
The Effect of Compiler Optimizations on
High-Level Synthesis for FPGAs

Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Stephen Brown, Jason Anderson
Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

Email: legup@eecg.toronto.edu

Abstract—We consider the impact of compiler optimizations
on the quality of high-level synthesis (HLS)-generated FPGA
hardware. Using a HLS tool implemented within the state-of-the-
art LLVM [1] compiler, we study the effect of compiler optimiza-
tions on the hardware metrics of circuit area, execution cycles,
Fmax, and wall-clock time. We evaluate 56 different compiler
optimizations implemented within LLVM and show that some
optimizations significantly affect hardware quality. Moreover, we
show that hardware quality is also affected by the order in which
optimizations are applied. We then present a new HLS-directed
approach to compiler optimizations, wherein we execute partial
HLS and profiling at intermittent points in the optimization
process and use the results to judiciously undo the impact of
optimization passes predicted to be damaging to the generated
hardware quality. Results show that our approach produces
circuits with 16% better speed performance, on average, versus
using the standard -O3 optimization level.

I. INTRODUCTION

High-level synthesis (HLS) raises the level of abstraction
for hardware design by allowing software programs written in
a standard language to be automatically compiled to hardware.
First proposed in the 1980s, HLS has received renewed
interest in recent years, notably as a design methodology
for field-programmable gate arrays (FPGAs). While FPGA
circuit design has historically been the realm of hardware
engineers, HLS offers a path towards making FPGA tech-
nology accessible to software engineers, where the focus
is on using FPGAs to implement accelerators that perform
computations with higher throughput and energy efficiency
relative to standard processors. We believe, in fact, that FPGAs
(rather than ASICs) will be the vehicle through which HLS
enters the mainstream of IC design, owing their reconfigurable
nature. With custom ASICs, the silicon area gap between
human-designed and HLS-generated RTL leads directly to (po-
tentially) unacceptably higher IC manufacturing costs, whereas
with FPGAs, this is not the case, as long as the generated
hardware fits within the available target device.

Modern HLS tools are implemented within software com-
piler frameworks. For example, among widely-used frame-
works, Xilinx’s AutoPilot tool [2], ROCCC from UC River-
side [3], and LegUp from the University of Toronto [4] are
implemented within the LLVM compiler [1], and GAUT [5]
from the Université de Bretange Sud is implemented within
GCC. Consequently, the programs that are input to such tools
are subjected to standard compiler optimizations applied be-
fore HLS commences. Compilers perform their optimizations
in passes, where each pass is responsible for a specific code
transformation, for example, dead-code elimination, constant
propagation, loop unrolling, or loop rotation. LLVM contains
implementations for 56 such optimization (transform) passes

that may alter the program, as well as many other passes that
analyze the code to provide decision-making data for trans-
form passes (see: http://llvm.org/docs/Passes.html).
The familiar command-line optimization levels (e.g. -O3)
correspond to a particular set and sequence of compiler passes.
The compiler passes within LLVM were intended to optimize
software programs that run on a microprocessor. Their impact
on HLS-generated hardware is not well-studied nor is the
manner in which they should be applied to best optimize
hardware quality. It is precisely these issues that we explore
in this paper.

We study the impact of compiler passes using the open-
source LegUp HLS tool. We target the Altera Cyclone II
FPGA [6] and assess hardware quality using several metrics:
area, FMax, execution cycles, and wall-clock time. We con-
duct a wide range of experiments to explore: 1) the impact of
each LLVM pass in isolation, 2) the interdependency between
different passes, and 3) the impact of pass ordering. We present
a detailed analysis for several passes demonstrated to have a
significant hardware impact. We show that the particular set
of passes applied can have a significant impact on hardware
quality – variance in the range of over ±10% is common. We
also show that a given pass may improve some circuits and
not others; and likewise, a pass may improve hardware along
one axis (e.g. area), while at the same time degrade hardware
along a second axis (e.g. speed).

Given that the impact of a particular pass or set of passes
is program dependant, we propose a HLS-directed approach
to the application of compiler optimization passes. At a high
level, our approach works as follows: we iteratively apply one
or more passes and then “score” the result by invoking partial
HLS coupled with rapid profiling (in software). Transforma-
tions made by passes deemed to positively impact hardware are
accepted. Conversely, we undo the transformations of passes
that we predict to be damaging to hardware quality. Results
show our optimization strategy consistently outperforms the
standard -O3 level in terms of hardware speed performance.
While a prior work examined a limited number of code trans-
formations in the HLS context [7] and their integration into
HLS algorithms, to our knowledge, this is the first published
study of a broad collection of different optimizations in a state-
of-the-art HLS compiler.

The rest of this paper is organized as follows: Section II
provides relevant background and describes related work.
Section III presents results that illustrate the impact of LLVM
optimization passes on generated hardware quality. In Sec-
tion IV, we introduce our HLS-directed compiler optimization
approach. Experimental results are presented in Section V.

Section VI offers conclusions and suggests future work.

