pricing equation including the correction term :λ  

( ) 211222
ˆˆ vxxy ++= ′′ βλβ . 

 

5.2. Correcting for selectivity 

In this subsection we run a probit model to evaluate the probability for an operating carrier to 
operate a flight in CS: 
 

( ) ( )tfcrttcrtrtfcrt VZXVZX τγβατ +++Φ== ''',,,|1CSPr    (1) 

 
where subscript f  defines the flight code, c  the carrier, r  the route, and t  is the date of the 

flight, set daily. The dependent variable is a dichotomous variable equal to one if the flight is in 

code-share and zero otherwise. Φ  is the cumulative normal distribution. The vector rtX  

comprises variables which are common to all flights of a given route, namely, the share of 
passengers traveling on the route relative to the passengers traveling on the corresponding city 
pair (Pax shr route/citypair), lagged one month to reduce simultaneity issues; the number of 
allied airlines in the route (Allied airlines) and the geometric mean of the population density at 
the two endpoints of the route (Pop density).9  

The vector crtZ  aims to control for airline-specific factors: we consider the two end-

                                                            
8The importance of endogenizing the formation of code-share agreements is highlighted by Chen and Gayle (2007). 
9Population density for each end-point of the route is obtained from the Eurostat database combining information on 
the number inhabitants and geographical area sizes (in squared kilometers) at NUTS2 level. 
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points of the route and pairwise take the maximum and minimum number of routes that the 
operating carrier runs from the endpoints of the observed route (Max # routes at endpoints and 
Min # routes at endpoints, respectively). Variables specific of the flight code are gathered in 

fcrtV , which comprises a set of dummies to control for day of the week when the flight is 

scheduled to take-off. fcrtV  also includes three dummy variables (Late morning, Afternoon and 

Evening) equal to one if the flight is scheduled to depart respectively in the late morning 
(10am-2pm), afternoon (2pm-6pm) and evening (6pm-12midnight). The reference category is 

therefore set to define flights departing in the early morning (6am-10am). Finally, the term  t   
represents the set of monthly dummy variables. 

Because all the variables above are invariant within the booking day series, we only need 
to estimate the model by considering one observation per flight. Standard errors are clustered by 
route and month to allow the residuals of different flight codes (possibly of different airlines) 
within the same route and month to be correlated. This procedure aims to take into consideration 
possible shocks that are route-month specific. 

The results of the probit estimates are reported in Table 4. Overall the estimates indicate 
that the airline is more willing to engage in CS whenever it is more difficult for a flight to 
achieve high levels of capacity utilization (Chen and Chen, 2003; Iatrou and Alamdari, 2005). 
Pop density has a negative effect on the likelihood of adopting code-share. In denser routes the 
airline does not need to sign a code-share agreement because the potential demand guarantees 
traffic volumes sufficient to yield high enough occupancy rates for the flight. On the contrary in 
thinner routes, the need to maintain a certain quality of service, and hence to guarantee an ad-
equate frequency of flights, increases the risk of flights leaving with a high level of spare ca-
pacity, which is reduced by CS agreements where the OC can tap into the customers' basis of the 
partner airline. 

The positive coefficient on Pax shr route/citypair suggests that a dominant position of 
the operating carrier on the market (which is given by the city pair) increases the likelihood of 
doing CS. This may occur because in this situation the airline is probably operating under spare 
capacity and CS may represent an effective tool to fill it. 

The coefficients on Max # routes at endpoints and Min # routes at endpoints are both 
negative and statistically significant. As they capture the extent of the OC's own network, these 
variables measure the possibility of using such routes to feed the route under consideration. An 
already highly developed network (higher values of Max # routes at endpoints and of Min # 
routes at endpoints) implies a lower incentive for the OC to sign a CS agreement because it is 
more likely that the concerned route may gain traffic from connecting flights. Indeed, the higher 
magnitude in absolute term of Min # routes at endpoints relative to Max # routes at endpoints 
indicates that the need of a partner airline to complement the OC's network becomes weaker if 
both endpoints of the route are already well-served by the observed OC. This is because the OC 
is capable to fill the aircraft using its own connections at both airports. 

