
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 2008

The effect of component recognition on flexibility and speech The effect of component recognition on flexibility and speech

recognition performance in a spoken question answering system recognition performance in a spoken question answering system

Mike Dalton
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation Recommended Citation

Dalton, Mike, "The effect of component recognition on flexibility and speech recognition performance in a

spoken question answering system" (2008). Doctoral Dissertations. 455.

https://scholars.unh.edu/dissertation/455

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/455?utm_source=scholars.unh.edu%2Fdissertation%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

THE EFFECT OF COMPONENT RECOGNITION

ON FLEXIBILITY AND SPEECH RECOGNITION PERFORMANCE

IN A SPOKEN QUESTION ANSWERING SYSTEM

BY

MIKEDALTON

Baccalaureate Degree (BSEE), UNH, 1999

Master's Degree (MSEE), UNH, 2000

DISSERTATION

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in

Engineering: Electrical

December, 2008

UMI Number: 3348311

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3348311

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

This dissertation has been examined and approved.

U/p-o^?"
Dissertation Director, W. Thomas Miller III,
Professor of Electrical and Computer
Engineering

Miclrael J. CartecfAsspciate Professor of
Electrical and Computer Engineering

Andrew Kun, Associate Professor of
Electrical and Computer Engineering

William Lenharth, Associate Research
Professor of Electrical and Computer
Engineering

lichard A. Zang, Associate ProfesspNpf
Mathematics

Date

i^/rj -L**/

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF GRAPHS x

ABSTRACT xi

CHAPTER PAGE

I. INTRODUCTION 1

Motivation 2

Spoken Question Answering System Considerations 3

Research Objectives 9

Secondary Objective 10

Definitions 11

Document Organization 13

II. BACKGROUND 14

Foundations 15

Early Work 17

Development 29

Recent Work 34

III. MODERN NATURAL LANGUAGE

QUESTION ANSWERING SYSTEMS 41

Introduction 41

iii

General Question Answering Approaches 42

Closed-Domain Systems 45

Indexing 46

Weighting Techniques 49

Effects of Speech Recognition 49

The Current Research 51

Summary 56

IV. COMPONENT SYSTEM PROCESSING TECHNIQUES 58

Processing Techniques 58

Weighting Functions ..60

Comparison of Weighting Functions 66

Linear Word Weight Example 68

Matching Examples 69

V. EXPERIMENTAL DESIGN 72

Introduction 72

Steps 74

Create an SQA Development System 74

Develop a specific SQA system 78

Set Up a Testing Station 79

Optimize the Sample Question Set 80

Collect Data 81

Analyze the Collected Data 82

Conclusion 86

iv

VI. SOFTWARE TOOLS 87

Introduction 87

Sample Questions 88

Grammar Mapping 89

Answers 91

Conditions 93

Files 94

VII. SAMPLE QUESTION SET OPTIMIZATION 95

Phase 0 96

Phase 1 100

Phase 2 110

Summary 111

VIII. DATA COLLECTION 112

IX. ANALYSIS 115

Processing 115

Analysis 119

X. CONCLUSIONS127

Results of Analysis 128

Software Developed 131

Recommended Use 132

Looking Forward 133

LIST OF REFERENCES 136

APPENDIX A TEST DATA 144

v

TesM 144

Final Test Data 146

Final Summary of Test Data Analysis 157

APPENDIX B CD CONTENTS 164

AudioFiles 164

DataFiles 165

ExecutableCode 165

SAMSetup 166

SourceCode 167

TestMaterials 168

Thesis 168

APPENDIX C RELEASE FORM 169

APPENDIX D IRB APPROVAL 172

APPENDIX E ACKNOWLEDGEMENT OF FUNDING 174

APPENDIX F SOFTWARE TOOLS 175

Using Ted 175

What Ted Does 176

Another Example. 178

Opening and Closing Ted 179

The Node Properties Dialog Boxes 180

The Menus 183

The Node Questions Dialog Box 188

Questions 189

vi

Boolean Expressions 192

Answers 196

Using Fred 200

The Code 204

Set-Up 206

File Parsing and Storage 207

Utilities 208

Response Formulation 209

vii

LIST OF TABLES

TABLE PAGE

1. Words and Linear Weights 68

2. Test 1 Summary 101

3. Frequency of Spoken Queries 102

4. Comparison of Systems and Weighting Methods 120

5. Comparison of Speech Recognition Performance 122

6. Actual Versus Transcribed 123

7. Test 1 Data Summary 144

8. Final Test Data 147

9. Data Counts 157

viii

LIST OF FIGURES

FIGURE PAGE

1. Student Report 4

2. Chomsky Hierarchy 20

3. Question Set 0 97

4. Question Set 1 .99

5. Sample Question Set 2 108

6. Ask Fred 113

7. Driver Tree 114

8. Data Block 115

9. Money Tree Diagram .176

10. Student Tree Diagram 177

11. Driver Record Tree Diagram 178

12. Branch Node Properties Dialog Box 180

13. Leaf Node Properties Dialog Box 182

14. Lists Dialog Box 185

15. Node Questions Dialog Box 189

16. Student Leaf File 201

17. Response Formulation Flow Diagram 214

IX

LIST OF GRAPHS

GRAPH PAGE

1. Comparison of Normalized Weighting Functions 67

2. System Comparison 121

3. Analysis by Subject 123

4. Overlap in System Success Using Both Speech Recognition

and Transcriptions 126

x

ABSTRACT

THE EFFECT OF COMPONENT RECOGNITION

ON FLEXIBILITY AND SPEECH RECOGNITION PERFORMANCE

IN A SPOKEN QUESTION ANSWERING SYSTEM

by

Mike Dalton

University of New Hampshire, December, 2008

A spoken question answering system that recognizes questions as full

sentences performs well when users ask one of the questions defined. A system

that recognizes component words and finds an equivalent defined question might

be more flexible, but is likely to have decreased speech recognition performance,

leading to a loss in overall system success. The research described in this

document compares the advantage in flexibility to the loss in recognition

performance when using component recognition.

Questions posed by participants were processed by a system of each

type. As expected, the component system made frequent recognition errors

while detecting words (word error rate of 31%). In comparison, the full system

made fewer errors while detecting full sentences (sentence error rate of 10%).

Nevertheless, the component system succeeded in providing proper responses

to 76% of the queries posed, while the full system responded properly to only

46%.

Four variations of the traditional tf-idf weighting method were compared as

applied to the matching of short text strings (fewer than 10 words). It was found

that the general approach was successful in finding matches, and that all four

variations compensated for the loss in speech recognition performance to a

similar degree. No significant difference due to the variations in weighting was

detected in the results.

Xll

CHAPTER I

INTRODUCTION

Traditional spoken question answering systems contain a list of specific

questions to which the system will respond. The speech recognition engine

searches the list of questions, and chooses the specific question most similar to

the user's spoken phrase. The system then outputs a corresponding answer.

This research compares such a system to one that uses component word

recognition. The component word recognition system contains a list of all the

individual words that are used in the original list of questions. The speech

recognition engine individually compares each spoken word to those in the list

and chooses the most similar. When the entire phrase has been processed, the

result of the speech recognition is a string of identified words, rather than a

specific question. The system then compares the string of identified words to the

original list of questions to determine which question is most similar.

In this study, the comparison of word lists to template questions is

accomplished using an adaptation of the vector space model used in Internet

search engines. The vector space technique for document retrieval ignores the

order of the words in a search query, and instead compares words common to

both the query and to the documents on the Internet to identify the specific

documents most similar to the query.

1

Used in a spoken question answering system, the component word

recognition system is capable of responding properly to variations of the original

questions, so it is more flexible with respect to the questions it can handle.

However, the component word recognition system is more likely to make errors

in speech recognition because the recognition engine has more options to

choose from each time it makes a choice based upon a smaller amount of

acoustic information. Because of this, developers of domain-specific spoken

question answering systems have shied away from component word recognition

in the past.

Motivation

We have come to depend on computers all over the world to store the

many bits of information that are crucial to our lives. Businesses, hospitals, and

government agencies store enormous quantities of data concerning their daily

activities. On the Internet, one can find information on nearly any topic. Our

computers contain the answers to many questions.

However, just because information is stored does not mean it can be

found when needed. Many techniques of information retrieval have been

developed, and are in use today. Public access to information and the desire to

automate simple tasks have led to the study of question answering systems,

which provide answers to questions worded in a natural language, such as

English. These question answering systems include the many search engines

that can be found on the Internet. They are generally not domain-specific, and

2

search through very large amounts of data. In addition, modern question

answering systems are usually user initiated, meaning the user starts each

exchange.

With the development of speech recognition began the development of

spoken question answering systems. These are used today in telephone

systems to route calls, gather information, and answer simple questions. Spoken

question answering systems are generally domain-specific, and have access to

only a small amount of data. They are often system initiated, meaning that the

system starts each exchange by prompting the user with acceptable inputs. For

example, "Please say the name of the person you wish to speak to".

Spoken Question Answering System Considerations

Suppose a professor has access to a student transcript database system

containing reports like the one shown below in Figure 1. A spoken question

answering system would allow the professor to make inquiries using a

microphone, such as:

What is the student's grade point average?

Who is the student's advisor?

3

Figure 1. Student Report

This is not an official transcript

Name: Jennifer Allen

Address: 402 south main street bivington

Date of Birth: 12/21/1987

Student ID: 004-34-7454

Major: Biology-

Minor: none

Advisor: John Bosto

Class: sophomore

Status: passing

Credits: 32

GPA: 3.41

Completed Courses

Dept. CREF Title

BIOL 403 Introduction to Biology I

CHEM 405 Chemistry I

PHYS 410 Concepts of Physics

ARTS 426 Introduction to Drawing

BIOL 404 Introduction to Biology II

ANTH 452 Man Through the Years

CHEM 406 Chemistry II

ENGL 401 English Composition

Courses in Progress

Dept. CREF Title

BIOL 522 Cellular Processes

BIOL 505 Human Anatomy

CHEM 534 Organic Chemistry

MATH 410 Infinite Mathematics

NH

Grade

A-

B+

C

A

A

A

B

B+

Grade

I

I

I

I

ECH

14.64

13.32

8.00

16.00

16.00

16.00

12.00

13.32

ECH

A common and reasonable approach is to program the question

answering system with complete template questions. A template question is one

of the questions to which the system should respond. The template questions

are embedded in a grammar file, which is used by the speech recognition engine

to recognize spoken inputs. Each time the speech recognition engine is given a

phrase, it tries to match it to one of the templates in the grammar file. When a

4

spoken question matches a template question, an answer is generated that

includes data parsed from the record, such as, "the student's advisor is John

Bosto".

Grammar Rules

To make a system more flexible with respect to the questions it can

answer, it is common to incorporate rules into the grammar. A rule is a word in a

question that is satisfied by multiple phrases. For example, a rule called

<Subject> might match "the student", "the person", "he", or "she". Then, the

question template,

does <Subject> have a major?

would match any of the following,

does the student have a major?

does the person have a major?

does he have a major?

does she have a major?

Answer Scripting

For a system to generate natural sounding answers, it must do more than

deliver a phrase containing a piece of data from the record. While this approach

works fine for some questions, other questions become problematic. Consider

the following questions.

5

Question: what is <Subject> majoring in

Answer: the student is majoring in [Major]

When the system generates an answer, it replaces "[Major]" with data

from the record (stored in a node called Major). For the student record shown,

the system would answer "the student is majoring in Biology". However, if the

student has not yet chosen a major, the system will respond, "the student is

majoring in none". This is not a very natural sounding answer. We would prefer

something more like "the student has not yet chosen a major", when the contents

of the node Major are "none".

Question: has <Subject> failed more than three courses

This question is also problematic. The answer is not contained explicitly in

the record, but must be calculated. We want to count the number of entries in

the Courses node that have a value of "F" in the corresponding Grade node. We

would like to define our answer in this sort of way.

Question: has <Subject> failed more than three courses

Answer: if #([Courses] where [Grade] = F) > 3

yes the student has failed #([Courses] where [Grade] = F) courses

if #([Courses] where [Grade] = F) <= 3

no the student has only failed #([Courses] where [Grade] = F) courses

6

The scripting language used to specify answers must provide some

mathematical functionality. The same scripting language could be used to define

conditions for which an answer is chosen, based on the contents of the record.

Question Flexibility

A spoken question answering system such as the one described above

will only respond to questions that match one of the template questions. Even if

the information is available, if the spoken question is worded differently than the

template question, the system is much less likely to respond with a correct

answer.

When questions are reworded or worded in an unexpected manner, they

still contain most of the same words. Current non-spoken, open-domain question

answering systems, such as Internet search engines, use an implementation of

the vector space model to compare a query string to documents.

For a spoken question answering system, we wish to compare the spoken

input to the template questions. Applying information retrieval techniques to

closed-domain spoken question answering systems, a grammar file can be

composed of the component words from the template questions. The speech

recognition engine is instructed to put together a sentence consisting of the string

of individual words in the list that most closely matches the spoken input without

regard to sentence structure. The list of component words is then compared to

the template questions using an adaptation of the vector space model. Since the

7

speech recognition engine can put the words in any order, the component

recognition technique might correctly match questions with alternate wordings.

Speech Recognition Performance

The current state of speech recognition is such that it performs very well

when it has few options in the grammar file, but more poorly when it has many.

Thus, a speech recognition engine instructed to recognize either "yes" or "no" will

succeed virtually every time. When the recognition engine must choose between

25 template questions, it chooses incorrectly occasionally, even when the spoken

input is identical to a template question. When the recognition engine is allowed

to create phrases out of component words, it is likely to make considerably more

recognition errors.

A system with full question recognition should have reasonably good

recognition performance. If a question is phrased properly, the recognition

engine will often choose the correct template, resulting in a meaningful answer.

However, if the question is worded differently from a template wording, the full

question recognition is more likely to fail.

A system with component recognition is likely to have poorer speech

recognition performance. Since each word of the spoken input may be matched

to any word on the list, the recognition engine makes errors much more

frequently. However, if a question is worded in an unexpected manner, but

contains many of the same words as a template, the component recognition may

8

succeed in selecting a logically similar although structurally different question,

where full question recognition fails.

Research Objectives

The purpose of this research was to determine if the increase in question

flexibility offered by component word recognition could outweigh the decrease in

speech recognition performance given the current state of speech recognition

technology and an appropriate implementation. This study attempted to quantify

the benefit of component word recognition in domain-specific spoken question

answering systems using an adaptation of the vector space model. This study

also compared four variations of the standard weighting scheme used in vector

space based systems to determine how applicable they are to question

answering systems in which the target document (a question template) is very

short.

The research described in this document progressed as follows.

• A spoken question answering system concerning driving records was created.

• The question template set for the system was created and optimized.

• A number of candidate questions were collected using volunteer test subjects.

• The questions were processed using both full question recognition and

component word recognition.

• The results were analyzed and statistics were extracted.

9

Secondary Objective

A secondary objective of this project was to create a set of tools allowing

developers to rapidly create domain-specific spoken question answering

systems. The toolset developed is not domain-specific, and contains

functionality allowing for both full sentence recognition and component word

recognition systems. The development system contains two components; a

runtime application and an editor application. The runtime application answers

questions about a topic for which it has been configured. The application can

support either the full question or component based approaches to spoken

question recognition. Spoken answers to sample questions are generated from

scripts that can contain conditional responses based on data content.

The editor application is a graphical editor that allows the developer to

define the sample questions and appropriate conditional responses required for

the runtime application. The editor can create two types of grammar files. The

standard grammar file instructs the runtime application to utilize the speech

recognition engine for full question recognition. A second grammar file is

composed of the component words from the template questions, in support of

component based question recognition. In addition, the editor creates a control

file containing the conditional scripts used by the runtime application to respond

to queries.

10

Definitions

The following terms are used throughout the document.

Answer - This refers to the scripted answer statement used in developing an

SQA system. An answer contains no record data, and may contain mathematical

and logical expressions.

Component system - This refers to a SQA system that uses SR to recognize

individual query words, and then chooses a fitting sample question.

Editing Application - This refers to the part of the SQA development system

described in this document that is used for creating and editing SQA systems.

Full system - This refers to a SQA system that uses SR to recognize entire input

queries as sample questions.

IDF - This refers to a commonly used weighting scheme normally defined as the

logarithm (base 2) of the so called inverse document frequency function (idf).

When an actual inverse document frequency is used without using the logarithm,

it will be referred to as a simple IDF or SIDF.

Query - This refers to the actual spoken phrase uttered by a human user.

11

Runtime Application - This refers to the part of the SQA development system

described in this document that is run as an application to use the SQA system.

Although the runtime application does make use of the SR component, the SR

component is not considered part of the runtime application.

Sample question - A sample question is a question that has been explicitly

entered into the system. A full system SRE recognizes the input as one of the

sample questions. A component system SRE recognizes individual words and

the runtime application attempts to choose the closest sample question. A

sample question is sometimes referred to as a template question.

SQA system - This refers to a spoken question answering system.

SR - This refers to speech recognition.

SRE - This refers to a speech recognition engine, specifically the Microsoft

English Recognizer v5.1 recognition engine. The runtime application connects to

this engine using the Microsoft Speech Applications Programming Interface

(SAPI).

SR Component - This refers to the part of the SQA system that handles speech

recognition.

12

SR response - The speech recognition response is the string returned by the

speech recognition component after processing an input query. It is the input to

the runtime application.

System Response - A system response is the final output of the system for the

user's query. It is an answer to the query that has been evaluated and contains

record data if appropriate.

Document Organization

The remainder of this document describes this research in detail.

Chapters 2 and 3 present a review of the literature as it relates to the research.

Chapter 4 describes the mathematical models used, and provides justification for

their inclusion. Chapter 5 provides an experimental design that describes the

steps taken in this research in detail. Chapter 6 is an overview of the software

developed for this research, and provides a description of the software

functionality. Chapter 7 documents the steps taken to create a useable set of

sample questions to be used in the collection of data. Chapters 8 and 9 provide

details concerning the collection and analysis of the data. The final chapter

draws conclusions based on the analysis.

13

CHAPTER II

BACKGROUND

This chapter presents an historical overview of basic concepts in natural

language processing, providing the foundation for natural language based

document retrieval and question answering systems. The subsequent chapter

presents a more focused review of contemporary research in natural language

based question answering systems.

The field of Natural Language Processing has roots in a number of well-

established fields. The most heavily contributing fields are Electrical

Engineering, Computer Science, Linguistics, and Psychology. The goals of

Natural Language Processing range from applications such as theorem proving

and conversational agents to information retrieval and question answering. Due

to this variety of contributing fields and applications, relevant research can be

found in an enormous number of places. Much of the work done in Natural

Language Processing as well as in the contributing fields is not directly related to

the problem addressed in this document, yet the work has yielded results which

are directly related. Understanding the work in these seemingly unrelated fields

is a necessity for future work in Natural Language Processing applications. This

section is intended to serve as a summary of the work done in various fields that

is now being used in applications similar to the one proposed in this dissertation,

or has led to such work.

14

Foundations

Around 100 BC, Dionysius Thrax of Alexandria wrote a summary of Greek

linguistic knowledge. Included in this summary was a description of eight parts of

speech; noun, verb, pronoun, preposition, adverb, conjunction, participle, and

article. This list of the parts of speech is considered to be the basis of nearly all

part of speech descriptions used in every language for the past two thousand

years (Jurafsky and Martin, 2000). Thus, Thrax's work is considered the basis of

the field of linguistics.

Although man has dreamt for centuries of building a "thinking machine",

the first realistic digital computer was designed around the middle of the

nineteenth century by Charles Babbage. Babbage's Analytical Engine, as he

called it, was entirely mechanical, and used wheels, gears, cogs, and so forth.

Babbage spent most of his life trying to construct his Analytical Engine, but failed

due to the limitations of the physical system (Tanenbaum, 1992). Nonetheless,

this work is considered to be the first real effort towards constructing a digital

computer.

In the year 1900, the psychologist Wilhelm Wundt introduced the idea of

breaking sentences into constituent parts. These parts could be broken further

into smaller constituent parts (Wundt, 1900). For example, a sentence might

include a noun phrase, which includes another noun phrase and a prepositional

phrase. The prepositional phrase might include a preposition and a noun phrase.

Finally, both noun phrases might each consist of an article and a noun. An

example is the relatively simple sentence, "The man in the room is hungry." This

15

method of representing meaning by the use of a hierarchy of constituents later

became known as a Phrase Structure Grammar, and is the basis for the Context

Free Grammar, which is the most common language theory used in natural

language systems.

In 1936, Alan Turing presented a paper to the London Mathematical

Society concerning what he called "computable numbers" (Turing, 1936). In this

paper, Turing defines the Automatic Computing Machine, which later became

known as a Turing Machine. This theoretical machine led to the development of

the Finite State Automaton. His work is considered by many to be the foundation

of modern Computer Science.

Around the mid 1940's, many developers including Howard Aiken at

Harvard, John Von Neumann at the Institute for Advanced Study in Princeton, J.

Presper Eckert and William Mauchly at the University of Pennsylvania, and

Konrad Zuse in Germany succeeded in building vacuum tube digital computers.

(Tanenbaum, 1992) These machines were quite large and used tens of

thousands of tubes. They were difficult to program, expensive to build and

maintain, and extremely unreliable by today's standards. In addition, they were

much slower than modern computers, and had a very small storage capacity

(around 20 KB). Still, they were digital computers that could be programmed to

perform calculations.

In 1948, Claude Shannon first modeled language as a finite state process

based on Turing's work (Shannon, 1948). This effort marks the joining of

16

language and engineering, and paved the way for much of the work done in this

area for the next 50 years.

Early Work

In 1950, Alan Turing considered the question, "Can machines think?"

(Turing, 1950). Given the ambiguity inherent in the question, Turing proposed

that a new question be considered equivalent, "Are there imaginable digital

computers which would do well in the imitation game?" He describes his

imitation game as a test in which a human interrogator attempts to distinguish

between another human and a digital computer based on a typed conversation.

Turing believed that this was possible, but blamed the inability of computers in

his day to be successful on their lack of storage capability. In his paper, Turing

predicted that by around the year 2000, computers would have a storage

capacity of about 125 MB, and he predicted that such a system would be able to

fool an interrogator at least 30% of the time (in a five minute interview) on

average. This implication that the ability to handle natural language alone is

sufficient as evidence of thinking is still controversial today. Yet, it led to the

development of many conversational agents and other natural language

systems. This was instrumental in the creation of the field known as

Computational Linguistics, as well as much of the work described in this paper.

In the mid 1950's, with the development of the transistor computer,

researchers began working seriously on the issue of digital computers behaving

intelligently. In the summer of 1956, John McCarthy, Marvin Minsky, Claude

17

Shannon, and Nathaniel Rochester brought together a group of researchers for a

two-month workshop on what they decided to call Artificial Intelligence. At that

time, natural language systems were mainly based on keyword searches and

basic pattern matching.

At the same time, Noam Chomsky published a paper concerning the

modeling of language (Chomsky, 1956). In this paper, Chomsky defines a

language as the set of sentences it contains. He defines a grammar as a model

or mechanism that generates all sentences of a language and no sentences that

are not in the language. Equivalents, a grammar can be defined as a

mechanism that will determine if a given sentence is or is not part of a language.

Thus, the task is to design the grammar for a formal language that accurately

models a natural language, or the subset of interest. In his paper, Chomsky

formalized three types of grammars (the Finite State Grammar, the Phrase

Structure Grammar, and the Transformational Grammar), and compared them in

terms of their ability to accurately model the English language. He found that

none of these models could serve as models of the English language, but could

come close, and they each have more or less ability to be revealing, in that they

show some insight as to how natural languages work. Chomsky's Finite State

Grammar is based on Turing's Finite State Automaton, and was found to be

equivalent to what is now called a Regular Language. Chomsky's second

approach, the Phrase Structure Grammar, is a formalization of Wundt's idea of

language based on constituent structure. This grammar later became known as

the Context Free Grammar, which is the most common grammar type used in

18

natural language systems today. Finally, he defines the Transformational

Grammar, which limits allowable sentences to a small kernel of representative

sentences, which can be manipulated by transformations to produce many other

valid sentences.

Regardless of the grammar used, a grammar defines a formal language.

One type of grammar is considered more powerful than another if it can be used

to define languages that the second can not. For example, a context free

grammar can define languages that can not be described by any finite state

automaton. It is useful to classify specific grammars into groups, or types.

These types can be arranged into a hierarchy describing their relationships to

each other. That is, less powerful types are considered subsets of the more

powerful. The most commonly used is the Chomsky hierarchy (Chomsky, 1959).

Chomsky defines four general types of grammars.

• Regular Grammars

• Context Free Grammars

• Context Sensitive Grammars

• Turing Equivalent Grammars

19

The Venn diagram in figure 2 shows the arrangement of types in the Chomsky

hierarchy.

Figure 2. Chomsky Hierarchy

Regular Grammars

Context Free Grammars

Context Sensitive Grammars

Turing Equivalent Grammars

Since a grammar can be defined by a set of rules, a particular grammar is

placed in one of these four types based on its rules. A rule (or production) in a

grammar shows allowable substitutions of symbols. Each symbol may be a non-

terminal symbol (something that has yet to be fully expanded, like a sentence, or

a phrase), or a terminal symbol (a word). Non-terminal symbols will be

represented by capital letters (A, B, C). Terminal symbols will be represented by

lowercase letters (a, b, c). A lowercase x represents a string of terminal symbols

of unspecified length. Finally, a Greek letter (a, p, y) will represent an arbitrary

string of terminal and/or non-terminal symbols.

It is important at this point to note that the meaning of the word grammar

here is somewhat more general than its popular meaning. Strictly speaking, a

20

grammar is simply a set of rules or productions. What most people call

"grammar" is actually a grammar of language syntax. While natural language

processing systems do use grammars for syntax, they also may use grammars

for morphology, semantics, spelling, and so on. So, to classify types of

grammars according to their rules, the rules are written generally, and need not

necessarily apply to syntax or even to language.

Grammars that use more restrictions in their rules are less powerful. The

least powerful and most restricted grammars are regular grammars. A regular

grammar is equivalent to a regular expression, which is equivalent to a finite

state automaton. The rules for a regular grammar are as follows. The left side of

the rule must be a single non-terminal symbol. The right side of the rule may

include any number of terminal symbols. The rule may contain no more than one

non-terminal symbol, and it must appear on the end. (That is, all rules must

comply to the same standard. If the non-terminal symbol is allowed on the right

end, the grammar is a right linear regular grammar. If the non-terminal symbol is

allowed on the left end, the grammar is a left linear regular grammar. For every

right linear regular grammar, there is an equivalent left linear regular grammar,

and vice-versa.) The following is an example of a regular grammar (specifically,

a right linear regular grammar).

S->aA

S-»bB

A -> abS

B->bbS

21

Here, s is the null symbol.

Thus, starting with the non-terminal symbol S (Also called the start

symbol), we might generate sequences such as:

aab

bbb

aabaab

bbbbbb

aabbbb

bbbaabaab

and so forth. This grammar also could be used to test such sequences. While

those given above would all pass, ones such as ababbb would fail.

The general form for a right linear regular grammar is:

A-»xB

A context free grammar is less restricted. The left-hand side must be a

single non-terminal symbol. The right hand-side may be any string of terminal

and non-terminal symbols. The grammar is "context free" in the sense that the

substitution for each non-terminal symbol is independent of what comes before

or after it (its context).

In general:

A-»oc

22

The following is an example of a context free grammar.

S -> aAbB

A-»aaS

A-»Sb

B -> abAbS

S -» e

A context sensitive grammar allows more than a single non-terminal

symbol on the left-hand side. The grammar is "context sensitive" in the sense

that the substitution for each non-terminal symbol may be dependent on what

comes before or after it. That is, it substitutes a non-terminal symbol that is in

the context of strings of terminal and non-terminal symbols.

In general:

otAp -> ay p.

The rules for a Turing equivalent grammar have no restrictions.

a-» p

Turing equivalent grammars characterize all languages whose strings can

be enumerated by a Turing machine.

In the 1960's and 1970's natural language research concentrated on two

major areas; developing new grammar models and taggers, and developing

conversational agents. One of the earliest and well known working part of

speech taggers was Zelig Harris's Transformations and Discourse Analysis

Project (Harris, 1962). This tagger (or parser, as they are often called) worked

by checking each word against a dictionary list to find candidates for the correct

23

part of speech. Then, for each word, a single part of speech tag is chosen from

among the candidates using a set of hand written disambiguation rules. In the

years following, many approaches were investigated. Stochastic taggers use a

training corpus to find the probability of candidate tags in the context of the

sentence using Bayesian principles (Stolz, et al., 1965). Another approach

investigated was to prune the candidate tags using tests that involved checking

suffixes as well as the known tags of the surrounding words, since both suffixes

and context can imply a particular part of speech (Klein and Simmons, 1963).

The TAGGIT tagger assigned a part of speech tag for each word using

3300 context frame rules. Each word is checked in the context of a number of

words on either side (Greene and Rubin, 1971). This approach differs from that

of Klein and Simmons in that the latter only used one word to either side of the

word being tagged. In Halliday's Systemic Grammar, inputs are parsed in a way

similar to that of a Context Free Grammar, but the words are grouped into

clauses and groups (where these words have specific definitions), rather than

phrases, which provides more semantic information (Halliday, 1967,1970). This

follows the work of Chomsky in that deriving meaning from the input is a more

revealing way to interpret the input.

Many other unique and innovative approaches followed, including Indexed

Grammars, which are more powerful than Context Free Grammars and can

produce correct sentences that Context Free Grammars can not (Aho, 1969).

Other attempts include the Transition Network Grammar (Woods, 1970), The

Transition Network Tagger (Johnson, 1983), the Phrase Linking Grammar

24

(Peters, et al. 1982), and the Lexical Functional Grammar (Kaplan, et al. 1983).

Although these grammars offer some useful insight, none have shown

themselves to be as useful as the Context Free Grammar.

At the same as time these grammars and taggers were being developed,

others were working on conversational agents. A conversational agent is a

software entity that interfaces with a user via natural language. Conversational

agents are typically limited to some small domain of conversation. One of the

earliest, and certainly the best known early conversational agent was Joseph

Weizenbaum's ELIZA (Weizenbaum, 1966). The purpose of ELIZA was to study

natural language communication between machine and man. ELIZA takes on

the role of a Rogerian psychotherapist. As Weizenbaum notes, A Rogerian

psychotherapist can maintain a coherent conversation while knowing almost

nothing of the real world. Thus, it could be argued that ELIZA had no domain at

all. Its purpose was to respond in a natural, though not necessarily useful, way.

For its time, the success of ELIZA was somewhat undisputed. While speaking of

people who had conversed with ELIZA, Weizenbaum said, "They would often

demand to be permitted to converse with the system in private, and would, after

conversing with it for a time, insist, in spite of my explanations, that the machine

really understood them." (Hofstadter, 1979, page 600) ELIZA worked by using a

production system. The system was controlled by scripts, which defined

templates. If the input could be matched to a particular template (or frame, as

they are sometimes called), the input underwent a series of transformations such

as changing "you" to "I" and "are" to "am". Then, the outputs are essentially

25

canned responses that may involve some of the original input words, some new

words, and some transformed words (the use of the word "transformation" is

distinct from that used by Chomsky). The following is a small sample of a dialog

included in Weizenbaum's paper.

Input - He says I am depressed much of the time.

Output -1 am sorry to hear that you are depressed.

When the input does not match a template, a content free remark is generated

such as, "Please go on." or "What does that suggest to you?"

Essentially, the system looks for particular key words or patterns.

Weizenbaum tried to account for the majority of possible input strings by keeping

the templates general. For example,

Input - X no Y. Output - Why not?

Input - X my Y. Output - Why do you say your Y?

Input - Can you X? Output - Perhaps you would like to be able to X yourself.

Input - Everybody X? Output - Can you think of a specific example?

Input - X your Y. Output - Why are you concerned over my Y?

Input - You are X. Output - Would you prefer if I weren't X?

By thinking about the system's "domain", Weizenbaum was able to predict almost

all inputs in a general way, and return reasonable outputs.

Several years later, Terry Winograd presented his SHRDLU system

(Winograd, 1972). Winograd's system modeled a world consisting of colored

26

blocks of different shapes and sizes. The system was able to manipulate these

blocks, answer questions about the state of its world, and accept new facts given

by the user, such as facts about ownership, support, and proper nouns (names)

given to the world elements. It could also reason about why it performed

intermediate actions in carrying out a task given by the user. Winograd's system

assigns importance to the meaning of the input beyond what can be derived from

a simple syntactic analysis. The system uses Halliday's Systemic Grammar,

which is discussed above. Winograd defined a method for representing meaning

using the PLANNER language (Hewitt, 1971). This method is based on

representation of objects, properties, and relations. This makes SHRDLU more

flexible for adaptation to other uses than older frame based systems, such as

ELIZA. The original implementation of SHRDLU based on the world of blocks

behaves impressively.

