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Abstract. This paper is concerned with assessing the effects of small perturbations
in the constitutive laws on antiplane shear deformation fields arising in the theory
of nonlinear elasticity. The mathematical problem is governed by a second-order
quasilinear partial differential equation in divergence form. Dirichlet (or Neumann)
boundary-value problems on a semi-infinite strip, with nonzero data on one end only,
are considered. Such problems arise in investigation of Saint-Venant end effects in
elasticity theory. The main result provides a comparison between two solutions, one
of which is a solution to a simpler equation, for example Laplace's equation. Three
examples involving perturbations of power-law material models are used to illustrate
the results.

1. Introduction. The equilibrium equations governing finite antiplane shear defor-
mations of some homogeneous isotropic compressible or incompressible nonlinearly
elastic materials have been shown to reduce to a single second-order quasilinear par-
tial differential equation in two independent variables for the out-of-plane displace-
ment (see e.g. [1-4]). In particular, for the generalized neo-Hookean incompressible
materials for which the strain-energy depends only on the first invariant, the gov-
erning equation, in the absence of body forces is (1.1) below. This equation also
governs finite antiplane shear deformations for a certain class of compressible mate-
rials [4]. Considerable attention has been paid to the analysis of solutions of (1.1)
on rectangular domains whose lengths greatly exceed their widths. In particular, for
such long thin domains (or for semi-infinite strips), with traction-free lateral sides,
the asymptotic behavior of solutions of (1.1), as the axial variable increases, is of
interest in connection with Saint-Venant's principle (see e.g. [5-8] and the references
cited therein. Recent reviews on Saint-Venant's principle are given in [9, 10]. See
also [11] for consideration of a fourth-order analog of (1.1).) The spatial evolution
of solutions of (1.1) for both Dirichlet and Neumann boundary conditions on the
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lateral sides is also relevant to the study of Phragmen-Lindelof type principles (for
such results, in two or three dimensions, see e.g. [12, 13] and the references cited
therein). Recently, the present authors have investigated the asymptotic behavior of
solutions of inhomogeneous equations which are generalizations of (1.1). In [14], in-
homogeneous equations where a constant term is added to the left-hand side of (1.1)
have been studied. In the antiplane shear context, this would correspond to a constant
body-force. It was shown in [14] that solutions to Dirichlet problems for such equa-
tions are well approximated, away from the ends of a finite rectangle, by solutions
to the corresponding one-dimensional problem for an ordinary differential equation
on the cross section of the rectangle. Such results are of interest in assessing the
approximate nature of one-dimensional theories compared to exact two-dimensional
theories, and have played an important role, for example, in establishing plate and
shell theories in solid mechanics. Applications to problems in geometry, for example,
to the equation of a surface of constant mean curvature, have also been discussed in
[14], Generalizations of these results to the equations governing capillary surfaces
and extensible films are described in [ 15],

In this paper, we return to the homogeneous equation (1.1) on a semi-infinite
strip, subject to nonzero Dirichlet or Neumann boundary conditions on the near end
only, and examine the effect of perturbations of the coefficient p on solutions. In
the context of antiplane shear [1-4], this coefficient is the derivative of the strain-
energy density and so our concern is with the effect of constitutive law perturbations
on solutions. Such results are of interest given the practical difficulty in constructing
constitutive models that provide an exact description of material behavior.

Specifically, we are concerned with second-order quasilinear partial differential
equations in two independent variables of the form

[p{Q2)un]a = 0, q^iUpUp)1'1, (1.1)

where the usual summation convention is employed with subscripts preceded by a
comma denoting partial differentiation with respect to the corresponding Cartesian
coordinate. As mentioned above, in the context of antiplane shear, p is determined
by the constitutive model governing material behavior; and in (1.1) u — u{xx , x2) is
the displacement field. A commonly used constitutive law gives rise to functions p
of power-law form,

p = p(l + bq /n)"~l , p,b,n> 0, (1.2)

where p. is the shear modulus for infinitesimal deformations, and n is a material
hardening parameter. The case n = 1 in (1.2) corresponds to the neo-Hookean
material for which p is a constant, and (1.1) is Laplace's equation. Letting p =
dp/dq1, we see from (1.2) that p > 0 or p < 0 according as n > 1 or n < 1
respectively. The material is said to harden or soften in shear in these situations
[5], When n — 1/2 in (1.2), equation (1.1) is reducible, by a change of scale, to the
minimal surface equation

2 2
(1 + m 2)« m-2« 2h i2 + (1+m ,)m 22 = 0. (1.3)
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We consider both Dirichlet and Neumann problems for (1.1) on the semi-infinite
strip R = {(jfj, jc2)|0 < x2 < h, xx >0}. For ease of exposition, we confine
attention in what follows to the Dirichlet problem. The modifications necessary to
treat the corresponding Neumann problem are described in Sec. 4. We assume the