As expected, the number of allied airlines on the route is positive, but statistically insignif-
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icant. The positive coefficients on Late morning and Afternoon indicate that an airline prefers to 
code-share the flights scheduled to depart in the central part of the day (between 10am and 6pm) 
relative to the Early morning category (6am-10am), whilst the latter are more likely to be in CS 
than flights departing in the evening. 

 
Table 4: The determinants of code-share. 

 
 (1) (2) (3) (4) (5)
Population density -3.739*** -2.405*** -3.091*** -3.112*** -3.127***
 (0.702) (0.393) (0.403) (0.437) (0.439) 
Max # routes at endpoints  -0.016*** -0.012*** -0.012*** -0.012***
  (0.003) (0.004) (0.004) (0.004) 
Min # routes at endpoints  -0.172*** -0.200*** -0.201*** -0.204***
  (0.027) (0.030) (0.030) (0.031) 
Pax shr route/citypair (-1m)   2.402*** 2.388*** 2.427***
   (0.368) (0.382) (0.384) 
Nbr of allied airlines    0.023 0.014 
    (0.116) (0.114) 
Late morning (10am-2pm)     0.103***
     (0.032) 
Afternoon (2pm-6pm)     0.139***
     (0.028) 
Evening (6pm-0am)     -0.055* 
     (0.029) 
      
Day-of-the-week dummies No No No No Yes 
Monthly dummies No No No No Yes 
Observations 130,776 130,776 130,776 130,776 130,776 
(a) Probit estimation. Dependent variable CS equal one if the flight is in code-share and zero otherwise. 
(b) Robust standard errors to heteroscedasticity and serial correlation in parenthesis, clustered by route-month. 
(c) *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively. 
 

5.3. Pricing equation with code-share 

We consider the following econometric model, which relates the posted fares ( p ) to code-share 

practices, time of purchase before departure, route and flight code characteristics: 
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where f  is the flight code, c  the carrier, r  the route. Time t  defines the booking day, i.e. 

those days prior to the take-off date in which the fare is posted on the internet. For each f  we 

collect fares 7, 10, 14, 17, 21, 28, 35, 42, 49 and 56 days before the departure. The dependent 
variable is the logarithm of the fare posted on the internet on a given booking day. The variables 
CS, MC and Parallel are three dummies: the first is equal to one in case of code-share flight, the 
second is equal to one if the airline is the marketing carrier, the third is equal to one if CS on the 
route is conducted under parallel operations. 

BookDay considers the aforementioned series of days prior to departure when the fare is 
collected. The variable is normalized between zero and one, with one corresponding to the latest 
day of fare collection, namely day 7, and zero the earliest, namely day 56. 

The logarithm of route distance and the logarithm of the daily price of the jet fuel are 
standard controls for the operating costs. Hub is a dummy variable equal to one if the airline has 
a hub at one end-point of the route, and PopDensity is the geometric mean of the population 
density at the two endpoints of the route. HHI is the route Herfindahl-Hirschman index, obtained 
using the market share from the number of passengers flying on a route. This variable aims to 
control for degree of competitive pressure in the route. In order to mitigate the possible en-
dogeneity concerns, due to the simultaneous determination of price and quantity, we lag HHI by 
one month. The usual set of dummies (Late morning, Afternoon and Evening) to identify the 
departure time is also included.  

The Heckman correction term for sample selection described in the previous section is 

represented by λ . The carrier fixed effect is identified by the parameter cρ , and tδ  is the time 

fixed-effect, represented by the day of the week when the flight is scheduled to depart. Finally, 

fcrtσ  is the regression error, assumed random with zero mean. 

In its essence equation (2) specifies how the temporal slope ( β ) and the intercept (α ) of 

a pricing curve vary when we consider flights i) in CS; ii) operated by an OC or a MC; iii) 
running under parallel or unilateral CS operations. 