In 1977, GUS (Genial Understander System) was implemented (Bobrow

et al., 1977). GUS was designed to act as a simplified travel agent. Bobrow

chose a different path than that of Winograd (although Winograd was part of the

GUS team). GUS acts in a way similar to that of ELIZA. The system is template

based, and each template has a number of information slots in need of filling.

The templates, in this case, may be nested. Handling a particular request

involves filling the slots in a tree of templates. The system uses an agenda list to

keep track of slots yet to be filled. GUS attempts to fill these slots by asking

questions of the user. If the user takes the initiative, GUS will activate an

appropriate template, add it to the tree and agenda list, and then try to reclaim

27

the initiative. GUS uses a Transition Network Grammar. GUS also handles a

number of ambiguities related to conversations about making reservations, but

these ambiguities are special cases, and their handling is built into the basic

design. The authors admit to the simplicity of the system. It is not intended for

actual use, but to study language. The system will only make a single trip

reservation from Palo Alto California to another city in California.

It is worth noting one other area of research done during these decades.

Many researchers realized the need and importance of large corpora, and began

collecting them. These corpora generally consist of many samples of text from

many sources. A large corpus is useful for a number of things. Most importantly,

they are used to test taggers, to test language systems, to develop statistics and

rules related to textual information, and to train taggers and other systems that

work by statistical methods.

The Brown Corpus is a one million word collection of samples from 500

written texts of American English selected from a variety of genres. It was

assembled at Brown University in 1963 and 1964, and is described by Kucera

and Francis (Kucera and Francis, 1967). This corpus was tagged mostly by the

TAGGIT tagger described above. Words left ambiguous by TAGGIT were hand

tagged (Francis, 1979).

The Lancaster-Oslo/Bergen Corpus consists of 500, two-thousand word

texts of written British English. It was collected during the 1970's at the

Universities of Lancaster, Oslo, and Bergen. The corpus is meant to be a British

counterpart to the Brown corpus (Marshall, 1983).

28

Development

In the last decades of the twentieth century, research in the areas

mentioned went mostly along the same paths, but became more complex and

specialized. For example, the number of parts of speech used by taggers has

grown enormously from Thrax's original eight. Tagsets have been defined to

enumerate the parts of speech allowable in the eyes of different researchers.

For the most part, these tagsets have grown due to diversification of the basic

parts of speech. For example the Penn Treebank Tagset defines separate tags

for singular nouns, plural nouns, singular proper nouns, and plural proper nouns.

The Penn Treebank Tagset defines a total of 45 word tags (Marcus et al., 1993).

The tagged Brown Corpus used 87 distinct tags (Francis, 1979). More recently,

the C7 tagset includes 146 word tags (Garside et al., 1997).

Many new theories of grammars have been developed, all having various

degrees of power and usefulness in explaining language. A particularly

interesting grammar, known as a Tree Adjoining Grammar (Joshi, 1985), is more

powerful than a Context Free Grammar. That is, this grammar can generate

sentences that are English sentences, but can not be generated by any Context

Free Grammar. However, this grammar can not generate all English sentences

that can be generated using an Indexed Grammar (Aho, 1969), which can not

generate all English sentences that can be generated by every Context Sensitive

Grammar. This is typical of new grammar theories. They usually have a power

falling somewhere between context free and context sensitive grammars. The

29

power of a grammar (ability to generate sentences that less powerful grammars

can not) is not more important to most developers than the explanatory power of

the grammar. That is, it is often desirable to design a grammar that models

language in an intuitive way, so as to give some insight to the structure of

language itself. The ability for a grammar theory to act intuitively lends to an

easier application of the theory, and adds to our knowledge of linguistic structure.

In Araund Joshi's paper, "Tree adjoining grammars: How much context

sensitivity is required to provide reasonable structural descriptions?" (Joshi,

1985), the strength of the Tree Adjoining Grammar is explained. The Tree

Adjoining Grammar can be used in a natural way to describe dependencies and

relations that a Context Free Grammar can not. For example, in the sentence

The man at the counter is tall.', the word "is" is dependent on the word "man". If

"men" were used, the verb would have been "are", not "is". With a Tree Adjoining

Grammar, dependencies like this are built into the representation of the

grammar. Thus, these dependencies and relations can exist over an unbounded

number of words. In a Tree Adjoining Grammar, each sentence is built using

basic trees. The main portion of the sentence is defined by a base tree.

Dependencies, relations, and redundancies are factored out into auxiliary trees.

Sentences are generated (or equivalents, parsed) by adjoining (inserting)

auxiliary trees into a base tree. While the auxiliary trees may be adjoined in the

middle of a dependency, the relation still holds.

More recent language research has become more specialized and, in

many cases, focuses on a particular problem, or construction. An example is,

30

Kay and Fillmore's 'What's X doing Y? construction'. This work deals with

extracting the meaning of sentences of the form "What's this fly doing in my

soup?" in spite of the obvious ambiguity which results in the humor of the well

known joke (Kay and Fillmore, 1999).

Part of speech taggers have become more reliable and more accessible.

Modern taggers use a variety of methods. While some still use production

system type rules based on common syntax, others (called stochastic taggers)

are trained from pre-tagged corpora and use only statistical information. The

advantage to this technique is that the system can properly tag fragments and

other improper "sentences" that are used by humans in spite of their grammatical

flaws. In 1983, Ian Marshall published a paper describing a stochastic tagger

designed to tag the Lancaster-Oslo/Bergen Corpus after being trained using the

Brown Corpus (Marshall, 1983). Rather than analyze the sentences in the LOB

Corpus syntactically, the system analyzed the tagged Brown Corpus to derive a

transition matrix of the probabilities of one tag following another. Marshall's

system then generates a list of all possible tag sequences for an input sentence,

and using a Bayesian approach, calculates the likelihood of each tag given the

preceding tag. Then, the system calculates the total likelihood of each tag

sequence to find the most probable. While this approach is more likely to find

correct tags for words used improperly, it is of little use to linguists, as it offers no

insight as to how language works. The CLAWS tagger works in a similar way,

and was also trained using the Brown Corpus (Garside, 1987).

31

Transformation Taggers use a training corpus to deduce rules to be used

in a production system. These taggers have the advantage of being able to deal

with incorrect usage, and they provide rules for these usages. It has been known

for decades that artificial intelligence systems are good at finding patterns and

deducing rules that humans can not. Most importantly, since actual rules are

generated, this approach offers more insight to the workings of language. An

example of a Transformation Tagger is the Brill Tagger (Brill, 1995).

Another recent change has developed in the collection of corpora. Older

corpora consisted of samples of written text. With speech recognition systems

becoming more reliable, a number of efforts have been made to collect spoken

language corpora. Two well-known examples are the ATIS Corpus (Air Travel

Information System), and the Switchboard Corpus. These corpora differ from the

traditional ones in that they include such things as false starts, colloquial

pronunciations, noise, and extraneous utterances, such as "urn" and "uh". The

ATIS Corpus was collected for use in designing automated airline reservation

systems, such as the GUS system described above. The samples were

collected from volunteers who were led to believe that they were testing an actual

working automated reservation system. In actuality, they were conversing with a

human in another room (Hemphill et al., 1990). The Switchboard Corpus was

gathered in the early 1990's. It contains 3 million words from 2430 telephone

conversations (Godfrey et al., 1992).

While theories of language and language processing were being

developed by engineers, computer scientists, psychologists, and linguists,

32

several ideas from the field of information retrieval were formulated that are now

finding use in question answering systems, most importantly, the Vector Space

Model (Salton, 1971). The Vector Space Model of Information Retrieval is used

in many current systems, including most web search engines. (Jurafsky and

Martin, 2000) This approach completely ignores syntactic information, and offers

no insight to the problems of language. Nevertheless, it has been found to be

quite useful in locating documents from a natural language query. The basic

idea of the method is that query strings are broken into words, or components.

Each component is represented as a vector orthogonal to all others. A resultant

vector represents the search query. Each document is represented by a vector

in a similar way. Once the vectors are normalized, the distance between the

query vector and document vectors serves as a measure of similarity. The

approach is made more useful with the addition of term weighting, where certain

terms (words) are represented by longer vectors than others. Originally, this

weighting was done by hand. Newer approaches use factors such as term

frequency, which was actually developed before the Vector Space Model (Luhn,

1957). The idea is simply to give more weight to a term that appears more

frequently within a given document. Another factor commonly used in Vector

Space Model systems is the inverse document frequency (Sparck Jones, 1972),

which essentially penalizes words that are common to many documents, but

increases the weight assigned to words that are unique to only a few documents.

Most vector space models employ what is called tf-idf weighting(term frequency -

inverse document frequency).

33

Recent Work

By the turn of the twentieth century, question answering had become recognized

as a field of its own. Researchers differentiate between question answering

systems on a number of levels. A closed-domain question answering system is

designed to answer questions about a particular topic or area. Open-domain

systems attempt to answer questions about any topic. The data containing the

answers to the questions may be a large or small collection. Most current

research has focused on large collection systems, particularly where the

collection is the Web. Most Web question answering systems return a document

or list of documents. Some return a portion of a document, commonly referred to

as a snippet, which contains the answer. A small amount of research has been

done on systems that construct answers. Question answering systems can use

typed or spoken input.

In 1999, the Text Retrieval Conference (TREC, co-sponsored by the NIST

and the US DOD), began its question answering track, allowing developers to

compete and compare methodologies. Each year, the conference offers a large

collection of text data from newspapers and various agencies, and a list of

questions. The set is used to evaluate open-domain, large collection, typed-input

question answering systems. Participants test systems that return snippets. The

TREC QA track questions and data sets are also used by many developers and

researchers who are not participants for system evaluation. "Current Question

Answering (QA) systems extract answers from large text collections by (1)

34

classifying the answer type they expect; (2) using question keywords or patterns

associated with questions to identify candidate answer passages; and (3) ranking

the candidate answers to decide which passage contains the exact answer."

(Narayanan, 2004, page 1)

A large concentration of current QA research concerns typed, open-

domain Web systems. These systems return documents or snippets that answer

the question posed. For the most part, they use a vector space model or some

combination of vector space, natural language processing, and statistical

techniques to compare the words in the search query to words in the Web

documents. Some systems that exemplify this approach are given in (Wiegand,

2007), (Radev, 2002), (Roussinov, 2004), and (Pado, 2007).

A system developed at Cornell (Carde, 2000) uses information retrieval

techniques (specifically, the SMART Retrieval vector space model system

developed by Salton) to generate a list of potentially relevant documents. Then,

a shallow semantic analysis is used to find relevant passages within the

document, and to form a response.

Researchers working on these systems are generally studying one of two

problems: incorrect responses, and the inability of search engines to handle

naturally posed questions. "Commercial search portals, such as Google, Yahoo,

Alta Vista, and AOL, still lack the ability to answer questions expressed in a

natural language." (Roussinov, 2004, page 400)

35

In closed-domain question answering research, the approaches tend to

use templates, or follow the natural language path. The START system (Katz,

1997) allows users to ask questions about a variety of topics using typed natural

language. The system converts questions into T-expressions which contain the

relevant question information. This expression is then compared to T-

expressions in the START knowledge base.

Another example of a current purely natural language approach to closed

domain question answering was developed at Rutgers University (Galitsky,

2002). This system was developed for use by financial and legal advisors,

where, as the author points out, the information in the database is constantly

changing. Question answering is performed by comparing the semantic

representation of the query with semantic representations of each of the potential

answers.

Other, less traditional approaches include the Microsoft Deep Listener

project (Albrecht et al., 1997), which uses a Bayesian approach in an attempt to

discern user intentions. The project is based on the ideas of users' goals and

beliefs (Horvitz, 2001).

The Proteus Project (Shinyama, 2002) uses the concept of named entities

to compare sentences. Essentially, the system uses things that can be named

(proper nouns, numbers, and so forth) as key words to determine if two

sentences have the same meaning.

There are many facets to the functionality of a QA system, and different

researchers have chosen different areas to investigate within the field. Since

36

most QA systems compare the words in the question or query to the words in

documents, there is an assumption made that the answer to the question

contains the same words as the question. One way researchers have tried to

combat this problem is by using answer checking algorithms that use natural

language techniques to determine which candidates properly answer the

question. (Narayanan, 2004) (Bilotti, 2007)

Another example can be found in a system developed at the University of

Southern California (Hovy et al., 2001). This system uses information retrieval

methods to find a number of candidate answers. Then, these candidates are

pruned by using a semantic analysis to see if the candidates appropriately

answer the question. That is, each question is considered to be of some

predefined type. A question that begins in "How many..." should result in a

number. A question that starts with "Who...", should result in a name.

A common theme in this development of the next generation of web

search engines is the use of the existing redundancy on the Web to generate

more reliable answers. Developers work under the assumption that there will be

many corroborations and contradictions on the Web. By searching through and

comparing multiple sources, the systems attempt to locate popular snippets. A

Microsoft project used this technique with idf weighting. (Dumias, 2002) Since

then, the idea has become increasingly popular. (Wu, 2007), (Lin 2007)

Another way researchers try to ensure that returned answers fit the posed

questions is by making use of existing FAQ (Frequently Asked Questions) pages.

The FAQ Finder system (Burke et al., 1997) uses frequently asked questions

37

pages as a knowledge base. The questions are used as templates and these

templates are matched to new questions using a combination of statistical and

natural language techniques.

A project at the University of Amsterdam compares typed questions to

FAQ pairs by employing a vector space model to determine similarity. For each

FAQ pair under consideration, the question, answer, and page title all contribute

to the overall weight given. (Jijkoun, 2006)

Yet another FAQ based project, based at the University of Massachusetts,

proposes to collect many question-answer pairs from FAQ pages. Questions

having the same meaning are linked by comparing all the questions to each

other, and by comparing the answers to each other. These linked FAQ pairs can

then be used to answer questions at a later time. The research examines a

number of common comparison techniques previously found to be successful in

conventional open-domain systems. "However, similarity measures developed

for documents do not work well for questions because questions are much

shorter than documents." (Jeon, 2005, page 617)

The above research proposes to collect information to be used in query

responses at a later time. A related idea is being investigated at Google Inc.

Since the relevance measure of a page that contains a correct answer may be

low, the Google team proposes to collect a large amount of data beforehand.

(Pa§ca, 2007) These projects represent a movement away from searching

through documents, and toward focusing on the mechanics of question

answering.

38

As the performance of speech recognition software improved, researchers

saw a new way to develop both open-domain and closed-domain QA systems.

An early attempt was made by Schofield and Zheng to use speech recognition in

an open-domain web QA system. Due to the growing availability of handheld

devices, a desire had arisen to develop a hands-free method for question

answering. "To our knowledge, automatic answering of spoken natural-language

questions has not previously been attempted." (Schofield, 2003, page 178)

Schofield and Zheng concluded that "speech can be used for automatic question

answering, but that an interface for correcting misrecognitions is probably

necessary for acceptable accuracy." (Schofield, 2003, page 180)

Since then, a number of open-domain spoken QA systems have been

developed. "In such systems, the automatic speech recognition (ASR) result of

the user utterance is matched against a set of target documents using the vector

space model, and the documents with high matching scores are presented to the

user." (Misu, 2005, page 145) Developers have come to similar conclusions.

This combination of an ASR and QA system performs poorly due to the

inadequacies of current speech recognition technology. (Harabagiu, 2002)

Early closed-domain spoken QA systems used simple frame approaches.

Web Galaxy (Lau, 1997), Jupiter (Zue, 1995), and Dinex (Seneff and Polifroni,

1996), are spoken QA systems that provide information on the World Wide Web

or telephone about travel, weather, and dining establishments. These systems

all use a basic template approach to answer user queries. The system matches

39

the query to the closest template, and then fills in the slots to generate a well-

defined question.

A team at the NHK Science & Technical Research Laboratories in Tokyo

proposed a closed-domain spoken QA system that uses idf weighting and

morphology rules. However, for evaluation, the speech recognition was disabled

because it was found that the speech recognition performance was too

detrimental to the system. (Goto, 2006)

The research described in this dissertation concerns closed-domain

spoken QA systems with a small data collection. Successful systems of this type

have been template based. Advances have been slow and difficult due to the

current state of speech recognition. Vector space models employing tf-idf

weighting have been used in many open-domain, typed QA systems, but are not

used frequently in closed-domain systems as they have proven ineffective

because of the small size of questions. The research in spoken QA systems that

does exist has focused on the performance of the question answering algorithms

apart from the speech recognition rather than the effect that the speech

recognition and question answering algorithms have on each other.

40

CHAPTER III

MODERN NATURAL LANGUAGE QUESTION ANSWERING SYSTEMS

Introduction

"Current research focuses on text-based, open-domain question answering."

(Molla, 2007, page 42)

The vast majority of current question answering research focuses on

open-domain, text-based systems; specifically web based document retrieval and

answer extraction systems. While there are many areas and methods to

investigate, one of the most common applications involves the finding of so

called "factoids", which are phrases or short excerpts taken from numerous

documents that answer a user's query. These QA systems are evaluated and

compared annually at workshops held by groups such as the Text REtrieval

Conference (TREC) and the Nil Test Collection for IR Systems (NTCIR) project.

Although closed-domain QA systems, or Restricted Domain Question

Answering (RDQA) systems were examined in past decades due to technical

necessity, a renewed interest has surfaced recently for several reasons. New

approaches and methods developed for open-domain systems can be applied to

closed-domain systems and evaluated. Better performing closed-domain

systems can be designed using today's technology. Also there are instances in

which the testing of new methods becomes problematic in an open-domain

41

application. A less complex closed-domain counterpart sometimes serves as a

more useful test system.

General Question Answering Approaches

There are three major approaches used in both open and closed-domain

systems, and many developers integrate several within a system in various ways.

A Language Model (LM) approach uses linguistic information to extract

meaning from text. Generally speaking, terms are tagged as to their part of

speech. Text strings are compared by searching for agreement of subject,

action, object, and so forth. Since part of the development of such systems

entails building the model and choosing appropriate generalized language

structures, systems using approaches of this type often investigate specific

linguistic question forms, such as why- questions, or what is- questions. LM

systems typically use synonym lists, morphology, co-relation, and transformation

rules to expand the search query to multiple similar queries. The LM approach is

also the commonly used method for transforming a query into a formal

representation such as a structured database query (Demner-Fushman, 2005).

A template based approach is used when the query forms are relatively

easy to anticipate. Because of this, the template approach has found use mostly

in closed-domain systems, where the content is more restricted. A set of

template questions, or sample questions, is created that embodies the domain-

specific knowledge of the system. Each template has a corresponding output

(Sneiders, 2002).

42

Although the word "template" is commonly used to refer to the target of a

search as it is in this case, it more generally refers to a potential phrase that has

empty elements, each of which can be filled from a set of predefined values. It is

often the case that the word "template" implicitly refers to both sample questions,

and questions with empty elements. In open-domain systems, an LM

transformation is sometimes used to map a user query to template questions

(Katz, 2002).

Perhaps the single most common approach used in question answering is

the so called cosine similarity comparison, or vector space model. In

mathematics, the cosine of the angle between two vectors is a well known

measure of similarity in that it gives the projection of the first vector on the

second. That is, it gives the component of the first vector that is common to the

second vector. The application of the vector space model is to view each query

and sample question as a vector of component words. Although the cosine

function is not used computationally, the term "cosine similarity measure" is often

used in the literature to refer to the summing of weighted terms approach of the

vector space model. See chapter 4 for a detailed explanation of the vector

space model. Often called a "bag of words" approach, two strings (usually a

query phrase and a target document) are compared by noting words in common.

The words are given weights according to rarity. A sum of the weights of the

words in common provides a measure of similarity with which any number of

such targets can be compared to the query.

43

Less common approaches include systems that use primarily probabilistic

methods (Soricut, 2004), and machine learning techniques (Tsur, 2004).

Since the majority of current QA research is concerned with open-domain

systems, the question arises as to the appropriateness of these approaches to

closed-domain systems. Closed-domain systems contain domain-specific

information, often in the form of template questions with associated responses.

The user query is compared to the template questions or answers in some way

to determine which question/answer pair is most relevant to the query

(Otterbacher, 2004).

In a comparative study, Hidaka and Masui found that the LM approach is

more effective than a cosine similarity in finding relevant information when the

search target is a document, but that the LM approach was significantly slower

(Hidaka, 2003).

However, in an open-domain setting, the query can be quite long, and the

search targets are usually documents. A key difference between this and closed-

domain systems is that the strings being compared in a closed domain system

are typically much shorter. Closed-domain QA researchers have found that

although it was once thought that cosine similarity was applicable only to lengthy

documents, it works better in some closed-domain systems than an LM approach

(Burke, 1997).

(Jeon, 2005) reports that the cosine similarity did not perform as well as a

LM approach in a more recent study claiming that the cosine score varies with

44

template length. Others have addressed this issue by incorporating the template

length into the similarity score (Akiba, 2004).

Closed-Domain Systems

Current closed-domain QA systems commonly use some form of cosine

similarity measure to compare a user query to templates (Sneiders, 2002)

(Hedstrom, 2005).

A related area of research involves answering users' questions by

consulting existing Frequently Asked Questions (FAQ) pages on the web.

Systems of this type compare a user query to the set of questions and/or

answers on one or more pages to find an answer to the query. The target string

in this comparison is much more similar in length to a sample question than a

text document.

Perhaps the earliest FAQ system is FAQ Finder (Burke, 1997). FAQ

Finder is built on a set of explicit assumptions, including that the question part of

the QA pair is the most relevant in determining a match between a user query

and the QA pair. The FAQ Finder system uses a combination of cosine similarity

score and LM comparison. Though both approaches contribute to the success of

the system, the team reports that the cosine similarity is the more significant

contributor.

Another team including some members of the original FAQ Finder team

revisited the project instructing the system to compare the query to the QA

answer using LM methods when the query to question comparison was

45

inconclusive. The results showed that the system did benefit from the additional

information for questions of the how- type, as these were the only ones the

language model was built for (Mlynarczyk, 2005).

Since the original FAQ Finder system, a number of groups have

developed FAQ like systems. A Microsoft project uses various reformulation

techniques and a "statistical chunker" to transform the user query into potential

answer statement forms for comparison to FAQ answers. They found that

transforming a question to an answer representation more often hurts than helps

performance, especially for complex questions (Soricut, 2004).

Another approach is to compare the user query to many elements of the

FAQ page, including the question, answer, page title, and page text. The

reasoning is that questions contained in FAQ files often rely on implicit

information. For example, a FAQ page concerning the Ford Mustang automobile

might have the question "how much horsepower does the engine have?", without

explicitly specifying what engine the question refers to. This system calculates

comparisons for a number of combinations and variations of comparisons. It was

found that the best performing models used matching based on the question part

of the FAQ page (Jijkoun, 2005).

Indexing

Cosine similarity measures generally involve indexing of the strings being

compared, assigning weights to the indexed terms, and finally comparing the

indexed, weighted terms as vectors. Indexing refers to the choice of terms and

46

variations to be used in the comparison. There are several common indexing

techniques used in open-domain systems, and some have been applied to

closed-domain research as well.

Stemming

Word stemming refers to the removal of any affixes present in a word

leaving only the root. Thus, "driving", "driver", and "drives" all have the same

stem, "drive". Stemming has proven effective in open-domain applications, in

which the text being searched may contain multiple forms of a search keyword,

suggesting it is more related to the keyword (Crestani, 2001). Some researchers

have tried to incorporate stemming into closed-domain systems (Leuski, 2006)

(Sneiders, 2002) (Crestani, 2001). However, it has been shown that whether

comparing query to question or to answer, word stemming does not aid in finding

relevant QA matches (Jijkoun, 2005).

Stop Lists

A stop list is a list of terms that are to be removed as carrying no useful

information. Stop lists generally contain words that are common in the language.

The removal of stop words greatly increases the performance of open domain

systems, where the documents being indexed can be quite large. The use of

stop lists has been applied to closed-domain systems as well (Hedstrom, 2005).

However, in closed-domain systems, the use of stop lists has not proven

effective. It was reasoned that in closed-domain systems, common question

47

words such as "who" or "how" might be valuable, but are removed because they

are common (Crestani, 2001) (Jijkoun, 2005).

N-qrams

Another common indexing technique is to group words into multiword

terms, or n-grams. This grouping greatly multiplies the computational effort

required in the comparison, but provides valuable context information

(Otterbacher, 2004). For example, both of questions, "does painting cause

headaches?" and, "which painting does he like?" contain the words "does" and

"painting", but not in the same order. The part of speech for the word painting is

not the same in the two questions, and they have different meanings. Indexing

the questions as bi-grams, for example, would create the terms "does painting",

and "painting does", which are unique.

An alternative way to retain this contextual information without the added

processing associated with n-grams is suggested in a system developed at

Google Inc. (Franz, 2002). The system defines "collocations", which occur

between two words when the probability of observing the second word is

statistically dependent upon the observation of the first word according to the

likelihood ratio (Dunning, 1993).

Synonyms

Another technique that demands more processing, but expands the set of

index features is the inclusion of synonyms. Synonyms are commonly added

48

after stemming is done, and before morphological expansion (Burke, 1997)

(Sneiders, 2002).

Weighting Techniques

Although phrases are sometimes compared using LM, probabilistic, or

machine learning approaches, the most common approach by far within closed-

domain systems has been some variation of the cosine similarity approach using

classical tf-idf weighting. See chapter 4 for a discussion concerning tf-idf

weighting.

There has been little discussion about the use of the term frequency in

closed-domain systems. Almost without exception, researchers include the term

frequency factor without justification other than its successful history in document

retrieval. The logarithm is always used as part of the idf weight, although the

base is rarely mentioned, implying a common logarithm as is specified in (Burke,

1997). No substantial efforts have been made to examine the fitness of the

inverse document frequency function in closed-domain systems. Researchers

feel that while other weighting schemes may prove more effective, the classical

idf measure is commonly used because it is arguably the most standard scheme,

and has shown success in many applications (Crestani, 2002).

Effects of Speech Recognition

As is the case with typed QA systems, the vast majority of research in

Spoken Question Answering (SQA) systems focuses on open-domain problems.

49

Once again, some of the ideas and findings of open-domain research are

relevant to closed-domain efforts.

Studies involving employing SR in spoken document retrieval systems

have found that speech recognition errors do not adversely affect the accuracy

when the relatively long target documents (audio documents) are converted to

text, due to redundancy and contextual information within the document.

However, these same studies often suggest that misrecognitions could have a

profound effect on system accuracy when the query is being recognized,

particularly if the queries are short (Allan, 2002). Allan defines a query as "short"

if it has fewer than 30 words.

Some open-domain SQA systems have been developed using Automatic

Speech Recognition (ASR), and cosine similarity for document retrieval

(Schofield, 2003) (Fujii, 2003) (Akiba, 2004). ASR in this context refers to an

SRE that uses a dictation grammar that contains all of the words in the language

of interest, rather than an anticipated subset. This combination of an ASR and

document retrieval does not perform satisfactorily from a practical point of view

(Akiba, 2004). The main problem being speech misrecognitions, suggesting that

some mechanism for correcting them be used (Schofield, 2003). Schofield found

that when comparing SR inputs to transcribed inputs, the SR errors severely hurt

system performance. The system scored 39% versus 58% correct responses for

SR and transcribed inputs respectively for one subject, and 26% versus 60% for

the other.

50

Other open-domain developers have stated that SR errors become

particularly problematic when the query is short, where "short" may mean

anything from 10 to15 words (Barnett, 2002) to less than 28 words (Crestani,

2001).

Following the trend in current technology, AT&T Corp. was awarded a

patent in 2007 for a spoken FAQ type QA system. The system uses classical

cosine similarity with tf-idf weighting, which is enhanced by additional language

modeling methods (Gupta, 2007).

The Current Research

The research described in this dissertation concerns closed-domain SQA

systems. Following the popular methodology for FAQ type systems, sample

questions (or template questions), are provided as analogous to the question part

of the FAQ QA pair. The user query is compared to each of these sample

questions to determine a closest match.

Approach

Given that LM approaches are generally expensive to build and maintain,

are processing intensive, and can be at odds with the domain specific aspect of

the system (i.e. parts of speech vary, and meanings can become more specific in

restricted domains), they are not an attractive choice. In addition, LM

approaches tend to increase the size of the system lexicon, decreasing SR

performance, which is a major concern in SQA systems.

51

The cosine similarity is preferred, as it is cheap, fast, and not domain-

biased. A cosine similarity measure involving tf-idf weighting is used to compare

the user query to the sample questions, based on the belief that the question

contains the useful information in matching a query to a QA pair. Template type

functionality is offered through the use of grammar rules, but always on a closed-

domain system level. That is, the overall approach does not include any specific

rules, just the ability for a system developer to add them.

Stemming

Word stemming was not used. The full word offers valuable information

concerning parts of speech and context. Consider the questions, "How much

does a canoe cost?" and, "Is canoeing safe?" Stemming would remove the fact

that the first question is about an object (canoe), and the second refers to an

action (canoeing). This information obviously would help in steering the system

towards the best sample question.

Stop Lists

Stop lists were not used. The purpose of a stop list is to remove common

terms from the query and targets. Since the terms are already weighted based

on their actual rarity in the application, further removal based on open-domain

generalizations is not needed, and is likely to remove useful words, as discussed

above. While a word in a stop list may be common in the language, it may in fact

be very rare in the sample question set.

52

N-qrams

Although n-grams have proven useful in capturing context, they also

greatly increase the processing time required for each exchange. No attempt

was made in this research to find useful n-grams automatically. The system

allows for the inclusion of anticipated n-grams to a particular closed-domain

system by the use of grammar rules. A rule with multiword elements is treated

as an n-gram and given a single weight.

Synonyms

The SRE can only recognize words included in the SR grammar file. The

inclusion of synonyms and word variants created by stemming and morphological

rules associated with synonym use would require an unacceptable lexicon size

without much expected benefit. Again, anticipated synonyms can be added to a

particular domain-specific system as a rule.

53

Similarity Measures

As will be discussed in detail in Chapter 4, several variations of the

classical tf-idf weighting are used in this study.

traditional IDF % = l n
(N \

l,000,000x —
V n

kJ

A N

Simple IDF " W = 4 x
nk

N-nk

Linear w*»« = 1 0 0 x - ^ r f

Binary ^.,,=1

Where N indicates the total number of template questions and nk indicates the

number of questions in which word k occurs. These four cosine similarity

functions are intended to evaluate the effect of placing relatively more or less

weight on uncommon words, (uncommon within the sample question set).

A natural logarithm was chosen for the first function. In all cases, the

system used binary term frequency weighting. If the query word appeared in the

sample question, the term frequency is 1. Otherwise it is 0. A binary term

frequency was used for two reasons. The term frequency is dependent upon the

target document, or sample questions in this case. Thus, weights must be

calculated for words independently for each target. This is an undesirable

requirement, particularly for systems that update their information frequently.

54

More importantly, queries and sample questions rarely duplicate words. In a

document retrieval task, if a term appears many times within a document, it

stands to reason that the document is highly related to that word. On the other

hand, in a query to question mapping, in the rare case that a term appears twice,

the duplication may have no importance. Consider the question, "What is the

color of the book?" Since the word "the" appears twice, its doubled term

frequency doubles the weight of the word for that question alone, although the

word "the" is no more important than it is in the question, "What color is the

book?" In addition, if a sample question worded this way is weighted with a non-

binary term frequency, all other queries containing the word "the" would be

unfairly biased toward the question with the duplicate word.

Speech Recognition

Almost without exception, developers of SQA systems chose to use ASR,

in which the SRE is instructed to recognize words from the application language

using a large vocabulary. This is understandable in open-domain settings where

the query content is unknown. As shown above, even with LM optimizations, the

success of open-domain SQA has been limited. As suggested earlier, this sort of

difficulty is one of the motivations for the renewed interest in closed-domain

systems. As discussed above SR performance becomes increasingly important

as the string length (query length) becomes shorter, and many report 30 words

as a cutoff point.

55

The queries in this dissertation tended to be between 1 and 10 words in

length. To achieve acceptable SR performance, ASR was not used. The

grammar file contains only words that appear in the sample questions.

In addition to the promise of improved SR performance, there is a more

important motivation for not using ASR. Only the words that appear in the

sample questions have defined weights. Other words that are recognized by the

SRE will be ignored in the comparison, and so there is no benefit to including

them in the speech recognition.

Summary

While other studies have explored the use of cosine similarity scores

(using weighted sums) to compare short text strings, past research has not

addressed the issue of the impact of speech recognition as it applies to such

systems, or to closed-domain SQA systems in general. It has been suggested

that recognition errors are compensated for when the target document is large.

However, the impact of recognition errors on short queries has not been explored

to the extent that it has in this dissertation.