2 1 —existence of classical solutions u e C (R) n C (R) satisfying (1.1) on R subject to
the boundary conditions

w(x,,0) = 0, u(xl,h) = 0, X[>0, (1.4)
u, u , —> 0 (uniformly in x2) as xx —> oo, (1.5)

w(0, x2) = f(x2), 0 <x2<h, (1.6)

where the prescribed function / is sufficiently smooth and satisfies /(0) = f(h) = 0.
For a rather general class of functions p it was established in [7] that solutions

of (1.1), (1.4)—(1.6) decay exponentially with the distance xx from the end xx = 0.
The exponential decay rate was characterized explicitly in [7] in terms of the function
p and the strip width h . The hypotheses made in [7] concerning p, which we shall
also assume here, are conveniently separated into two cases. It is assumed that there
exist positive constants ma, Ma and nonnegative constants Ka (a =1,2) such
that, for all solutions u of (1.1), (1.4)—(1.6) on R, we have either
Case 1.

0 < m, < p < Mx + Kxqp, (1.7)
or
Case 2.

0 <m2<p 1<M2 + K2q2p, (1.8)

respectively. As pointed out in [7], if p were a bounded function of its arguments,
then the in (1.7) could be taken to be zero. Roughly speaking, the first term on
the right in (1.7) provides a bound on p as q —* 0, while the second term gives a
bounding function for p as q —► oo . A function p , for which (1.7) holds, is

p = p{\ +q2), (1.9)

which may be viewed as a special case of (1.2) with n = 2, b = 2 . For this p, we
can take m, = /i, M, = p, Kx = 1 in (1.7). For

p = p(\+2bq2)-112, (1.10)

(corresponding to the value n = 1/2 in (1.2)), in which case (1.1) is reducible to the
minimal surface equation (1.3), then (1.8) is satisfied with m2 = p~x , M2 = p~x ,
and K2 — 2bp~2. We observe, as in [7], that neither (1.7) nor (1.8) requires that
equation (1.1) be elliptic, that is, for all solutions u and at all points of R ,

P + 2p q2 > 0 {p =dp/dq2), (1.11)

although the results obtained in [7] and here are primarily of interest for elliptic
equations. It should also be noted that, in choosing the constants ma , Ma in (1.7),
(1.8) for a given p, it is desirable to choose mn as large as possible and Ma as
small as possible.
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In this paper, we are concerned with comparing solutions u of (1.1), (1.4)—(1.6)
to solutions v of a differential equation arising from a small perturbation of the
constitutive function p. The comparison solution v satisfies the same boundary
conditions as u. In particular, such a comparison is of interest where the problem
for v is much simpler than that for u, for example, v may be the solution to a
linear problem. Indeed, for two of the illustrative examples considered in this paper,

2 1 —v is a harmonic function. We assume the existence of veC (R)riC (R) satisfying

Vp{p2)vJ,a = 0, p = (v fiv (1.12)
on R, subject to the boundary conditions

i>(x,,0) = 0, v(xl,h) — 0, -*[>0, (1-13)
v, v j —> 0 (uniformly in x2) as x{ —> oo, (1-14)

v(0 ,x2) = f{x2), 0 < x2 < h. (1-15)

The perturbed constitutive function p is such that it satisfies conditions analogous
to (1.7), (1.8), namely,

0 < m, < p < Mx + K{p2p (1-16)
or

0<m2<(p)~l <M2 + K2p2p. (1.17)

Thus, in Case 1, both (1.7) and (1.16) are assumed to hold while in Case 2, both
(1.8) and (1.17) are to hold. (As was remarked in connection with (1.7), (1.8), it
is desirable to choose mn as large as possible and Ma as small as possible.) For
e < 1, it is also assumed that there exist positive functions yx(p, e), y2(p, e), with

7i(P, e) < Cj(e) < 1, (1.18)

y2{p,z)<c2' (L19)

where c2 is a constant such that

P\P(Q2) ~ P(P2)\ <Y{(P, e)p(q2)\q - p\ + e2py2(p, e)[p{q2)p{p2)]l/2 . (1.20)

The hypothesis (1.20), though somewhat complicated, serves to define the consti-
tutive law perturbation of concern here. The form of (1.20) arises from the following
considerations. We write

so that

P(Q2) - P{P2) = (1/2)[p{q2) - p{p2) + p{p2) - p{p2)]

+ (i/2)[/?(<72) - p{q2) + p(q2) - p(p2)]

Ip(q2) - p(p2)I < (l/2)[|/?(<72) - p{p2)| + |p{q2) - p{p2)\]

+ (l/2)[\p(q2)-p(q2)\ + \p(p2)-p(p2)\].