II. BACKGROUND

While the standard compiler optimization levels offer a sim-
ple set of choices for a developer, the particular optimizations
applied at each level are generally chosen to benefit the run-
time of a basket of programs. It is not guaranteed, for example,
that for a specific program the -O3 level produces superior
results to the -O2 level. This has led the (software) compiler
community to consider selecting a particular set of compiler
optimization passes on a per-program (or even per-code-
segment) basis. Such “adaptive” compiler optimization has
been the subject of active research in recent years, with a few
examples of highly-cited works being [8], [9], [10]. Broadly
speaking, research in the area involves devising heuristics
to prune the large optimization space of selecting passes,
thereby reducing the number of different passes that need to be
applied/attempted. Milepost [11] is a GCC-based optimization
approach that uses machine learning to determine the set of
passes to apply to a given program, based on a static analysis
of its features. It achieved 11% execution time improvement,
on average, for the ARC reconfigurable processor on the
MiBench program suite1.

Our work bears similarity to such efforts in the software
domain, and represents a step towards adaptive compiler
optimization in the HLS hardware domain.

The LLVM Framework and LegUp High-Level Synthesis

LLVM is an open-source compiler framework used in both
industry and academia. LLVM’s front-end, clang, parses the
input C source and translates it into LLVM’s intermediate
representation (IR). The IR is essentially machine-independent
assembly code in static-single assignment (SSA) form, com-
prised of simple computational instructions (e.g. add, shift,
multiply) and control-flow instructions (e.g. branch). LLVM’s
opt tool performs a sequence of compiler optimization passes
on the program’s IR – each such pass directly manipulates the
IR, accepting an IR as input and producing a new/optimized
IR as output.

The LegUp HLS tool is implemented as back-end passes
of LLVM that are invoked after the compiler optimizations.
LegUp accepts a program’s optimized IR as input and sched-
ules the IR instructions into clock cycles, binds the scheduled
instructions to functional units, constructs the corresponding
FSM, and writes out RTL Verilog code synthesizable by
commercial FPGA RTL synthesis tools. The LegUp scheduler,
based on the SDC formulation [12], operates at the basic block
level, exploiting the available parallelism between instructions
in a basic block. One Verilog module is generated for each
function in the program. Results show that LegUp produces
solutions of comparable quality to a commercial HLS tool
(eXCite [13]) and the interested reader is referred to [4] for
more details.

1http://www.eecs.umich.edu/mibench

TABLE I
CHSTONE BENCHMARK CHARACTERISTICS.

Benchmark Lines of C Class
adpcm 550 media

blowfish 1,255 encyrption
dfadd 441 arithmetic
dfdiv 292 arithmetic

dfmul 270 arithmetic
dfsin 580 arithmetic
gsm 388 media
jpeg 1,073 media
mips 271 processor

motion 602 media
sha 1,969 encryption

Geomean 565

III. IMPACT OF COMPILER OPTIMIZATIONS ON HLS

A. Methodology

In this section, we present an analysis of the impact of
compiler optimization passes on HLS-generated hardware.
We use C benchmarks from the CHStone high-level synthe-
sis benchmark suite [14], which are chosen from a variety
of domains (e.g. multimedia, communications, encryption).
Eleven of the 12 CHStone benchmarks were used, as errors
were encountered for one benchmark, aes, with certain com-
binations of optimization passes2. The number of lines and
category of each benchmark is listed in Table I. Note that
each CHStone benchmark has built-in input stimuli and golden
outputs, allowing us to execute the benchmark’s hardware
implementation and verify functional correctness. We synthe-
size the LegUp-generated Verilog to the Altera Cyclone II
FPGA [6] using Quartus II ver. 11.1SP2, applying a 1 GHz
clock constraint to each circuit3. We used ModelSim to extract
the number of cycles needed for the execution of each circuit
(cycle latency) with the built-in input stimuli. FMax, and
area were extracted from Altera post-routing report files. Total
execution (wall-clock) time is computed as the # of execution
cycles divided by post-routed FMax. The CHStone circuits
are comprised of compute kernels that are executed several
times with different inputs; the wall-clock time is the total
time needed for each CHStone benchmark to complete its ex-
ecution of all inputs. All experiments were conducted on cloud
computing system having tens of thousands of cores [15].

B. Analysis of Passes in Isolation

We begin by analyzing LLVM optimization passes in isola-
tion relative to -O0 (no optimization). Fig. 1 shows how each
pass affects the number of hardware execution cycles. The
horizontal axis lists the names of each pass. The vertical axis
represents the geometric mean ratio (over the 11 benchmarks)
of cycle latency when a particular pass is used, relative to
the -O0 case. Values less than 1 represent reductions in cycle
latency relative to the baseline case. Observe that many passes

2Similar behavior has been observed in the software domain, where some
combinations of passes may cause the compiler to crash or produce incorrect
program results [11]. In this case, the LegUp HLS tool crashed during Verilog
code generation for the aes benchmark under certain pass combinations.

3The 1 GHz constraint causes Quartus II to produce a high-speed circuit
implementation.