In systems that apply cosine similarity scores, classical tf-idf weighting is

always used with very little variation. No attempt has been made in past studies

to examine weighting schemes other than tf-idf when used in similar applications

where short text strings are compared, and specifically in domain-specific SQA

systems. This dissertation examined the difference between several cosine

similarity weighting methods, and examined the impact of speech recognition

56

errors on such systems by both comparing the performance to a so called "full"

system, and comparing the performance to a system with "perfect" speech

recognition by the use of query transcripts.

The system proposed in this dissertation uses a set of template questions

to which each user query is compared using several variations of the cosine

similarity measure with tf-idf weighting. These variations were compared to see if

any showed a significant performance benefit. No indexing techniques, such as

stemming, synonym expansion, morphological expansion, n-gram featuring, or

stop lists were employed, although the functionality afforded by some of these

techniques is embedded in the ability to use grammar rules. The SRE used a

grammar containing only words that appear in the template questions, rather

than the common large vocabulary ASR.

57

CHAPTER IV

COMPONENT SYSTEM PROCESSING TECHNIQUES

Processing Techniques

This chapter describes the processing techniques used in the component

system. The majority of this processing entails calculating weights for the

component words. Four weighting functions were investigated for comparison.

These weighting functions are described and evaluated.

The full system uses an SR grammar that contains the sample questions

as atomic entities. If the SRE does not find a match with a high enough

confidence score, it sends a message to the runtime application specifying that

the speech was not recognized. However, assuming that the SRE returns a

phrase, it is guaranteed be one of the sample questions. The SQA runtime

application is identical in both the full and component systems. When the SRE

returns a recognized query to the full system runtime application, this phrase is

compared to the sample questions using the linear weighting method described

below. Since the SRE always returns a phrase that is identical to one of the

sample questions, the runtime application always finds the same sample

question it was given by the SRE. Once the runtime application has chosen a

sample question, the corresponding answer can be filled with record data and

sent to the user as a system response.

58

The only difference between the full system and the component system is

that the component system uses an SR grammar that contains individual words

rather than complete question phrases. The SRE chooses a grammar word for

each word in the spoken query and creates a string to contain them. The runtime

application receives this string, and compares the string to the sample questions

on a word by word basis. This comparison is achieved by using a sum of

weights. Although the cosine function is not used computationally, the term

"cosine similarity measure" is often used in the literature to refer to the summing

of weighted terms approach of the vector space model. The sum of the vector

weights is proportional to the cosine of the angle between the vectors as shown

by the vector dot product; A«B = |A||B|cos(6), where the dot product is the sum of

the vector components.

The sum of weights method for scoring candidate sample (template)

questions based on word content assumes that the km word in the grammar has

been assigned a weight wk. Each sample question is represented by a vector of

elements tjk indicating (by 1 or 0) whether or not the jm sample question contains

the kth word in the finite grammar. The list of words returned by the SRE in

response to a spoken query is represented by a similar word selection vector

with elements qk, which indicate (by 1 or 0) whether or not the spoken query

contains the kth word in the finite grammar. Each sample question is assigned a

score Sj based on:

59

The sample question with the highest word score is selected as the most likely

match to the spoken query.

The operation of this classifier is dependent upon the initial selection of

the weights wk. Four approaches to term weighting were examined.

Weighting Functions

IDF - The logarithm of the inverse document frequency

Linear - A linear mapping of inverse document frequency to weight

SIDF - The literal inverse document frequency function; a simple IDF

Binary - Words are given a weight of 1

IDF

The inverse document frequency weighting method is commonly used in

information retrieval. In the literature, idf weighting generally refers to:

"W=log :
rN\
\nkj

where N is the total number of documents under consideration, and nk is the

number of documents within that set that contain the search word. Although the

term N/nk is the inverse document frequency function, it is common practice to

take the logarithm. The base 2 logarithm is consistent with a justification based

on information theory. However, both the base of the logarithm and the inclusion

of an arbitrary scale factor have no impact on the result when the objective is to

compare scores (Robertson 2004, p.503-520), and the natural logarithm was

used for this application. The literal inverse document frequency term is

60

multiplied by one million to give the output a scale similar to the other methods

under consideration.

"V= l n
(N^

1,000,000 x—

Document retrieval systems typically utilize some variation of tfidf

weighting to select the weights which assign relative importance to different

words in a query string, where tf is the term frequency. The term frequency is

defined as the number of times a search word appears in a document, or in this

case, a sample question. This approach is motivated by a statistical model of

word occurrence over a large set of independent documents, each containing a

large number of words. For a survey of theoretical bases, see (Robertson 2004,

p.503-520). While idf weighting may in fact also work well in the sample question

selection application, it is not clear that the underlying statistical model is

relevant, given the limited number of sample questions, the limited number of

words in each sample question, and the likelihood that the sample questions will

not be independent.

The idf weights used in this research corresponded to tfidf weighting with

a binary term frequency. The term frequency was deliberately omitted since it

was not clear that this was a relevant parameter for selecting compact sample

questions, in contrast to selecting many-word documents. However, since

individual words did not occur more than once in a given sample question, the

two weightings (idf versus tf*idf) were equivalent.

Linear

61

An alternative approach to selecting the unknown weights wk is to define

mathematically a reasonable performance metric, and then to determine the

values for the weights which optimize the performance metric. This approach is

used commonly in optimal signal processing, control, and pattern classification

applications in which insufficient statistical information is available to use

Bayesian optimization techniques. In vector pattern detection applications, it is

considered desirable to maximize the distance in the feature vector space

between different classes. In the current application, the difference between the

sample question scores for the fa and jm sample questions is given by:

si-sj=Y,^k{tik-tjk\vk
k

where tik and tjk have values of 0 or 1 signifying the existence of word k in the fa

and jth sample questions. If the spoken query is identical to the fa sample

question, this becomes:

* -sj<=5>*fa - ^ K (where <ft=w
k

A reasonable measure of the overall separation between the scores for

correct versus incorrect sample questions is to compute the sum of the

differences between the score for the correct template and all scores for incorrect

templates, computed over all possible correct templates.

s=£ £ (*/ - S
J)=E X T. ** (** - hk K

i j i j k

Since the term weight wk depends only upon k, it can be brought outside the

summations for / and /. Distributing tik, noting that tik tik = tlk, and then factoring

leaves:

62

k i j

Since tik is independent of j, it can be brought outside the third sum:

k i j

Since tik has a value of 1 if the word k occurs in the ith sample question, and 0 if it

does not, the sum of f̂ over all sample questions is equal to the number of

sample questions that contain word k. The same holds true for fy summed over

all sample questions. In addition, the number 1 summed over all sample

questions yields the total number of sample questions.

k

Here, N is the total number of sample questions and nk is the number of template

questions that contain word k. Note that it is not appropriate to compute the sum

of the squared scoring differences since the actual decision is based on the

linear sum of weights rather than on Euclidean distances in the weight vector

space. Also note that it is not necessary to sum the absolute values of the

scoring differences since the differences as expressed are always positive. It is

generally desirable to select the weights to maximize s. However, the above

criterion used alone merely specifies that the weights should be as large as

possible.

Another performance criterion that can be considered is the error that will

occur in the matching score syfor a sample question if a speech recognition error

occurs relative to word k (either a word was spoken but missed, or a word was

not spoken but was falsely detected).

63

M = 'y*w*

It is desirable to minimize the sensitivity of the system to single word

speech recognition errors by avoiding over reliance on individual words. In effect

it is desirable to spread the significant scoring over as many words in each

sample question as possible, while maintaining good separation between the

scores for different sample questions. Consider a robustness measure R, which

is the summed squared scoring error caused by individual word recognition

errors summed over all sample questions and over all words in the grammar.

j k j k

Again, since tlk has a value of 1 only for words that occur in sample question, the

sum of f/fcover all sample questions k gives the number of sample questions

containing word k, nk.

k

It is desirable to minimize R, with the effect of minimizing the numerical scoring

errors that result from speech recognition errors. Note that as the result of the

square, this criterion emphasizes reducing larger word error terms more than

reducing smaller word error terms. The trend is to equalize the impact of

recognition errors across different words.

An overall performance metric can then be defined as:

P = css- cRR

64

where cs and CR are constants chosen to emphasize the relative importance of

increasing separation between classes versus reducing the impact of word

errors, and the negative sign is used so that the optimization goal is to maximize

P (tending to maximize s while minimizing R).

The individual word weights Wk can then be chosen to maximize P as

follows:

8P
-T— = {csnk{N-nk))-{cRnk2wk) = (i

cAN-nt) „ , c ? /.,,. \
w t = - ^ kJ

- = 0.5^(N-nk)
zcR cR

The word weights which optimize the defined performance criteria can be seen to

be linearly proportional to the number of sample questions that do not contain the

word.

wk oc(N-nk) where 1 <nk<N

The constant of proportionality is determined by the relative importance assigned

to the two individual performance criteria. However, since the final selection of

the most likely matching sample question involves simply comparing the

magnitudes of the individual sample question scores, the constant of

proportionality has no impact on the sample question selection process. Thus,

the significant result is the linear proportionality alone. Any numerically

convenient scaling of wkcan be used.

For this application, the weights are computed by:

klm
 JV_I

65

which assigns a linear weight between 0 and 100 to each word. Words that

appear in only one question are given a weight of 100. Those that appear in all

questions are hypothetically given a weight of 0.

S1DF

The simple idf method was included for comparison. It is literally the

inverse document frequency function, rather than the log of such, to which the

term IDF more commonly refers. The inverse document frequency function is

defined as:

•At N

idf = —
nk

To scale the function output so that it is more comparable to the other

methods, the inverse document frequency function is multiplied by four in this

application.

A N

" W = 4 x —
nk

Binary

The binary weighting method was included for comparison. This weighting

assigns the same weight to all words, without regard to their frequency of

occurrence in the sample question set. The technique was included in order to

test the hypothesis that question frequency information is important, and thus the

loss of that information is likely to result in poorer performance.

Wkbin= 1

66

The score for a sample question in this case is equivalent to a count of the

number of words shared in common between the sample question and the SR

response to the spoken query.

Comparison of Weighting Functions

Graph 1 below compares the four weighting methods. The x-axis

represents the number of sample questions in which a word appears. The y-axis

represents the weight given to the word. The functions have been normalized for

comparison. Once again, in this application we are comparing two values on the

same graph so the magnitude of the values is not important, only the relative

values. While the shape of the curve may have an effect on the results, the

scaling does not.

Theoretical justification for the IDF and linear methods has been given.

Both are reasonable candidates for weighting methods in this application, and

both assign more weight to words that are more rare. They differ in one respect.

While the linear method applies a weight proportional to the rarity of the word, the

more popular IDF method places more emphasis on rarity, giving a higher than

proportional weight to rare words, and a lower than proportional weight to

common words. This can be seen in Graph 1.

For comparison, two more extreme weighting methods are considered.

The SIDF method places a very strong emphasis on word rarity, more than IDF.

The binary weighting method places no emphasis on word rarity. All words have

an equal weight regardless of their question frequency.

67

Graph 1. Comparison of Normalized Weighting Functions

1 2 3 4 5

•••^-Binary

Linear

IDF

SIDF

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Sample Questions Containing Word

Linear Word Weight Example

To provide an example, the linear weights calculated for this research are

given below. The weights were scaled as described above so that a word that

appears in only one of the 26 questions, like "status", receives a weight of 100.

The word "license" appears in two questions, so it has a weight of 96. The word

"many" appears in three questions, so it has a weight of 92. The most common

word was "what", which appears in 19 of the questions. It has a weight of 28.

Table 2 shows a list of all words used in the driver record test along with

their linear weights.

68

Table 1. Words and Linear Weights

Word

what

weight

weigh

type

the

status

social

security

restrictions

points

of

number

name

Weight

28

96

100

96

92

100

100

100

100

100

84

100

92

Word

much

many

license

is

in

how

height

have

has

hair

gender

first

eyes

Weight

100

92

96

40

100

88

100

80

100

96

96

100

100

Word

eye

does

date

convictions

color

birth

been

are

aliases

address

accidents

<Subject>

<PossessiveSubject>

Weight

100

76

100

92

88

100

100

96

100

100

100

60

44

Matching Examples

The examples below were taken from the data collected during this

research. In each example, the query is compared to each of the sample

questions. If a word appears in both the query and a given sample question, the

weight for that word is added to the total score for that sample question. Four

sample question comparisons are shown for each weighting method.

69

Linear Weight Example

Spoken Query: how many accidents does the driver have

Component SR Response: how many accidents the driver have

Question 21: how many points does <Subject> have

88 92 0 0 60 80 =320

Question 23: how many convictions does <Subject> have

88 92 0 0 60 80 =320

Question 24: what type of convictions does <Subject> have

0 0 0 0 0 60 80 =140

Question 25: how many accidents has <Subject> been in

88 92 100 0 60 0 0 =340

IDF Weight Example

Spoken Query: how many accidents does the driver have

Component SR Response: how many accidents the driver have

Question 21: how many points does <Subject> have

15 15 0 0 14 15 =59

Question 23: how many convictions does <Subject> have

15 15 0 0 14 15 =59

Question 24: what type of convictions does <Subject> have

0 0 0 0 0 14 15 =29

Question 25: how many accidents has <Subject> been in

15 15 17 0 14 0 0 =61

70

SIDF Weight Example

Spoken Query: how many accidents does the driver have

Component SR Response: how many accidents the driver have

Question 21: how many points does <Subject> have

26 34 0 0 9 17 =86

Question 23: how many convictions does <Subject> have

26 34 0 0 9 17 =86

Question 24: what type of convictions does <Subject> have

0 0 0 0 0 9 17 =26

Question 25: how many accidents has <Subject> been in

26 34 104 0 9 0 0 =173

Binary Weight Example

Spoken Query: how many accidents does the driver have

Component SR Response: how many accidents the driver have

Question 21: how many points does <Subject> have

1 1 0 0 1 1 = 4

Question 23: how many convictions does <Subject> have

1 1 0 0 1 1 = 4

Question 24: what type of convictions does <Subject> have

0 0 0 0 0 1 1 = 2

Question 25: how many accidents has <Subject> been in

1 1 1 0 1 0 0 = 4

71

CHAPTER V

EXPERIMENTAL DESIGN

Introduction

The purpose of this research was to compare methods for responding to

spoken queries. Two base systems were used in the comparison. The "full

system" employed speech recognition to compare a user query to a number of

predefined sample questions. The "component system" instructed the SRE to

recognize words individually, and then used processing techniques to compare

the SR response to the same sample questions used in the full system.

It was assumed that the component system would suffer a loss in SR

performance due to the larger number and smaller size of grammar candidates.

This assumption had to be tested.

It was hypothesized that the component system would be more flexible

than the full system in that it would succeed in generating a "proper response" to

a greater variety of "reasonable questions" than the full system. This hypothesis

had to be tested.

Further, it was hypothesized that the benefit gained by the flexibility of the

component system would outweigh the relative loss in SR performance as

compared to the full system. That is, the advantages gained would more than

compensate for the loss incurred, and the component system would be more

72

successful in producing proper responses to reasonable questions than a

corresponding full system when questioned by random untrained users. This

hypothesis had to be tested as well.

In addition to the base system comparison, four different component

system processing techniques were evaluated. The IDF technique is based on

tf*idf weighting, which has been very successful in performing non-spoken tasks

similar to the one proposed. The linear weighting method tends to reduce the

sentence error caused by any one SR misrecognition, while still emphasizing

rare words over common words. Two other techniques (SIDF and binary)

represent two extremes that bracket the first two techniques. See Chapter 4,

Component System Processing Techniques for more details concerning these

four methods. Another objective of this research was to examine and compare

the success of these processing techniques to see which ones might apply to the

current application.

It should be clear that the goal was to show that a component system can

outperform a full system by providing a successful example. No claim is made

that component systems will have superior performance to corresponding full

systems in all scenarios. The ability of either type of system to respond properly

is a function of the implementation and intended application of the systems.

It should also be noted that this comparison is dependent upon the current

state of SR technology. In past years, SR technology lacked the performance

needed for component type systems. It is expected that in the future, speech

recognition will improve to a point such that the undesired effects are negligible.

73

This study compared systems in the context of today's SR performance.

However, some insight into the impact of SR performance was obtained by

duplicating the analysis using human transcriptions of the spoken queries in

place of the SR output. This was equivalent to using an error free SR system.

Steps

The research described in this document consisted of the following steps:

1. Create an SQA development system

2. Develop a specific SQA system for testing

3. Set up a testing station

4. Optimize the sample question set

5. Collect data

6. Analyze the collected data

These steps are described in detail in subsequent chapters. However, they are

summarized together in this chapter in order to give a concise overview of the

research performed.

Create an SQA Development System

The first step in the process was to create an SQA development system.

The following issues were considered:

• Final test platform

• Editor portability

74

• Domain independence

• System comparability

• Modern features

• Data logging

• Input comparability(lnternal validity)

Final Test Platform

The runtime application used in this research was expected to be

compatible with an existing speech-controlled project. This existing project was

written in C/C++, and uses the Microsoft English Recognizer v5.1 recognition

engine. It connects to the SRE using the Microsoft Speech Applications

Programming Interface (SAPI). Therefore, the runtime application component of

the development system was written in C, and uses the same connection

functions as the existing project.

Editor Portability

The creation of an SQA system need not necessarily be done on the

same machine that the final SQA system will be run on. The Java programming

language was chosen for the development system's editing functionality due to

its platform independent nature. Thus, the creation and use functionalities of the

SQA development system were separated into two components referred to as

the editor application and the runtime application.

75

Domain Independence

Although any given SQA system developed using these tools will be

domain specific, the development tools themselves must not be. To provide a

fair comparison, the development system was not biased toward any particular

domain. It does not contain any built in information, such as stop lists, synonym

lists, or named entities. Any SQA system developed uses only the information

entered using the editor for that particular system.

System Comparability

The purpose of this research was to compare systems that differ in only

one respect; full sentence versus component word grammars. It was essential

that the full and component systems have the same features and

implementation. This was achieved by using the same editor and runtime

applications for both systems. The only difference between the two systems is

the SR grammar file that is generated by the editor application. Thus, the two

types of systems are developed in parallel, and will contain the same data,

including sample questions, answers, and features.

Modern Features

Modern SQA systems have certain features expected by developers. To

test the hypotheses put forth in a realistic way by today's standards, the following

features were included.

76

• Developers can define synonym lists (grammar rules) such that any item on

the list will be recognized as that list.

• Answers are scripted. Data from a designated source are fetched and

inserted into the answer script at runtime.

• Answer scripts can include data item counts and comparisons.

• Answer scripts can include basic arithmetic and Boolean operations.

• Conditions can be associated with answer scripts such that a particular

answer script is only output if the condition it met.

Data Logging

The runtime application was designed to store information during test

runs. Several types of log files were written as the system ran. The system also

stored each spoken query as an audio file for additional processing at a later

time. The application stored a trial number in a file as well. This number was

incremented with each new subject to ensure that each subject was uniquely

identifiable.

Input Comparability (Internal Validity)

It was important that the inputs given to both systems were very similar in

order to conclude that any differences in system success were based on the

differences in the systems, not the input data. As subjects posed queries, the

phrases were recorded as audio files. These files were processed by systems of

each type to ensure that all systems were given identical input data.

77

Develop a Specific SQA System

The domain chosen for testing and data collection was driver records. A

corpus of "scrambled" driver records was obtained from a law enforcement

agency. The records were scrambled in that all of the data entries (first name,

last name, dates, etc) had been randomly shuffled between records. While the

resulting records contained realistic information, in a real format, no information

about real drivers was retained. The records were in the form of formatted text

file results to a database query.

Study of the sample records led to a generalization of the driver record

structure using all possible fields, which was depicted in the editor application. A

parser program was written to read a sample record from the driver record file

and store the information in a format specific to this development system.

Part of developing an SQA system is choosing a sample question set that

will represent a large proportion of the queries users will pose. Assuming that

any sample question should result in a response containing an item (one or

more) from the record, a question was written for each piece of data a user might

inquire about. For some pieces of data, several question phrasings were used.

This set of sample questions is referred to as question set 0, and contains 25

sample questions.

78

Set UP a Testing Station

Since the question set optimization step required the gathering of

information for subjects using the systems, a test station was required before

continuing. The testing required a computer to run the runtime application. A

Dell Latitude D610 was chosen for convenience. The station also required a

microphone, speakers, and a mouse. Standard inexpensive devices were

purchased from a local department store. The computer system was positioned

on a desk so that the mouse was within reach of the subject, and the microphone

was facing the subject.

The participants required some instruction as to what they should do to

test the system. This is somewhat problematic since any suggestions toward

phrasing are likely to bias the subject, and this study concerns the phrasing of

queries. The goal was to gather as wide a variety of queries as possible. Ideally,

some should match the sample questions exactly, others should not match but

be reasonable queries, and some should be queries that are not reasonable for

such a system to answer. To offer the participants enough information to use the

system, two testing materials were made.

An instruction sheet explained that the system answers spoken questions,

and that the domain is driver records. It also described the operation of the

system, including which mouse button to click, when to speak, and so forth.

A second sheet showed a tree diagram of the driver record. The tree

showed node names corresponding to table column names for the available

data. This diagram was altered over the optimization process as leaves that did

79

not correspond to any sample questions were removed. The final testing

materials are shown in Chapter 8, Data Collection.

Optimize the Sample Question Set

The next step in preparing the system for testing was to optimize the

sample question set. The success of a QA system is generally very dependent

upon the sample questions provided. It is reasonable to assume that either type

of system will succeed more frequently if a greater number of user queries are

anticipated and represented in the question set. It is also reasonable to assume

that increasing the size of the question set will decrease the SR performance of

either system. Therefore sample questions that are never used are detrimental

to the system.

The question set was optimized in three phases or iterations. In each

phase, subjects provided queries to the system. These queries were recorded

and analyzed. Using this analysis, the question set was modified by removing

unused sample questions, and adding new questions. The details of this process

are described in Chapter 7, Question Set Optimization, and are summarized

here.

In phase 0, question set 0 as described above was tested using five

participants. An analysis of the queries posed led to the addition and removal of

a number of questions resulting in question set 1, which contains 39 sample

questions.

80

In phase 1, question set 1 was tested using five new participants. A

deeper analysis of the queries was performed resulting in a list of reasons for

failure and frequency, and a list of all questions asked and frequency. The list of

questions was also grouped by associated answer to determine which pieces of

data were requested most often. This analysis resulted in question set 2, which

has 26 sample questions that correspond to 83% of the total questions asked

during phase 1.

To verify this modification, the recorded queries of phase 1 were

reprocessed using question set 2. The success of both systems improved

significantly compared to the question set 1 test.

In phase 2, question set 2 was tested using a new group of five

participants. Both systems performed acceptably, and the data collected in this

phase were used in the final analysis.

Collect Data

The target population for this study was average native English speaking

people who had no prior experience or training with this particular SQA system.

The subjects used in the study were college students who were taking at least

one computer science course because these subjects were available. The

sample included a range of ages (from 18 to 36) and both male and female

participants, although the majority was male.

The subjects were given the testing materials and asked to sit in the

testing station chair. Subjects were given no additional instruction concerning

81

the phrasing of queries. Subjects were not told how many queries to pose.

Some subjects are likely to think of fewer queries than others. An imposed

number of queries might force these subjects to create new questions in an

unnatural way, biasing the experiment.

Each subject was left alone in a room with a closed door so they would be

less likely to feel awkward. The subjects exited the room to signal completion of

the testing. Data were gathered from an additional 15 subjects, for a total of 20

subjects to be used in the final data analysis.

Analyze the Collected Data

As stated in the introduction of this chapter, the objectives of this study

were to:

• Test the hypothesis that a component system would succeed in generating a

"proper response" to a greater variety of "reasonable questions" than the full

system.

• Test the assumption that the component system would suffer a loss in SR

performance as compared to the full system due to the larger number and

smaller size of grammar candidates.

• Test the hypothesis that the benefit gained by the flexibility of the component

system would result in the component system being more successful in

producing proper responses to reasonable questions than a corresponding

full system when questioned by random untrained users.

82

• Examine and compare the success of four different processing techniques to

see which ones might apply to the current application.

To accomplish this, the analysis results are organized into four sections.

• Comparison of systems and weighting methods

• Impact of speech recognition

• Analysis by subject

• Overlap

Comparison of Systems and Weighting Methods

The purpose of this section is to provide an overall evaluation of the

systems tested, including the component system with each processing

technique. The systems were also compared to test the hypothesis that the

component system would be more successful than the corresponding full system,

and to compare the processing techniques.

The systems were evaluated, and the following values were reported.

• The total number of reasonable queries

• The number of reasonable queries each system responded properly to

• The percentage of reasonable queries each system responded properly to

To obtain these values, some measure was needed to objectively

determine which queries were reasonable, and which responses were proper. In

83

general, a query was considered to be reasonable (or equivalents to have a

reasonable matching sample question) if it was "fair" to expect the system to

answer the question using the information available to it. The guidelines

developed were as follows:

A query was considered reasonable if the following were all true:

• The query elicited information that was contained in the record.

• A sample question existed that returned the requested information.

• The key words in the query were contained in the SR grammar file.

Where the key words are the domain specific words that normally refer to a piece

of information, such as points, address, or convictions.

A response was considered a proper response if it answered the user's

question in a satisfactory and expected way. A more detailed discussion of these

criteria is given in Chapter 9, Analysis.

The data collected were analyzed to compare the systems. Margins of

error were calculated to determine which differences were significant.

Impact of Speech Recognition

The purpose of this section is to provide data consistent with the

hypothesis that the component system would suffer a loss in speech recognition

performance. This section contains two parts. The first part is a comparison of

84

speech recognition between the full system and the linear component system.

For each system, the total number of fair inputs was found, and the number of

correct recognitions was determined.

The total number of fair inputs to the full system is the number of queries

that exactly matched a sample question. The sample questions are the inputs

the SRE was instructed to recognize. The recognition was considered correct if

the phrase chosen by the SRE was the same as the spoken query.

The total number of fair inputs to the component system is the number of

words that were uttered and appeared in the component system's SR grammar.

Again, these words are the inputs the SRE was instructed to recognize. The

recognition was considered correct if the word returned by the SRE was the

same as the word that was spoken. Using these numbers, the percentage of

correct recognitions was calculated and compared for the two systems.

The second part describes simulated "perfect" speech recognition. The

linear component system was used to process transcribed text from the test

queries. The performance of the system was compared to that of the same

system using real speech recognition.

Analysis bv Subject

The purpose of this section is to examine the effect caused by variations

between test subjects to determine how consistent the system performance was

85

across subjects. It also considers the possibility of correlations between overall

system performance and specific characteristics of the test queries.

The analysis shows the percentage of queries responded to properly by

both the full and linear component systems for each of the 20 test subjects. In

addition, the spoken queries were categorized and these query categories were

examined as they relate to the success of the two systems. The percentage of

participants who benefited significantly from the component system was

calculated.

Overlap

The purpose of this section is to show the extent to which the systems

agreed, and disagreed. Using the data from the full and linear component

systems tests, the following quantities were determined:

• The number of queries the full system responded to properly, but the linear

component system did not

• The number of queries the linear component system responded to properly,

but the full system did not

• The number of queries both systems responded to properly

• The number of queries neither system responded to properly

Conclusion

The design described was implemented and provided data and analysis

sufficient to test the assumptions and hypotheses stated.

86

CHAPTER VI

SOFTWARE TOOLS

Introduction

The software tools developed for this research together comprise a

complete SQA development system. The system contains two parts; an editor

component, and a runtime component. For a complete explanation concerning

the use of these tools, see Appendix F, Use of Software Tools.

The focus of this research was on spoken question identification.

However, a fully functional SQA system must generate appropriate spoken

responses as well. A secondary goal of the project was to utilize the spoken

question identification capability as the front end to a complete SQA system. The

development of a fully functional system defined by coupled question and answer

scripts served both to demonstrate the validity of the format for defining sample

questions as used in the research, and to provide a platform for future research

using complete SQA systems.

The development system allows a developer to create new SQA systems

by defining a set of sample questions and corresponding answers. Once the

question/answer pairs have been defined, the developer can choose to create a

full system, or a component system.

87

Sample Questions

The sample questions control the domain specific behavior of the SQA

system in both the full and component types. They provide all of the domain

specific information the system uses to respond to user queries. Sample

questions are written in a scripting language developed for this research.

Sample questions may contain words and rules. A rule corresponds to a rule in

the grammar file. A rule is simply a placeholder that is associated with several

options. During recognition, the SRE will recognize any of these options as

acceptable matches for the rule.

For example, consider the rule <Subject>, which matches any of the

following:

he

she

the driver

the operator

Using the <Subject> rule, we can define questions such as these.

Question: how many points does <Subject> have

Question: does <Subject> have ... convictions

During recognition, the SRE will consider the following for matching to the first

sample question:

how many points does he have

88

how many points does she have

how many points does the driver have

how many points does the operator have

Note that rules are placed inside chevrons (<>). Also note that an ellipsis (...)

may be used to represent a filler model, which will match any extra or junk words.

Grammar Mapping

Once the sample questions have been entered, the editor application can

be used to generate a grammar file. The two questions above would be

represented in a full system grammar file as shown below.

[<Start>]

<Start> = how "how" many "many" points "points" does "does" "{9 " <Subject>

"}" have "have "

<Start> = does "does" "{10" <Subject> "}" have "have "..."..." convictions

"convictions"

[<Subject>]

<Subject> = he "he "

<Subject> = she "she"

<Subject> = the driver "the driver"

<Subject> = the operator "the operator"

89

The SRE is instructed to compare each spoken query to the two sample

questions. Either sample question might trigger the <Subject> rule.

The component system grammar file would look like this:

[<Start>]

<Start> = <Sentence>

[<Sentence>]

<Sentence> = <Word> <Sentence>

<Sentence> = <Word>

[<Word>]

<Word> = convictions "convictions "

<Word> = does "does"

<Word> = have "have "

<Word> = how "how"

<Word> = many "many"

<Word> = points "points "

<Word> = ..."..."

<Word> = <Subject>

[<Subject>]

<Subject> = he "he "

<Subject> = she "she "

<Subject> = the driver "the driver"

<Subject> = the operator "the operator"

90

In this case, the SRE is instructed to build a phrase using words from the sample

questions. Note that the grammar file contains only words that are used in the

sample questions. Other words will generally be misrecognized as one of these

words.

Answers

The answer scripting is somewhat more complicated since answers can

contain record data and mathematical functions. Record data are specified using

brackets and a number which identifies an information field in the record.

Question: how many points does <Subject> have

Answer: the driver has [35] points

If the field contains a single value, it is inserted into the answer statement

when the system responds.

Response: the driver has 5 points

If the field has multiple values, they will all be listed.

Question: where has <Subject> had accidents

Answer: the driver has had accidents in [64]

Response: the driver has had accidents in Concord Lee Durham

91

Arithmetic operators (+, -, *, /) may be used between static numbers

and/or record data items. The expressions are evaluated when the system

responds.

Question: how many points does <Subject> have

Answer: the driver has [35] + [36] + [37] points

Response: the driver has 12 points

Fields that contain multiple values can be handled with filters. A filter

returns only the values that meet the filter criteria.

Question: where has <Subject> had fatal accidents

Answer: the driver has had fatal accidents in ([64]: [63] > 0)

This answer will list ail accident locations (field 64) where the number killed (field

63) is greater than zero.

If a filter is preceded by a pound sign (#), a count of matching items is

returned, rather than the items themselves.

Question: how many fatal accidents has <Subject> been in

Answer: the driver has been in #([63]: [63] > 0) fatal accidents

This returns the number of items in field 63 where the value of the item in field 63

is greater that zero.

92

Conditions

Any particular answer statement will only be evaluated and output as a

response if its associated condition is true. A condition is defined by using at

least one comparison operator (=, !=, >, <, >=, and <= for numbers, eq, and ne

for strings).

Question: how many points does <Subject> have

Conditionl: [35] > 0

AnsweM: the driver has [35] points

Condition2: [35] = 0

Answer2: the driver does not have any points

Conditions can include arithmetic operators, as in the example below.

Condition: [35] + [36] + [37] > 0

Compound conditions can be created by connecting simple conditions

with AND and OR (& and |) operators.

Condition: [35] > [28] * 3 & [15] != 0 & [8] ne NONE

The above condition is true if the following three things are all true:

The value contained in field 35 is greater than three times the value in field 28.

The value in field 15 is not zero

The string in field 8 is not "NONE"

These rules also apply to the condition used in the second half of a filter.

93

Files

As mentioned above, the editor application can be used to create the grammar

file needed by the SRE. This grammar file also contains information that is not

used by the SRE, but is used directly by the runtime application. This includes

the scripted answers, conditions, and weights in the case of a component

system. This information is placed in comments that are ignored by the SRE.

The runtime application reads this file at startup.