(1.21)

(1.22)

The second two terms on the right in (1.22) measure the difference between p(s)
and p(s) at the same value of their arguments while the first pair of terms measure
the difference in p(s), p(s) respectively, at different values of their arguments. The
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results we establish in the sequel make use of energy inequality techniques developed
in our previous work [7, 8, 14], In particular, in [14] (see [14], equation (2.4)), an
inequality of the form

P\P{Q2)- P(P2)\ <cx(p)p<Kq1)\q-p\, (1.23)

where 0 < cl (p) < 1, was used. Using a similar inequality, we are led to assume
here that the first pair of terms on the right in (1.22), multiplied by p, are bounded
by the first term on the right in (1.20). The second two terms on the right in (1.22),
multiplied by p, are then assumed to be bounded by the second term on the right
in (1.20), with s (0 < e < 1) being a measure of the perturbation in p generated
by p. As an example, suppose that

p(q2) = jm(1 + eVr1/2, p(p2) = p, (1-24)

so that u satisfies an equation of minimal surface type while v is a harmonic func-
tion. The constitutive function p in (1.24) is a special case of the power-law material
(1.2) with n = 1/2 and b = e /2. Thus, (1.24) may be viewed as a perturbation
away from b = 0 in (1.2), with the value of n fixed at n = 1/2. It is shown in
Appendix A that (1.20) is satisfied by the p , p given in (1.24) with

yl(p,e) = ep, y2{p,e)=p2/2. (1.25)

In Appendix A and in Sec. 3 it is also shown that the choices for yy (p, e), y2(p , e)
given by (1.25) do indeed satisfy (1.18), (1.19). Another example we shall consider
is the power-law material (1.2) with hardening exponent n = 1 + e , so that the
material is close to being neo-Hookean. Thus, we have

p(q2) = p + ' p(p2) = v, (i-26)

and so we wish to compare u with the harmonic function v satisfying (1.13)-( 1.15).
It is shown in Appendix A that (1.20) is satisfied in this case with the choice

7i(/>,e) = ^—|-{I>2/(1 +e2)f l2+pb{'2}, y2(p , e) = . (1.27)
1+e 1+e

In Sec. 3 it is shown that (1.18), (1.19) again hold for suitably chosen c^e) and c2 .
The plan of the paper is as follows: In the next section, we establish our main

result; namely, we derive an exponential decay estimate for a quadratic functional
defined on the difference between u and v . We show that this "weighted energy"
is bounded above by an exponential that decays with the axial variable xl and we
obtain an estimate (lower bound) for the decay rate. Furthermore, we show that
the energy is of order e4, for all x{ . We give three illustrative examples in Sec.
3, two of which involve comparison of u with harmonic functions, while the third
example compares solutions for two softening power-law materials. The extension to
Neumann boundary conditions is described in Sec. 4.
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2. An energy comparison. In this section, we establish our main comparison result
between u and v . Let w(xx, x2) be defined by

w(x{, x2) = w(x,, x2) - v(x{, x2). (2.1)

We show that the energy measure

E(z)= f p{q2)w aw adA, {q2 = u pu ^, (2.2)
JRz

contained in the subdomain

R, - {(x,, x2)|0 < z < xx < oo, 0 < x2 < h}

has exponential decay in z and is of order e4 as e —» 0. In fact, we shall show that

E{z) <eACae~2k"z, z> 0, (2.3)

where a = 1 or 2 in Case 1 or 2 respectively, and the estimated decay rate 2ka and
the amplitude Ca are constants which can be explicitly determined. Note that the
summation convention is not used in (2.3).

The result (2.3) is established in several stages. First, for a = 1 or 2 we derive
the differential inequality

F'{z)+ 2dKa{z)F(z) < De4Ka(z)E{z), z> 0, (2.4)

where the prime denotes differentiation with respect to z . Here

F{z) = E(z) + e4c22(l+Cl)-lE(z)/2, (2.5)

where ct(e) and c2 are the quantities introduced in (1.18), (1.19) respectively, and

E(z) = jR p{p2)v av adA, (p2 = vJ}v f}) (2.6)

is an energy measure defined on solutions v of the comparison problem (1.12)—
(1.15). The quantity Ka(z) in (2.4) is

mn (a — 1,2), (2.7)
a BaW

where
J0p{gz)dx2 (Case 1),

B (z) = { ' z (2.8)
1 f0 p {q ) dx2 (Case 2).

The constants d and D in (2.4) are given by

(3 + ^2 . (2.9)
4(1+c,) 4(1 + c,) (1 -c,)

respectively. The differential inequality (2.4) is integrated once. The next step uses
an exponential decay estimate for E{z), established in [7] (see (2.1) of [7]). The
estimate is

E(z)<Gae-2°»z, z > 0, (2.10)
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where
= ^a71/^ {a =1,2), (2.11)

and

E„ exp 27t,KKaE0
M2h2

(2.12)

In (2.12) Eq = £(0) denotes the total energy (assumed finite) contained in the semi-
infinite strip R . Bounds on E(0) in terms of the boundary data (1.15) are obtained
in [7], When (2.10) is inserted in the integrated form of (2.4), the resulting differential
inequality may again be integrated. This introduces the total weighted energy E0 =
E{0) which, in turn, can be bounded in terms of £(0) (see (2.50) below). The final
step makes use of the hypotheses (1.7), (1.8) in Cases 1, 2 respectively, to obtain the
desired result (2.3).