Fig. 1. Impact of individual compiler passes on geomean clock cycle latencies across 11 CHStone benchmarks.

have no impact on cycle latency, at least when applied in
isolation. Of the 56 different passes evaluated, only 13 of the
passes impacted the geomean cycle latency by more than 1%.
Note that some of the passes in Fig. 1 are already in the -O3
optimization level recipe – our intent here is to assess the
impact of each pass in isolation.

While it is outside the scope of this paper to discuss each
pass in detail, we did perform an in-depth analysis for passes
having a considerable hardware impact. Observe in Fig. 1 that
-loop-extract and -loop-extract-single caused a large
increase in the geomean number of execution cycles (values
> 1). Both of these optimizations extract loops into separate
functions. The LegUp HLS tool does not optimize across
function boundaries, and moreover, implements each function
as a separate Verilog module, with handshaking between
modules occurring when one function calls another. Exlining
loops as functions therefore naturally leads to higher numbers
of execution cycles. The -inline pass has precisely the
opposite effect: a large decrease in cycle latency is observed
when callees are collapsed (inlined) into callers.

Other passes that improve the hardware include
-loop-rotate and -simplifycfg. The -loop-rotate
pass changes the position of the loop header within the IR,
effectively transforming a loop from a while loop into a do
while loop. We observed this can reduce the number of FSM
states for each loop iteration in hardware by eliminating one
branch instruction per iteration4. The -simplifycfg pass
simplifies the program’s control flow graph by merging basic
blocks connected through unconditional branches and by
eliminating empty basic blocks, both of which reduce the
total number of states in the schedule.

Besides cycle latency (Fig. 1), we also analyzed FMax,
wall-clock time and area (# of Cyclone II logic elements
(LEs)). Complete data for these metrics is omitted for space
considerations. Instead, Table II summarizes the impact of
individual compiler passes on all hardware metrics. Four mea-

4Rotated loops contain a single conditional backward branch at the end of
each iteration, rather than one conditional forward branch at the beginning
and one unconditional backward branch at the end.

TABLE II
SUMMARY OF THE INDIVIDUAL IMPACT OF 56 LLVM DIFFERENT

OPTIMIZATION PASSES ON HLS HARDWARE.

Clock cycles FMax Wall-clock time LEs
Min 0.72 0.76 0.92 0.93
Max 1.83 1.05 2.24 1.34

St. Dev 0.12 0.04 0.17 0.05
Impactful Passes 13 16 20 10

surements are provided for each metric. The “min” row gives
the minimum geomean value of the metric (across 11 CHStone
circuits) for any pass, relative to (-O0) (no optimization). For
example, the 0.72 value for the “Clock cycles” metric indicates
that one pass caused a 28% decrease in cycle latency, on
average, across the benchmarks (see -inline in Fig. 1). The
“max” row gives the maximum change caused by any pass.
The “St. Dev” row gives the standard deviation of change in
the geomean, across all 56 passes. The last row of the table
shows the number of passes (out of 56) that caused a more
than 1% swing in the metric (on average). Table II indicates
that FMax and the number of LEs (area) are less sensitive to
individual compiler passes than cycle latency and wall-clock
time (see the standard deviation row). The relative stability in
FMax is not surprising, as the LegUp HLS tool attempts to
meet a user-provided FMax target, by potentially inserting
more registers in the datapath to meet the specified target
(LegUp’s default FMax target for Cyclone II is 66MHz).

We observed the set of beneficial passes to be highly
benchmark dependant. For example, on the metric of
wall-clock time, the following 5 passes were found to
be individually beneficial for the adpcm benchmark:
-block-placement, -break-crit-edges, -reg2mem,
-scalarrepl-ssa, and -simplify-libcalls. Whereas,
for the jpeg benchmark, there were 6 beneficial passes:
-sink, -loop-extract-single, -block-placement,
-simplifycfg, and -loop-rotate. Observe that there is
little overlap between the two beneficial pass sets.

TABLE III
CUSTOMIZED RECIPE FOR THE DFMUL BENCHMARK.

Normalized Hardware Metric
Recipe Clock cycles FMax Wall-clock time LEs

-O3 1.00 1.00 1.00 1.00
Clock cycle 0.92 1.00 0.92 0.92

FMax 1.42 1.02 1.39 1.29
Wall-clock time 0.92 1.01 0.91 0.93

LEs 1.02 0.99 1.02 0.91

C. Customized Passes

To understand the potential for compiler optimization passes
to “beat” a standard compiler optimization strategy, -O3, we
used the pass analysis data above to create custom “recipes” of
passes tailored to each benchmark for each of the four metrics:
clock cycle latency, FMax, wall-clock time and area (LEs). We
created 4 customized recipes for each benchmark, one for each
metric, containing only those passes that positively benefited
the benchmark on the particular metric in the individual
pass analysis. In each custom recipe, we ordered the passes
alphabetically (alternative orders are discussed below).