The runtime application also requires a file containing the record data to

be used in the responses. The record data must be stored in a file called

"record.txt", which has a specific format. Each line of the file contains one piece

or record data, enclosed in brackets, preceded by two numbers in brackets. The

first number is the field number for the field. This must match the number used

when entering the sample questions and answers in the editor application. The

second number is zero, unless the field has multiple values, in which case it

specifies an index (starting from zero) to associate with the value.

[35][0][7] < Points

[36][0][5] < Last year's points

[37][0][Bob] < Alias first name

[37][1][Frank] <

[37][2][Stan] <

94

CHAPTER VII

SAMPLE QUESTION SET OPTIMIZATION

For the purposes of this research, a spoken question answering system

was developed. The domain of the system was driver records. The objective of

the research was to compare different techniques for matching spoken user

queries to a reasonable set of sample questions as might be used in a real

application. The goals did not include comparing performance with less good

sample questions to performance with better sample questions. Thus it was

considered appropriate to refine the sample question set before collecting the

final data for analysis.

The system was optimized using several cycles of data collection and

analysis. This section describes the procedure used in the analysis of collected

data and modification of the system based on that analysis. Modification of the

system, for the most part, entailed reworking the set of sample questions used by

the system. It also included fixing software bugs when discovered, as well as

making changes in the way the data were collected. The modification was done

in phases. Each phase represents the collection of data, an analysis of the data,

and modifications made based on the analysis.

Phase 0 was an initial rough-draft phase. A question set was created

using educated guesses about the queries subjects might pose. A group of

subjects tested the system, and the results were analyzed, and shared with the

95

research committee. Using data gathered in phase 0, a new question set was

developed.

In Phase 1, a new group of subjects tested the phase 1 question set, and

the results were analyzed. The analysis shows an overall improvement of the

system. The template set was then modified using phase 1 data.

The phase 2 question set was tested using the queries captured in phase

1. The analysis showed further improvement. The phase 2 question set was

then tested using a group of new subjects. The results showed improvement

over the phase 1 testing.

Phase 0

Once the software had been developed, a set of templates was required.

This set of questions was created by making educated guesses concerning the

queries that subjects might pose. The system was designed with a large amount

of flexibility, allowing complex question forms to be represented. Thus, a rough

draft set of questions included a number of such complex sample questions as

well as simpler sample questions. It quickly became apparent that many of the

more complex sample questions were not likely to be asked, and were impeding

the quality of the voice recognition. The following questions are examples. Does

the driver have more than 5 tickets for speeding in excess of 25 miles per hour?

How many more points does the driver have for the current year than for last

year?

96

While these are valid queries, and can be handled by the system, they are

not likely to be asked. Given the state of voice recognition technology, it is

preferable to include only questions that are likely to be asked, and not those that

are asked very rarely or not at all. For this reason, the more complex sample

questions were removed from the set. The result is the set of questions used for

Test 0 shown below in figure 12.

Several rules are used, as shown by angle brackets(o). For example,

the <Subject> rule will match "the driver", "he", "she", or "the person".

Figure 3. Question Set 0

0 what is <2 PossessiveSubject> address
1 where does <3 Subject> live
2 what is <4 PossessiveSubject> <dob>
3 what is <5 PossessiveSubject> social security number
4 what type of license does <0 Subject> have
5 does <1 Subject> have any restrictions
6 does <Subject> have a valid license
7 what is the status of <6 PossessiveSubject> license
8 what is <0 PossessiveSubject> name
9 what does <1 Subject> look like
10 does <7 Subject> have any <aliases>
11 how many points does <9 Subject> have
12 does <9 Subject> have any points
13 does <10 Subject> have any convictions
14 has <10 Subject> ever been convicted
15 has the driver been convicted in the last <12 SingleDigit> years
16 does <14 Subject> have any speeding tickets
17 does <16 Subject> have any <osconv>
18 has <17 Subject> had any accidents
19 where has <18 Subject> had accidents
20 has <19 Subject> had any fatal accidents
21 how many accidents has <2 Subject> had
22 why was <3 PossessiveSubject> license suspended
23 does <15 Subject> have any D U Is
24 has <8 PossessiveSubject> license ever been suspended or revoked

97

A test involving subjects was used to exercise the template set. A summary of

the analysis for the data collected is given below. For each system or weighting

method tested during the optimization process, the number of proper responses

is given. The percentage of proper responses with respect to the number of

queries with reasonable templates is given in parentheses.

Phase 0 Analysis

Total sample questions with reasonable templates: 109

Of those 109,

Full question recognition responded properly to 30 (28%)

Component recognition (linear) responded properly to 38 (35%)

Component recognition (SIDF) responded properly to 35 (32%)

Component recognition (IDF) responded properly to 42 (39%)

Modifications

The results of this test were shared with the research committee.

Changes to be made to the system were discussed. Questions that were not

asked at all were removed. Missing questions that were asked were added to

the set. New forms of questions that were asked were added to the set. Filler

models were added where appropriate. In addition, a new rule (<Whats> =

"whats" or "what is") was added. This resulted in the new set of sample

questions used for phase 1 as shown in figure 13.

98

Figure 4. Question Set 1

0 <5 Whats> <0 PossessiveSubject> name
1 <5 Whats> <1 PossessiveSubject> last name
2 <0 Whats> <2 PossessiveSubject> first name
3 <5 Whats> <2 PossessiveSubject> address
4 where does <3 Subject> live
5 <5 Whats> the gender of <6 Subject>
6 what sex is <5 Subject>
7 <5 Whats> <4 PossessiveSubject> <dob>
8 when was <7 Subject> born
9 how tall is <8 Subject>
10 <5 Whats> <9 PossessiveSubject> height
11 how much does <10 Subject> weigh
12 <5 Whats> <11 PossessiveSubject> weight
13 what color is <12 PossessiveSubject> hair
14 <5 Whats> <13 PossessiveSubject> hair color
15 what color are <14 PossessiveSubject> eyes
16 <5 Whats> <15 PossessiveSubject> eye color
17 <5 Whats> <5 PossessiveSubject> social security number
18 what type of license does <0 Subject> have
19 does <1 Subject> have ... restrictions
20 does <1 Subject> have a valid license
21 <5 Whats> the status of <6 PossessiveSubject> license
22 has <8 PossessiveSubject> license ever been suspended or revoked
23 does <7 Subject> have ... <aliases>
24 how many points does <9 Subject> have
25 does <9 Subject> have ... points
26 does <10 Subject> have ... convictions
27 has <10 Subject> ever been convicted
28 how many convictions does <17 Subject> have
29 when was <18 Subject> convicted
30 what... conviction dates
31 what types of convictions does <19 Subject> have
32 what has <20 Subject> been convicted for
33 does <22 Subject> have ... dee wees
34 does <0 Subject> have ... speeding tickets
35 has <17 Subject> had ... accidents
36 where has <18 Subject> had accidents
37 how many accidents has <2 Subject> had
38 what was the location of... accidents

99

Phase 1

The system was again tested on new users. Data were collected to fine

tune the system. The analysis of the data collected included the following.

1. The total number of queries

2. The number of queries that correspond to an answer in a sample question.

These are referred to as reasonable template questions.

3. The number of queries that had sample questions that matched exactly.

4. The number of times a correct response was given using a full question

recognition grammar.

5. The number of times a correct response was given using a component

recognition grammar. For each question, three weighting methods were used

(linear, SIDF, and IDF). The analysis includes a count of correct responses for

each weighting method.

6. A table showing all responses given to all queries. In this table, each query is

referred to as a record.

7. A list of likely causes for failure where one was apparent. The list includes a

brief description of the problem, as well as the number of times it occurred.

These are discussed in more detail following the analysis report given below.

8. A list of all spoken queries that were asked as transcribed from the wave files

recorded during data collection. The list also specifies the number of times each

query was asked.

100

Analysis of Test 1

There were a total of 77 records. Of these, 71 had reasonable templates

and 42 had exactly matching templates.

Full question recognition responded properly 28 times.

Component recognition (linear) responded properly 24 times.

Component recognition (SIDF) responded properly 36 times.

Component recognition (IDF) responded properly 26 times.

The analysis record includes a table showing the sample questions

chosen by each of the four methods, as well as the reasonable template if one

exists. An excerpt of this table is shown below in table 3. The full table is given

in Appendix A.

Table 2. Test 1 Summary

1
2
3
4
5
6

Wave File

VictorAudiol -O.wav
VictorAudio1-3.wav
VictorAudiol -4.wav
VictorAudio1-5.wav
VictorAudiol -6.wav
VictorAudio2-5.wav

Template

0
5
7
37
12
11

Full

13
5
21
37
12
7

Linear

13
5
21
37
5
38

SIDF

13
5
7
5
12
11

IDF

13
5
21
37
5
38

Spoken Queries in Order of Frequency:

During the analysis individual spoken queries were logged and counted.

The frequency of the individual queries is shown in table 4 below.

101

Table 4. Frequency of Spoken Queries

Times Asked Question
7 what is the drivers address
6 what is the drivers date of birth
6 what is the drivers name
6 what is the drivers eye color
4 how many accidents has the driver been in
3 what are the drivers aliases
3 what is the drivers social security number
3 what is the drivers height
2 does the driver have any aliases
2 what is the drivers license number
2 how old is the driver
2 what is the drivers gender
2 does the driver have any convictions
2 what is the license status
2 what is the drivers license status
2 what type of convictions does the driver have
2 what is the drivers weight

what is the persons name
what is the gender of the driver
what is the weight of the driver
how much does this driver weigh
what color is the drivers eyes
does the driver have any license restrictions
how many points does the driver have
what is the drivers first name
what state was the drivers license issued in
what is the license type
what is the conviction type
what is the drivers conviction number
what is the drivers current license status
does the driver have any restrictions
what type of convictions
when were the drivers last convictions
how many convictions does the driver have
what are the dates of the drivers convictions
what color are the drivers eyes
what is the name of the driver
whats the name of the driver

102

Causes of error

Most of the errors that occurred during this test fall into one of the 5

categories listed below,

1. The use of rules that incorporate terms found in isolation. Some of the

rules used in the templates include words that are also found in other questions.

An example is:_0 <5 Whats> <0 PossessiveSubject> name

The rule <whats> is found and given a term weight. Often, it is the case that the

spoken input is, "what is the drivers name". Since the sample question

13 what color is <12 PossessiveSubject> hair

also contains the words "what" and "is", they are given more weight

independently. This additional weight overcomes the weight of the word "name"

in the question. This results in a false response.

The solution is to not use rules that include words that occur

independently in templates. A rule that contains synonyms is acceptable, as long

as they do not occur where the rule is not used. The refined set of sample

questions does not use the rules <Whats> and <dob> as they have been found

to result in incorrect responses.

2. Unused templates. Once again, it is apparent that questions that are

not asked only serve to degrade system performance. It is desirable that the

question set includes questions that are likely to be asked often, and not

questions that are rarely asked, or not asked at all.

The solution is to use the statistics gathered in the Test 1 analysis to

determine which questions are asked frequently and which are not in a

103

quantitative manner. Questions that are not likely to be asked should be

removed from the set.

3. Questions not represented bv templates. In some cases the system

failed because there was no sample question that could result in a proper

response. For the most part, these are requests for information that the system

is not intended to give, or oddly worded queries. Examples are, "why were you

pulled over", and "excuse me, what is your name".

The solution is to add any missing questions that have been asked

multiple times. Given observation 2 above, it is better to omit rarely asked

questions. At this point, most questions that have been asked do have a

reasonable template, so only minor modifications were made to address this

issue, and only if tests showed that a question is likely to be asked somewhat

frequently.

4. Speech recognition error caused bv quiet input. Although subjects were

asked to speak loudly, clearly, and directly into the microphone, some of the

subjects did not. In some cases, a subject would sit back in the chair and talk far

too quietly. In other cases, the subject spoke clearly and directly into the

microphone. In the latter cases, the same types of errors are not found. The

only reasonable solution is to be more demanding when asking participants to

speak up.

5. General speech recognition errors. There are times when the speech

recognition fails due to a subject's intonation, accent, or other vocal artifacts.

There is no solution to this problem.

104

Modification

Using the data collected in Test 1, it was determined that some pieces of

information are requested more often than others, while some pieces of

information are not requested at all. In addition, certain question phrasings were

shown to be common.

Below is a list of the most common pieces of information requested, and a

grammar phrasing that matches the actual phrasing used. For each piece of

information, the total number of times requested (out of 77 inquiries) is given.

Each grammar rule is preceded by the number of times a particular phrasing

matched the rule given. The list includes a total of 13 sample questions, which

represent 45 of the queries actually asked (58%).

Full name - 9 times

7 what is <PossessiveSubject> name

2 what is the name of <Subject>

Eye color - 8 times

6 what is <PossessiveSubject> eye color

2 what color are <PossessiveSubject> eyes

Address - 7 times

7 what is <PossessiveSubject> address

105

Date of birth - 6 times

6 what is <PossessiveSubject> date of birth

Aliases - 5 times

3 what are <PossessiveSubject> aliases

2 does <Subject> have ... aliases

Number of accidents - 4 times

4 how many accidents has <Subject> been in

Weight - 4 times

2 what is <PossessiveSubject> weight

1 how much does <Subject> weigh

1 what is the weight of <Subject>

License status - 5 times

2 what is <PossessiveSubject> license status

Given the frequency of these questions, they were included in the new set

of sample questions to be used for Test 2. In addition to the questions

represented above, a number of questions were asked with lower frequency.

These templates were also be included in the new set of templates. Each

sample question below is preceded by the number of times it was asked.

106

3 what is <PossessiveSubject> height

3 what is <PossessiveSubject> social security number

2 does subject have ... restrictions

2 does <Subject> have ... convictions

2 what type of convictions does <Subject> have

2 what is <PossessiveSubject> gender

1 what is the gender of <Subject>

1 how many convictions does <Subject> have

1 how many points does <Subject> have

1 what is <PossessiveSubject> first name

1 what is <PossessiveSubject> license type

The addition of these 19 templates makes a set of 24 templates that

accounts for 64 of the 77 questions asked (83%).

Finally, it was noted that while the driver's eye color was asked for 8 times,

no subjects inquired about the driver's hair color. Looking at the Driver Record

Tree the subjects were given, this is the one piece of information that was not

asked for. It can be assumed that future test subjects may request this

information, so the following templates were added, based on the phrasing of the

similar eye color templates.

what is <PossessiveSubject> hair color

what color is <PossessiveSubject> hair

107

The new sample question set has a total of 26 templates. Of these, 17

appeared in the former set, which had a total of 39 templates. Thus 22

questions, which were shown to be ineffective, were removed, and 9 new

questions were added. The questions for template set 2 are shown in Figure 14.

Figure 5. Sample Question Set 2

0 what is <2 PossessiveSubject> first name
1 what is <2 PossessiveSubject> address
2 what is the gender of <6 Subject>
3 what is <1 PossessiveSubject> gender
4 what is <4 PossessiveSubject> date of birth
5 what is <9 PossessiveSubject> height
6 how much does <10 Subject> weigh
7 what is <11 PossessiveSubject> weight
8 what is the weight of <2 Subject>
9 what color is <12 PossessiveSubject> hair
10 what is <13 PossessiveSubject> hair color
11 what color are <14 PossessiveSubject> eyes
12 what is <15 PossessiveSubject> eye color
13 what is <5 PossessiveSubject> social security number
14 what is <0 PossessiveSubject> license type
15 does <1 Subject> have ... restrictions
16 what is <0 PossessiveSubject> license status
17 what is <0 PossessiveSubject> name
18 what is the name of <3 Subject>
19 does <7 Subject> have ... <aliases>
20 what are <4 PossessiveSubject> aliases
21 how many points does <9 Subject> have
22 what type of convictions does <19 Subject> have
23 does <10 Subject> have ... convictions
24 how many convictions does <5 Subject> have
25 how many accidents has <2 Subject> been in

108

Verifying the Modification

Using the audio files gathered during Test 1, the phase 2 question set was

tested to show that its modifications led to improvement with respect to the

phase 1 question set it. The results were analyzed as Test 1b. The analysis

from Test 1 is also shown for comparison. The percentages listed below are with

reference to the number of queries with reasonable templates.

Testl

Full question recognition responded properly 39%

Component recognition (linear) responded properly 33%

Component recognition (SIDF) responded properly 50%

Component recognition (IDF) responded properly 36%

Testl b

Full question recognition responded properly 68%

Component recognition (linear) responded properly 65%

Component recognition (SIDF) responded properly 63%

Component recognition (IDF) responded properly 67%

The phase 2 question set shows a dramatic improvement over the phase

1 set when used with the phase 1 query data.

109

Phase 2

The next step was to show that the new question set performed well with

new queries. The phase 2 question set was tested using a new group of

subjects. The Analysis shows that the correct response rate has improved for

new queries.

Test 2

Full question recognition responded properly 60%

Component recognition (linear) responded properly 72%

Component recognition (SIDF) responded properly 75%

Component recognition (IDF) responded properly 72%

110

Summary

Table 4 below shows the correct response ratio for all methods of

matching, and for all phases.

Table 4. Optimization Test Summary

Phase 0 1 1b 2

Correct responses to all queries
Full question recognition
Component (linear)
Component (SIDF)
Component (IDF)

19%
24%
22%
27%

36%
31%
46%
33%

61%
61%
57%
60%

44%
53%
55%
53%

Correct responses to queries with reasonable templates
Full question recognition
Component (linear)
Component (SIDF)
Component (IDF)

28%
35%
32%
39%

39%
33%
50%
36%

68%
65%
63%
67%

60%
72%
75%
72%

Given that the correct response ratio is significantly improved, and all

methods respond successfully greater than 50% of the time (all systems

succeeded more often than not), it was decided that the data collected in phase 2

are valid for the purposes of analysis. The remaining data for this research were

collected in the same manner.

111

CHAPTER VIII

DATA COLLECTION

Prior to data collection, the Institutional Review Board at UNH Research

Conduct and Compliance Services was contacted. They provided a release form

to be signed by each subject under IRB number 2980. A copy of this form is

included as Appendix C. The signed forms were faxed to the IRB for tracking.

Test subjects were isolated in a room during their questioning. The testing

area consisted of a chair, and a desk. A computer and microphone were

positioned on the desk. Each subject was instructed to sit in the chair facing the

computer. The subjects were asked to speak loudly and clearly, and directly into

the microphone. They were also instructed to ask a number of questions of their

choosing. The test subjects were provided with two documents to explain the

test. The first, figure 15, is an instruction sheet titled Ask Fred. This sheet

explains the context of the test, and provides instructions. The second, figure 16,

is a tree diagram depicting the types of data contained within the record. These

documents are shown on the next two pages.

Each time a subject asked a question, Fred responded, and stored an

audio copy of the question as a wave file. A total of 417 questions were asked.

These audio files were then processed and analyzed as described in the next

section.

112

Figure 6. Ask Fred

Ask Fr©d!!! p r i v e r R e c ° r d T r e «

Fred is a question answering system
that uses speech recognition and speech
generation. You may ask Fred a question
about his current topic, and he will find the
answer in a data file and respond.

Fred was developed for possible use
a speech activated computer system desig
for police. Therefore, Fred's current topic k
driver records.

The Driver Record Tree

A prototype driver record from a motor vehicle database has been
depicted as a tree diagram. Each green box represents a piece of information
For example, in the Personal Identification column, the Address box
represents the address of the driver. In several instances, where the record
information is one phrase from a small set of phrases, the set is listed. For
example, a driver's license Status may be Valid, Expired, Suspended, or
Inactive. The tree represents the information that is typically available to a
police officer.

Instructions

Sit in the chair facing the Driver Record Tree diagram. Imagine you are a
police officer, and you encounter a driver. What information from the driver's
record might you want?

For Each Question:

• Press the right mouse button
• (Make sure the cursor is visible inside the gray window)
• Wait one second
• Ask a question
• Wait one second
• Release the mouse button

Please ask Fred some questions you think a police officer would.

in

jned

s

113

Figure 7. Driver Tree

Driver Tree

Driver

Accidents

114

CHAPTER IX

ANALYSIS

Processing

Data Blocks

The 417 audio files collected were processed by a full system and a

component system. A data block as shown below was created for each query.

Figure 17. Data Block

Test Question: 8
Wave File: FredAudio6-8.wav
Spoken Query: what is his eye color
Reasonable Sample Question:M 12 13 14
Full SR Response: what is his eye color
Full Selected Question: 14,14#what is <15 PossessiveSubject> eye color
Full System Response: the driver has brown eyes
Comp SR Response: what is eye color
Comp Selected Question: 14,14#what is <15 PossessiveSubject> eye color
Comp System Response: the driver has brown eyes

Component System Candidates:
Weighting Scheme
First Choice (Score)
Second Choice (Score)
Third Choice (Score)
Fourth Choice (Score)
Fifth Choice (Score)

Linear
14(256)
11 (156)
12(156)
13(116)
0(68)

SIDF
14(141)
11(37)
12(37)
13(31)
0(11)

IDF
14(60)
11 (43)
12(43)
13(29)
0(28)

Each line of the data block is explained below.

115

Test Question: This is a batch number that was only useful during processing.

Wave File: This is the name of the audio file containing the query.

Spoken Query: This is the spoken query as transcribed from the wave file.

Reasonable Sample question: A reasonable sample question is an acceptable

match according to the guidelines discussed below. A query may have multiple

reasonable sample questions. This is also the test used to determine if a spoken

query is reasonable. If a query has one or more reasonable sample questions, it

is a reasonable query. If the query is worded exactly the same as any sample

question, the reasonable sample question(s) is preceded by an "M".

Full SR Response: This is the string of text returned by the SR of the full system.

Since it is a full system, the string will be identical to one of the sample questions

unless the SR could not find an acceptable string, in which case a question mark

(?) is returned.

Full Selected Question: This is the sample question number chosen by the full

system.

Full System Response: This is the response given from the full system as an

answer to the user's query.

116

Comp SR Response: This is the string of text returned by the SR of the

component system. Since it is a component system, the string will not

necessarily be identical to any of the sample questions.

Comp Selected Question: This is the sample question number chosen by the

component system based on the string returned from the SR.

Comp System Response: This is the response given from the component

system.

Component System Candidates: The lower section of the data block is a table

showing the top five choices for three different weighting schemes. Linear refers

to the linear weighting, SIDF refers to the literal inverse document frequency, and

IDF refers to the commonly used IDF function involving the log of the inverse

document frequency. For each weighting measure, the five highest ranking

sample questions are given, along with the calculated scores. The binary

weighting method was not included until a later stage of processing.

Reasonable Sample Questions

A reasonable sample is a sample question that will provide an answer to

the query posed. During processing, if no reasonable sample question existed

117

for a query, a " -1" was entered. Choosing reasonable questions is somewhat

subjective. The criteria are listed below.

A spoken question was considered to have a reasonable sample question if:

• The query asked for information that was contained in the record.

• A sample question existed that returned the requested information.

• The key words in the query were contained in the SR grammar file.

Where the key words are the domain specific words that normally refer to a piece

of information, such as points, address, or convictions.

The following queries would not have reasonable sample questions.

Is the driver married?

Does he require spectacles?

Information concerning a person's marital status is not included in the

driver record. Although the record does contain restrictions, including the

requirement for corrective lenses, since the word "spectacles" is not in the

grammar there is no reason the system would legitimately choose a sample

question that would result in an acceptable answer.

The data blocks are saved as TestData.txt. A summary of this information

is given in Appendix A.

118

Analysis

Of the 417 query files, 268 had reasonable sample questions. The

queries without reasonable sample questions were removed from the analysis

and are not discussed further.

Four different weighting methods were used in the analyses that follow.

These weighting methods are discussed in detail in Chapter 4, and are

summarized here.

Linear - A linear function giving a value of 100 to very rare words (appearing in

only one sample question), and a value of 0 to very common words (appearing in

all sample questions.

IDF - The traditional log of the inverse document frequency. In this case, the

natural logarithm is used.

SIDF - The simple IDF; the literal inverse document frequency function without

taking the logarithm.

Binary - Each word has a weight of 1.

To compare these weighting methods, a new table was generated that

indicates whether or not each of the four methods succeeded in returning an

appropriate response for each of the 268 reasonable questions. Only the first

candidate is used for linear, IDF, and SIDF weighting. For the binary weighting

method, the audio files were reprocessed and only the top score was considered.

This table is included in Appendix A.

119

Comparison of Systems and Weighting Methods

For the main comparison, all 268 data blocks were processed by both a

full system and a component system. In addition, the component system applied

four weighting methods for comparison.

The table below compares the success of the implementations, by listing

the number of queries each implementation responded to properly out of the total

268. All results of proportion (percentage correct) are shown along with the

corresponding confidence intervals computed at the 95% confidence level, using

the conventional method based on the normal distribution (Ross, 2003).

Table 4. Comparison of Systems and Weighting Methods.

System

Full
Component Linear
Component SIDF

Component IDF
Component Binary

Proper
Responses

124

204

209

205
182

Percentage
of Total

46.3% ±6.0%
76.1% ±5 .1%
78.0% ±5.0%

76.5% ±5 .1%
67.9% ±5.6%

As the table shows, the component system was most successful,

particularly when the system used varying weights (non-binary). Given that the

top three systems (Linear, IDF, SIDF) were all within 2% of each other (which

was within the margin or error), no significant difference in performance was

detected between these component systems. All three of these implementations

performed significantly better than the full system.

120

Given that the three best component implementations did not result in

significant differences in performance for these data, the remaining analysis will

focus on a comparison of the full system and the component system with linear

weighting. Note that it would be necessary to collect and analyze at least 6000

spoken queries in order to reduce the confidence interval to +/-1 % in order to

test the possible significance of the differences seen between the three

techniques. This was not feasible in the current research.

Impact of Speech Recognition

It was expected that the SR performance would suffer in the component

system due to smaller grammar items (single words versus multi-word sample

121

questions), and more grammar items ("#X" single words versus "#Y" multi-word

sample questions). As a measure of the SR performance in the full system, the

percentage of proper responses to exact matches was calculated. This

represents the number of inputs the SR correctly matched, given the pool of

items the recognizer was expected to match.

For comparison, as a measure of SR performance in the component

system, the percentage of correctly recognized words was calculated. Again,

this represents the number of inputs the SR matched, given the pool of items the

recognizer was expected to match.

Table 7. Comparison of Speech Recognition Performance

System

Full (recognized matches)

Component (recognized words)

Total

83

1055

Recognized

75
735

% Recognized

90.4% ±6.4%
69.7% ±2.8%

We can see that for "fair" inputs, the component system has inferior SR

performance.

Another way to measure the impact of the SR performance on the

component system is by using "perfect recognition". To simulate perfect SR, the

component system was run using the transcribed questions (Spoken Query) for

all 268 data blocks. The results of the linear weighted system are compared to

those of the same system using actual SR.

122

Table 6. Actual Versus Transcribed

Component System
Linear Weighting

Proper
Responses

Transcribed (Perfect SR) I 220
Actual SR 1 204

Percentage
of Total

82.1% ±4.6%
76.1% ±5.1%

While the system with perfect SR appears to perform better, these results are

within the margin of error, and not conclusive.

Analysis by Subject

An analysis by test subject shows that the systems responded differently

to different subjects. Graph 3 below shows the percentage of queries the full

system and component system (linear only) responded to properly for each

subject. Given the limited number of questions recorded from each subject, the

resulting margins of error are large, but some general trends can be identified.

123

The graph shows that the component system performed significantly better than

the full system for 5 of the 21 subjects (24%). For the other subjects, no

statistically significant difference can be reported, although the trend seems to

lean towards the component system. There was only a single case in which the

computed performance of the full system exceeded that of the component

system. The main factor contributing to the difference appears to be the way in

which subjects phrased their queries.

Subject queries can be divided into two categories; anticipated, and not

anticipated. Some of the queries were phrased exactly as anticipated (they

matched a sample question).

What is the drivers name?

What is the drivers eye color?

What is the drivers date of birth?

Does the driver have any aliases?

Queries phrased as anticipated usually resulted in a proper response from

both systems. In addition, queries that were phrased very closely to a sample

question often resulted in a proper response from both systems.

Some queries were phrased considerably differently than anticipated.

Subjects 3, 4, 7, 8, and 11 used unanticipated phrasing frequently, often

consisting of single keywords. The examples below do not match any sample

question, and were responded to properly by the component system, but not by

the full system.

124

What are the restrictions?

Points?

What gender is he?

Aliases?

Date of birth?

Type of license?

Are there any accidents on the drivers record?

How many points is on the license?

How many accidents has he had before?

type of license?

any restrictions?

eye color?

birthday?

Overlap

It is worth noting the query overlap between the two systems. As shown

on the left in graph 2 below, 39% of the queries asked were responded to

appropriately by both systems. However, there were a number of questions (7%)

that the full system correctly responded to, and the component system did not.

The component system succeeded on 36% of the questions that the full system

failed on. These questions were, for the most part, not phrased as anticipated.

The remaining 18% of the questions were not responded to properly by either

system.

125

When transcribed queries were used to simulate perfect SR, as shown on

the right, the increase in correct responses for the component system was drawn

to the "Component" and "Both" categories from the "Neither" and "Full"

categories. That is, the component system responded properly to some

questions that it failed on with actual SR, but the full system succeeded on. The

component also responded properly to some questions that neither system

succeeded on previously. Note that in the "Transcribed" graph on the right,

transcriptions were used only for the component system. The full system used

actual SR in both cases.

Graph 4. Overlap in System Success Using Both
Speech Recognition and Transcriptions

126

CHAPTER X

CONCLUSIONS

A spoken question answering system that uses full question recognition is

likely to succeed most of the time when the question asked is identical to a

sample question. A system that uses component word recognition has the

potential to respond to additional questions, but is more likely to make speech

recognition errors as it recognizes words individually rather than in full sentences.

The purpose of this study was to examine how the benefit of the flexibility offered

by the component recognition compares to the loss in speech recognition

performance.

While other studies have explored the use of cosine similarity scores to

compare short text strings, past research has not addressed the issue of the

impact of speech recognition as it applies to such systems, or to closed-domain

SQA systems in general. It has been suggested that recognition errors are

compensated for when the target document is large. However, the impact of

recognition errors on short queries has not been explored to the extent that it has

in this study.

In systems that apply cosine similarity scores, classical tf-idf weighting is

always used with very little variation. No attempt has been made in past studies

to examine weighting schemes other than tf-idf when used in similar applications

where short text strings are compared, and specifically in domain-specific SQA

systems. This study examined the difference between several weighting

127

methods, and examined the impact of speech recognition errors on such systems

by both comparing the performance to a so called "full" system, and comparing

the performance to a system with "perfect" speech recognition by the use of

query transcripts.

The system described uses a set of template questions to which each

user query is compared using several variations of the cosine similarity measure

with tf-idf weighting. These variations were compared to see if any showed a

significant performance benefit. No indexing techniques, such as stemming,

synonym expansion, morphological expansion, n-gram featuring, or stop lists

were employed, although the functionality afforded by some of these techniques

is embedded in the ability to use grammar rules. The SRE used a grammar

containing only words that appear in the template questions, rather than the

common large vocabulary ASR.

Results of Analysis

Considering all participants, the component system (with linear weighting)

responded properly to about 76% of the questions, while the full question system

responded properly to only about 46% of the questions. This difference

corresponds to the advantage gained in using this component word recognition

system over the full system.

As expected, the component system made frequent recognition errors,

and only recognized about 69% of the words properly. Using transcribed

questions, the component system responded properly to about 82% of the

128

questions. This shows that a substantial increase in recognition errors (31%),

might result in only a small decrease of overall system success (6%).

Considering only the queries that were identical to sample questions, the

full system responded properly to about 90% of the questions, while the

component system responded properly to about 86%. This shows that for

predictable questions, the loss in speech recognition puts the component system

at a disadvantage. The full system's 90% recognition rate corresponds to the

component system's 69% recognition for individual words. We can see that the

component system does make recognition errors more frequently.

The component word recognition system assigns weights to each word.

For this study, four variations of the tf-idf weighting commonly used in Internet

search engines were used in parallel. The weighting schemes included a

standard implementation of the common IDF function, a less linear SIDF function

(using the raw inverse document frequency), a linear function, and a binary

weight (0 or 1). The different weighting methods place more or less importance

on word rarity. No significant difference was observed between weighting

schemes in the analysis, although the results suggest that the binary weighting

may be less effective than the other three, although it also performed significantly

better than the full system.

In an analysis by subject, the component system performed significantly

better than the full system for about 24% of the participants. These subjects

tended to phrase queries in unanticipated ways, and often used short phrases or

129

single keywords. There were no cases in which the full system significantly

outperformed the component system.

In the past, researchers have shied away from using component word

recognition in spoken question answering systems because of the negative

impact on speech recognition performance. Studies have shown that when the

text being recognized is long, such as in a spoken document, individual

recognition errors are compensated for by the redundancy and context contained

within the text. However, this claim is not valid when the recognized text is a

much shorter query. It has been acknowledged that for query recognition, a

single recognition error could have a profound impact, and that recognition errors

are an issue for any language based technology that recognizes small spans of

text (Allen, 2002).