To establish (2.4) we proceed as follows. If L. denotes the line segment xt = z,
0 < x2 < h , we find, by using the divergence theorem and (1.1), (1.4), (1.5), (1.12)—
(1.14) that

E(z) = ~ fL p(v2)ww, i ~ fL y^2) - p{p2)]wv, i

L[p{<!2) - P{P2)]V Bw odA,
(2.13)

where we use the notation

/ i//dx2= / t//(z, x2) dx^. (2.14)
Jlz Jo

Thus, from (2.13) and the definition of p in (1.12), we have

E{z)< [ p(q2)\w\\w l\dx2+ [ |p{q2)-p(p
jl2 ' Jlz

+ [ \P(Q2)-p(p2)\P(w^w fi)l,2dA.
JR.

2"w\\v J dx2
(2.15)

Denote the third integral on the right in (2.15) by /3. Then we can use the hypothesis
(1.20), together with (1.18) and (1.19) to obtain

I3<ci [ \q ~ p\p(q2){w pw jg)1/2 dA
JRz

+ c2e2 f [p{q2)1,2{wJjwJj)l,2p{p2)l,2p]dA.
J R

(2.16)

By virtue of the definitions of p , q , and w we have
2 1/2 1/2p =v,nv,n ' PQ = (v,pv,i}) J , (2.17)

and so

\Q~P\ = {q2-2pq+p2)1'2 < {v pv p-2v p + u pu ^)1/2 = (w fiw p)l/2. (2.18)
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By inserting (2.18) in the first integral on the right in (2.16), using Schwarz's inequal-
ity in the second integral, and recalling the definitions of E(z), E(z) from (2.2)
and (2.6) respectively, we obtain

/3 < cxE(z) + c2eV/2(z)£1/2(z). (2.19)

The second integral on the right in (2.15), denoted by I2, is bounded in a similar
fashion. Thus, since |u J < (v pV p)^2 = p, on using (1.20), (1.18), (1.19) we find
that

I2^ci \q ~ p\p(q2)\w\dx2 +c2e2 p(q2)l,2\w\p(p2)l,2pdx2
Jlz Jlz

= ./] -|- J2.

Making use of (2.18) to bound , we obtain

(2.20)

~C|/. p(ql)\w\(w.Pw,i>XI2dx-

<cl P(q2)w pW pdx^j ^
1/2 / n \ 1/2 (2.21)

2 *p(q2)u2 dx2

The last step in (2.21) follows from Schwarz's inequality. Using a scheme involving
a change of variable introduced in [7] (see pp. 314-315 of [7]) (and also used in [8],
[14]), we can show that

,2,
[ p(q2)w2 dx2<^p- ( [p(q2)] Xw22dx2 (Casel),

JLz 71 JLZ
2 /

[ [piQ1)] ^w"dx2<^~ [ p{q2)w21dx2 (Case 2),
jl, n Jr..

where Ba(z) (a = 1, 2) is defined in (2.8). By using (2.22) and the left-hand sides
of (1.7), (1.8), we find from (2.21) that

Jt < C'J*K } [ p{q2)w,adx2, (2.23)
a

which, in view of (2.2) and (2.7), can be written as

Jx<cxk~\z)[-E\z)). (2.24)
A bound for J2 , defined in (2.20), follows similarly. Thus, by using Schwarz's
inequality, we have

J2 < c2e2 ^ p{q2)w2 dx^j ^ p(p2)p2 dx^j . (2.25)

Again using (2.22), the left-hand sides of (1.7), (1.8), the definition (2.6) of E, and
the obvious inequality

p(q2)w22dx2< J p(q2)w iw acLx2, (2.26)
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we find from (2.25) that

J2 < c2e2k;1(z){[-E'(z)]1/2[-E'(z)]1/2} . (2.27)

Thus, on combining (2.24), (2.27), we obtain from (2.20) that

/2<clK;1(z)[-JE'(z)] + c2eV1(z)[-£,(z)]1/2t-JE/(2)]1/2. (2.28)

It remains to obtain an upper bound for /, , the first integral on the right in (2.15).
By using Schwarz's inequality, we have

Ix< p(q2)w2 dx^j ^ p(q2)w2Adx^j . (2.29)

Again employing (2.22), the left-hand sides of (1.7), (1.8), and the arithmetic-geomet-
ric mean inequality, we find that

7' - 2m~n \ p^w,aw,adx2 = '(z)[-£,'(z)l/2- (2-30)
a J Lz

Combining the results (2.19), (2.28), and (2.30) on the right-hand side of (2.15), we
find that

(1 - c{)E(z) < c/El/2(z)E(z)1'2 + fc;'(z)(l + 2cx)[-E\z)]/2
2-1 / 1/2 1/2 (2-31)

+ c2e Ka \z)[-E {z)] ' [-E (z)] 7 .