Because we include an estimated regressor, λ , the standard errors for the coefficients 
are obtained using a bootstrap method. Furthermore, standard errors are clustered by route-week 
to allow for the possibility that the residuals of different flight codes operated on the same route 
during the same week may be correlated. This way of clustering aims to take into consideration 
that all flights in a route within a week may be subject to the same shock. For instance, in a given 
week a special event (e.g. a football final, a national holiday, a festival or a concert) may cause 
an excess of demand on routes where one endpoints is the city where the event takes place.10 
  

                                                            
10 Clustering is also required because many regressors have common values across observations. 
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Table 5: The price equation with code-share (CS) - Dep var log(Price). 

 
 (1) (2) (3) (4) 
Constant 2.563*** 2.457*** 2.288*** 2.347*** 
 (0.075) (0.069) (0.065) (0.099) 
Code-share  0.108*** 0.084*** 0.087*** 
  (0.015) (0.015) (0.015) 
Marketing carrier   0.145*** 0.142*** 
   (0.013) (0.013) 
Parallel CS    -0.092 
    (0.064) 
BookDay 0.335*** 0.361*** 0.360*** 0.236*** 
 (0.007) (0.008) (0.008) (0.010) 
BookDay * Code-share  -0.070*** -0.098*** -0.105*** 
  (0.013) (0.016) (0.016) 
BookDay * Marketing carrier   0.077*** 0.082*** 
   (0.017) (0.017) 
BookDay * Parallel code-share    0.192*** 
    (0.011) 
log(Distance) 0.204*** 0.210*** 0.242*** 0.241*** 
 (0.011) (0.011) (0.010) (0.010) 
log(Fuel price) 0.110** 0.101* 0.118** 0.118** 
 (0.053) (0.053) (0.053) (0.053) 
Hub 0.021** 0.028*** 0.032*** 0.033*** 
 (0.009) (0.009) (0.008) (0.008) 
Population density -0.338*** -0.327*** -0.292*** -0.294*** 
 (0.025) (0.025) (0.025) (0.025) 
Herf. index (-1m) 0.360*** 0.350*** 0.320*** 0.320*** 
 (0.026) (0.026) (0.027) (0.027) 
Late morning (10am-2pm) -0.018*** -0.019*** -0.018*** -0.017*** 
 (0.003) (0.003) (0.003) (0.003) 
Afternoon (2pm-6pm) -0.019*** -0.021*** -0.019*** -0.020*** 
 (0.003) (0.003) (0.003) (0.003) 
Evening (6pm-0am) -0.007*** -0.009*** -0.011*** -0.011*** 
 (0.003) (0.002) (0.002) (0.002) 
Heckman's lamda -0.080*** -0.069*** -0.058*** -0.058*** 
 (0.004) (0.004) (0.004) (0.004) 

R 2   0.369 0.373 0.383 0.388 

Observations 2,956,562 2,956,562 2,956,562 2,956,562 
(a) Bootstrap standard errors in parenthesis, clustered by route-week. 
(b) *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively. 
(c) All models include airline and day-of-the week fixed effects. 
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Table 5 reports the estimates of the pricing equation (2) with different restrictions on the 
CS coefficients. In column (1) we do not differentiate for CS agreements; in column (2) we add 
the Code-Share dummy and its interaction with the BookDay variable; in column (3) we also 
include the MC dummy and interactions, and, finally, in column (4) we consider the full model 
of equation (2), which also includes the Parallel dummy and relative interaction. 

The coefficient on BookDay, which identifies the slope of the pricing curve, is positive 
and statistically significant. This result is in line with the expectation of higher fares as the day of 
departure approaches. The coefficient ranging from 0.236 to 0.361 indicates that on average 
fares increase by 0.48% - 0.74% each day.11 This is amply consistent with findings in the em-
pirical literature on airline pricing (Piga and Bachis, 2007; Gaggero and Piga, 2010, 2011). 

For convenience, Table 6 summarizes the intercept and slope parameters and its esti-
mations. As far as the intercept is concerned, it appears that fares under CS are higher than in the 
case of no CS, regardless of the type of carrier: 2.565 versus 2.457. The difference of 0.108 in-
dicates that the fare of an airline under CS is about 10.96% higher than in the absence of CS.12 
The MC is on average more expensive than the OC (MC intercept equal to 2.517, which is higher 
that OC intercept equal to (2.372): this finding is in line with what is depicted in Figure 1. 