In open-domain SQA research, it has been found that query recognition

errors cause a substantial performance loss as compared to the same system

using transcribed inputs (Schofield, 2003). No studies have examined the impact

of speech recognition in closed-domain systems by comparing the success of the

system with recognized and transcribed inputs. This study shows that with the

reduced grammar size and sample question set inherent in a closed-domain

system, recognition errors have a much smaller effect on system success as

compared to open-domain SQA systems.

Current QA and SQA systems that use cosine similarity scores implement

the standard tf-idf weighting method almost without exception. Most current QA

systems are document retrieval systems. It has been shown that this similarity

130

score for document retrieval does not work well when relatively shorter questions

are the targets (Jeon, 2005). No attempt has been made to examine the

appropriateness of this weighting scheme in closed-domain SQA systems which

have very short target "documents". Other weighting methods have not been

directly compared to tf-idf weighting in such systems. This study compared three

different weighting methods to the traditional IDF function, and did not discover a

significant difference between them in this application, although the results

suggest that a measure of rarity (as opposed to binary weighting), offers useful

information for the comparison.

Software Developed

The development system has many features that allow developers to

create domain-specific spoken question answering systems. The editor

application is used to design the system. It offers a graphical representation of

the query structure that provides system organization. Sample questions and

answers can be placed in a logical structure, and are written in a simple scripting

language. The language supports grammar rules to increase question flexibility.

Each question can be associated with multiple answers, which are chosen at run

time based on conditional statements. The conditions and answers may include

counts and comparisons of data items, and the scripting language has support

for basic arithmetic and Boolean functions.

Once the questions and answers have been defined, the editor application

creates all the files required by the runtime application, with the exception of the

131

data record. The editor application can generate files to create a full system, or a

component system. The runtime application automatically runs in the proper

mode based on the files supplied by the editor application. Once started, the

runtime application will continue to answer questions until closed.

Recommended Use

The SQA development system is designed to allow developers to design

domain-specific spoken answering systems quickly and easily. Based on the

experience gained in this study, the following steps are recommended.

1. Gather a group representative of the intended system users. Have them ask

questions as if they were using the finished system, and record the exact

phrasing of their questions.

2. Choose to build either a full question system, or a component word system.

Based on an analysis of the questions asked, one type of system may be

preferable for the application. A full question system might be the best choice

if the intended users will be trained, or will be using the system many times,

or if there are only a small number of predictable questions to which the

system will need to respond.

3. Build a question/answer set based on the questions asked in step one.

Refine the set as necessary.

132

For component word systems, it is not necessarily helpful to have multiple

phrasings of a question, such as:

What is the student's grade point average?

How high is the student's grade point average?

What does the student have for a grade point average?

While useful in a full question system, multiple phrasings in the component

system dilute the effectiveness of the key words in the question.

An answer such as, "yes", is not as helpful as, "yes, the student is

passing". Include feedback in the answer, so the user is alerted if the system

has misunderstood the question.

For either type of system, including more sample questions will allow the

system to respond to more inputs, but is also likely to result in more recognition

errors. Include commonly asked questions, and ones that are necessary for the

system to have. Do not include oddly worded questions, or questions that are

very rarely asked.

Looking Forward

There are several improvements that could be made to this system. As it

is, the data file must be parsed into a specific format before the runtime

application can answer questions. This means that a parser must be written for

each question answering system. It would be convenient if the runtime

133

application could read a SQL query result in a standard format, such as XML or

CSV. The editor application could also read this SQL query result, and build the

tree structure based on the query metadata, automatically linking the tree

structure to the data items in the runtime application.

An important result of this study is that the SQA system made a significant

number of errors in selecting the appropriate sample question even when perfect

speech recognition was simulated by using human transcriptions in place of the

speech recognizer output. Thus, improvements in speech recognizer

performance alone may not be sufficient to make SQA systems of the type

studied useful. Further research is needed both with the aim of improving the

original selection of the set of sample questions and with the aim of improving the

scoring algorithm used to select the best member of a set of sample questions in

response to a specific spoken query.

Any SQA system must have a means to represent acceptable queries of

some form. While this form has received much attention, less has been paid to

which queries are best to represent. As seen in this experiment, sample

questions with common words interfere in positive and negative ways. A study

concerning the relationships between sample questions in similar systems would

be beneficial to SQA system design.

Another approach to choosing sample questions would be to use user

feedback to modify the sample question list. The main challenge here would be

in the addition of new questions containing words not currently in the lexicon.

134

Given advances in speech recognition performance a user-flagged

misrecognized sentence might be sent to an ASR module to discern new words.

The results of this research indicate that the SQA system performance

was not highly sensitive to the fixed word weights used for computing matching

scores, as long as the weights used place more emphasis on less commonly

occurring words. Thus, further research specifically aimed at improving the

approach to defining fixed word weights may not be fruitful, unless those weights

consider some other factor in addition to frequency of occurrence. Some speech

recognition software has the ability to provide confidence scores for the choices

made, and to provide alternative choices for each spoken word also tagged with

relative confidence scores. Further research is needed to determine how best to

incorporate these word confidence scores and alternative choices for a spoken

query into the weighting scheme for the component word recognition, along with

the fixed weights based on frequency of occurrence in the sample question set.

135

LIST OF REFERENCES

Aho, A. (1968). Indexed grammars - an extension of context-free grammars.
Journal of the ACM, 15(4), 647-671.

Akiba, T., Fujii, A., and Itou, K. (2004). Effects of language modeling on speech-
driven question answering. Proceedings of the 8th International
Conference on Spoken Language Processing (ICSLP 2004),Jeju Island,
Korea, October 4-8. 1053-1056.

Albrecht, D.W., Zukerman, I., Nicholson, A.E., and Bud, A. (1997). Towards a
Bayesian model for keyhole plan recognition in large domains.
Proceedings of the Sixth International Conference on User Modeling,
Sardinia, Italy, June 2-5. 365-376.

Allen, J. F., Miller, B. W., Ringger, E. K., and Sikorski, T. (1996). A robust system
for natural language dialog. Proceedings of the 1996 Annual Meeting of
the Association for Computational Linguistics (ACL '96), Santa Cruz,
California, June 1996. 62-70.

Allan, J (2002) Perspectives on information retrieval and speech. ACM SIGIR
Forum Archive 36(1). 1-10.

Barnett, J., Anderson, S., Broglio, J., Singh, M., Hudson, R., and Kuo, S. W.
(1997). Experiments in spoken queries for document retrieval.
Proceedings of Eurospeech97,Rhodes, Greece, September 22-25.1323-
1326.

Bilotti, M., Ogilvie, P., Callan, J., Nyberg, E. (2007). Structured retrieval for
question answering. Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval.
Amsterdam, July 23-27. 351-358.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson, H., and
Winograd, T. (1977). GUS, A frame-driven dialogue system. Artificial
Intelligence. 8(2), 155-173.

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging. Computational
Linguistics. 21 (4), 543-566.

Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., Schoenberg, S.
(1997). Natural language processing in the FAQ Finder system: Results
and prospects. AAAI Spring Symposium on Natural Language Processing
for the World Wide Web, Palo Alto, California, March 24-25.17-26.

136

Carde, C , Ng, V., Pierce, D., and Buckley, C. (2000). Examining the role of
statistical and linguistic knowledge sources in a general-knowledge
question-answering system. Proceedings of the Sixth Applied Natural
Language Processing Conference (ANLP-2000), Seattle, Washington,
April 29-May 4.180-187.

Chomsky, N. (1956). Three models for the description of language. IRI
Transactions on Information Theory. 2(3), 113-124.

Chomsky, N. (1959). On certain formal properties of grammars. Information and
Control, 2, 137-167.

Crestani, F. (2002). Spoken query processing for interactive information
retrieval. Data & Knowledge Engineering, 41.105-124.

Demner-Fushman, D., and Lin, J. (2005). Knowledge extraction for clinical
question answering: preliminary results. Workshop on question answering
in restricted domains. 20th National Conference on Artificial Intelligence
(AAAI-05), Pittsburgh, Pennsylvania, July 9-13. 1-9.

Dumias, S., Banko, M., Brill E., Lin, J., Ng, A. (2002). Web question answering: is
more always better? Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information retrieval,
Tampere, Finland, August 11-15. 291-298.

Dunning, T. (1993) Accurate methods for the statistics of surprise and
coincidence. Computational Linguistics, 19(1), pp 61-74,1993.

Francis, W. N. (1979). A tagged corpus - Problems and prospects. In
Greenbaum, S., Leech, G., and Svartvik, J. (Eds), Studies in English
linguistics for Randolf Quirk, (pp. 192-209). London and New York:
Longman.

Franz, A., and Milch, B. (2002). Searching the web by voice. Proceedings of the
Conference on Computational Linguistics (COLING), Taipei, Taiwan,
August 24 to September 1. 1213-1217.

Fujii, A., Itou, K. (2004). An evaluation of the Web retrieval task at the third
NTCIR workshop. ACM SIGIR Forum Archive, 38(1). 39-45.

Galitsky, B. (2002). A tool for extension and restructuring natural language
question answering domains. 15th IEA/AIE Conference. Cairns, Australia.
June 17-20. 282-292.

137

Garside, R. (1987). The CLAWS word tagging system. In Garside, R., Leech, G.,
and Sampson, G. (Eds) The Computational Analysis of English. London
and New York: Longman.

Garside, R., Leech, G., and McEnery, A. (1997). Corpus Annotation. London
and New York: Longman.

Godfrey, J., Holliman, E., and McDaniel, J. (1992). SWITCHBOARD: Telephone
speech corpus for research and development. In IEEE ICASSP-92. 517-
520.

Goto, J., Miyazaki, M., Kobayakawa, T., Hiruma, N., Uratani, N. (2006). A TV
agent system that integrates knowledge and answers users' questions.
IUI '06: Proceedings of the 11th international conference on Intelligent
user interfaces, Sydney, Australia, January 29 to February 1. 300-302.

Greene, B. B., and Rubin, G. M. (1971). Automatic grammatical tagging of
English. Providence, Rl: Brown University.

Gupta, N., Rahim, M., and Riccardi, G. (2007). System for handling frequently
asked questions in a natural dialog service. U.S. Patent 7197460.

Halliday, M. A. K. (1978). Language as Social Semiotic: The social interpretation
of language and meaning. London: Edward Arnold.

Harabagiu, H., Moldovan, D., Picone, J. (2002). Open-domain voice-activated
question answering. Proceedings of the 19th International Conference on
Computational Linguistics, Taipei, Taiwan, August 24 to September 1.1-7.

Harris, Z. S. (1962). String analysis of sentence structure. Mouton, The Hague.

Hidaka, N., Masui, F. (2003). A comparison of answer ranking methods in
question answering. Proceedings of the Annual Conference of JSAI,
17(2)1-3.

Hedstrom, A. (2005). Question categorization for a question answering system
using a vector space model. Master's thesis, Department of Linguistics
and Philology (Language Technology Programme) Uppsala University,
Uppsala, Sweden.

Hemphill, C. T., Godfrey, J., and Doddington, G. R. (1990). The ATIS spoken
language systems pilot corpus. In Proceedings DARPA Speech and
Natural Language Workshop. Hidden Valey, PA. 96-101. Morgan
Kaufmann.

138

Hewitt, C. (1971). Description and Theoretical Analysis of Planner. PhD Thesis.
Massachusetts Institute of Technology.

Hofstadter, D. R. (1979). Godel, Escher, Bach: An eternal golden braid. New
York: Basic Books.

Horvitz, E., and Paek, T. (2001). Harnessing models of users' goals to mediate
clarification dialog in spoken language systems. In Proceedings of the
Eighth Conference on User Modeling. Sonthofen, Germany, July 13-17.
3-13.

Hovy, E. H., Gerber, L, Hermjakob, U., Lin, C , Ravichandran, D. (2001).
Towards semantics-based answer pinpointing. Proceedings of the
DARPA Human Language Technology Conference. San Diego, CA,
March 18-21. 1-7.

Jeon, J., Croft, W. B., Lee, J.H. (2005). Finding semantically similar questions
based on their answers. SIGIR '05: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Salvador, Brazil, August 15 to 19. 617-618.

Jijkoun, V. and Rijke, M. (2005). Retrieving answers from frequently asked
questions pages on the web. Proceedings of the 14th ACM international
conference on Information and knowledge management. Bremen,
Germany, October 31 to November 15. 76-83.

Johnson, R. (1983). Parsing with transition networks. In King, M. (Ed) Parsing
natural language. 59-72. London: Academic Press.

Joshi, A. K. (1985). Tree adjoining grammars: How much context sensitivity is
required to provide reasonable structural descriptions? In Dowty, D. R.,
Karttunen, L, and Zwicky, A. (Eds.), Natural language parsing, 206-250.
Cambridge: Cambridge University Press.

Jurafsky, D., and Martin, J. H. (2000). Speech and Language Processing. New
Jersey: Prentice Hall.

Kaplan, R., and Bresnan, J. (1982). Lexical functional grammar - A formal
system for grammatical representation. In Bresnan, J. (Ed.), The mental
representation of grammatical relations, (pp. 173-281). Cambridge, MA:
MIT Press.

Katz, B. (1997). From sentence processing to information access on the World
Wide Web. AAAI Spring Symposium on Natural Language Processing for
the World Wide Web, Palo Alto, California, March 24-25. 77-94.

139

Katz, B., Lin, J., Felshin, S. (2002) The START multimedia information system:
current technology and future directions. In Proceedings of the
International Workshop on Multimedia Information Systems, Tempe,
Arizona, October 10 to November 1. 117-123.

Kay, P., and Fillmore, C. J. (1999). Grammatical constructions and linguistic
generalizations. The What's X doing Y? construction. Language, 75(1),
1-33.

Klein, S., and Simmons, R. F. (1963). A computational approach to the
grammatical coding of English words. Journal of the Association for
Computing Machinery, 10(3), 334-347.

Kucera, H., and Francis, W. N. (1967). Computational analysis of present day
American English, Providence, Rl: Brown University Press.

Lau, R. (1997). WEBGALAXY: Beyond point and click - A conversational
interface to a browser. Proceedings Sixth International World Wide Web
Conference, Santa Clara, CA, April 7-11.119-127.

Leuski, A., Patel, R., and Traum, D. (2006). Building effective question
answering characters. Proceedings of the 7th SIGdial Workshop on
Discourse and Dialogue. Sydney, Australia, July 15-16.18-27.

Lin, J. (2007). An exploration of the principles underlying redundancy-based
factoid question answering. ACM Transactions on Information Systems
(TOIS), 25(2), Article 6, 1-55.

Luhn, H. P. (1957). A statistical approach to the mechanized encoding and
searching of literary information. IBM Journal of Research and
Development, 1(4), 309-317.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2), 313-330.

Marshall, I. (1983). Choice of grammatical word-class without global syntactic
analysis: Tagging words in the LOB corpus. Computers and the
Humanities, 17,139-150.

Mlynarczyk, S., and Lytinen, S. (2005). Faqfinder question answering
improvements using question/answer matching. In Proceedings of L&T-
2005 - Human Language Technologies as a Challenge for Computer
Science and Linguistics, Poznan, Poland, April 21-23.

140

Molla, D., Vicedo, J. (2007) Question Aswering in Restricted domains: an
overview. Computational Linguistics, 30(1), 41-61.

Narayanan, S. and Harabagiu, S. (2004). Question answering based on
semantic structures. Proceedings of the 20th international conference on
Computational Linguistics, Geneva, Switzerland, August 23-27.

Otterbacher, J., Radev, D. (2004). Comparing semantically related sentences:
the case of paraphrase versus subsumption. Proceedings of the 20th
International Conference on Computational Linguistics, August 23-27.
Article No. 1265.

Hidaka, N., and Fumito, M. (2003). A comparison of answer ranking methods in
question answering. Proceedings of the Annual Conference of JSAI,
17(2), 1-3.

Pado, s., Lapata, M. (2007). Dependency-Based Construction of Semantic
Space Models. Computational Linguistics, 33(2). 161-199.

Pa§ca, M. (2007). Lightweight web-based fact repositories for textual question
answering. CIKM '07: Proceedings of the Sixteenth ACM Conference on
Information and Knowledge Management, Lisboa, Portugal, November 6-
9. 87-96.

Peters, Stanley, and Ritchie (1982). Phrase linking grammars. Technical
Report. Department of Linguistics, University of Texas at Austin.

Prager, J., Brown, E., Coden, A., and Radeu, D. (2000). Question - answering by
predictive annotation. In Proceedings 23rd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. Athens, Greece, July 24-28.184-191.

Radev, D., Fan, W., Qi, H., Wu, H., Grewal. A. (2002). Probabilistic Question
Answering on the Web. Proceedings of the 11th International World Wide
Web Conference, Honolulu, Hawaii, May 7-11. 408-419.

Ross, T. D. (2003). Accurate confidence intervals for binomial proportion and
Poisson rate estimation. Computers in Biology and Medicine 33, 509-531.

Roussinov, D., and Robles-Flores, J. (2004). Self-learning web question
answering system. Proceedings of the 13th International World Wide Web
Conference, New York City, NY, May 17-22. 400, 401.

Salton, G. (1971). The SMART retrieval system: Experiments in automatic
document processing. Englewood Cliffs, NJ: Prentice Hall.

141

Schofield, E. and Zheng, Z. (2003). A speech interface for open-domain
question-answering. Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics, 2(2), 177-180.

Seneff, S., and Polifroni, J. (1996). A new restaurant guide conversational
system: Issues in rapid prototyping for specialized domians. Proceedings
International Conference on Spoken Language Processing, Philadelphia,
PA. October 3-6. 665-668.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal, 27(3), 379-423.

Shinyama, Y., Sekine, S., Sudo, K., Grishman, R. (2002). Automatic paraphrase
acquisition from news articles. To appear in the Proceedings of Human
Language Technology Conference (HLT 2002), San Diego, CA, March 24-
27.313-318.

Sneiders, E. (2002). Automated question answering using question templates
that cover the conceptual model of the database. Proceedings of the 6th
International Conference on Applications of Natural Language to
Information Systems-Revised Papers. Stockholm, Sweden, June 27-28.
235-239.

Soricut, R., Brill, E. (2004). Automatic question answering: beyond the factoid.
Proceedings of the Human Language Technology and North American
Association for Computational Linguistics Conference (HLT/NAACL-2004).
May 2-5, Boston, MA.

Soricut, R., and Brill, E. (2006). Automatic question answering: beyond the
factoid. Information Retrieval, 9(2), 191-206.

Spark Jones, K. (1972). A statistical interpretation of term frequency and its
application in retrieval. Journal of Documentation, 28(1), 11-21.

Stolz, W. S., Tannenbaum, P. H., and Carstensen, F. V. (1965). A stochastic
approach to the grammatical coding of English. Communications of the
ACM, 8(6), 399-405.

Tanenbaum, A. S. (1992). Modern Operating Systems. Prentice Hall, NJ.

Tsur, O., de Rijke, M., and Sima'an, K. (2004). BioGrapher: Biography questions
as a restricted domain question answering task. In Workshop on Question
Answering in Restricted Domains. 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-2004), Barcelona, Spain, July 21-26.
23-30.

142

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42, 230-265. Read to the society in 1936, but published in 1937.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.

Weizenbaum, J. (1966). ELIZA - A computer program for the study of natural
language communication between man and machine. Communications of
the ACM, 9(1), 36-45.

Wiegand, M., Leidner, J., Klakow, D. (2007). Combining term-based and event-
based matching for question answering. Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. Amsterdam, July 23-27. 715-716.

Winograd, T. (1972). Understanding natural language. Cognitive psychology,
3(1).

Woods, W. A. (1970). Transition network grammars for natural language
analysis. Communications of the ACM, 13,591-606.

Wu, C, Yeh, J., Chen, M. (2005). Domain-specific FAQ retrieval using
independent aspects. ACM Transactions on Asian Language Information
Processing (TALIP), 4(1), 1-17.

Wu, Y., Hu, X., Kashioka, H. (2007) Mining redundancy in candidate-bearing
snippets to improve web question answering. Proceedings of the
Sixteenth ACM Conference on Information and Knowledge Management,
Lisboa, Portugal, November 6-9. 999-1002.

Wundt, W. (1900). Volkerpsychologie: eine untersuchung der
entwicklungsgesetze von sprache, und Sitte, W. Engelmann, Leipzig.
Band II: Die Sprache, Zweiter Teil.

Zue, V. (1995). Navigating the information superhighway using spoken language
interfaces. IEEE Expert 10, 39-43.

143

APPENDIX A

TEST DATA

Testl

Test 1 was a preliminary test used to optimize the system. The table

below shows the data for the 77 questions gathered. For each question, the

table contains the wave file name, the reasonable template, and the templates

chosen by the full question recognition system, as well as the component

recognition system result for all three weighting methods. The wave file name is

used as a unique identifier. If no reasonable template question exists, a " -1 " was

entered.

Table 7. Test 1 Data Summary

Wave File
VictorAudiol -O.wav
VictorAudiol -3.wav
VictorAudio1-4.wav
VictorAudiol -5.wav
VictorAudio1-6.wav
VictorAudio2-5.wav
VictorAudio2-6.wav
VictorAudio2-11 .wav
VictorAudio2-12.wav
VictorAudio2-13.wav
VictorAudio2-14.wav
VictorAudio2-15.wav
VictorAudk>2-16.wav
VictorAudio2-17.wav
VictorAudio2-18.wav

Template
0
5
7
37
12
11
15
19
24
23
2
-1
-1
-1
3

Full
13
5
21
37
12
7
0
33
24
23
2
0
12
12
3

Linear
13
5
21
37
5
38
8
21
24
23
2
21
21
21
38

SIDF
13
5
7
5
12
11
8
19
24
23
2
17
17
21
3

IDF
13
5
21
37
5
38
8
21
24
23
2
21
21
21
38

144

Wave File
VictorAudio2-19.wav
VictorAudio2-20.wav
VictorAudio2-21 .wav
VictorAudio2-23.wav
VictorAudio3-0.wav
VictorAudio3-1 .wav
VictorAudio3-2.wav
VictorAudio3-3.wav
VictorAudio3-5.wav
VictorAudio3-6.wav
VictorAudio3-7.wav
VictorAudio3-8.wav
VictorAudio3-9.wav
VictorAudio3-10.wav
VictorAudio3-11 .wav
VictorAudio3-13.wav
VictorAudio3-14.wav
VictorAudio3-16.wav
VictorAudio3-17.wav
VictorAudio3-18.wav
VictorAudio4-0.wav
VictorAudio4-1.wav
VictorAudio4-2.wav
VictorAudio4-3.wav
VictorAudio4-5.wav
VictorAudio4-6.wav
VictorAudio4-7.wav
Victo rAud io4-8 .wav
VictorAudio4-9.wav
VictorAudio4-10.wav
VictorAudio4-11 .wav
VictorAudio4-12.wav
VictorAudio4-13.wav
VictorAudio4-14.wav
VictorAudio4-15.wav
VictorAudio4-16.wav
VictorAudio4-17.wav
VictorAudio4-18.wav
VictorAudio4-19.wav
VictorAudio4-20.wav
VictorAudio4-21 .wav
VictorAudio4-22.wav
VictorAudio4-23.wav

TemDlate
3
-1
-1

7
0
7
16
23
16
17
18
5
7
31
-1
23
10
3
3
7
26
0
0
17
21
21
10
37
23
0
3
3
37
16
16
21
7
19
28
31
31
0
0

Full
3
0
9
21
0
0
10
12
0
0
0
0
0
30
13
13
0
3
0
34
0
13
0
0
12
0
10
0
23
13
3
3
0
0
16
12
21
19
34
0
18
13
13

Linear
3
9
5
38
0
33
38
21
16
21
18
5
21
8
13
13
10
13
3
38
5
21
38
38
8
21
38
35
23
38
38
38
23
38
38
21
38
19
28
18
38
38
13

SIDF
3
9
5
7
0
33
38
8
16
21
18
5
21
8
30
13
10
13
3
34
5
21
38
17
8
38
15
35
23
38
3
3
23
4
38
21
7
19
28
18
38
38
13

IDF
3
9
5
38
0
33
38
21
16
21
18
5
21
8
13
13
10
13
3
38
5
21
38
38
8
21
38
35
23
38
38
38
23
38
38
21
38
19
28
18
38
38
13

Wave File
VictorAudio4-24.wav
VictorAudio4-25.wav
VictorAudio4-26.wav
VictorAudio4-27.wav
VictorAudio4-28.wav
VictorAudio4-29.wav
VictorAudio4-30.wav
VictorAudio4-31 .wav
VictorAudio4-32.wav
VictorAudio4-33.wav
VictorAudio4-34.wav
VictorAudio4-35.wav
VictorAudio5-8.wav
VictorAudio5-9.wav
VictorAudio5-1O.wav
VictorAudio5-11 .wav
VictorAudio5-12.wav
VictorAudio5-13.wav
VictorAudio5-17.wav

Temolate
5
3
17
10
12
15
29
37
28
29
31
21
12
16
15
0
21
23
0

Full
3
3
17
10
12
13
29
37
28
21
31
3
12
13
15
5
12
32
0

Linear
5
38
17
13
13
15
1
37
28
38
26
21
13
13
15
5
38
38
5

Final Test Data

SIDF
5
3
17
18
12
15
1
37
28
30
38
21
12
18
15
5
33
23
5

IDF
5
38
17
13
12
15
1
37
28
38
26
21
12
13
15
5
38
38
5

The final test data report is similar to the Test 1 data report above. For

each question, the table contains a number (#) used in batch processing, the

wave file name, the reasonable template, and the templates chosen by the full

question recognition system, as well as the component recognition system result

for all three initial weighting methods. The wave file name is used as a unique

identifier. If no reasonable template question exists, "None" was entered.

146

Table 8. Final Test Data

Wave File Template
0 FredAudio6-0.wav 0
1 FredAudio6-1 .wav 20
2 FredAudio6-2.wav 3
3 FredAudio6-3.wav 6
4 FredAudio6-4.wav 7
5 FredAudio6-5.wav 15
6 FredAudio6-6.wav 9
7 FredAudio6-7.wav 11
8 FredAudio6-8.wav 14
9 FredAudio6-9.wav 19
10 FredAudio6-10.wav 22 23
11 FredAudio6-11.wav 25
12 FredAudio6-12.wav 25
13 FredAudio6-15.wav 17
14FredAudio6-16.wav None
15 FredAudio6-20.wav None
16 FredAud io6-21 .wav None
17FredAudio6-22.wav 0
18FredAudio6-23.wav None
19 FredAudio6-24.wav 22 23
20 FredAudio6-25.wav None
21 FredAudio6-28.wav 25
22FredAudio7-0.wav 19
23 FredAudio7-1 .wav 0 1
24 FredAudio7-2.wav None
25 FredAudio7-3.wav 18
26 FredAudio7-4.wav None
27 FredAudio7-5.wav None
28 FredAudio7-6.wav None
29 FredAudio7-7.wav None
30 FredAudio7-8.wav 4
31 FredAudio7-9.wav None
32FredAudio7-10.wav None
33 FredAudio7-11 .wav None
34FredAudio7-12.wav None
35 FredAudio7-13.wav None
36 FredAudio7-14.wav None
37 FredAudio7-15.wav 3
38 FredAudio7-16.wav None
39 FredAudio8-0.wav 0
40 FredAudio8-1 .wav 15

Full
0
0
3
6
7
15
9
11
14
19
22
19
19
0
19
19
19
0
19
22
0
19
19
0
19
18
19
22
22
0
0
1
0
0
19
0
3
3
0
0
0

Linear
19
20
3
6
7
15
9
11
14
19
23
21
21
17
21
14
6
0
19
23
15
21
19
1
24
18
19
15
21
1
4
1
1
1
1
10
1
1
15
0
15

SIDF
19
20
3
6
7
15
9
19
14
19
23
25
25
17
14
14
6
0
19
23
15
25
19
1
1
18
19
15
18
1
4
1
1
1
16
10
20
3
15
0
15

IDF
19
20
3
6
7
15
9
11
14
19
23
21
21
17
21
14
6
0
19
23
15
21
19
1
24
18
19
15
21
1
4
1
1
1
1
10
1
1
15
0
15

Q

=
a
=

l<
t

i-
-i-

m

m

"
*

O

w

in

m

C
O

in

O

)
C

M
i

-
i

-
t

M
C

M
C

M
i

-
O

O
i

-
T

-
C

V
I

C
M

C
O

h
-

.
T

-
^

^
g

Q
^

^
j

j
Q

^
t

v
.

C
M

-it

in

m

m

m

O
O

C
M

C
M

C
M

C
V

J
C

O
i-T

-
C

O
C

D
S

C
O

(
D

O

i—

i—

l
—

i
—

T

-
C

M

•«

--
^

"

^
"

C
M

 C
D

i
-

m

m

m

C
M

 C
M

i
-

C
M

co in

 m
 m

co

in

O

)
C

O
i
-

i
-

C
M

C
M

C
O

h
~

i
-

C
0

T
-

0
0

C
0

C
D

C
O

i
-

h
-

co
t̂- in

 in

in
 m

C

O
i
-

C
M

C
M

C
M

C
O

i
-

1
-

co

I
s-

c
o
 m

o

i
-

C
O

T
-

i
-

i
-

C
M
 i
-

•
*

-
<

*
!

-
!

-

C
M

i-
 C
M
 w

C
M
 °
-

£

m

i
n

c
o

m

O
)

™

^
j
 i
n
 £

i
n
 m

II
 c
o
 c
o
 £

2
°
 S
£
 o

,_

*
•

^
^

C
M

^
^

0
0

I
-

^
C

M
C

M
C

O
I

^
I

-
I

-
T

-
<

X
)

C
O

C
O

C
O

T
-

|
N

.
C

O
^

^
C

\
I

^
C

O
I

-
I

-
^

I
-

I
-

^
^

^
C

\
1

I
-

'
^

'
*

T
^

I
-

i
-

O
C

M
'

^
-

O
m

C
M

 -x
t

C
O

T

-
I

^
-

C
O

C
O

C
M

O

T
-

C
M

C
M

O
C

J
i

-
h

-
O

i
-

O
O

O
h

~
0

0
0

)
O

C
O

O
O

O
O

O
C

M
C

M
O

C
M

C
O

O
O

T
-

0

O

T
- I

-
I

-
I
f

l
i
-

O
t

W

O

C
O

iplate

^

C
D

H

J
)

U
_

C
D

>

CO

•^

^

C
M

C

D

C
D

C

D

C
D

C

D

C
D

2

i-
^

o
 to

 m
 c

o
o

 2

co
 m

o

 m

co
 ̂

^

J

§

§

o

C
M

 *• m
 m

-5

 £

II £2
 £2

 £

^

$£
 8

^

^
. ^

- C
M

C
M

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
c

c
c

6
c

c
c

c
c

d
c

0
c

0
c

0
c

0
c

0
>

>
>

>
>

>
>

>
>

>
c

c
c

c
c

c
c

0
c

0
c

c
c

c
c

0
c

0
c

0
t

0
c

c
c

c
c

c
c

c
c

0
c

0
c

0

*
*

*
^

^
O

i-
c

M
c

o
^

K
c

o
'i-

C
M

c
o

^

^

*
*

^

*
*

*
. *

^
O

i-
c

\ic
o

^
ir

ic
d

r
^

o
6

o
>

O
i-

o
J

O
T

-
c

M
c

O
'*

I
I

I
I

I
I

I
I

I
1

I
I

1
I

I
I

I
I

I
I

I
I

I
I

1
I

I
I

I
I

I
1

I
1

I
I

I
I

C
M

I J
C

, ,3

V
 JJ

Ij_

jJ

C

1

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

0
0

C
O

0
0

C
O

C
O

C
O

0
0

C
7

)
O

)
C

n
C

7
)
C

n
C

7
)
O

)
C

n
(
^

O
)
C

n
C

^
O

)
O

)
O

)
O

)
C

7
)
O

)
O

)
C

n
O

)
O

)
O

)
i—

1

—
1

—
1

—
1

—

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

^
^

^
T

D
X

J
^

T
S

T
^

^
T

J
^

^
^

^
^

^
^

^
b

^
X

J
^

^
^

^
^

^
^

^
^

^
^

^
^

^
T

D
^

^
b

^
T

D
T

J
^

D

3
3

3
D

3
3

3
3

3
3

3
3

3
Z

J
3

Z
3

3
3

3
3

3
3

3
3

3
3

3
3

Z
5

3
D

3
3

3
3

3
3

3
3

3
D

3

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<

X
3

T
J

T
3

T
D

T
3

T
3

X
5

T
J

T
3

T
3

T
3

T
3

T
3

T
3

T
3

T
J

T
J

X
3

T
D

T
3

T
J

T
3

T
3

T
3

T
3

T
3

X
J

T
3

T
3

T
3

X
3

X
3

T
3

T
3

T
3

T
J

T
J

"
0

-
a

-
0

-
D

T
3

T
3

O
Q

C
D

C
D

C
D

0
C

D
Q

C
D

O
C

D
C

D
C

D
O

C
D

O
C

D
C

D
O

C
D

C
D

C
D

O
C

D
Q

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

0
C

D
C

D
0

C
D

C
D

C
D

C
D

C
D

1

_
1

_

1
—

1
—

1
—

i

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

_
l

—

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

l
_

u
.

k
.