Results for the custom recipes for a representative example
of the benchmarks, dfmul, are given in Table III5. The left-
most column of Table III lists the recipes, beginning with
-O3. The remaining columns show the results for each recipe
on each hardware metric, normalized to the -O3 results. For
example, the “Clock cycles” recipe improves clock cycle
latency by 8% vs. -O3, and the FMax recipe improved FMax
by 2%. The wall-clock time recipe improved wall-clock time
by 9% – a significant improvement over -O3. Note that for the
data in Table III, LLVM’s link-time optimization passes were
applied after the custom recipes, as well as after -O3. While
it is impractical for an end-user to be expected to conduct a
similar analysis for each program being compiled, the results
serve to illustrate that there is indeed considerable potential to
improve upon -O3 results.

D. Impact of Pass Ordering

We also considered the order in which passes are applied
and found it to have a significant impact on the hardware qual-
ity. Fig. 3 shows the wall-clock time for the jpeg benchmark
for all 6! (= 720) orderings of the same 6 passes shown to be
beneficial in isolation for this benchmark’s wall-clock time. A
wide range of wall-clock times was observed. The average
wall-clock time was 47.6ms (standard deviation 2ms). The
minimum time achieved was 41.7ms, whereas the maximum
was 53.2ms (nearly 28% higher than the minimum!). The
results in Fig. 3 clearly demonstrate that optimization passes
are highly interdependent on one another. Thus, to optimize
HLS-generated hardware, is it not simply a matter of deter-
mining which optimization passes are helpful, but also crucial
to determine the order in which they should be applied.

To further underscore the impact of pass ordering, we
selected 33 passes, comprised of all those passes that had an
impact in isolation (on top of -O0) and also those passes that
had an impact when removed from -O3. We considered all

5Results for other circuits could not be included for space reasons.

Fig. 2. Impact of pass pair forward/reverse ordering on clock cycle latency.
Results shown for all

(33
2

)
= 528 combinations of 33 passes.

pairs of passes from this group and evaluated the pairs in both
orders, performing synthesis, placement, routing and Model-
Sim simulation for all 2×(33

2

)
= 2×528= 1056 combinations

for the 11 CHStone benchmarks. Then, looking at the impact
of each pass pair on the clock cycle latency of each benchmark,
we counted: 1) the number of pass pairs that had no affect in
either order on any benchmark; 2) the number of pass pairs
for which “forward” (alphabetical) order improved an equal
number of benchmarks as “reverse” order (a tie); 3) the number
of pass pairs for which the forward order improved more
benchmarks than the reverse order; and, 4) the number of pass
pairs for which the reverse order improved more benchmarks
than the forward order. The results of this analysis are shown
in Fig. 2. Of the 528 pass pairs, 117 had no impact in either
order, and for 55 pairs the orders were tied – forward order
helped an equal number of benchmarks as reverse order. For
the remaining 356 pairs, one order was better than the other
in reducing cycle latency. For 242 pairs, forward order was
preferred over reverse order, whereas, for 114 pairs, the reverse
order was preferred. We had expected roughly equal numbers
of pairs to prefer forward vs. reverse order, nevertheless, the
results clearly demonstrate the importance of pass ordering on
HLS quality of results for the majority of pass pairs. While
it is tractable to evaluate all combinations of pairs of passes,
it is computationally intractable to investigate all orderings of
larger numbers of passes.

From the analysis of passes in isolation, we also generated
a general benchmark-agnostic recipe containing only those
passes which showed a benefit for a majority of benchmarks
when applied in isolation. On the average, the recipe per-
formed worse than -O3, owing to notion that some passes
depend on other passes to show any impact. For example,
there are passes which showed no benefit whatsoever for a
benchmark when applied in isolation, yet showed a benefit
when applied after certain other passes. Clearly, the -O3 recipe
includes some of such passes which do not affect results in
isolation.

Given our experience with customized recipes and the
observation that the compiler passes beneficial to each bench-
mark are both benchmark dependent and order dependent, we
felt it would be difficult to devise a single recipe of passes
that would benefit all circuits. We therefore opted to explore

Fig. 3. Wall-clock time for jpeg benchmark for all permutations of six
optimization passes.

a more adaptive feedback-based pass recipe approach that
automatically determines a good recipe of passes for a given
benchmark without any user intervention, as described in the
next section.

IV. HLS-DIRECTED COMPILER OPTIMIZATION

Algorithm 1 shows the top-level flow of our scheme. The
input to the algorithm is the program’s unoptimized IR, as well
as an ordered list of candidate optimization passes, P, which
we refer to as the pass pool. Within a while loop (line 4), we
iteratively choose a pass p from the pass pool (line 5), execute
it (apply it to the IR) (line 6), and then estimate whether p will
be beneficial or detrimental to the HLS-generated hardware
(line 7). We use total hardware execution cycles as the cost
metric, as it is correlated with wall-clock time and can be
determined rapidly (see below). If p is deemed beneficial (line
8), it is accepted, and its effect on the IR is left intact (lines
9-11). Otherwise, p is rejected and the IR is rolled back to the
state prior to p being applied. Once we come to the end of
the pass pool, we start again from the beginning, and attempt
to re-apply passes. The process of selecting passes from the
pool and judiciously applying them continues until a stopping
criteria is met (also discussed below). Note that while we focus
on circuit speed performance in this work, future work may
consider the automatic generation of pass recipes that optimize
circuit area or power.