 
Table 6: Interpretation of the intercept and slope. 

 
  Parameters** Estimation 

Model* Carrier Intercept/Slope Intercept Slope 
(2) Carrier not in CS 

0π  2.457 0.361 

(2) Carrier in CS 
10 ππ +  2.565 0.291 

(3) OC in CS 
10 ππ +  2.372 0.262 

(3) MC 
210 πππ ++  2.517 0.339 

(4) OC in unilateral CS 
10 ππ +  2.434 0.131 

(4) OC in parallel CS 
310 πππ ++  2.343 0.323 

(4) MC in unilateral CS 
210 πππ ++  2.576 0.213 

(4) MC in parallel CS 
3210 ππππ +++  2.484 0.406 

* The model number corresponds to the column of Table 5. 
** Intercept parameters emerge when απ = and slope parameters emerge when βπ = . 

 
 

                                                            
11 Given that our booking period spans from 7 to 56 days, which correspond to 1 and 0 respectively, a one-day 
variation is measured as 1/49. Therefore the bounds of the marginal effect are calculated as 
0.236*1/49=0.0048=0.48% and 0.362*1/49=0.0074=0.74%. 
12The percentage numbers stem from the formula in Wooldridge (2012): )%1)ˆ(exp(100 −β , which computes the 

marginal effect in percentage terms of a dummy variable when the dependent variable is expressed in logarithmic 

form; β̂  is the estimated coefficient of the dummy variable. 
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The larger coefficients on Code-share and the smaller on the interacted term BookDay * 
Code-share indicate that if a flight is in CS, then its temporal profile is on average above and less 
steep than in the case of flights without CS. Thus, CS fares are larger especially for early bookers 
travelers. Conversely, late bookers, usually business travelers, appear to gain from CS practices 
since they may also benefit from rising quality provided by a higher number of frequencies. The 
shift in the temporal profile is compatible with the fact that since the number of potential trav-
elers increases thanks to the additional marketing activity of the MC, as well as to the potential 
increase in quality, carriers will offer higher fares.  

Figure 2 offers a graphical representation of the econometric results: on the Y-axis we 
report the logarithm of fare and on the X-axis the booking days. The north-west diagram rep-
resents the estimates of column (2) of Table 5. The north-east diagram depicts the situation re-
ported in column (3) of Table 5. The two remaining bottom diagrams stem from column (4) of 
Table 5, they depict, in the case of unilateral and parallel code-share, the pricing profile of re-
spectively the OC (south-west diagram) and the MC (south-east diagram). 

 

 
Figure 2: Graphical illustration of the estimates in Table 5. 

 
 
Consider the case of an OC in the top right panel of the Figure 2 the slope of the line is 

flatter than in the case of the OC not in CS; thus, for the OC the fare difference between 
code-shared and not-code-shared flights tends to converge to zero, as the take-off day ap-
proaches. If the airline considered is the MC, the slope of the line is similar to that of an OC not 
in CS, but the former line is well above the latter, in line with the statistics reported in Table 3. 
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These results suggest that because some passengers are brand loyal, CS agreements may be a 
way to implement a price discrimination strategy, where a brand premium is charged to those 
booking via the MC. In addition, this pricing strategy has a positive returns for both carriers, 
when travelers are not perfectly informed in the sense that they are not aware of the CS ar-
rangement. Indeed, even price sensitive consumers may be induced to accept the (lower) fare 
charged by the OC, after they compare it and find a significant gap with that offered by the MC. 

Returning to the estimates in Table 6, both in the case of the OC and of the MC, CS under 
parallel operations is characterized by a steeper slope relative to the case of CS under unilateral 
operations: 0.323 versus 0.131 for OC and 0.406 versus 0.213 for MC (for a graphical repre-
sentation see the bottom diagrams of Figure 2). These results can be somehow related to the 
work by Ito and Lee (2007), where fares on unilateral CS are generally higher than under parallel 
CS. However the authors are not able to control for the evolution of fares as the departure date 
approaches. As the bottom part of Figure 2 reveals, our results show that the findings of Ito and 
Lee (2007) hold only in the early part of the booking period, whilst during the last month before 
the take-off the fares under parallel CS overcome the fares under unilateral CS for both types of 
partners. Thus, parallel pricing favors leisure travelers and damages business ones. 