U
_

U
_

U
-
L

i.U
_

L
L

U
_

U
_

U
_

U
_

U
_

l±
.U

-
L

L
U

_
U

_
U

_
lJ

_
U

_
li-

L
J

_
L

L
U

.L
L

U
_

L
J

_
U

_
U

_
U

_
U

_
L

i_
L

J
_

U
_

U
_

U
_

U
_

L
L

U
_

L
J

_
U

_
L

L

C
M

c
o

^
t

i
n

c
o

r
^

c
o

o
)

O
i

-
C

M
c

O
'
^

r
i

n
c

D
h

~
c

o
o

)
O

i
-

C
M

c
o

'
^

-
i

n
c

o
h

>
-

o
o

o
)

O
T

-
'

^
•

•
^

•
^

•
•

^
•

^
'

^
•

•
^

•
'

^
•

i
n

m
m

i
n

i
n

m
m

m
m

m
c

o
c

o
c

o
c

o
c

D
c

o
c

D
c

o
c

o
c

o
i

^
h

-
c

j
c

o
^

-
i

n
c

D
N

c
o

r
o

o
i

-
w

c
o

h

»
r

^
r

^
r

^
h

-
.

h
-

h
.

N
c

o
c

o
c

o
c

o

Wave File Template
84FredAudio10-5.wav 25
85FredAudio10-6.wav 25
86FredAudio10-7.wav 25
87 FredAudio10-8.wav 21
88FredAudio10-9.wav 6
89FredAudio10-10.wav 25
90 FredAudiol 0-11 .wav 24
91 FredAudio10-12.wav 18
92FredAudio10-13.wav 17
93FredAudio10-14.wav 6
94 FredAudiol0-15.wav 19
95FredAudio10-16.wav 7
96 FredAudiol 0-17.wav 10
97FredAudio10-18.wav None
98FredAudio10-19.wav 3
99 FredAudio10-20.wav 13 14
0 VictorAudio14-0.wav 15
1 VictorAudio14-1.wav 15
2 VictorAudio14-2.wav 13 14
3 VictorAudio14-4.wav None
4 VictorAudio14-5.wav None
5 VictorAudio14-6.wav None
6 VictorAudio14-7.wav 7
7 VictorAudio14-8.wav None
8 VictorAudio14-9.wav 21
9 VictorAudio14-10.wav 25
10 VictorAudiol 4-11 .wav None
11VictorAudio14-12.wav 6
12 VictorAudiol4-13.wav 4
13 VictorAudiol 4-14.wav None
14 VictorAudiol 5-0.wav 0
15 VictorAudiol 5-1 .wav 14
16 VictorAudiol 5-2.wav None
17 VictorAudiol 5-3.wav None
18 VictorAudiol 5-4.wav None
19 VictorAudiol 5-5.wav None
20VictorAudio15-6.wav 21
21 VictorAudio15-7.wav None
22 VictorAudio15-8.wav 3
23VictorAudio15-9.wav 4
24 VictorAudiol 5-10.wav 15
25 VictorAudiol 5-11 .wav None
26 VictorAudiol 5-12.wav 22

Full
19
19
0
21
6
25
24
18
17
6
19
7
10
10
3
14
5
15
0
0
0
0
7
0
0
25
0
0
0
0
0
14
0
0
0
0
0
10
3
4
5
0
0

Linear
25
21
25
1
6
1
24
18
17
6
19
7
10
1
3
13
2
15
11
15
1
1
7
16
21
25
25
6
4
16
0
14
16
19
19
1
1
8
3
4
15
1
22

SIDF

25
25
25
21
6
19
24
18
17
6
19
7
10
8
3
13
2
15
11
15
1
1
7
16
21
25
25
6
4
16
0
14
16
19
19
1
21
8
3
4
15
1
22

IDF
25
21
25
1
6
1
24
18
17
6
19
7
10
1
3
13
2
15
8
15
1
1
7
16
21
25
25
6
4
16
0
14
16
19
19
1
1
8
3
4
15
1
22

149

g

C
O

C
O

C

D

c

S

Q

E

C
D

C
D

C
D

>

C

6

C
O

C

O

h
>

C

O

r
-

r
r

r
(

O
N

C
O

C

O

I
s

-
C

D

1
-

T
-

T
-

T
-

C
O

 h
*

C
3>

C
J>

 C
O

 lO

C
J>

i—

O

O
O

i
-

i
-

i
-

C
M

i
-

C
M

O
i

O

C
O

 L
O

 0
>

 i—

0
0

O
)

i
-

i
-

i
-

W

i
-

C
M

O

C
O

 C
O

 O

O

C
O

w

t

C
D

T
-

N

1
-
M

-
c

o
c

o
r
^

N
.
o

w

C
M

C
O

C

O

C
O

T

-
O

C

O

in

"
*

C
D

T

-

m
^

t
o

o
c

D
r

-
h

-
o

jin
m

O

i
C

>
i 1

—

T
—

 T
-

f
—

T
-

T
—

T

-C
V

I

0
)

0
>

Q

O

C
O

C
O

0
)

0
)

C
O

O
O

>
C

O

O

1
-

T
-

1
-

T
-

1
-

-
I

-

£2
 CO

 h
- CD

i-

^
i

-
i

-
r

-
(

D
N

i
-

o
) o

>
 °2

 m
 o

>
 i-

C
O

O
)

T
-

I
-

^
W

T
-

W
O

m

T
-

T
-

O

C
M

O
O

h
-

O
O

O
-

r
-

O
O

O
O

O
C

M
O

O
O

O
C

O
T

-
O

O

W

^

C
O

T
-

m

o

i-
m

 C
D

 T
-

i:
<

*
c

o
c

o
h

~
£

:
2

L
n

in

_

CD

O

CD
 3

2

^

1
-

O

1
-

T
-

^

N
O

l
r

-
O

l
f

l
O

C

D
 C

D

O

i
-

i
-

O

O

C
D

O

i
-

O

O

O

O

T

-

•<fr
0

0

h

- C
D

C

M

i

-
i

-
T

-
C

O

1^-
T

-

C
D

c
o

ro
Z

C
D

c

o

z

•*t
C

M

lO

C
M

 o>

T
—

T
_

C
M

C
D

C

o

^

C
D

C

o

^

C
D

c

o

^

^
m

o

c
o

 c
o

 m
 c

o
 i- h

-
,_

^

j
. C

O
 C

D
 h

-
h

- C
D

0
)

T
-

T
-

'
'

-
T

-
"

r
"

"
,

~
"

r
"

C
D

C

o

z

in

C
M

C
D

c

o

z

C
D

c

o

z

C
D

c

o

z

C
D

C

o

C

D
 m

o

Z

i- C
M

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

C
C

C
C

C
O

C
O

C
O

a
S

C
C

C
C

C
C

C
C

C
0

0
3

C
O

C
O

C
O

C
O

C
O

C
O

C
O

>
>

>
>

>
>

>
>

>
>

C
C

S
C

O
C

O
C

O
C

C
C

C
5

C
O

C
C

C
C

C
C

>
>

>
>

5
5

5
5

£
5

5
5

5
5

5
5

5
5

5
5

5
5

5
g

g
g

g
g

g
g

g
g

f
g

5
5

5
5

5
5

5
5

5
5

?
|

f
|

c
o

?
|

c
o

^
in

c
d

K
c

o
'c

D
d

T
^

c
M

c
o

^
u

jc
d

^
o

d
c

7
>

c
J
i-

^

^

^

">
.

>
. >

. ">
.

>

>

 >
d

-r-
:c

M
c
o

'*
iric

d
c
d

c
T

Jc
>

*

^

^

^

'» —

in

o

T
3

3

•
l

-

in

o

T
3

3

T
-

in

o

X
3

3

T
—

in

o

X
J

3

T
™

in

o

T
3

3

I
-

in

o

T
3

2

•
J

-

in

o

'•a

3

C
M

in

o

T
3

3

C
M

in

o

T
3

3

C
M

in

o

'
•

&

3

C
M

in

o

T
3

3

C
M

in

o

T
3

3

C
M

in

o

io

3

C
M

in

o

T
O

3

C
M

L
f)

o

T
D

3

C
M

in

o

T
O

3

C
M

in

o

T
3

3

V

in

o

T
J

3

1

in

o

T
D

3

o

C
D

o

X
3

3

*-C
D

o

X
3

3

C
M

C
D

O

T
J

3

op

C
D

O

T
3

3

,
-̂

C
D

O

•a

3

i
n

C
D

o

T
3

3

C
D

 r>.
C

D

C
O

o

T
J

3

.2

-o

3

op

C
O

o

T
3

3

q>

C
O

C

O

o

o

T
J

T

3

3

3

C
O

o

T
3

3

c6

o

X
3

3

C
O

o

T
3

3

C
D

O

T
3

3

C
O

o

T
3

3

c6

o

C
O

O

T
3

T

3

3

3

C
O

 C
O

o
 o

X

3
T

3

3

3
 o

 I o

T
3

3

T
—

1

O

'•O

3

C
M

1

O

T
3

3

C
O

1

o

T
J

3

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<

L
»

o

••-•

o

1
-

o

*ri
o

L

O

•*
-»

o

v
.

o

+
-•
o

1
—

o

*-o

i
-

o

+
-•

o

i
-

O

*->

o

»—

o

-I-'

o

^

o

+
-

o

L
_

O

-t-"

o

u
.

O

+
-•
o

i
-

o

•*->

o

»-O
*->

o

»—

O

*-.y

i
-

O

*-o

v
_

O

•

•
-

'

o

»—

O

*-o

»—

o

*-o

1
—

o

•I-'

.a

»-o
*-o

i—

O

*-y

i—

O

•
•

-
•

o

s—

O

+
-•
o

i—

O

+
-•
o

o

+

-•

o

1
—

o

+
-•

o

i—

O

+
-•
o

1
—

o

+
-•
o

i—

o

*
-

•

o

i—

O

*-o

i—

o

*
3

o

i—

O

*-o

I—

o

*-o

i—

o

*-o

i—

O

•P
S

o

i—

O

*
s

o

i—

O

*
5

o

i—

i—

o
 o

•J

S

^
5

o
.o

O

-
9

o

V
-

o

-
9

o

i—

o

£
3

o

i—

o

+
i

Q

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

r>.
C

M

C
O

C

M

C

D

C
M

 o

1
—

C
O

 C
O

C

M

C
O

C

O

C
O

 -<*
C

O

i
n

C

O

C
D

C

O

h«-
C

O

0
0

C

O

C
D

C

O
 o

^

T

—

"*
C

M

-*
C

O
 -<

t
•

*
"

t
m

•

*

C
O

"tf r--•
*

0
0

"*
C
3>

•

*
o

L
O

T

—

m

C

M

m

C
O

m
 ^

,

in

L
O

m

C
D

in

1^-

m

C
O

m

O

)
L
O

 o

T
-

C
O

C

O
 C

M

C
O

C

O

C
O

•<!}•

m

C
D

 C
O

C

D

C
O

h

-
C

D

0
0

C

D

O
)

C
D

Wave File Template Full Linear SIDF IDF
70 VictorAudio17-4.wav
71 VictorAudio17-5.wav
72 VictorAudio17-6.wav
73 VictorAudio17-7.wav
74 VictorAudio17-8.wav
75 VictorAudio17-9.wav
76 VictorAudio17-10.wav
77 VictorAudio18-0.wav
78 VictorAudiol 8-1 .wav
79 VictorAudio18-7.wav
80 VictorAudio18-8.wav
81 VictorAudio18-9.wav
82 VictorAudio18-10.wav
83 VictorAudiol 8-11 .wav
84 VictorAudio18-12.wav
85 VictorAudio18-13.wav
86 VictorAudiol 8-14.wav
87 VictorAudio18-15.wav
88 VictorAudio18-16.wav
89 VictorAudio18-17.wav
90 VictorAudio18-20.wav
91 VictorAudio18-21.wav
92 VictorAudio18-22.wav
93 VictorAudio18-23.wav
94 VictorAudio18-24.wav
95 VictorAudio18-25.wav
96 VictorAudio19-0.wav
97 VictorAudiol 9-1 .wav
98 VictorAudio19-2.wav
99 VictorAudio19-3.wav
10OVictorAudiol 9-4.wav
101 VictorAudiol 9-5.wav
102VictorAudio19-6.wav
103VictorAudio19-7.wav
104VictorAudio19-8.wav
105VictorAudio19-9.wav

106VictorAudio19-10.wav
107VictorAudio19-11 .wav
108VictorAudio19-12.wav
109VictorAudio19-15.wav
110VictorAudiol 9-16.wav
111 VictorAudiol 9-17.wav
112VictorAudio19-19.wav

25
45
None

None

None
None

3

14
8

3

3

8
0

01

23

8

4
None
None

18
None

20
20

3
None

None

0
21
22
22

25

25
25
6

6

25

25
11
18
17
14

14
9

0
5
8
22

0

1
3

0
0

0

0

0
0

1

0

8

4
0

3
18
0

1
0

3
0

0

0
0
0
0

0

0
0
0

0
0

0
0
0
0
0

0
0

25
4
13
1

0

16
3

7
8

0

3

8
19

1

11

8

4
2

17
18
15

17
0

3
2

17

0
21
22
22

25

15
15
18

6
25

15
11
18
17
7

14
6

25
4
13

19
0

16
3

7
8

0

3

8
19

25

22
8

4
2
17
18

15
17
0

3
2
17

0

21
22

22
25

15
15
18

6
25

15
11
18
17
7
14

6

25
4
13

19
0

16
3

7
8

0

3

8
19

1

11
8

4
2
17
18

15
17
0

3
2
17

0

21
22

22
25

15
15
18

6
25

15
11
18
17
7
14

6

Wave File Template Full Linear SIDF IDF
113VictorAudio19-20.wav
114VictorAudio19-23.wav
115VictorAudio19-24.wav
116VictorAudio19-25.wav
117VictorAudio19-26.wav
118VictorAudio19-27.wav
119VictorAudio19-28.wav
120VictorAudio19-29.wav
121 VictorAudiol 9-30.wav
122VictorAudio19-31 .wav
123VictorAudio19-32.wav
124VictorAudio19-33.wav
125VictorAudio19-35.wav
126VictorAudio19-36.wav
127VictorAudio19-37.wav
128VictorAudio19-38.wav
129VictorAudio19-39.wav
130VictorAudio19-40.wav
131 VictorAudiol 9-41 .wav
132VictorAudio19-43.wav
133VictorAudio19-46.wav
134VictorAudio19-49.wav
135VictorAudio19-50.wav
136VictorAudio19-51 .wav
137VictorAudio19-52.wav
138VictorAudio19-54.wav
139VictorAudio19-55.wav
140VictorAudio19-56.wav
141 VictorAudiol 9-57.wav
142VictorAudio19-58.wav
143VictorAudio19-59.wav
144VictorAudio19-60.wav
145VictorAudio19-61 .wav
146VictorAudio19-63.wav
147VictorAudio19-65.wav

0 VictorAudio20-0.wav
1 VictorAudio20-1 .wav
2 VictorAudio20-3.wav
3 VictorAudio20-4.wav
4 VictorAudio20-5.wav
5 VictorAudio20-6.wav
6 VictorAudio20-7.wav
7 VictorAudio20-8.wav

9
None

19
None

None

6
None
None
None

None
None

17
16
None

None

24
23
None

None
None
None
None

6
None

None

None

14
11
None
None
None
None

None

None

3
0
3
4
8
None

14
18
14

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0

9
0
19
2
0
6
13
16
15
1
19
17
16
14
1
7
15
13
15
16
19
25
6
4
8
11
14
11
8
15
25
0
0
13
3
0
3
4
8
0
0
18
15

9
0
19
2
0
6
13
16
15
1
19
17
16
14
1
7
15
13
15
16
19
25
6
4
8
11
14
11
8
15
25
0
0
13
3
0
3
4
8
0
0
18
15

9
0
19
2
0
6
13
16
15
1
19
17
16
14
1
7
15
13
15
16
19
25
6
4
8
11
14
11
8
15
25
0
0
13
3
0
3
4
8
0
0
18
15

152

Wave File Template
8 VictorAudio20-9.wav 14
9 VictorAudio20-10.wav 11
10 VictorAudio20-11 .wav 14
11VictorAudio20-12.wav 15
12VictorAudio20-13.wav 6
13VictorAudio20-14.wav 6
14 VictorAudio20-15.wav 6
15VictorAudio20-16.wav 7
16VictorAudio20-17.wav 7
17 VictorAudio20-18.wav None
18 VictorAudio20-19.wav 19
19 VictorAudio21-0.wav 0
20 VictorAudio21 -1 .wav 0 1
21 VictorAudio21-2.wav 3
22VictorAudio21-3.wav 4
23VictorAudio21-4.wav 6
24 VictorAudio21 -5.wav 15
25VictorAudio21-6.wav 7
26 VictorAudio21 -7.wav 10
27VictorAudio21-8.wav 11 12
28VictorAudio21-9.wav 14
29 VictorAudio21 -10.wav 18
30 VictorAudio21 -11 .wav 17
31 VictorAudio21-12.wav None
32 VictorAudio21 -13.wav None
33VictorAudio22-0.wav None
34 VictorAudio22-1 .wav None
35VictorAudio22-2.wav 13
36VictorAudio22-4.wav 19
37 VictorAudio22-5.wav None
38 VictorAudio22-6.wav 22
39 VictorAudio22-7.wav None
40 VictorAudio22-8.wav None
41 VictorAudio22-9.wav 5
42VictorAudio22-10.wav None
43 VictorAudio22-11 .wav None
44VictorAudio22-12.wav None
45VictorAudio22-13.wav None
46VictorAudio22-14.wav 8
47VictorAudio22-15.wav None
48VictorAudio22-16.wav None
49VictorAudio22-17.wav 21
50VictorAudio22-18.wav None

Full
14
11
14
0
5
0
0
7
0
0
0
0
1
3
4
6
15
7
10
11
14
3
17
0
19
0
11
0
19
10
22
20
0
5
0
18
0
0
8
0
8
21
0

Linear
16
11
14
15
15
19
6
13
13
1
19
8
1
3
4
6
15
7
10
11
14
1
1
16
8
8
15
13
18
20
22
13
1
5
4
6
16
3
8
3
3
10
25

SIDF
16
19
14
15
15
19
6
13
13
1
19
8
1
3
4
6
15
7
10
11
14
18
17
8
8
8
15
13
18
20
22
13
25
5
4
6
16
3
8
3
3
21
25

IDF
16
11
14
15
15
19
6
13
13
1
19
8
1
3
4
6
15
7
10
11
14
1
1
16
8
8
15
13
18
20
22
13
1
5
4
6
16
3
8
3
3
21
25

c
o

c
o

c
o

<
o

o
o

o
o

o
o

o
o

c
x

5
c

»
o

o
o

o
o

o
o

o
^

^
^

^
^

^
^

v
i^

^
O

T
c

»
c

n
c

^
c

^
o

>
0

5
0

>
c

3
5

0
)a

ia
iu

io
io

ia
ic

n
o

ic
n

c
o

r
o

^
o

c
o

a
i^

o
)
a

i4
^

w
i\

3
^

o
c

D
(
X

)
^

<
^

o
i^

w
w

^
o

c
o

<
x

)
^

o
^

u
i^

c
o

to
^

o
<

x
)
C

D
^

O
T

c
r
i4

^
c

o
r
o

-
j-

<

<

<

<
 <

<

<

o

o

o

 o

o

 o
"
o

f-
f"

f^

>

r
*

•
-

*
•—

f-

•—
••

#
-
+

o

o

o

 o

o

 o

o

>

>

c

c

Q
.

Q
.

O
"

O
'

i\o
 N

O

>
>

c

c

a
. a

.
o

'
o"

N

O
 t

o

co
 c

o

•
i

O
l

4
*

is
 i
S

<

<

O
l

O
l

-«
•

o

-a
.

3

N
O

<i>

>
>

>

c

c

c

9
-9

-9
-

o
"
o

' o
'

N
O

 N
O

N

O

C
O

 C
O

C

O

co
 N

O
 -

*

ig

i§

 iS

{B

C
O

0
3

<

<

 <

2
!

N
O

-«

•
O

W

W

2

^

(D
 C

O

<

<

<

o
"

o
"

o
"

B
B

S

c

c

c

9
-9

-9
-

o
'
o

'
o
"

N
O

N

O

N
O

0

0
N

O

N
O

 <
<

<
<

<
<

<
<

<

o
o

o
o

o
o

o
o

o

<
-*

•
»

-
*

f
+

f-

*
-

*
-!

•
#

-
•

•
-

*
#

-
+

«
—

I-

o
o

o
o

o
o

o
o

o

<
<

<
<

<
<

<
<

<
<

<
<

o"
 o
'
 o
"
 o
'
 o
'
 o
 o
'
 o
"
 o
"
 o
'
 o
"
 o
"

i
—
h

#
-
•
•

#
-
*
•

#
-
+
•

!
-
•
•

^
*

*-

¥
•

i
—
•

•
—
1
-

^
-
*

i
—

t-

r
-
*

o
o
o
o
o
o
o
o
o
o
o
o

o

iS

<

at

o
i

iS

iS

>

>

>

c

c
 c

9
-
9
-
9
-

o
"
 o
'
 o
'

N
O

N
O

N
O

N
O

N
O

N
O

i

i

i

en
 o
i

o
i

o
i
 4
*

c
o
 >
>

c

c

a
.
 a
.

o
'
 o
'

N
O
 N
O

N
O
 N
O

o
i
 e
n

N
O

-
*
•
 >
>

c
 c

a
.
 Q
.

o
'
 o
'

N
O
 N
O

N
O
 N
O

O
I
 4
*

O

C
O

>

>

c
 c

9-
 9
-

o
'
 o
'

N
O
 N
O

N
O
 N
O

4
*

4
*

0
0

-
v
l
 >
>

>

c

c
 c

9
-
9
-
9
-

o
'
 o
*
 o
"

N
O

N
O
 N
O

N
O

N
O
 N
O

4
*

4*
.

4
*

C
O

N
O

-
^
 >

>

c
 c

9-
 9
-

o
'
 o
'

N
O
 N
O

N
O
 N
O

O

>
>

c
 c

a
.
 a
.

o"
 o
"

N
O
 N
O

N
O
 N
O

C
O
 C
O

0
0
 -
vl

>
>

c
 c

9-
 9
-

o
'
 o
'

N
O
 N
O

N
O
 N
O

i

i

C
O
 C
O

O
)
 c
n

C
O

O
3

0
3

O
3

C
J

0
)

O
3

0
J

O
3

<
<

<
<

<
<

<
<

<

0
)

0
3

0
3

0
3

0
3

0
3

0
3

0
3

0
3

<
<

<
<

<
<

<
<

<

>

>

>

c

c

c

9
-9

-9
-

o
'
o
"

o
*

N
O

 N
O

N

O

N
O

 N
O

N

O

C
O

 C
O

C

O

4
*

0
0

N
O

iS

iS

iS

0

3

0
3

0

)
<

<

 <

<
<

o

' o
"

o
5

c

c

9
-

9
-

o
' o

'
N

O

N
O

N

O

N
O

i

i
C

O

C
O

-»
•

o
 <

<

o

o

S

o

c

c

9
-

9
-

o
' o

'
N

O

N
O

N

O

N
O

N
O

N

O

C
O

 0
0

<

o

o

%

c a.

o
"

<

o

%

c

Q
.

<

O
 8

N
O

N

O

N
O

N

O

N
O

N

O

>

C

_

Q
.

O
"

O
"

N

O

N
O

N

O

N
O

N

O

N
O

O

l
C

O

<

<

o

o

c

c

9-
 °

-
o

' o
'

N
O

N

O

N
O

N

O

N
O

N

O

N
O

-»

•

<

o
 s

c

g
.

o
"

N
O

N

O

N
O

N

O

i
i

N
O

 -
^

O

C

D

0
0

0
3

0
3

0
3

0
3

0
3

0
3

0
3

0
3

0
3

0
3

0
3

<
<

<
<

<
<

<
<

<
<

<
<

Z

o

3

C
D

z

O

3

C
D

O
i
z
 z

o

3

C
D

O

3

©

N
O

N
O

 z
 z

o

3

CD

O

3

C
D

-
i

C
O

 z

o

3

C
D

z

O

3

C
D

z

O

3 C
D

C
D

o

o

 ^
^

^
^

o

3

3

3

C
D

C
D

C

D

C
D

z
 z

 z
 z

 z

O

O

O

O

O

3

3

3

3

3

C
D

C
D

 C
D

 C
D

C
D

O

O

-»

•
O

N

O
 N

O

O

N
O

 O

O

O

O

O
l

O
N

O
O

O
O

O
O

O
O

O
^

O
O

O

O

O
l

O
O

O
l

O
O

O
O

O
O

O
O

N
O

O

N

O
 0

0
 -

»
•

4
5
.

-J
.

O

0
0

C

O

N
0

-
^

_
L

0
0

_
l

|
V

3
-

»
-

O
O

0
0

-
*

N
0

_
J

.
N

0
N

0
-

^

«
"

«
=

W
C

O
 O

l
O

l
N

O
 £

j
N
O

 O
l

0
0

C

O
 0

0

4
*

-
*
•

0
>

-
*

-
*

C
O

O

l
O

l
•>

J
 C

O
 ^

0

0
 O

l
(

D
O

O
M

I
O

.
-

'
.

I
O

.
J

.

•
^

^
C

O
^

O
l

^
O

l
^

O
O

N
O

->

•
O

l
O

l

N
O

-»

•
O

l
O

l

0
0

0
0

N
0

-
^

-
O

O
0

0
-

*
N

0
-

^
N

0
N

)
-

»
>

-
J

>
0

0
N

0
-

^
O

C
J

)
-

^
-

'
C

0
-

'
-

^
-

*
-

J
-

-
i

-
^

l
C

0
O

1

O
lN

O
C

O
N

O
O

lO
O

C
O

O

l
O

)
O

lO
l

s
i

s
i

S

C
O

 O
l

0
0

O

O

-
^

N
O

-
^

-
^

-
^

N
O

-
^

-
^

N
O

O

l
O

l
C

O
O

l
O

l
O

l
O

l
O

l
O

l

0
0

-
v
 N
O

-
^

C
O

C
O

O
l
 O
O
O
O
-
u
-
'
M
M
-
'
-
k

O
l

-*
•
 C
O
 N
O
 O
l
 0
0

C
O
 0
0
 4
*.

-
^

O
)

O
)
-
^
-
^
0
0
-
*
-
J
-
-
»
-
-
*
-
^
-
>
J

O
l

O
l

-
4
 C
O
 ̂
.J
 0
0

O
l

0
0
 O

O
N

O
N

O
-

^
-

'
-

J
-

N
O

-
J

-
-

*
-

^

4
s

»
O

l
C

0
O

l
O

l
O

l
O

l
O

l
O

3

C
O

C
&

C
D

-i C
D

3

o
.

0
3

*-̂

C
D

:
3

C
D

0

3

G
O

D

C
O

 C
O

<
<

o

'
o

" 3"

o 5>

c

Q
.

c

Q
.

O

O

ro

ro

0

0

0
0

-̂
 6

1
1

<

<

C
O

 C
O

4

*.
 C

O

<

<

o"
 o

"

3
3

c

c

9
-

9
-

o
'

o
'

ro

l\5

"H

 T
4

§

?

C
O

C

O

<

<

C
O

C

O
 C

O

ro
 -

^
o

<

<
<

o

o

"
o

r-

4
-

i-
*

"
i-

»
-

o

o

o

%
%

>

c

c

c

9
-9

-9
-

o
'

o
"

o
'

ro
 r

o

ro

T

4
 T

4
 T

4

6
i

i.

co

iS

JS

 i
g

JB

51

1
51

)
<

<

<

ro

ro

to

 c
o

<

<

o'

 o
'

3
3

c

c

9
-

9
-

o
'

o
'

ro

ro

•

i
•

ro
 -

^
o

iS

iS

 "

51
)

0
)

<

<

ro

ro

>
v
j

O
)

<
<

cV

 o
"

3
3

c

c

9
-

9
-

o
"

o
"

ro

ro

iS

iS

ro

ro

O

l
4
»
-

<
<

o"

 o
"

o

3

c

c

9
-

9
-

o
'

o
'

ro

ro

•

i

o>
 e

n

iS

iS

ro

ro

co

 r
o

<

<

o"

 o
"

3

3

££

c

c

9
-

9
-

o
'

o
'

ro

ro

i

i

45
*.

 C
O

iS

iS

0
>

51

)
<

<

ro

ro

->

•
o

<

<

a"
 a

o

o

C
O

0

0

<

<

o

o

f
t

"
l-

l-

o

o

<
<

o

o

o

o

en
 4

*.
 c

o
 r

o

<

<
<

<

o

o

o

o

•
r

*
*

-
t

-
•=

»
•

*
-*

•
o

o

o

o

>

>
>

>
>

>

c

c

c

c

c

c

Q
.

Q
.

Q
.

Q
.

Q
.

Q
.

o
'

o
'

o
'

o
"

o
'

o
"

ro
 r

o

ro

ro

 r
o

ro

o>

 o
>

 o
i

en
 e

n
 e

n

rb
 -

^
cb

 c
o

 -
ig

 o
>

iS

iS

iS

iS

iS

iS

0

)
5
1
)

5
1

)
C

D

5
1
)

5
1

)
<

<
<

<
<

<

>
>

c

c

9
-

9
-

o
'

o
"

ro

ro

en

 e
n

i

i
e

n

j
i
.

iS

iS

C
O

C

O

<

<

>
>

c

c

9-
 °

-
o

'
5

'
ro

ro

en

 e
n

i

i

co
 r

o

iS

iS

C
O

C

O

<

<

-»
•

o

<

<

o
o

3
3

>
5
>

c

c

9
-

9
-

o
'

o
'

ro

ro

en

 e
n

 o

o

co
 o

o

<

<

o 3

%

c

Q
.

O
"

O
 3
 c Q
.

O
'

O
 <

o

o
 S
>

c

Q
.

ro

ro

4

*.

4
*

o
 <
 o 3

c

_

Q
.

O
'

O
'

ro

ro

4

*.

4
*

O

-
*

-
»

•
->

•
-*

•

C
O

C

O

<

<

co
 r

o

-*

o

C
O

C

O

<

<

C
O

JO

<

<

o

o

en

j*
.

<

<

o'
 o

'
3

3

c

c

9
-

9
-

o
'

o
'

ro

ro

4

^

4
*

i
i

C
O

0

5

iS

§
C

O
 C

O

<

<

o

o

co
 r

o

<

o

o

%

c

Q
.

_

Q
.

O
'

O
'

ro

ro

*

»

4
*

i
i

en

4

*.

iS

iS

C

O

C

O

<

<

o

<
 o 3
 3
.

c

Q
.

o
'

O

O

<
 3

5.

c

g
.

o
"

ro

ro

4

^

4
^

co
 r

o

t
iS

C
O

C

O
 C

O
 C

O
 C

O

C
O

co
 o

o
 -

J
 O

)
en

 4
*.

<

<
<

<
<

<

o

I—
H

o

-^

o

—
*•

o

-
t

O

i-
h
 o

-^

O

•-
•

o

—
1

O

•-
+

o

-

T

O

—
+

o

—

1

>
>

>
>

>
>

c

c

Q
.

Q
.

o
'

ro

4
i-

—
i.

?

51
)

<

o

ro
 c

a

.
o

'
ro

 c

a
.

o
'

ro
 c

c

Q
.

a
.

o
'

ro
 o

ro

4

-̂
C

O

C
O

C

O

C

O

o
 iS

51
)

<

_
J

L

r1

^ 51
)

_
L

O
 is

51
)

C
O

0

0

iS

51
)

<

iS

0
) <

Z
O

-
^

-
^

z
z

r
o

-
^

c
o

o

_
*

o
o

c
n

0
o

tn

 <
o

3

3

3

C
D

C

D

C
D

0
0

)
J

^
-

'
M

-
'

O
Z

-
i

-

->
J

0
1
4

>
>

ro
c

o
_

lo
c
o

•^
::

, •

co

<D

-j
-

z

-*
•

w

o

z

r
o

r
o

o
)
-
>

jo
"

C
D

U
l
_

i.
o

ro

3

3

C
D

C

D

a
>

 -
i

-
J

.
C

O

0
0

">

4

_
,.

o

en
 z

o

3 C

D

45
»

-

J
.

o

C
O

ro

O

C
O

C

O

-
*

-
^

C

O

C

O

ro

o

O

-J
-

-L

0
0

4S

>.