We devised an approach to determine the number of hard-
ware execution cycles for a given IR without requiring time-
consuming logic simulation with ModelSim. Our approach is
based on the observation that the total number of hardware
cycles can be determined if two criteria are known for each
basic block6: 1) the number of times it is executed, and 2) the
number of clock cycles it needs to execute. Specifically,

CycleCount(IR) = ∑
b ∈ BB(IR)

Execs(b) ·SchedLen(b) (1)

where BB(IR) is the set of basic blocks in the IR, Execs(b)
is the number of times basic block b is executed, and

6A basic block has a single entry and exit point.

TABLE IV
RUN-TIME COMPARISON BETWEEN PROPOSED PROFILER AND MODELSIM

(PR: PROFILER, MS: MODELSIM).

Simulation Time (s)
Benchmark PR MS

adpcm 1.8 37
blowfish 1.4 99

dfadd 0.4 2
dfdiv 0.5 2

dfmul 0.3 2
dfsin 1.3 27
gsm 1.2 5
jpeg 5.1 3,425
mips 0.4 2

motion 0.3 3
sha 0.7 84

Geomean 0.8 15
Ratio 1.0 20

SchedLen(b) is the schedule length of b. Execs(b) can be
determined by profiling the execution of the IR in software7

– hardware simulation is not required. SchedLen(b) can be
determined by executing HLS up to the scheduling step. Thus,
both criteria can be computed rapidly for each basic block,
providing an accurate picture of the post-HLS cycle latency
for an IR. Note that while the profiling step may be deemed
as costly from the run-time angle in a software compilation
flow, the time consumed is very small compared to ModelSim
simulation of the Verilog RTL. Table IV compares the run-
time required by our approach and ModelSim for each of the
CHStone benchmarks. On average, our approach extracts cycle
latencies 20× faster than ModelSim.

The other tunable aspects of Algorithm 1 include the stop-
ping criteria of the while loop (discussed below), the Apply
function that executes the selected pass p on the best IR seen
so far (also discussed below), and the composition of the pass
pool P. For P, we use 41 of the 56 LLVM passes, namely, we
include 1) all passes that showed any impact when applied in
isolation, 2) passes that showed any impact when we removed
them from -O3, and 3) passes not in -O3 and that showed
no impact in isolation (as these might show an impact when
combined with other passes).

We implemented and evaluated three variants of Algo-
rithm 1 offering different run-time/quality trade-offs, which
we refer to as the iteration method, the insertion method, and
the insertion-3 method. The first two variants differ from one
another in their implementation of the Apply function, which
applies the chosen pass p to the best IR found so far. In the
iteration method, we first sort all passes based on the pairs
analysis results (see Section III) so that the pairwise pass
ordering favors reductions in clock cycle latency. Passes that
showed no impact in isolation (or through the pairs analysis)
were added to the end of the list. We apply the passes in order,
in particular, we apply the selected pass, p, at the end of the
recipe that produces the best IR so far. Hence, the iteration

7This is possible because the CHStone benchmarks contain inputs within
the programs themselves, and can therefore be executed without user in-
tervention. For general programs, one would need to execute them with
representative inputs.

TABLE V
SPEED PERFORMANCE RESULTS (IT: ITERATION METHOD, IN: INSERTION METHOD, IN3: INSERTION-3 METHOD).

Clock Cycles Fmax (MHz) Wall Time (µs)
Benchmark -O0 -O3 IT IN IN3 -O0 -O3 IT IN IN3 -O0 -O3 IT IN IN3

adpcm 41,561 41,131 22,130 22,130 10,585 47 47 49 51 53 886 866 452 438 199
blowfish 214,140 214,400 196,943 200,972 196,774 57 63 62 64 60 3,747 3,409 3,181 3,151 3,303

dfadd 870 797 796 781 788 87 91 90 92 102 10 9 9 8 8
dfdiv 2,542 2,265 2,242 2,231 2,231 65 78 75 81 71 39 29 30 28 32

dfmul 305 292 275 266 266 92 91 93 91 93 3 3 3 3 3
dfsin 71,123 64,611 63,888 63,560 63,560 48 58 50 48 46 1,480 1,110 1,284 1,312 1,389
gsm 11,051 5,897 5,428 5,186 5,412 59 49 67 57 61 187 120 81 90 89
jpeg 1,555,336 1,410,002 1,397,580 1,391,902 1,362,751 31 28 30 31 37 50,043 50,958 46,539 44,785 36,732
mips 5,276 5,244 5,225 5,184 5,184 80 79 78 79 78 66 66 67 65 66

motion 8,505 8,430 6,409 6,361 6,375 71 98 66 78 62 121 86 97 82 104
sha 249,111 206,392 202,004 201,746 201,746 66 54 73 61 58 3,756 3,854 2,764 3,291 3,472

Geomean 18,404 16,381 14,717 14,572 13,641 61 63 64 64 63 300 260 231 229 217
Ratio 1.12 1.00 0.90 0.89 0.83 0.97 1.00 1.01 1.01 1.00 1.16 1.00 0.89 0.88 0.84

Algorithm 1 Algorithm for applying optimization passes.
Input: IROrig
Input: Pass pool P
Output: IRBest ,RecipeBest
1: CyclesBest = CycleCount(IR);
2: IRBest = IR;
3: RecipeBest = empty;
4: while Stopping Criteria Is Not Met do
5: Choose next pass p from pass pool P;
6: IRNew,RecipeNew = Apply(p,IROrig ,RecipeBest);
7: CyclesNew =CycleCount(IRNew)
8: if CyclesNew ≤CyclesBest then
9: CyclesBest =CyclesNew ;

10: RecipeBest = RecipeNew ;
11: IRBest = IRNew;
12: end if
13: end while

method is highly pass-order dependent, which is not true for
the other two methods.