The final step in establishing (2.4) from (2.31) is carried out by using the weighted
arithmetic-geometric mean inequality

2ab < da2 + \b2 (d > 0) (2.32)
0

in the first and third terms on the right in (2.31). Thus, we obtain

(1 -c, -Sl/2)E(Z) + 1/2(1 + 2c, + d2)K~\z)E\z)

+ c22e\-a\z)E\z)l(282)-c2/E(z)l(28l) < 0

for arbitrary <5, , S2 > 0. Choosing = 1 - c, and rearranging (2.33) we get

E\z) + (1 + 2c, + <52r'(l - cx)Ka{z)E(z) + e'cji 1 + 2c, + 82)~Xd~XE\z)

- e4c2(l - c,r'(l + 2c, + S2)~lKa(z)E(z) < 0

for arbitrary S2 > 0. For algebraic simplicity in what follows, we take S2 = 1 in
(2.34). (Other choices for <5, , S2 may also be made; see the discussion in Sec. 3.)
On defining F(z) as in (2.5), it is then readily verified that (2.34) has precisely the
desired form (2.4).

The differential inequality (2.4) can be written as

F{z)cxplld J Ka{ri)dri^ < De\n{z)E{z)exp\ld J Ka{rj) cfyj , (2.35)
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and so, on integrating, we find that

F{z) < F(0)expj—Ka{r\)dr]J

+De* L Ka{a)E{cj)exp^-2d J Ka{r\) drj^j da.

Now, by using Schwarz's inequality, we can easily show (cf. pp. 315-316 of [7]) that

~ Ja Ka(tl)df] >{z-o)2 j^ Ba(s) ds . (2.37)

Making use of the hypotheses (1.7) or (1.8), in Cases 1 or 2 respectively, we can show
(see, e.g., p. 316 of [7]) that (2.37) leads to

(2.38)

where

E{z) = [ p(q2)q2 dA (q2 = u au J (2.39)
Jr.

is the energy associated with the problem (1.1), (1.4)-( 1.6). Since E{o) is decreasing
in g (as is shown in [7]), and discarding the last positive term in (2.38), we obtain.

—— [ k (rj)dtj > " , (2.40)
man Ja aK" - Mh Mah

where E0 = E{0) is the total energy (assumed finite) in R . By inserting (2.40) (when
ct = 0) into the first-term on the right in (2.36), we obtain

F(z) < F{0)exp dmaKan

M2h2
exp

-2dm 7iz
M h

+
(2"41]

De4 J* Ka{o)E(o)expl^-2d J Ka{tj) drj^ do .

The exponentially decaying term in the first expression on the right in (2.41) has
a decay rate 2va (a = 1, 2) given by

dmn= {2A2)
a

where d is given in (2.9), . We now use the decay estimate for E(a), given by (2.10),
in the integrand in the integral in (2.41). This substitution will then introduce the
decay rate va , given by (2.11), into the final estimate. By using integration by parts,
we find that the entire second expression on the right in (2.41), denoted by J, is
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such that

J < DG e4
2d

DG e4<

—20
e

+

"" exp j-2d J Ka(i/)fl6/J]

2^a exp j-2t/ J Ka{ri)dt]^ da^

2d ~2v"z - exp |-2c? J Ka(rj) dtj
(2.43)

DG s4i> fz -20 a rdm K Enrv rv I u _ | q q (Jj e v fa a I

2d Jo+ —~ , / e ° exp exp
-2dm (z - a) a v /

Af /z
Jcr.

2d J0 H M2h2L a

where we have used (2.40) to obtain the final inequality in (2.43). By discarding the
second (negative) term in (2.43) and inserting the resulting bound in (2.41), we find
that

F{z) < F(0) exp
2v K a a

M h
—2v z DG £ —20 ze " + '2d

~ , (2.44)
DG e. v [2u K EJ [e~2"-z - e~2"°z]

j a a PYn L a a UJ L  J

2d M h v -va a a

where if va = va, then the limit is understood in the last term of (2.44).
The desired decay estimate (2.3) follows from (2.44) by observing that the ex-

ponentially decaying terms on the right-hand side of (2.44) can be bounded by an
exponentially decaying term of the form exp(-2kaz), where

k — min(i/ , v ) = ^ min [ d-rr , | . (2.45)
v a a> h \ Ma' Ma)

We recall from (2.9), that d = (1 - ct)/[4(l + c,)] and c, = c,(e) is the quantity
defined by (1.18), (1.20). To obtain the sharpest possible estimated decay rate ka ,
one should choose ma , ma as large as possible and Ma , Ma as small as possible.
In the illustrative examples discussed in Sec. 3, we have

v < v . (2.46)a a v '