O

O

-»
•

C
O

co

o
o

-
*

-
4

^
-

»
-

r
o

-
^

-
j
-

o
-

^
o

r
o

-
^

o
o

o

s

*
.
io

to

ro

o

-^

-*

a>

 c
o

 c
o

 -
^

o

o
 J

i
U

^
-

l
-

'
U

O
A

o

-^

-^

O

C

O

0
)

-
L

-
*

-
L

r
o

r
o

r
o

_
l
-

j-
o

o
>

oo

 e
n

 e
n

 e
n

 e
n

 J
3

ro

en

 ^
-

.
r

o
n

t
^

W
-

1
^

ro

4

*
C

O

co

en

 c
o

ro

ro

 o>
 -

^
-»

•
oo

 r
o

-^

•>

g
 o

>

en

0
>

-
^

-
'

_
l

-
^

-
J

-
4

^
_

1
.

-
^

C
O

-
i

-
»

-
-

i

r-
,

en

.
-*

•
-^

ro

co

o

o

-^

O
)

-
^

-^

-*

ro

 r
o

 r
o

-*

oo

 e
n

 e
n

 e
n

 e
n

 c
o

-^

-»

•
ro

 r
o

 r
o

 -
*•

oo

 e
n

 e
n

 e
n

 e
n

 c
o

o

cj>
 r

o
 4

*
-*

•
ro

 -
J

-
O

l
4

*.

C
O

C

O

o

o
i

w

4
^

_
.

^
_

.
O

l
-P

>>

C
O

C

O

ro

O
l

ro

O
l

C
O

C
O

ro

4
*

ro

4
*.

ro
 o

>

ro

r
o

0
5

ro

-v
l

•v
l

ro

en

o>
 0

0

0
0

ro

en

ro

en
 -

-

O
)

O
)

0
0

_
k

^
1

--

o

o

-^

ro

 4
*

en

o

en
 _^

 4
*.

_
L

_
k

C

O
 -

»
•

C
O

-
^

-J
-

C
O

 _
,.

-
»

•
-
^

-^

ro

co

o

-^

ro

co

o
 51

)
<

C

D

C
D

C
D

3

a
.

C
D

3 C
D

to

C
O

o

Wave File Template
137VictorAudio28-2.wav 8
138VictorAudio28-3.wav 25
139VictorAudio29-0.wav 9 10
140VictorAudio29-1 .wav None
141VictorAudio29-2.wav None
142VictorAudio29-3.wav None
143VictorAudio29-4.wav None
144VictorAudio29-5.wav 6
145VictorAudio29-7.wav None
146VictorAudio29-8.wav None
147VictorAudio29-9.wav None
148VictorAudio29-10.wav None
149VictorAudio29-11 .wav None
150VictorAudio29-12.wav None
151VictorAudio29-13.wav None
152VictorAudio29-14.wav None
153VictorAudio29-15.wav 11 12
154VictorAudio29-16.wav 4
155VictorAudio29-17.wav 15
156VictorAudio29-18.wav 16
157VictorAudio29-19.wav 18
158VictorAudio29-20.wav 16
159VictorAudio29-21 .wav 3
160VictorAudio29-22.wav 4
161VictorAudio29-23.wav None
162VictorAudio29-24.wav 25
163VictorAudio29-25.wav None
164VictorAudio29-26.wav None
165VictorAudio29-27.wav None
166VictorAudio29-28.wav None
167VictorAudio29-29.wav 3
168VictorAudio29-30.wav None

Full
8
1
10
0
0
0
0
6
0
4
0
0
8
22
0
0
11
4
15
24
3
0
0
0
0
0
0
0
0
1
0
0

Linear
8
1
1
1
1
1
10
1
1
15
17
1
1
21
19
8
11
4
15
24
18
16
3
4
10
25
7
15
14
1
3
8

SIDF

8
15
1
1
1
1
25
1
1
15
1
6
18
21
19
8
11
4
15
16
18
16
3
4
10
25
7
15
14
6
3
8

IDF
8
1
1
1
1
1
10
1
1
15
17
1
1
21
19
8
11
4
15
24
18
16
3
4
10
25
7
15
14
1
3
8

156

Final Summary of Test Data Analysis

For each of the reasonable questions, an indication of success for each
weighting method is shown. A "1" indicates that the weighting method
responded properly (as a first choice). A "0" indicates that the method did not
choose appropriately.

Final Counts

Full Question Total = 124
Component Linear Total = 204
Component SIDF Total = 209
Component IDF Total = 205
Component Binary Total = 182

Table 9. Data Counts

Wave File Full
FredAudio6-0.wav 1
FredAudio6-1 .wav 0
FredAudio6-2.wav
FredAudio6-3.wav
FredAudio6-4.wav
FredAudio6-5.wav
FredAudio6-6.wav
FredAudio6-7.wav
FredAudio6-8.wav
FredAudio6-9.wav
FredAudio6-10.wav 1
FredAudio6-11 .wav 0
FredAudio6-12.wav 0
FredAudio6-15.wav 0
FredAudio6-22.wav 1
FredAudio6-24.wav 1
FredAudio6-28.wav 0
FredAudio7-0.wav 1
FredAudio7-1.wav 1
FredAudio7-3.wav 1
FredAudio7-8.wav 0
FredAudio7-15.wav 1
FredAudio8-0.wav 1
FredAudio8-1 .wav 0
FredAudio8-2.wav 0
FredAudio8-5.wav 1
FredAudio8-7.wav 0
FredAudio8-8.wav 0

Linear SIDF
0 0

IDF
0

Binary
1

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

1

157

Wave File
FredAudio8-10.wav
FredAudio8-11 .wav
FredAudio8-12.wav
FredAudio8-13.wav
FredAudio8-14.wav
FredAudio8-18.wav
FredAudio8-21 .wav
FredAudio8-22.wav
FredAudio8-23.wav
FredAudio9-0.wav
FredAudio9-1 .wav
FredAudio9-3.wav
FredAudio9-4.wav
FredAudio9-7.wav
FredAudio9-9.wav
FredAudio9-10.wav
FredAudio9-11 .wav
FredAudio9-12.wav
FredAudio9-13.wav
FredAudio9-15.wav
FredAudio9-16.wav
FredAudio9-17.wav
FredAudio9-18.wav
FredAudio9-19.wav
FredAudio9-20.wav
FredAudio9-21.wav
FredAudio9-22.wav
FredAudio10-0.wav
FredAudio10-1.wav
FredAudio10-2.wav
FredAudio10-3.wav
FredAudio10-4.wav
FredAudio10-5.wav
FredAudio10-6.wav
FredAudiol 0-7.wav
FredAudio10-8.wav
FredAudio10-9.wav
FredAudio10-10.wav
FredAudio10-11.wav
FredAudio10-12.wav
FredAudiol 0-13.wav
FredAudio10-14.wav
FredAudio10-15.wav
FredAudiol 0-16.wav
FredAudio10-17.wav

Full Linear SIDF IDF
0
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
0
1
1

0

0

0
0

0

0

0

0

0

0

0

0

0 0

0

158

Wave File
FredAudio10-19.wav
FredAudiol 0-20.wav
VictorAudio14-0.wav 0
VictorAudiol 4-1 .wav 1
VictorAudio14-2.wav 0
VictorAudio14-7.wav 1
VictorAudio14-9.wav 0
VictorAudio14-10.wav 1
VictorAudio14-12.wav 0
VictorAudio14-13.wav 0
VictorAudio15-0.wav 1
VictorAudiol 5-1 .wav 1
VictorAudio15-6.wav 0
VictorAudio15-8.wav 1
VictorAudio15-9.wav 1
VictorAudio15-10.wav 0
VictorAudio15-12.wav 0
VictorAudio15-13.wav 0
VictorAudio15-14.wav 0
VictorAudio15-15.wav 0
VictorAudio15-16.wav 0
VictorAudio15-17.wav 0
VictorAudio15-18.wav 0
VictorAudio15-19.wav 0
VictorAudio15-20.wav 1
VictorAudiol 5-21 .wav 1
VictorAudio15-22.wav 0
VictorAudio15-25.wav 0
VictorAudio15-26.wav 0
VictorAudio15-27.wav 0
VictorAudio15-28.wav 0
VictorAudio16-0.wav 1
VictorAudiol 6-1 .wav 0
VictorAudio16-2.wav 0
VictorAudiol 6-3.wav
VictorAudiol 6-4.wav
VictorAudiol 6-5.wav
VictorAudiol 6-6.wav
VictorAudiol 6-7.wav
VictorAudiol 6-8.wav
VictorAudio16-9.wav 0
VictorAudio16-10.wav 0
VictorAudiol 6-11 .wav 0
VictorAudio16-12.wav 0
VictorAudio16-13.wav 0

Full Linear SIDF IDF
1
1

0

0 0

0

0

Binary
1
0

0
1
0

0

159

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

i-
+

«
-
h

^
-
h

•
"
+
•

•
—
!
•

»
-
*
"

»
-
+

(
-
#
•

»
-
*
•

<
-
l
-

•
«
+

r
-
+

f
-
h

i
-
h

•
-
*
•

i
-
H
-

i
—
H

r
-
*
-

*
-
!
•

*
-
+
•

i
^

^
#
-

#
-
*

^
«
-

•
-
*

^

•
-
*

^
t
"

*
^

<
^
-
 ̂

^
?
"

*
^

^
*
"

C
t
"

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

"
•
*

^

"
T

"
"
J

"
^

"
^

^

"
^

^

"
^

™
"
%

~
T
l

^

"
"̂

•
^

"
"
T

^

"
"
I

^

"
"
t

^

~
"
l

"
H
I

"
^

^

"
^

"
^

"
"
1

"
^

"
^

"
^

~
"
*

"
"
"̂

*
"
t

"
^

>
>
£
>
!
>
>
:
>
£
:
>
>
:
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c

Q
.
Q
.
Q
.
Q
L
Q
.
C
L
Q
.
C
L
Q
.
Q
.
Q
.
Q
.
9
.
Q
.
9
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
9
.
Q
.
Q
.
9
.
Q
.
Q
.
Q
.
Q
.
9
.

o
'

o
'

o
'
 0
'
 o
'

o
'

o
'
 o
"

o
'

o
'

o
'

o
'

o
"
 o
'

o
'

o
'
 o
'

o
'

o
'
 o
'

o
'
 5
"
 o
"
 o
"
 o
'

o
'

o
'

o
'

o
'

o
'

o
'

o
'

o
'

o
'

o
'

O
O

O
O

O
O

O
O

O
O

03

0
0

o
o

o
o

o
o

o
o

<

>
>
>
>
>
>
>
>
>
>
-
n

Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
Q
.
C
D

o
'

o
'
 o
'

o
'

o
'

o
'

o
'

o
'

o
"
 o
'

C
O

C
O

C
D

t
O

C
O

C
O

C
D

C
O

C
O

C
O

<
O

C
D

<
D

C
D

C
O

<
O

C
D

C
O

t
D

<
O

C
D

C
O

<
D

0
0

C
»

C
X

)
0

0
0

0
0

0
C

X
)
0

0
C

X
>

0
0

0
0

(
»

0
0

0
0

^
^

^
*

v
|-

>
J

-
s

ia
>

C
3

>

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
t

l
l

l
l

t
l

l
l

l
l

l
l

l

o
-̂

 a
i

is

co
 c

o
 c

o
 r

o
 i

v)

0
0

O

l
C

O
 -

J

.&
>.

£

3
 £

0
3

0
3

0

)
<

<

 <

|\
3

_
!
.

_
l

_
l

-J
.

_
L

_

L

O

C
O

 -
«J

 C
J>

 O
i
I\
3

 -
>

•

JS
 i

g
 iS

§

iS

 i
§

ig

0
)
 0
)

0
)
 A
)
 0
)
 0
)

0
3

<
<

<
<

<
<

<

—
1

p iS

0
3

<

C
D

iS

a>

<

0
0

iS

01

<

-
j

iS

SB

<

o>

iS

f
l
)

<

O
l

iS

03

<

4
^
C
O
N
)

iS

iS

iS

0
3

0
3

0
3

<

<

<

—
L

iS

03

<

O
 iS

03

<

r\
j
ro

 i
v>

0
0
 r

°
r4 '

iS

iS

is

0
)

0
3

0
3

<

<

<

_
L
_
L
_
L
_
L
_
l
_
l
.
l
O
0
0
-
N
j
-
»
.

^
§
^
S
?
$
0
)
0
3
O
3
O
3

0
)
0
)
0
)
0
3
0
)
0
3
<
<
<
<

<
<
<
<
<
<

0
0

0
0

0
0

0
0

0
0

0
0

0

o
o

o
o

o
o

o
o

o
-

^
^

o

o

->

•
-^

 -»
•
o

03

<

03

<

C
O

IO

iS
 i
S

o

iS

.
.

.
.

^
o

o
o

o
o

.
,

.
o

o
 o

 ->
•

iS
 i

S

0
) <
 -

n

c

o

-*

O
)

o

o
^

^
^

^
^

o
^

o
^

^
^

o
^

^
0

0
0

^
^

-
i
-

l
-

,
'

-
^

o
o

-
*

-
^

-
-

^
o

-
'

0
-

J
-

-
1

'
0

-
l

0
-

^
-

l
-

J
'

0
-

l
-

i
-

^

o
^

^
^

^
^

o
^

o
^

^
^

o
^

^
0

0
0

^
^

^
^

^
^

o
o

^
^

^
o

o
o

^
^

°
-

l
0

-
^

-
J

'
-

L
0

-
1

0
-

'

o
^

^
^

^
^

o
^

o
^

^
^

o
^

^
0

0
0

^
^

•
-

l
•

-
x

-
i
•

^
•

o
o

-
-

^
-

*
-

-
^

o
•

^
•

o
-

,
•

-
,
•

0
-

v
0

-
^

-
l
-

l
0

-
J

'-
,
'-

'

C
D

w

~
n

O

-»
•
"
n

0
-

»
-

-
»

-
-

^
-

^
-

»
'
0

-
^

0
-

J
-

-•
•

o

—
»

•
—

'
•

O
O

P
—

L

—
L

—
1

—
L

—

L

|

o
o

-
^

-
^

-
^

o
-

^
-

^
_

i
.

_
i

O
-

^
0

_
L

-
»

'
-

^
0

-
i

-
*

_
l

5?

<

<

<

2
.

2
-

2
.

o

o

o

<
<

<
<

<
<

<
<

<

o
o

o
o

o
o

o
o

o

_
i-

_
>

•
—

>
 I

-
I
-

i
-
*

—
i-

>

-*
•

—
>
-

^
*

O
O

O
O

O
O

O
O

O

>

>

c

c

9
-

9
-

o
'

o
'

ro

ro

ro

ro

C

O

C

O

C
O

o
en

 j
i.

:>

i>

iS

0
3

0
3

 0
3

<

<

<

>
>

c

c

9-
 9

-
o

'
o

"
ro

ro

ro

ro

c
o

ro

ro

 e
n

ig

iS

0
3

0
3

<

<

>
>

>

c

c

c

Q
.

Q
.

Q
.

O
"

5
'
O

'
ro

ro

ro

ro

ro

ro

c

c

Q
.

Q
-

>

C

Q
.

-_

C

D

£
is

<

>

c

Q
.

O

O

O
"
 O

ro

ro

ro

ro

ro

ro

ro

 -
j-

o
>

*

.
ro

-

-

iS
 i

S
 iS

 J

03

0
3
 0

3

^

<

<

<

0
3

<

<

o
*

_>
-

o

3
>

c

Q
.

_

O
"
 O

'

ro
 i
>
o

<

o
 3
 5- c

Q
.

<

O

o
 5"

c

Q
.

O

O

ro

ro

<

<

o

o
'

o
 3

%

%

c

c

9
-

9
-

o
'

o
'

ro

ro

<
<

o
'

o
'

o

3

5>

5>

c
c

a.
 a

.
o

'
o

'
ro

ro

<

<

o
'

o
"

o

3

c

c

9-
 °

-
o

'
o

"
ro

ro

<

<

o
'

o
'

o

c

Q
.

O
'

-_

to

?

0
3

0
3

<

<

0
0

~
s
|

iS

iS

0
3

0
3

<

<

O
S

 c
n

iS

iS

0
3

0
3

<

<

4
-

iS

iS

0
3

0
3

<

<

o
>

 r
o

-
^

0
3

0
3

<

<

ro

ro

-»
•

o

i
i

o

-
-

is
£ <

<

<

<

o

o

o

«
-*

•
i
-

h

_
>

o

o

o

c
c

c

9
.

9
. a

.
o

"
o

"
o

'
ro

ro

ro

0

0
0

<

o
"

o

%

c

9
.

_

o
"

o
'

1
0
 1

0

<

o

o
 5.

c

0
.

<

o
'

3"

5.

c

9
.

_

o
'

o
'

ro

ro

<

o

o
 5.

c a.

0
0

0
0

<

o

_
*

o

%

c

9
.

o
"

ro

o

-v
jo

jc
n

-f
c

.c
o

ro
-'

.o

0
3

0
3

0
3

0
3

 0
3

<

<

<

<

<

£

§

£

0
3

0
3

 0
3

<

<

<

<
<

<
<

<
<

<
<

o
o

c
T

S
'

S
'

o
o

o

55
.

5-
 5

-
5
.

5
. >

 5
.

5-
c

c
c

c
c

c
c

c
Q

.9
.Q

.9
.9

.9
.9

.9
.

o
"

o
'

o
'

o
'

o
'

o
"

o
*

o
'

r
o

i
o

r
o

r
o

r
o

i
o

r
o

r
o

0
0

0
0

0
0

0
0

•

1

1

1

1

1

1

1

C
0

C
0

^
0

3
-

&
.

C
0

-
*

O

i
S

i
S

i
S

i
s

i
s

i
s

i
S

i
S

Q

3
O

3
0

3
O

3
0

3
O

3
0

3
O

3

<
<

<
<

<
<

<
<

<

<
 <

 <

<

^

O

O

O

O

O
 J

B

3
"

o

o

o

o

<

>

>
 >

 >
 >

 -
n

c

c

c

c

c

~

Q
-

Q
.
Q

.
Q

.
Q

.
C

D

O
'

O
'

O
'

O
'

O
'

_
L

_

L
 -

a
.

-
_

 —
L

C
O

C

O
 C

O
 C

O

C

D

c
S

 0
1
 c

n
 c

n
 c

o

0
1

0
)

0
1

0
(

0

iS

iS

iS

iS

=S

0
3

0
3

0
3

0
3

 0
3

<

<
<

<
<

_
_

o

o

o

o

o

-*
•

-»
•

O
O

-
^

O
O

O
O

-
J

-
_
_

-»
•
O

O

O

o

O

-
L

 0
0

0
0

0

o
-

-
-

-
-

>
-

o
o

-
-

-
l
-

,
'0

-
i
o

o
-

,
'-

L
-

l
-

,
-

-
J

-
-

,
'-

k
-

L
-

,
'0

-
-

o
o

-
-

o
o

-
-

-
-

^
0

0
-

L
O

-
i
-

,
-

-
J

-
-

k
-

-
^

a
a

J
^

O
J

J
-

l
a

0
^

j
a

-
'

-
'

-
'

-
'

-
'

-
'

-
'

-
»

^
0

J
0

0
-

^
0

0

_L

_
L

 O

O

O

-
-

O

3

CD

O

0
3

C
O

o
>

O

-»

•
-

-
-J

-
O

_

_
-

L
^

 -
f

c
O

 -
-

O

O
 —

!
•

—
!

•
—

L
—

L
—

I
.
—

1
.
—

I
.
—

L
-

—

Q

o

o

o

o

-
^

_
l
o

o
-

^
o

-
»

-
-

»
-

-
^

-
^

D

-
L

_
i

.
-

i
.

_
i

.
O

T
l

o

-
-

o

o

o

o

->
•

0
0

-
-

o

o

_

_
_

_
o

-
»

-
-

-
-

»
-

—
'
•

-
J

-
-

»
-

-
i
_

l
o

o

-
-

o

o

_
i

.
_

i
.

_
i

.
O

O
-

L
O

-
L

-
i

.
O

-
L

_
_

_
l

-J
.

-
i
.

O

C
D

0
)

<5

http://-L_i.-i._i.OTl

Wave File
VictorAudio22-
VictorAudio22-
VictorAudio22-
VictorAudio22-
VictorAudio23-
VictorAudio23-
VictorAudio23-
VictorAudio23-
VictorAudio23'
VictorAudio23-
VictorAudio23
VictorAudio23
VictorAudio23
VictorAudio2&
VictorAudio24'
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio24
VictorAudio25
VictorAudio25
VictorAudio25
VictorAudio25'
VictorAudio25
VictorAudio25'
VictorAudio25
VictorAudio25
VictorAudio26
VictorAudio26
VictorAudio26
VictorAudio26
VictorAudio26
VictorAudio26
VictorAudio26
VictorAudio27
VictorAudio27
VictorAudio27
VictorAudio27
VictorAudio27'
VictorAudio27-

Full Linear SIDF IDF
37.wav
49.wav
52.wav
•55.wav
•O.wav
•1 .wav
•2.wav
•5.wav
•6.wav
•7.wav
•8.wav
•9.wav
•10.wav
•11.wav
•O.wav
•1 .wav
•2.wav
•3.wav
•4.wav
•6.wav
•9.wav
•10.wav
•11 .wav
•12.wav
•O.wav
•1.wav
•2.wav
•4.wav
•5.wav
•6.wav
•7.wav
•8.wav
•1 .wav
•2.wav
•3.wav
•4.wav
•5.wav
•6.wav
•7.wav
•O.wav
•1 .wav
•2.wav
3.wav
•6.wav
•7.wav

0
0
0
1
1
0
1
1
0
0
1
0
0
0
1
1
1
1
1
0
1
0
0
1

1
0
0
0
0
1
0

0

0

0
0
0

1
1
1
0
1
1
1
1
0
1
1
1
0
0

0

0

0

0

0

0

0
0

0

162

Wave File Full Linear SIDF
VictorAudio28-0.wav
VictorAudio28-2.wav
VictorAudio28-3.wav
VictorAudio29-0.wav
VictorAudio29-5.wav
VictorAudio29-15.wav
VictorAudio29-16.wav
VictorAudio29-17.wav
VictorAudio29-18.wav
VictorAudio29-19.wav
VictorAudio29-20.wav
VictorAudio29-21 .wav
VictorAudio29-22.wav
VictorAudio29-24.wav
VictorAudio29-29.wav

1
1
0
1
1
1
1
1
0
0
0
0
0
0
0

1
1
0
0
0

0

1
1
0
0
0

IDF
1
1
0
0
0

0

Binary
1
1
0
0
0

0

163

APPENDIX B

CD CONTENTS

The CD (Compact Disc) that accompanies this document contains seven

folders.

• AudioFiles

• DataFiles

• ExecutableCode

• SAMSetup

• SourceCode

• TestMaterials

• Thesis

AudioFiles

This folder contains all of the audio files that were captured from test subjects. It

has four subdirectories: Testl Audio, Test2Audio, Test3Audio, and Test4Audio.

The files in Testl Audio were used in the optimization of the system. The other

three folders contain files used in the final data collection. The files were split

into 3 groups for processing.

164

DataFiles

This folder contains compiled test data used in the system optimization

and final test. The documents Testl .txt, and TestData.txt contain a block of text

for each test question as described in Chapter 8, Data Collection. The folder

also contains a file of summary information for each data file as explained in

Chapter 9, Analysis.

ExecutableCode

This folder contains projects that run. It has five subdirectories.

• FredComponent

• FredFullQuestion

• FredLogger

• Student

• Ted

The first four are all Fred type systems. They each have a Fred.exe file.

Double clicking this file will launch the application. They each have a grammar

file. They each have a record file.

FredComponent contains the driver record file that was used in the testing

of the system. It has a grammar file that instructs Fred to use Component

recognition.

FredFullQuestion contains the same record file, but uses a full question

grammar file.

165

FredLogger is another version of Fred identical to the normal version,

except it writes data into a log file as test questions are asked. This is the

version that was used in data collection and processing. It contains a driver

record, and both types of grammar files.

Student contains the standard version of Fred. The record file is a student

record file. The grammar file is a Student system with full question recognition.

The folder also contains a transcript corresponding to the record file, and the Ted

project file.

Ted contains the source and executable for the Ted application. Start the

program by double clicking on the Ted shortcut.

SAMSetup

This folder contains the files required to install Fred on a computer

system. This includes the Microsoft SAPI 5 speech SDK, and files to install the

UNH SAPI interface files. The folder contains a document called Setup.txt that

outlines the setup process.

166

SourceCode

This folder contains all of the source code used in the research. It

contains five subdirectories.

• AnalysisTools

• DriverRecordParser

• Fred

• FredLogger

• Ted

The AnalysisTools folder contains several Java programs written to

analyze the test data. The Merger program merges together the component and

full question portions of the log files. The Analyzer program reads in a merged

edited data file, as explained in chapter 9, Analysis, and writes a report

summarizing the test data. Both programs are written in standard Java, and can

be edited or launched using any Java IDE.

The DriverRecordParser folder conatins a program that parses New

Hampshire diver records. The parser write a record file in the proper format for

Fred, as described in chapter 4, Using Fred. The program is written in C, and is

part of a Microsoft Visual C++ project. The project can be opened by double

clicking on the DRParser.dsw file. A built executable is stored in the Debug

folder. The application can be launched by double clicking the DRParser.exe file.

The Fred folder contains all of the source code for Fred as described in

chapter 5, How Fred Works. The program is written in C, and is part of a

167

Microsoft Visual C++ project. The project can be opened by double clicking on

the Fred.dsw file.

The FredLogger folder contains the source code for a version of Fred that

writes data into a log file as test questions are asked. The program is written in

C, and is part of a Microsoft Visual C++ project. The project can be opened by

double clicking on the Victor.dsw file.

Ted contains the source and executable for the Ted application. The

program is written in Java, and is part of a Microsoft Visual C++ project. The

project can be opened by double clicking on the Ted.sln file.

Test Materials

This folder contains the documents that test subjects were allowed to see.

Ask Fred.doc is the instruction sheet described in chapter 8, Data Collection.

Driver Record Tree.doc is the tree diagram, also described in chapter 8, Data

Collection.

Thesis

This folder contains all of the chapters and appendices of the thesis.

168

APPENDIX C

RELEASE FORM

Each subject signed a copy of the form shown on the following pages.

The form was supplied by the UNH Institutional Review Board. The signed forms

were faxed to the IRB.

169

UNIVERSITY OF NEW HAMPSHIRE
INSTITUTIONAL REVIEW BOARD FOR THE PROTECTION OF HUMAN SUBJECTS IN RESEARCH

Purpose: The purpose of this research is to assist in the development of speech user
interfaces as well as other user interfaces for mobile environments such as
vehicles and handheld computers. Another goal is to develop specific
applications for mobile environments, specifically for vehicles and for places
where people use handheld computers.

Procedure: B computer. The Project54 system will record your speech, and/or your
interactions with the GUI and/or your interactions with original
hardware interfaces, and/or data generated by electronic devices that
you interact with and/or data generated by electronic devices that the
Project54 system interacts with. The recording will require no special
steps on your part. You will be asked to interact with the Project54
system running on a PC and/or on a handheld

devices. We will create audio and/or video recordings of your interactions.
We will also record your interactions with the computer's GUI and/or
your interactions with other hardware interfaces, and/or data
generated by the computer and/or by the electronic devices. You will
be asked to interact with a PC and/or on a handheld computer and/or
other electronic

Data generated in this research will be saved for use in future research. A
unique ID will be assigned to you. The unique ID will be of the form "User #xx",
where xx is the number assigned to you. It will be used to label your data, along
with your age, gender, characteristics of your speech, your experience in
working with computers or the Project54 system and any questionnaires you fill
out. The data will be stored for future use in our research. Your identity will not
be tied to the data in any way (other than to the video data, if such data is
created, since video data may visually identify you). In this document we are
asking for your consent to participate in our study and to share the non-video
data with researchers from other institutions. Separately we also ask for your
consent to share video data with researchers from other institutions as well as
to show video data at conferences and similar meetings.
This research should present no risk to you. There should be no aftereffects of
this research upon you. There will be no monetary compensation for your work.

1. You understand that the use of human subjects in this project has been approved by the UNH
Institutional Review Board for the Protection of Human Subjects in Research.

2. You understand the scope, aims, and purposes of this research project and the procedures to
be followed and the expected duration of your participation.

3. You have received a description of any reasonable foreseeable risks or discomforts associated
with being a subject in this research, have had them explained to you, and understand
them.

4. You have received a description of any potential benefits that may be accrued from this
research and understand how they may affect you or others.

5. The investigator seeks to maintain the confidentiality of all data and records associated with
your participation in this research. You should understand, however, there are rare instances
when the investigator is required to share personally-identifiable information (e.g., according to
policy, contract, regulation). For example, in response to a complaint about the research, officials
at the University of New Hampshire, designees of the sponsor(s), and/or regulatory and oversight
government agencies may access research data.

170

6. You understand that your consent to participate in this research is entirely voluntary, and that
your refusal to participate will involve no prejudice, penalty or loss of benefits to which you
would otherwise be entitled.

7. You further understand that if you consent to participate, you may discontinue your
participation at any time without prejudice, penalty, or loss of benefits to which you would
otherwise be entitled.

Office of Sponsored Research - Regulatory Compliance/Phone: 862-2003 Rev. 8/01
8. You confirm that no coercion of any kind was used in seeking your participation in this research

project.
9. You understand that if you have any questions pertaining to the research you can call Dr.

Andrew Kun at 603-862-4175 and be given the opportunity to discuss them. If you have
questions pertaining to your rights as a research subject you can call Julie Simpson in the
UNH Office of Sponsored Research, 603-862-2003, to discuss them.

10. You understand that you will not be provided financial incentive for your participation by the
University of New Hampshire.

11. You understand that your age, gender, the characteristics of your speech, and your
experience in working with computers or the Project54 system will be recorded, and may
be shared with other researchers, along with the data collected about your interactions.

12. You certify that you have read and fully understand the purpose of this research project and
the risks and benefits it presents to you as stated above.

I, CONSENT/AGREE to participate in this research project.

I, REFUSE/DO NOT AGREE to participate in this research
project.

Signature of Subject Date

I, CONSENT/AGREE to allow sharing video data with other
researchers and showing it at conferences and similar

meetings.
I, REFUSE/DO NOT AGREE to allow sharing video data

with other researchers or showing it at conferences and
similar meetings.

Signature of Subject Date

171

APPENDIX D

IRB APPROVAL

This research was done in conjunction with another research project, and

was given approval under that project. The letter below demonstrates

compliance to the requirements as outlined in the Graduate School's Thesis and

Dissertation Manual.

172

University of New Hampshire

Research Conduct and Compliance Services, Office of Sponsored Research
Service Building, 51 College Road, Durham, NH 03824-3585

Fax: 603-862-3564

01-Nov-2001

Kun, Andrew
Electrical & Computer Eng Dept
Kingsbury Hall
Durham, NH 03824

IRB#: 2980
Study: Speech Sample Collection for Speech Recognition Engine Comparison and
Development
Approval Expiration Date: 24-Jun-2008
Modification Approval Date: 3l-0ct-200i

Modification: Collection of additional data (e.g. physiological measures) per 10/22/2001 email
The Institutional Review Board for the Protection of Human Subjects in Research (IRB) has
reviewed and approved your modification to this study, as indicated above. Further changes in
your study must be submitted to the IRB for review and approval prior to implementation.

Approval for this protocol expires on the date indicated above. At the -end of the
approval period you will be asked to submit a report with regard to the involvement of human
subjects in this study. If your study is still active, you may request an extension of IRB approval.

Researchers who conduct studies involving human subjects have responsibilities as outlined in
the document, Responsibilities of Directors of Research Studies Involving Human
Subjects. This document is available at http://www.unh.edu/osr/compliance/irb.htmlorfrom me.

If you have questions or concerns about your study or this approval, please feel free to contact

me at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB # above in all

correspondence related to this study. The IRB wishes you success with your research.

For the IRB,

json
Manager

cc: File

173

http://www.unh.edu/osr/compliance/irb.htmlorfrom
mailto:Julie.simpson@unh.edu

APPENDIX E

ACKNOWLEDGEMENT OF FUNDING

This work was supported in part by the U.S. Department of Justice
under grants 1999-DD-BX-0082 and 2001-LT-BX-K010.

APPENDIX F

SOFTWARE TOOLS

The software tools used in the research described in this dissertation were

originally given "internal" names. As such, this documentation refers to each of

the tools by these names. SAM refers to the entire system developed to create,

edit, and run spoken question answering systems. The SAM system has two

components. The editing component is referred to as Ted. The runtime

component is referred to as Fred.