In the insertion method, we consider all possible insertion
positions for p in the recipe that produced the best IR so
far, and keep the recipe and IR corresponding to the insertion
position that produced the IR with the lowest number of clock
cycles. Our insertion method is thus somewhat analogous to
the classic insertion sort algorithm which, given an element
to insert into a sorted list, walks the list from beginning to
end to find the correct insertion position. The advantage of
the insertion method is that it reduces the dependence on the
order in which the passes are applied because it attempts all
possible insertion positions for each pass, selecting the position
that yields the best results. Thus, its overarching intent is to
find the “good” points in the ordering solution space (such as
that illustrated in Fig. 3). Sorting the passes is thus unnecessary
for the insertion method.

Clearly, the insertion method requires significantly more
computation than the iteration method: after drawing M passes
from the pool P, the iteration method will have considered M
possible IRs, whereas the insertion method will have consid-
ered M · (M + 1)/2 possible IRs. The iteration and insertion
method’s Apply functions are shown formally in Algorithms 2
and 3, respectively.

Our last variant, insertion-3, is similar to the insertion
method except that it stores the top 3 IRs and recipes, instead

of storing the single best IR and recipe. In insertion-3, the
chosen pass p is applied to all 3 of the top IRs/recipes. By
storing three IRs/recipes instead of just one, we permit a
broader exploration of the solution space. Note that different
sequences of passes may produce the same IR (say, for
example, if some passes had no impact). We require that the
top 3 IRs stored be different from one another (by diff’ing
the IRs), thereby ensuring diversity in the recipes/solutions
considered.

Algorithm 2 Apply function for iteration method.
Input: p, IROrig, RecipeBest
Output: IRNew, RecipeNew
1: RecipeNew = RecipeBest with p added to its end;
2: IRNew = IR produced by applying RecipeNew to IROrig;

Algorithm 3 Apply function for insertion method.
Input: p, IROrig, RecipeBest
Output: IRNew, RecipeNew
1: N = the # of passes in RecipeBest ;
2: CyclesCurr = ∞;
3: for i = 0 to N do
4: Recipetemp = first i passes in RecipeBest , followed by p, followed by

the next N − i passes in RecipeBest ;
5: IRtemp = IR produced by applying Recipetemp to IROrig;
6: Cyclestemp =CycleCount(IRtemp)
7: if Cyclestemp ≤CyclesCurr then
8: CyclesCurr =Cyclestemp ;
9: RecipeNew = Recipetemp;

10: IRNew = IRtemp;
11: end if
12: end for

For the stopping criteria, we terminate when one of the
following two conditions is true: 1) we have “walked” through
all passes in the pass pool 3 times (determined empirically), or
2) no benefit was realized during the most-recently-completed
“walk” through the pass pool, in which case we terminate
early. Fig. 4 shows how the geomean cycle latency (across
all CHStone circuits) changes across three walks through the
pass pool for the insertion-3 method. Observe that most of the
improvement in cycle latency happens in the first walk.

TABLE VI
AREA RESULTS (IT: ITERATION METHOD, IN: INSERTION METHOD, IN3: INSERTION-3 METHOD).

LEs Memory (bit) Multipliers
Benchmark -O0 -O3 IT IN IN3 -O0 -O3 IT IN IN3 -O0 -O3 IT IN IN3

adpcm 19,229 16,937 15,250 15,551 17,569 27,646 27,646 26,110 26,110 23,870 30 40 68 52 70
blowfish 6,687 6,118 6,464 6,537 6,901 150,784 150,720 150,720 150,720 150,144 0 0 0 0 0

dfadd 6,161 6,076 6,057 5,958 5,990 17,056 17,056 17,056 17,056 17,056 0 0 0 0 0
dfdiv 12,390 12,842 12,491 12,148 13,293 13,495 13,495 13,495 13,495 13,495 32 32 32 32 32

dfmul 3,559 3,884 3,617 3,436 3,481 12,032 12,032 12,032 12,032 12,032 32 32 32 32 32
dfsin 24,264 24,702 26,384 24,629 24,839 13,911 13,911 13,911 13,911 13,911 70 70 70 70 70
gsm 10,372 12,228 10,740 12,014 10,788 10,704 10,288 10,576 10,144 10,656 16 22 22 16 22
jpeg 31,870 34,351 33,215 37,473 43,594 470,427 470,054 470,427 470,150 470,523 52 50 56 46 42
mips 3,659 3,659 3,987 3,228 3,224 4,992 4,736 4,992 4,480 4,480 8 8 8 8 8

motion 16,899 4,670 18,245 5,630 16,841 34,464 33,312 34,656 33,344 34,528 0 8 0 0 8
sha 7,842 13,149 8,126 12,564 12,539 135,160 135,056 135,160 135,208 135,208 0 4 0 4 4