As far as the other controls are concerned, log(Distance) has its expected positive sign, as 
longer length of the flight implies higher fuel costs which are transferred on the ticket fare. The 
coefficient less than one indicates fares increase less than proportionally with distance. This 
finding confirms the non-linear relationship between fares and distance, already documented in 
the literature (Gaggero and Piga, 2010). Indeed the specification of distance in log captures the 
economies of scale of operating longer routes, given that landing and take-off are fuel-intensive 
operations whose cost can be better spread over longer routes. 

The price of the jet fuel is also correctly signed, since an increase of its price determines 
higher operating costs and therefore higher fares. Since the coefficient v2 represents the elasticity 
of fares to the price of jet fuel, 0.36 means that a one-percent increase of jet fuel translates into a 
0.10%-0.12% higher fares. This effects is less than proportional, showing that airlines try to 
internalize part of the increment in the operating costs. 

The Hub dummy is also positive and statistically significant, indicating that an airline 
tends to charge higher fares on routes operated from its hubs (Brueckner and Whalen, 2000; 
Lederman, 2008). This hub effect is estimated to increase fares by about 1.55%.  

The extent of market concentration in a route has the expected positive effect on prices 
(Borenstein, 1989). One standard deviation increase of HHI implies higher fares by almost 
6.08%. 

The geometric mean of the population density at the two endpoints has a negative effect 
on price, as higher densely populated areas are normally served by larger-sized aircraft, which 
imply lower operating costs transferring in lower fares. Finally, the time of departure dummies 
indicates that afternoon, late morning and evening flights are, respectively, cheaper by about 2%, 
1.8% and 1.1% than early morning flights. 
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6. Conclusion 

In this paper we have studied the impact of code-share agreements on the temporal profile of 
fares. By analyzing the temporal profile of airline fares, we identify three main results. First, CS 
increases fares especially for early bookers. Second, much of the shift in code-shared flights is 
due to higher prices offered by marketing carriers. Finally, when flights are operated under 
unilateral code-share, the pricing profile is flatter than under parallel code-share, which implies 
that early fares are cheaper in the latter. 
These findings highlight some welfare implications. The effects of CS do not uniformly apply to 
all passenger categories. Leisure travelers are damaged by CS especially under unilateral CS. 
Buying in advance to try to get cheap fares is not so beneficial since carriers apply a flat temporal 
profile under unilateral CS. This empirical result is only apparently in opposition with the the-
oretical works on pricing under CS, where unilateral CS is usually welfare enhancing since it 
reduces the double marginalization problem. This theoretical prescription works for (high) 
business fares, but does not apply to (low) leisure fares which, even in the absence of a CS 
agreement, are not sensitive to the double marginalization problem. 
Furthermore, business travelers seem to be less negatively affected by CS especially if they are 
not too brand sensitive. The OC, near to the departure date, charges fares that are close to the 
case without CS. For this type of passengers, as theoretical works predict, fares may also de-
crease. These findings are also in line with the empirical literature reviewed in the first part of the 
paper. 
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Appendix: number of routes by carriers with/without code-share 
 

Table 7: Number of routes offered by carrier with and without code-share. 
 

 Operating Operating Marketing 
 carrier not in CS carrier in CS carrier 
British Airways 28 4 6 
Alitalia 4 0 0 
Swiss 4 0 0 
Aer Lingus 2 4 1 
KLM 2 0 0 
Lufthansa 1 2 0 
Scandinavian Airlines 1 2 0 
Air Europa 1 0 0 
Air France 1 0 0 
Czech Airlines 1 0 0 
Tap Portugal 1 0 0 
Iberia 0 3 2 
BMI British Midlands 0 0 4 
Finnair 0 0 1 
    
TOTAL 36 15 14 

 
 