Using Ted

Ted is an editing application intended to be used as part of the SAM Q/A

system. It generates files to be used with its runtime counterpart Fred to create a

spoken question answering system. Ted creates and edits Ted (*.ted) files,

which represent information trees. An information tree has a leaf node for each

piece of information. In general, there may be branch nodes as well. Every tree

has at least one branch node (commonly referred to as the root node), which is

the top node of the tree. The root node can create (or be the parent node of),

any number of branch or leaf nodes (child nodes). However, a leaf node can not

create nodes (a leaf node can not have children). A leaf node represents the end

of a branch. Leaf nodes contain information. Branch nodes are used only for

organization.

175

So, a simple tree for your money might include leaf nodes for: the cash in your

pocket, the change on your dresser, the money in your savings account, the

money in your checking account, and the money you keep hidden behind the

second portrait in the hallway.

Figure 9 below depicts a Ted type tree for a money system as described above.

Figure 9. Money Tree Diagram

Cash . Change Savings CteeWng Portrait

Here, the node "Money" is a branch node, and it has five child nodes. The

child nodes are all leaf nodes. The branch node has no information associated

with it. However, each leaf node is associated with a number, the amount of

money in that place.

It is important to point out here, that Ted has nothing to do with this

information or the storage of it. Ted allows the developer to define a structure

that has leaf nodes that correspond to information in some external record. It is

assumed that at least one such record exists. There may be more than one

record. For example, Money records might exist for multiple people.

176

What Ted Does

A data record can have a complex structure with many pieces of data.

Some data fields may have multiple values. Strictly speaking, Ted is designed to

work with relational database queries that have been stored as text files. For the

purposes of this research, this file is considered, "the record". Ted allows you to

create a structure that is compatible with a type of record, and enter sample

questions about the record information. Ted then generates a file that is used

with its counterpart Fred. Together, Ted and Fred form a system that reads

records, and responds to spoken questions. Which questions the system will

respond to, and how it responds to them are defined within Ted.

Take for example a student record such as one would find on a college

banner system. The record structure could be depicted in Ted as shown in

Figure 10 below.

Figure 10. Student Tree Diagram

177

Note that while some fields have only one value associated with them

(Address, or Credits), others may have many values (Grade). Ted offers a

simple scripting language that searches the record, and returns a natural

response to a question. For the student record, the Ted file might include

questions such as these.

Does the student have a major?

Who is the student's advisor?

What year is the student in?

What class is the student in?

How many credits does the student have?

Does the student have enough credits to graduate?

How many courses has the student passed?

Another Example

As a second example, consider the driver record tree diagram shown in

figure 11.

Figure 11. Driver Record Tree Diagram

I
name

l
date

I
ss

I
cowfleSons

|
I

reason

I
ptd

" i
i i

dob height

i i
fine date

, operator"

i i
hair eyes

1
• history j

suspensions
f

1 1
reason - period

1
privilege

l
date

, i
accidents

location
1

vehicle

178

Ted is used to organize questions and associated answer scripts.

Questions about the operator's social security number might go in the "ss" node.

A more general question that uses more information than that from a single leaf,

"What does the operator look like?" might go in the "pid" node. Note that there

may be multiple values for items under the convictions, suspensions, and

accidents nodes. Each conviction entry has a date, reason, and fine associated

with it. Ted allows you to ask questions about the entire collection, or a subset

like "What was the operator convicted of in 1998?" To use the more advanced

features of Ted, you will need to finish reading this chapter, but you should now

have an understanding of what Ted does.

Opening and Closing Ted

To open Ted, use a Java virtual machine like jview. To open Ted on a PC, open

a command prompt, navigate to the Ted directory, and type:

jview /a TED.htm

If the command prompt is closed, Ted will exit immediately. You can also

launch Ted by double clicking the Ted shortcut. To close Ted, simply close the

window that Ted is in (click the x in the upper right corner). Important: When

Ted closes, you will not be asked if you want to save your current file. If your file

closes because you close Ted, open or create a new Ted file, or close the jview

window, any unsaved information will be lost.

179

The Node Properties Dialog Boxes

Each node has an associated Properties dialog box. To view this dialog box,

simply click on the node. To avoid confusion, Ted will not allow more than one

node Properties dialog box to be open at any time. If at any time you are unable

to open a node Properties dialog box, check to see if one is already opened in

the background. To close a node Properties dialog box, click the "Close" button,

or close the window.

There are two types of node Properties dialog boxes: the branch node

Properties dialog box, and the leaf node Properties dialog box.

The Branch Node Properties Dialog Box

If you click on a branch node, a window like that shown in figure 12 will

open.

Figure 12. Branch Node Properties Dialog Box

12 Properties L r j [s ® |

: Node names (separate with commas]; j

Add Child Node:

! Branch Node I Leaf Node I
i i '

j Enumerated Branch Node Enumerated Leaf Node <

i

! Sample Questions j Delete Node] Close !

180

The text box at the top holds the name(s) of the node. These names

should be separated by commas. Spaces are not required. If a node has more

than one name, the other names will be treated as synonyms for the first name if

it is used in a question. This is one way Ted allows you to make your system

relate more specifically to your environment.

The names may consist of a sequence of any characters or spaces with

the following reservations. The first name may contain no spaces, and all first

node names must be unique. The first node name is the one that will appear in

the tree diagram.

Beneath the Node Names textbox are the Add Child Node buttons. You

may click any of these to create a new node that will be connected as a child to

the current node. Enumerated nodes are meant to hold multiple values (or sets

of values). However, Ted does not distinguish between normal and enumerated

nodes. The enumerated node buttons have been retained only so the application

will work with earlier Ted files.

The buttons on the bottom of the dialog box are used to view and edit the

sample questions (discussed later in this chapter), delete the current node and all

child nodes, and close the dialog box.

181

The Leaf Node Properties Dialog Box

If you click on a leaf node, a window like that shown in figure 13 will open.

Figure 13. Leaf Node Properties Dialog Box

Properties

Node names (separate with commas):

u

i
\
1

Select the data type tor this node

• String "" Number ' Date

Sample Questions { Delete Node I

This dialog box operates the same as the branch node Properties dialog

box. The only difference is that a leaf node can not create child nodes. Instead,

each leaf node has an associated data type. Select the data type by clicking one

of the three radio buttons.

182

The Menus

Ted has a number of useful features that are accessible through the menus.

These menus are discussed, in order, below.

File

New File. Choosing this option clears Ted's memory and starts a new

tree. All new trees begin with one empty branch node (the root node). Be sure

to save your current project first. If you select New File, any unsaved information

will be lost.

Open File. Choosing this option opens the "Select File to Open" dialog

box. Here, you can browse for an existing Ted file. Be sure to save your current

project first. If you select Open File, any unsaved information will be lost.

Save As. Choosing this option opens the "Save As" dialog box. Here,

you can browse for a location in which to save the current file, and choose a file

name. By default, the extension .ted is suggested. This extension is not

required, but it makes your Ted files easier to find.

Zoom

The Zoom menu allows you to look at a small group of nodes, or back up

and view larger sections of the tree. As the nodes get smaller, their text will also

get smaller. When the text becomes to small to be reasonable legible, it is

omitted. See the next section on tags. The Zoom menu is always set to one of

the following four options.

183

1:1. This is the normal viewing ratio.

1:2. Choosing this option makes everything half sized.

1:4. Choosing this option makes everything quarter sized.

1:8. Choosing this option makes everything eighth sized.

View

The View menu offers two options, and must be set to one or the other.

Tags Off. When you choose this option, no tags are shown.

Tags On. Choosing this option turns on the tags. When tags are turned

on, if you point at any node with the mouse cursor, a tag will appear showing the

name of the node. Tags are particularly useful when the Zoom is set high

enough so that the text in the nodes is omitted.

Tools

Edit Lists. Choosing this option opens the "Lists" dialog box. In this box

you can define a list. When a list name is used in a question, a rule is created in

the grammar file. The system will accept any item on the list as a replacement

for the list name. This dialog box is shown in figure 14.

184

Figure 14. Lists Dialog Box

For example, the sample list SubjectPronoun has two items: he and she.

So, the question Does SubjectPronoun have a valid license?

will respond to

Does he have a valid license? or Does she have a valid license?

(The above question notation " Does SubjectPronoun have a valid

license?" will not actually work in Ted. The proper notation for questions is

described in the next section. For now we will use the simplified notation to

explain lists, although this question would properly be written "does <0

SubjectPronoun> have a valid license".)

185

A list can be defined to fit synonyms for a common word or phrase. For

example, the list Subject has the items: he, she, the driver, the operator, the

person, the owner. Now the question, "Does Subject have a valid license?", will

fit six spoken questions. This is another way you can use Ted to make your

system more specific to your environment.

To create a new list, type the list name (which can not contain spaces) into

the "Add List" textbox. Then click the "Add List" button. The new list name will

be added to the group of existing lists for the current Ted file. The new list must

have a name different from that of any other list, and it must not be the same as

the first name of any node, (first node names are essentially list names.)

To edit an existing list, select the list name from the "Choose List" box by

clicking on it. Once a list is selected, its items can altered in the "List Items" box.

Spaces are allowed within list items. The items should be separated with

commas. Spaces are not required.

Another use of lists is dialect compensation. If users tend to sometimes

use contractions, abbreviations, nicknames, etc. you can define a list to catch all

possibilities. For example, consider the list Whats. It has two items: whats and

what is. So, for questions where the phrase "what is" occur, the Whats list will

match "what's" or "what is".

Lists have another very useful function that node names do not. If a list

name is used in a question, not only will the system accept any item, it will

remember which item was spoken. As the answer is formed at run time, it can

be influenced by the spoken item. For example, let's create the list ConvType

186

and include the items speeding, uncovered load, driving while intoxicated, non

inspection, unregistered vehicle, operating without a license, non moving

violations, equipment. Now, if we include the question,

Whats Subject got for ConvType convictions?

Not only does it represent 96 spoken questions, but the answer can vary

depending upon which item was spoken for ConvType. Again, the details

pertaining to writing questions and answers are discussed in the next section.

To delete a list, select the list in the "Choose List" box by clicking on it.

Then click the "Delete List" button.

Generate Grammar File. Choosing this option generates a full question

recognition grammar file that is used by Fred, the run time component of the

SAM Q/A system. This file is used to tell the system which words, phrases, and

questions to recognize. The file also contains information about the answers.

Once the file is generated, a "Save As" dialog box will pop up. The name of the

file must be grammar.txt unless the file Fred.CPP is modified. The generation of

these grammar files is the main purpose of the Ted application.

Generate Vector File. Choosing this option generates a component

recognition grammar file that is used by Fred, the run time component of the

SAM Q/A system. This file is used to tell the system which words and phrases to

recognize. The file also contains information about the answers. Once the file is

generated, a "Save As" dialog box will pop up. The name of the file must be

grammar.txt unless the file Fred.CPP is modified. The generation of these

grammar files is the main purpose of the Ted application.

187

Generate Question File. Choosing this option generates a file that

includes every question and answer in the current Ted project. This is useful for

system development and fine-tuning. Once the file is generated, a "Save As"

dialog box will pop up. You can give the file any name you like, but the extension

should be .txt since it will be a text file.

Generate Leaf File. Choosing this option generates a file that lists every

leaf node in the current Ted project. The list includes the full node path and

unique node number of each leaf node. This information is essential when

writing the record parsing part of Fred. Once the file is generated, a "Save As"

dialog box will pop up. You can give the file any name you like, but the extension

should be .txt since it will be a text file.

The Node Questions Dialog Box

The Sample Questions button in any node Properties dialog box opens

the node Questions dialog box. This box allows you to enter sample questions

that will be associated with that node. These questions are used by Ted to

generate the grammar file. The Questions dialog box is shown in figure 15.

Each node may contain any number of questions. However, you can only

see one question at a time. The < Previous Question, and Next Question >

buttons are used to switch between questions within the node. The current

question number is shown beneath the < Previous Question button.

188

Figure 15. Node Questions Dialog Box

!i

status Questions

< Previous Question Next Question > Add Question J Delete Question j

it Question 1 of 3

does <Q Subject> have a valid license

Insert Node Name

; operator

Answers:

Insert List } S ubjectPronoun

Yes {0} has a valid license [status 20] eq VALID

No the operators license is [status 20] [status 20] neVALID

Insert Node Contents Insert Variable !0 Subject}

I Select leaf contents

Reset Choices j Close j

There are also buttons to add or delete questions. Most importantly, there is a

text box to put the question in.

Questions

A question may contain the following elements, separated by spaces:

Word

Node Name

List Name

189

Node Name

To insert a node name, choose from the Insert Node Name drop down list.

When you insert a node name, any synonym for that node (as set in the node

Properties dialog box), will be accepted in that position in the question. Note that

the drop down list shows each node in the tree in a complete path. This is to

help you find the node you are looking for. Once you select one, the node name

will be inserted in the current cursor position. The name will be enclosed in

<angle brackets>. See Reset Choices below.

List Name

To enter a list name, choose from the Insert List drop down list. Like a

node name, any item in a list will be accepted. In addition, as list items are used

at run time, they can be accessed by the answer in the form of a variable. See

Answers below. When you choose a list name from the drop down, the list name

will be inserted in <angle brackets> along with a number that Ted generates.

This number is associated with the variables described below in the Answers

section.

In addition to the lists you create (see the Tools menu), Ted includes

several default lists. There are two types of default lists: editable, and not

editable. The editable ones are SubjectPronoun, ObjectPronoun, and

PossessivePronoun. These lists appear in the Lists dialog box. They can be

edited or deleted, and serve as examples. However, if you look in the "Insert

List" drop down box, you will notice two additional lists: SingleDigit, and

190

DoubleDigit. These can be neither edited nor deleted. They are more

complicated than normal lists. When the grammar file is generated, these lists

are handled specially. For example, if the grammar recognizes "thirty five", it w

pass on the string "35". See Reset Choices below.

Question Examples

1. what state is the driver from

2. what is the drivers <dob>

3. does <0 Subject> have a valid license

4. has <0 Subject> had any tickets in the last <1 SingleDigit> years

In the second example, the node name <dob> stands for DOB, date of

birth, birthday, or birth date. In the third example, the list Subject contains he,

she, the driver, the operator, and the person. The fourth example uses the list

SingleDigit, which can stand for for zero, one, two,... up to nine. The number

can be used as a variable in the answers and conditions, as is covered below.

191

Boolean Expressions

Ted uses a specific format for Boolean expressions. Since they are used

in several places, they are discussed here. A Boolean expression (as far as Ted

is concerned) may contain the following elements, separated by spaces:

• Word

• Node Contents

• Variable

• Operator

Node Contents

To insert the contents of a leaf node, choose a node from the Insert Node

Contents drop down box. Nodes chosen in a simple Boolean expression are

expected to be non-enumerated. That is, there should be only one piece of data

associated with the node. If there are multiple pieces of information associated

with a node, Ted will simply choose the first. This is not a limitation. There

should never be a need to use enumerated leaf node data within a simple

Boolean expression. This is not the case, however, when a Boolean expression

is used within a filter. Filters are described below in the Answers section.

When you insert the contents of a leaf node in a Boolean expression, the

contents (perhaps as part of a mathematical expression) will be compared to

something at run time. If the comparison is true, the Boolean expression is true.

For example, in the status Questions dialog box shown above, a Boolean

expression is used as a condition (more on conditions below).

192

[status 20] eq VALID

The node name is "status", and it apparently is node 20. At run time, if the

contents of node 20 are equal to the string "VALID", the above Boolean

expression will be true. If the contents of node 20 do not exactly equal the string

"VALID", the above Boolean expression will be false. See Reset Choices below.

Variable

Above, you saw that a question might include a list name chosen from the

Insert List drop down box. In a Boolean expression, you may include any list

used in the question. At run time, the actual list item spoken will be used in a

comparison. For example, if we want to know if the driver has more than some

number of points, we might use the following question,

does the driver have more than <0 SingleDigit> points

Then, in a Boolean expression, we can compare the number in the points

node to the number spoken. In this case, we want to trigger an answer if the

number of points is more than the number spoken,

[cpoints 35] > {0}

This Boolean expression is true if the number in node 35 is greater than the

variable {0}, which is the spoken word from the SingleDigit list.

Of course, Boolean expressions using node contents might compare

numbers or strings. Likewise, Boolean expressions using variables might

compare numbers or strings.

See Reset Choices below.

193

Operator

Boolean expressions may contain a number of operators. To be specific;

*, /, +, -, eq, ne, =, !=, >, <, >=, <=, &, and |.

The operators are resolved in the order shown above. Operators must have

spaces to either side.

Arithmetic Operators

* Multiplication

/ Division

+ Addition

- Subtraction

You may perform arithmetic functions on numbers only (dates are

numbers), not on strings. Using these operators will perform the normal

functions on the two neighboring words. It is assumed that these words are

numbers. The operators are resolved in the order *, /, +, -. Parentheses are not

allowed. This means you can not use any grouping. You must distribute

groupings before typing them into Ted.

194

Comparative Operators

eq compares strings to see if they are equal

ne compares strings to see if they are not equal

= equal

!= not equal

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Most of the operators are comparative operators. Two of them, eq and

ne, are for use only with strings. If the two neighboring strings are identical, eq

will result in a true. The other comparative operators are to be used with

numbers, including dates. They are =, !=, >, <, >=, and <=. Since the arithmetic

operators are resolved first, these comparative expressions will compare the two

neighboring arithmetic expressions (where an arithmetic expression is any

number of numbers connected by arithmetic operators).

Boolean Operators

& AND

| OR

There are two Boolean operators & and |. They are resolved in that order,

and parentheses are not allowed. This means that Boolean expressions must be

195

expanded to sum-of-products form. Although there is no negation operator, by

using the ne, and != operators, any Boolean expression can be represented.

All Boolean expressions eventually resolve to a true or false. They are

used in two places, which are discussed later in Filters and in Conditions. Below

is an example of a valid Boolean expression in Ted.

[fname 6] eq BARBIE | [gender 8] eq Female & [haircolor 12] eq blond & [weight

11] <= 110 & [cpoints 35] + [lyp 36] + [2yp 37] = 0

This somewhat silly expression resolves to true if the driver's first name if

Barbie, or if all of the following are true. She is a blond female with a weight less

than or equal to 110 pounds, and all of her points total zero.

Answers

The second portion of the node Questions dialog box allows you to enter

answers and conditions. The answer is spoken by the run time component if the

corresponding question is detected. An answer may contain the following

elements, separated by spaces:

• Word

• Node Contents

• Variable

• Operator

• Filter

• Filter Number

196

Node Contents

As explained above in the section Boolean Expressions, a leaf may be

chosen using the "Insert Node Contents" drop down box. It is assumed that the

leaf is not enumerated. To use enumerated node contents, see Filters.

Variable

The variable is also explained in the section Boolean Expressions.

Suppose the following were a question,

does the <0 Subject> have more than <1 SingleDigit> points

The answer might be:

{0} has [cpoints 35] points.

Operator

There are four operators that are acceptable in an answer, and they all

deal with numbers (including dates); *, /, +, -. They must have a space on either

side. So, if you want to know all of the points the driver has for the past three

years, the answer would look like:

{0} has [cpoints 35] + [lyp 36] + [2yp 37] points.

Filter

A filter is an element that is used to deal with nodes that contain multiple

items or values. A filter always begins and ends with parentheses, and this is the

only place in a Ted project where parentheses may be used. A filter represents a

197

list of data from a node. For example, the filter below returns the locations for all

of the accidents the driver has on record since 1995.

([location 63]:[accdate 60] > 12/31/1995)

All filters have the following format. First, a node to be returned, then a

colon (:), then a Boolean expression. Spaces around the colon are not

necessary. For each item in the list, if the Boolean expression is true, the item is

added to the sub list returned.

So, the answer to the question

where has <0 subject> had accidents since 19 95

is

{0} has had accidents in ([location 63]:[accdate 60] > 12/31/1995)

Filter Number

A filter number works the same as a filter, but instead of returning the list

of qualifying items, the filter number returns the number of qualifying items. To

use a filter number, just directly precede a filter with a hash, or number sign (#).

For example, to answer the question, "list all convictions", you might use

The driver has a total of #([convtype 42]: 1 = 1) convictions for the following

([convtype 42]:1 = 1)

Notice that the Boolean expression 1 = 1 is used so that all entries will be

included.

198

Conditions

An answer will be activated if the condition next to it true. A condition is a

Boolean expression. In addition to the elements normally allowed in a Boolean

expression, a condition may contain a filter number. By default, a condition is

considered true if it is empty. If more than one answer is given, they should have

mutually exclusive conditions. Otherwise, multiple answers to a single question

might result.

Reset Choices - Important

There are four drop down boxes in the node Questions dialog box. These

drop down boxes have contents that vary due to changes you make inside and

outside the dialog box. Click the "Reset Choices" button to update the drop

down boxes for that node.

199

Using Fred

Required Files

Fred is the runtime application component of the SAM Q/A system. For

Fred.exe to run properly, it must be placed in a folder with a grammar file called

"grammar.txt", and a record file called "record.txt". The grammar file is generated

by the Ted application. Fred is compatible with either a full question grammar, or

a component grammar.

The application can be started by double clicking on the Fred.exe file.

This will open a window on the desktop. To ask a question of the system, click

and hold the right mouse button inside the window. Ask the question into the

attached microphone. Then, release the right mouse button.

The record file must be in the proper format. This format is associated

with the way the question answering system is set up in Ted. In the Ted design,

each piece of data is located in a leaf node of the tree. The leaf nodes are

numbered. The leaf numbers can be obtained from Ted by selecting the

Generate Leaf File menu option. For the Student system, this generates a file

with the text shown in figure 16.

200

Figure 16. Student Leaf File

student/personal/name 5
student/personal/address 6
student/personal/dob 7
student/personal/ssn 8
student/academic/major 9
student/academic/minor 10
student/academic/advisor 11
student/academic/class 12
student/academic/status 13
student/academic/credits 19
student/academic/gpa 20
student/courses/title 14
student/courses/department 15
student/courses/number 16
student/courses/grade 17
student/courses/ech 18

As can be seen in the file, the name is stored in node 5. The address is

stored in node 6. Some pieces of data, like course title (node 14), may have

multiple items or values. An item number is used to differentiate between these

multiple items. If a node contains only one item, its item number is 0. Each line

in the data record must have three things: the node number where the

information is stored, the item number for the data, and the data. The three

pieces of information are each enclosed in square brackets.

[5][0][Jennifer Allen]

[6][0][402 south main street bivington NH]

[14][0][lntroduction to Biology I]

[14][1][Chemistryl]

As long as the record is in this format, Fred will read the data when launched.

201

Setting the Maximum Array Sizes

There are constraints on the sizes of Fred's data structures. If an

intended application will exceed these constraints, the application must be edited

and recompiled. For most applications, the default values should be sufficient.

However, if the record is particularly large, or has large pieces of data, Fred may

need adjustment. The following constants are defined in Fred.

• LEAFS - The highest numbered leaf. This is given in the TED leaf list file.

The default value is 100 leaves.

• RECORDLENGTH - The maximum amount of characters in a record. The

default value is 5000 characters.

• DUPLICATES - The maximum number of duplicate leaves in any record.

This is the number of items that one leaf might contain when a leaf contains

multiple items. The default is 15.

• FIELDSIZE - The maximum number of characters in any record field. The

default value is 50 characters.

• QUESTIONS - The number of template questions defined in the TED file.

The default value is 100 questions.

• QUESTIONSIZE - The maximum number of characters that will appear in any

question, condition, or answer. The default value is 300 characters.

202

How Fred Works

Fred is the runtime portion of the SAM Q/A System. The code is written in

C, and it runs on the Microsoft Windows™ operating system. Fred provides the

following functionality:

• Fred reads the record file in his home directory that is called "record.txt". It

parses the file, and stores the information.

• Fred connects to the speech recognition and generation engines to enable

speech input and speech output.

• Fred tells the speech recognition engine to use the file "grammar.txt" as a

grammar file.

• Fred reads the file "grammar.txt", which contains the question information.

This file is generated by Ted. Fred stores the information including all

questions, answers and conditions.

• Fred receives each spoken input as it is translated by the speech recognition

engine.

• Fred formulates an appropriate response.

• Fred sends this response to the speech generation engine.

203

The speech recognition is performed using the Microsoft English Recognizer v5.1

recognition engine. Fred connects to this engine using the Microsoft Speech

Applications Programming Interface (SAPI). Throughout this document, the

phrases "SAPI", and "the SAPI speech recognition engine" are used to refer both

to the speech engines themselves, as well as the connection interface.

The Code

Fred contains the following functions:

Set-up

WinMain

WndProc

ABOUTCPPMsgProc

nCwRegisterClasses

CwUnRegisterClasses

File parsing and storage

parseRecord

loadDR

parseQuestions

parseTypes

204

Utility functions

add

sub

mul

div

speakString

datein

dateout

substring

Response formulation

respond

resAnswer

resFilter

resBoolean

parseWordList

parseLists

replaceList

getQnum

The remainder of this chapter explains what each of these functions do,

and how they interact to form a spoken question answering system.

205

Set-up

WinMain

This is the standard Windows window function. It creates a window and

sits in a message loop until the application exits. WinMain also connects to SAPI

to enable speech I/O, sets the SAPI grammar file, and opens files to be parsed.

WndProc

Again, this is a standard Windows function. It handles messages

dispatched by the message loop in WinMain. This function handles mouse

messages. On a WM_RBUTTONDOWN message (right mouse button pressed),

SAPI is instructed to start listening for voice input. On a WM_RBUTTONUP

message (right mouse button released), SAPI is instructed to stop listening. The

WM_RBUTTONUP message also starts a timer. On a WMJTIMER message, if

speech has been detected and recognized, the spoken input is sent to the

response function.

ABOUTCPPMsqProc

This function handles messages from the "About" dialog box that close the

box.

nCwReqisterClasses and CwUnReqisterClasses

These functions register and unregister classes that are used by the

WinMain function.

206

File parsing and storage

parseRecord

This function is called from within WinMain. All of the data from the driver

record are sent to it as a string (pointer to a char array). The parseRecord

function parses the data from the string and stores it. For each piece of

information, parseRecord increments a corresponding array element

(leafLength[i]) to keep track of the number of entries in that field. Then the actual

data are sent to the loadDR function.

load PR

The driver record information is all stored in a three-dimensional array

called drarray. As mentioned above, there is one space for each piece of

information (each leaf number), and there may be repetitions. The loadDR

function takes a string input, a leaf number, and a repetition number. It stores

the string input in the appropriate location. If the input has been designated as a

date within the Ted project file, the string is first sent to datein before storage.

parseQuestions

The file "grammar.txt" that is generated by Ted is used as the grammar file

for speech recognition. This file also contains additional information that is

ignored by SAPI. Included in the grammar file is a list of all questions, answers,

207

and conditions. The parseQuestions function stores all of this information in

arrays to be used during response formulation.

parseTypes

The "grammar.txt" grammar file also contains a list stating the type of each

leaf; string, number, or date. The parseTypes function reads the grammar file,

and stores the type of each leaf in the leafType array.

Utilities

add, sub, mul, and div

These are basic arithmetic functions that operate on string representations

of integers. They each take two string arguments, perform a mathematical

function and return a string representation of the result.

speakStrinq

The speakString function takes a string (char array) and converts it to a

wide char array. Then it sends the wide char array to the function startSpeaking.

Any string sent to speakString will be spoken by the computer.

datein

This function converts dates into "Ted Time", which is the number of days

since January 1,1900. The return type of this function is an int. The input

208

argument is a string representation of a date. It may be in any one of the four

following formats.

• mmddyy

• mmddyyyy

• mm/dd/yy

• mm/dd/yyyy

dateout

This function takes a date in Ted time as an integer and returns a string

representation of the date, such as "February 3 1995". This is called on any

output that is listed as a date in the leafType array.

substring

The substring function is used as a utility throughout Fred. It takes three

input parameters; a string to parse, a start tag string, and an end tag string. The

function returns the text found between the two tags.

Response Formulation

Response formulation is the heart of the Fred application, and is

supported by all of the other functions. There are four main functions involved in

response formulation: respond, resAnswer, resFilter, and resBoolean.

209

The system works by using three types of defined expressions; the

answer expression, the filter expression, and the Boolean expression. Each of

the three "res" functions resolves a type of expression. An answer expression is

the generalized form of the answer that was entered in Ted. An answer

expression may contain filter expressions as long as they are not nested. A filter

expression returns only the items from some leaf that fit certain criteria. For

example, it may return the location of all accidents where people were injured

([Location] where [Number Injured] > 0). A filter can also return the number of

items found rather than the items themselves. Either way, a filter expression

always contains one Boolean expression.

A Boolean expression is an expression that can be evaluated to true or

false. A Boolean expression may contain a numbered filter, but not a normal

filter. A Boolean expression may only contain a numbered filter if it is not already

contained in a filter itself, since filters can not be nested.

respond

The respond function parses the input string and finds the question

number. Each question has three potential answers, and each answer has one

condition. All conditions are Boolean expressions, so the conditions are sent to

resBoolean. If the condition for an answer is true, respond sends the answer to

resAnswer, which fills in any holes. When resAnswer returns the resolved

answer, respond sends it to speakString. It is up to the developer to ensure that

conditions are mutually exclusive if this is desired.

210

resAnswer

The resAnswer function resolves answer expressions. This consists of

replacing word and leaf tags with actual data, processing arithmetic operators (+,

-, *, /), and sending any filter expressions to resFilter. The resolved answer is

returned.

resFilter

The resFilter function resolves filter expressions. Each filter expression

has one primary leaf, and a Boolean expression. For each item in the primary

leaf, a Boolean expression is built using data from the primary and other leaves

of corresponding repetition number. Once the Boolean expression is built, it is

sent to resBoolean for resolution. If resBoolean returns true, the primary leaf

information is added to the list of matches, and the number of matches is

incremented. Once all Boolean expressions have been evaluated, resFilter

returns either the list of matching items, or the number of matching items,

depending upon how it was called.

resBoolean

The resBoolean function resolves Boolean expressions. Most of the

functionality comes from evaluating operators and their nearest neighbors. The

resBoolean function also calls resFilter if the Boolean expression contains a

211

numbered filter. An int value of 0 is returned if the expression is false. An int

value of 1 is returned if the expression is true.

parseWordList

This function is only used when the system is employing the component

recognition approach. The grammar file contains a list of all words used in the

sample questions, and gives them each a rarity value. The parseWordList

function reads data from the grammar file and stores all of the words and rarity

values.

parseLists

The meaning of the word "list" here is different from that in the above

section. Here, a list is a "Ted list"; an item that represents multiple words like

<Subject>. The SAPI speech recognition engine will search the grammar file for

acceptable values for such a list name, but Fred also must know what values are

acceptable for any list name for three reasons. When Fred is guessing which

sample question is closest to the spoken input, it must know which list was used

so it can add the appropriate weight. Also when Fred is resolving expressions,

they may include list items. Fred needs to know which of the input items to use

in a calculation or comparison. Finally, Sometimes the output includes one of

these word variables. Again, Fred needs to know which word to use. The

parseLists function reads the grammar file and stores all list names and

acceptable values in an array called GrammarList.

212

replaceList

As mentioned above, there are times when Fred has an answer or

condition that contains a list item. The answer or condition statement simply

includes a tag number corresponding to the list name used in the question. The

replaceList function takes this number and finds the corresponding list name in

the question. Then, it finds all entries in the GrammarList array that use that list

name. Finally, it searches the input string for a match with an acceptable value

for the list name. It returns the first acceptable value it finds. Note that Fred only

searches one level deep in list names.

qetQnum

Fred must tell which sample question is closest to the spoken input. To do

this, respond calls the getQnum function. It has access to a list of all words used

in sample questions with rarity values, a list of all sample questions, and the

spoken input. For each word in the list, Fred checks each sample question. If

the word appears in a sample question and in the spoken input, the word's rarity

value is added to the total score for that sample question. When all words have

been searched, the sample question with the highest score is chosen, and the

question number is returned to respond.

Figure 17, on the following page, shows a flow diagram depicting the
response formulation process.

213

Figure 17. Response Formulation Flow Diagram

Call

Return

214

Flow of Control

Input goes to respond

respond sends conditions to resBoolean

resBoolean sends filter expressions to resFilter (numbered only)

resFilter resolves and returns

resBoolean resolves and returns

respond sends answer expression to resAnswer

resAnswer sends filter expressions to resFilter

resFilter sends Boolean expressions to resBoolean

resBoolean resolves and returns

resFilter resolves and returns

resAnswer resolves and returns

respond sends response to speakString

Computer speaks output

215

	The effect of component recognition on flexibility and speech recognition performance in a spoken question answering system
	Recommended Citation

	ProQuest Dissertations