Geomean 10,283 9,720 10,376 9,602 10,935 30,163 29,814 29,988 29,478 29,455 8 12 9 10 13
Ratio 1.06 1.00 1.07 0.99 1.12 1.01 1.00 1.01 0.99 0.99 0.70 1.00 0.75 0.83 1.04

Fig. 4. Geomean clock cycle latency after each walk through the pass pool
for the insertion-3 method.

V. EXPERIMENTAL RESULTS

Table V shows the speed-performance results for circuits
optimized using five different compiler optimization flows: no
optimization (-O0), standard -O3 optimization, the iteration
method, insertion method, and the insertion-3 method. The
left-most column lists the names of each benchmark. The
second-last row of the table gives geometric mean results
across all circuits; the last row of the table shows the ratios
of the geomeans relative to -O3, which is LegUp’s default
optimization. Columns 2-6 give the clock cycle latencies for
each of the 5 different flows. First, observe that -O3 provides
a clear advantage over -O0: clock cycle latencies without
any optimization are 12% higher, on average, vs. with -O3.
All of the proposed flows produce significantly better results
than -O3, on average. The iteration method provides 10%
improvement; the insertion method offers 11% improvement;
and, the insertion-3 method provides 17% improvement in
cycle latency. While the largest improvements in cycle latency
were seen for the adpcm benchmark (due to a significant
reduction in loads/stores via their translation into register
accesses), the iteration, insertion and insertion-3 methods were
able to improve upon -O3 for all circuits.

Columns 7-11 of Table V show the post-routing FMax of
the circuits for their Cyclone II implementation, as reported
by the Altera TimeQuest static timing analysis tool. Observe
that FMax was relatively flat across all flows, with the

exception of there being a 3% degradation in FMax without
any optimization (-O0). The five right-most columns of the
table show the wall-clock execution time of the circuits for
the different flows. Without any compiler optimizations, wall-
clock times are 16% higher than -O3, on average. As the
FMax changes were modest with the proposed flows, the cycle
latency improvements seen with the proposed flows yield wall-
clock time improvements vs. -O3. The average reductions in
wall-clock time are 11%, 12%, and 16%, for the iteration,
insertion, and iteration-3 methods, respectively. The results
demonstrate that considerable performance gains can be had at
a high-level of the design flow, prior to detailed logic synthesis,
mapping and physical implementation.

Table VI gives the area results and reports the number of
Cyclone II logic elements (LEs), memory bits, and multipliers
used for each circuit for each of the four flows. LEs contain a
4-input look-up-table (LUT) and a flip-flop. Multiplier blocks
in Cyclone II are hard ASIC-like 9-by-9-bit multipliers that
are implemented in columns of the FPGA fabric, and that
can be combined together to realize wider multiplications.
Observe that, on average, the number of LEs and memory bits
is not significantly affected by the compiler optimization flow.
An exception is the LE count in the iteration and insertion-
3 flows, which increased slightly due to a single benchmark,
motion, whose area grew by ∼4×. This exception is due to
the lack of successful application of the pass -indvars, which
prevents the pass -loop-unroll from unrolling the loops and
subsequently prevents other passes from significantly affecting
LE count (indvars adjusts the induction variables of loops in
ways that permit further optimizations to succeed). The right-
most group of columns shows the multiplier block usage (for
these columns, circuits that used 0 multipliers were modeled as
having used 1 multiplier in the geometric mean computation).
Although the ratio data appears to show a significant reduction
in multiplier usage for two of three proposed flows, a detailed
look at the numbers in the tables shows multiplier usage to be
fairly even across all flows. We have observed that Quartus II
synthesis incorporates sophisticated techniques for optimizing
multiplier usage, replacing them with shifts/adds based on
constant propagation (which is affected by the earlier compiler
optimization passes).

We now turn to the run-time required for the various flows,

TABLE VII
LLVM/HLS RUN-TIME (IT: ITERATION METHOD, IN: INSERTION

METHOD, IN3: INSERTION-3 METHOD).