In fact, it is shown in Appendix C that (2.46) holds if the constitutive functions p
and p satisfy a condition suggested by (1.20) (see equation (C.l)). On assuming that
(2.46) holds, and observing from (2.5) that F(z) > E{z), we find from (2.44) that

E(z) < He'2""z, z > 0, (2.47)

where
!2v K \ sADG v (2i> K En\ _

(2-48)

Observe that the quantity Ga defined in (2.12) contains E0, and that -F(O), given
by (2.5) with z = 0, contains both E0 and EQ . We can easily obtain an upper bound
for EQ in terms of E0. By virtue of the definition (2.1) of w and by using (1.6),
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(1.15), we see that w = 0 on xl = 0. Thus, (2.15) evaluated at z = 0 yields
E0 < /3(0) and so, by (2.19), we find that

(1 -cl)E0<c2e2Ei0,2El0'2, (2.49)

and so
2 4

£0<—1 jE0. (2.50)
(1-c,)2

Thus, we have from (2.5) that

F(0) = E0 + c22e\\ + cxylE0/2 < c22e\3 + cf)(l + ^"'(l -cx)~2EJ2. (2.51)

Upper bounds for the total energies EQ and E0 in terms of the boundary data have
been established in [7], and these bounds can be used in (2.50), (2.51), and (2.48) to
obtain, from (2.47), the desired result

E{z) < e4Cae~2"°z, z> 0 (2.52)

for a computable constant Ca .
If the hypothesis (C.l) of Appendix C is not made (so that (2.46) is no longer

assured) one can still proceed from (2.44), and use (2.50), (2.51) to obtain an estimate
of the form

E(z)<e4Cae~2k°z, z> 0 (2.53)

for a computable constant Ca, where ka is given by (2.45). This completes the
derivation of (2.3).

3. Illustrative examples. In this section we illustrate by three examples how to
make explicit the comparison (2.52) of the solution of problem (1.1), (1.4)—(1.6) with
the solution of the perturbed problem (1.12), (1.13)—(1.15). Two of these examples
were mentioned in Sec. 1, i.e., the p and p given by (1.24) and (1.26). We consider
first the problem defined by (1.24).

2 2Problem 1. Here p{q ) and p(p ) are given by (1.24), i.e.,

p{q2) = p(l +e2q2fl/2, p{p2) = p. (3.1)

We observe, in connection with (3.1), that one might think of p as a perturbation of
p rather than p being a perturbation of p, but it is immaterial which we designate
as the perturbation of the other. At any rate, as mentioned in Sec. 1, it is shown in
Appendix A that (1.20) is satisfied with yl(p, e) and y2(p, e) given by (1.25), i.e.,

yx{p,e) = ep, y2{p, e) = p2 / 2. (3.2)

In order to find the constants c,(e) and c2 defined by (1.18) and (1.19) respectively,
it is necessary to find a bound for the maximum value of p = \ gradw| on R . Since
p is the gradient of a harmonic function this is not difficult to accomplish with the
conditions on f{x2) implied by the fact that v 6 C2(R) n C'(jR) . The derivation of
an appropriate bound is carried out in Appendix B where it is shown that, with the
notation

maxp2 = P", (3.3)
R
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then
< m a v / —_ |

It follows that Cj(e) and c2 can be taken as

P2 < max ( ^[f"(x2)f + [f\x2)]2 y . (3.4)
x2e[0,h] | n

c,(e) = eP, c1 = P1!2. (3.5)

Thus, for sufficiently small s , the last inequality in (1.18) is satisfied.
The p and p given by (3.1) belong to Case 2 (see (1.8) and (1.17)). Clearly (1.17)

is satisfied with the choices

m2 = p. 1, M2 = n 1, k2-0. (3.6)

Since
.,22 2 2

/, , 2 2,1/2 1 + £ q . , , £ q
( ° " [l+82q2]m - [1 +£2q2]1'2'

it follows that (1.8) is satisfied for the choices

m2 = p~l, M2 = p~l, K2 = e2pT2, (3.8)

(cf. [7], p. 325). Recalling the definitions of v2, v2 from (2.11), (2.42) respectively,
we have

7T 7ld . ̂  ."2=J. "2=X <19)

with d given, by virtue of (2.9) and (3.5), by

d'W^Fy
Thus, it is clear that v2 < v2 so that (2.46) holds and the decay estimate (2.47), with
a = 2 , holds for Problem 1 with

7t (1 - £P) , , .
1/2 = 4h(l+eP) ' ' '

Since K2 — 0, the expression (2.12), with a — 2, simplifies to

G2 = £0. (3.12)

Also, since by (3.8) the constant K2 is of order e2, the decay estimate (2.47), (2.48)
can be written as

E(z) < £4LE0[\ + 0(£2)]e~2vlZ (3.13)

where v2 is given by (3.11). Here the constant L is given by

2 L =
n4

— (3 + PV)(l +Pe)_I(l -Pe)~2+D/(d{l-d)) (3.14)

where D is defined by (2.9). For Problem 1, on using (3.5), (3.6), (3.8), and (3.10),
we have

D= (3 + ̂ V , d=<t'-'f) . (3.15)
16(1 + eP)2(l -eP) ' 4(1+eP)
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We note that the decay rate given by (3.11) is much too conservative since a simple
estimate based on the arithmetic-geometric mean inequality gives

E(z) < 2 j-E(z) + p(q2)v av Qauj

< 2{E(z) + E(z)}
< Ne~2nz/h.

(3.16)

The last inequality follows from results established in [7], Here N is a constant
which is 0(1) in the parameter e . We should point out, however, that in this paper
we are emphasizing the feature that E(z) is 0(e4) for all z and hence that u and
v are close in energy measure for all z . At various steps in our proof we have used
inequalities that preserve the 0(e4), but which result in a poorer estimate of the
actual decay rate. For instance, in this problem cl (e) is 0(e). If we were interested
in improving the estimate of the decay rate, then in (2.33) we could choose

<*,=£,£, S2 = p2e (3.17)

for arbitrary positive constants /?, and p2. Then (2.33) would become

[1 - {P + PJ2)e]E(z) + (1/2)[1 + (2P + p2)e]K-\z)E\z)

+ p\^P2)-\\-\z)E\z) - JP4(8yS1)-,£3Jg(z) < 0.

By continuing the proof as above we would obtain, instead of (3.13),

E{z) <e3C*e~2k*z, (3.19)

where C2* is a computable constant, but now

(3.18)

K = T , . 'n ■ (3-20)
7i \l-e[P + fiJ2]
h \ 1 + e[2P + p2]

Thus by sacrificing a power of e in the multiplicative factor in the decay estimate we
are able to improve the estimated decay rate obtaining a new estimate which differs
from the expected decay rate by a term of O(s). This trade off between the size
of the multiplicative factor in the estimate and the decay rate is reminiscent of that
observed by Horgan and Payne [7, 8] in related contexts.

Before proceeding to the next example, we give an indication of how Problem 1
might arise in applications. Let 4> be the solution of the following minimal surface
problem:

{[l + |V0|2r1/20,J,a = O on R (3.21)
with the boundary conditions

(/>(x,,0) = 0, </>(xl,h) = 0, *,>0, (3.22)
0,0 , -+ 0 (uniformly in x2) as xi —> oo, (3.23)

0(0, x2) = ef(x2), 0 < x2 < h . (3.24)
Then if we set

0 = ew, (3.25)
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the function u will be the solution of (1.1), (1.4)—(1.6) with the p(q2) of (1.24),
the case we have just considered. Thus, we might think of approximating </> by ev
where v is the harmonic function taking the value zero on the long sides and the
value f{x2) on the end xx — 0. A measure of the merit of this approximation
follows from the observation that

E\z)= J [\ + \V(j)\2]'ll2\V{cj)-ev)\2 dA

(3-26)
   6 2ia, z< e C2e 2 , z > 0.

In the last step we make use of (2.52) with a = 2.
Problem 2. Here p and p are given by (1.26), i.e.,

bq2
P{Q") = P ^ ' P(P2) = IU ■ (3.27)

As we mentioned in Sec. 1, the problem for u may be thought of as a problem for
a material that is close to neo-Hookean while the problem for v is the neighboring
neo-Hookean problem governed by Laplace's equation. As we observed in Sec. 1, yl
and y2 are now given by (see Appendix A)

yi(P'£) = ~—t{[£2/(1 + e2)f /2 +pb]/2}, y2{p, e) = . (3.28)
1 + e 1 + £

Since the v in the perturbed problem is again a harmonic function we can use (3.4)
as the bound for P, the maximum value of p in R. We thus arrive at

bl^2e2 1/2 2 bP2e2=  2{P + bl/2P2}, c2 = - 3. (3.29)
1 + £ 1 + £

Thus, for sufficiently small e, the last inequality in (1.18) is satisfied.
The p and p given by (3.27) belong to Case 1 (see (1.7) and (1.16)). Clearly

(1.16) is satisfied with the choices

ihx=p, Mx=p, £,=0. (3.30)
Since

1 <
1+ bql

1 +£2) 1 + £
it follows that (1.7) is satisfied for the choices

<1 + ^2, (3.31)

be
mx=n, K{ = ^ (3-32)

l+£
(cf. [7], p. 324). Thus, we have

71 nd", = j. "i = T- (3'33)
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where d is given by (2.9) and (3.29), . Again we see that v{ < i>l so that (2.46)
holds and so the decay estimate (2.52) (with a = 1) holds for Problem 2 with

~ 2
given by (3.33)2 . Since = 0 and Ki = 0(e ), we can again obtain an estimate of
the form (3.13), with v2 replaced by ui for Problem 2. Also, since c,(e) is 0(e2),
it is again possible to improve the estimated decay rate at the expense of lowering
the order of e in the multiplicative factor by making the appropriate choices for <5,
and S2 in (2.33).