Run-time (s)
Benchmark -O3 IT IN IN3

adpcm 1.8 127 1,872 6,578
blowfish 1.4 115 604 5,600

dfadd 0.4 163 831 1,112
dfdiv 0.5 32 625 2,881

dfmul 0.3 79 319 926
dfsin 1.3 26 2,077 3,332
gsm 1.2 250 4,931 9,079
jpeg 5.1 208 13,963 132,252
mips 0.4 448 282 2,590

motion 0.3 27 1,772 16,951
sha 0.7 82 1,487 17,755

Geomean 0.8 98 1,312 5,966
Ratio 1 125 1,668 7,584

shown in Table VII. We ran all flows and benchmarks on a
single machine containing an Intel Core i5-2410M @2.30GHz
processor with 2GB of RAM. The values in the table represent
the run-time in seconds for all LLVM optimizations and high-
level synthesis for each circuit in each of the flows (not
to be confused with the wall-clock times for actual circuit
execution in Table V). As with the prior tables, the bottom
row of Table VII gives the ratio of the geomeans vs. the
-O3 flow. The geomean run-time for the iteration method is
98 seconds, about 125× higher than the -O3 flow run-time.
For the insertion method, the geomean run-time is about 22
minutes, ∼1,700× higher than the -O3 flow. The geomean
run-times of the insertion-3 flow are significantly higher: 99
minutes, over 7,500× higher than the -O3 flow. While the run-
time of the insertion-3 method may be prohibitively large, we
believe the absolute run-times are manageable for the iteration
and insertion methods. The iteration method in particular
provides an 11% wall-clock time reduction, on average, and its
run-time is considerably less than the run-time of Altera back-
end FPGA synthesis, placement and routing tools. Moreover,
the approaches can be run once for a benchmark and then
the recipe produced can be re-used in future compilations.
The focus of our work was on understanding the potential for
compiler optimizations to impact hardware quality – we did
not focus on run-time. We believe that considerable run-time
reductions can be achieved through a more careful analysis
of when certain passes may potentially provide a benefit,
allowing us to “skip” passes under certain circumstances.

In summary, we believe the proposed automated approaches
to selecting compiler optimizations on a per-program basis are
practical, and will be of keen interest to FPGA users seeking
high design performance. Such approaches also appear to be
a useful mechanism for narrowing the gap between HLS-
generated hardware and manually-designed RTL. The specific
recipes of optimizations selected for each benchmark for each
flow could not included for space reasons, however, they are
available online at http://legup.eecg.toronto.edu in the
publications section of the website.

VI. CONCLUSIONS AND FUTURE WORK

We considered the impact of compiler optimization passes
on HLS-generated hardware and proposed approaches for

the automated generation of recipes of passes to benefit
hardware speed performance. The proposed techniques work
by selecting and applying a particular optimization pass,
performing a fast estimation of its impact on the resulting
hardware, and then potentially undoing its impact based on
the predicted outcome. Results show that the automatically-
generated pass recipes produce circuits with 16% better wall-
clock time, on average, versus those produced using standard
-O3 optimization. To the authors’ knowledge, ours is the first
comprehensive study of methods for applying an extensive set
of compiler optimization passes in the HLS context.

Directions for future work include compiler optimizations
for circuit area and power consumption. Additionally, we
believe that the proposed iteration and insertion methods are
just a first step towards using compiler-based techniques to
improve HLS results. In particular, we believe it will be
possible to prune the solution space of the insertion-3 method
through memoization techniques to recognize and discard
already-explored portions of the solution space, reducing run-
time. We also would like to explore writing new custom
optimization passes specifically intended for hardware.

ACKNOWLEDGEMENTS

The financial support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and Altera
Corporation is gratefully acknowledged.

REFERENCES

[1] LLVM Compiler Project (http://www.llvm.org), 2010.
[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. on CAD, vol. 30, no. 4, pp. 473 –491, 2011.

[3] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing modular
hardware accelerators in C with ROCCC 2.0,” in IEEE FCCM, 2010,
pp. 127–134.

[4] A. Canis, J. Choi, and et al., “LegUp: high-level synthesis for FPGA-
based processor/accelerator systems,” in ACM/SIGDA FPGA, 2011, pp.
33–36.

[5] P. Coussy, G. Lhairech-Lebreton, D. Heller, and E. Martin, “GAUT – a
free and open source high-level synthesis tool,” in IEEE DATE, 2010.

[6] Cyclone-II FPGA family datasheet, Altera, Corp., 2012.
[7] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Using global

code motions to improve the quality of results for high-level synthesis,”
IEEE Trans. on CAD, vol. 23, no. 2, pp. 302 – 312, 2004.

[8] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in ACM/IEEE CGO, 2003,
pp. 204–215.

[9] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,
D. Subramanian, L. Torczon, and T. Waterman, “Finding effective
compilation sequences,” in ACM LCTES, 2004, pp. 231–239.

[10] Z. Pan and R. Eigenmann, “Fast and effective orchestration of compiler
optimizations for automatic performance tuning,” in ACM/IEEE CGO,
2006, pp. 319–332.

[11] G. Fursin, et al., “Milepost GCC: Machine learning enabled self-tuning
compiler,” International Journal of Parallel Programming, vol. 39, pp.
296–327, 2011.

[12] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in IEEE/ACM DAC, 2006, pp. 433–438.

[13] Y Explorations – C to RTL behavioral synthesis (http://www.yxi.com),
2012.

[14] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” Jour. of Information Processing,
vol. 17, pp. 242 – 254, 2009.

[15] C. Loken, et al., “SciNet: Lessons learned from building a power-
efficient top-20 system and data centre,” J. of Physics: Conference
Series, vol. 256, no. 1, 2010.