Problem 3. As a third example we consider the following expressions for p and
P-

-1/4

p{q2) = n
2

1+ 9
1 + e2

p{p2) = fi[l +p2] 1/4 . (3.34)

We observe that these values of p and p are of the power-law form (1.2) with

n = \, b = (3.35)
4 4(1+e2)

Thus, we are considering softening materials with a fixed value of the softening
parameter, and the perturbation may be viewed as a perturbation in the material
parameter b away from the value 3/4. We observe that this problem differs from
the previous examples in that the differential equation for v is now also quasilinear.

It is shown in Appendix A that for this example
/i , 2.— 1/4

t \ (!+£)'/> , . ,, . 2,-1 2 .. ,, ,,,
A"'> g) = (i +;>2)'/2 + [(| +«2)<i +p2))l/4 • •+«) P

To find the constants c,(e) and c2, defined by (1.18), (1.19) respectively, one would
require a bound for P, the maximum of p = |gradv| on R. In contrast with the
analogous situation for Problems 1 and 2 where such a bound was obtained in (3.3),
(3.4), here one requires an estimate for the gradient of solutions of the quasilinear
differential equation (1.12), with p given by (3.34)2. While techniques for obtaining
such bounds are known, the detailed calculations required to obtain explicit estimates
are beyond the scope of the present work.

From (3.36), it follows that c,(e) and c2 may be taken as

g,(e)= - . „2 1/2v -777 — ^,,/4 . c2 = (1 +e )~ r /4. (3.37)(j+£T ' P „|m. A-1D2
(1 +pyl2 + [(l +e2)(l + P2)]

For e sufficiently small, the last inequality in (1.18) is satisfied.
Since

-1, 2> -1,, , 2.-1/4,, , 2 , 2,1/4p {q ) = n (1 +e ) (1 +q +e )
= /z~'(l + e2)"'/4(l +q2 + e2)(l + q1 + e2)"3/4 (3.38)

= Al-'O + £2)3/4(l + + e2r3/4 + /T2(l + e2)-1/2(l + ,2 + e2)^Vp(q2),

the conditions (1.8) of Case 2 hold with

m2 = n~\ M2 = n~l, K2 = p~2( 1+e2)-'. (3.39)
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Also, as was shown in [7] (see pp. 324-325 of [7]) the conditions (1.17) of Case 2
hold with

m2 = fj.~l, M2 - p~l, k2 = n~2. (3.40)

Thus, we have

with d given by

7i nd
T02 = T> "2 = —> (3-41)

(3-42)

and c, given by (3.37), . Again, we have v2 < v2 so that (2.46) holds and the decay
estimate (2.52), with a = 2, holds for Problem 3 with v2 given by (3.41), (3.42).

The decay behavior in this problem is somewhat different from that in the two
previous examples. In the first two problems p -> p as q1 -+ 0 whereas in this
example that feature is no longer true. We observe also that since c,(e) is 0(1)
in e as £ —> 0 we no longer have the possibility of a trade off between the decay
coefficient and the order of e in the multiplicative factor. At the same time, since
K2 is different from zero, the constant C2 in (2.52) will in general be much larger
than in the first two examples.

Finally, we provide another interpretation for the perturbation involved in Prob-
lem 3. Let (j) be the solution of the problem

{[l + |V^|2rl/40ja}>a = O on R (3.43)

subject to the boundary conditions

0(Xj,O) = O, 4>{xx,h) = 0, x, >0, (3.44)
<l>, (j> | —> 0 (uniformly in x2) as x{ —♦ oo, (3.45)

0(0, x2) = (1 + e2)~i/2f(x2), 0 <x2<h. (3.46)

Then, if we set
0 = (1 +e2) 1/2m, (3.47)

u will be the solution of (1.1), (1.4)—(1.6) with the p of (3.34), . Thus we might
2  1/2 2think of approximating 4> by (1+e ) ' v where v satisfies (1.11)-( 1.14) with p(p )

given by (3.34)2 . A measure of the merit of this approximation can be assessed from
the fact that

(*) = [ [1 + IV0I2] 1/4|V[0 - (1 + e2) 1/2v]|2<£4 = (1+«2) 1E(Z)
Jr

4 (3.48)
<-^C7e~2u'z, z > 0.
~ 1 +e2

In the last step we use (2.52) with a = 2. Note that, in contrast to the result (3.26),
the right-hand side of (3.48) is of order e4 as e -> 0 rather than e6, as in (3.26).
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4. Concluding remarks. The preceding results are also valid when the Dirichlet
boundary conditions (1.4), (1.6) are replaced by appropriate Neumann boundary
conditions that correspond to traction boundary conditions in the antiplane shear
context. Thus we now consider solutions of (1.1) on R subject to the boundary
conditions

m 2(jc, , 0) = 0, u2(x{,h) = 0, x,>0, (4.1)
u, u i —► 0 (uniformly in x2) as jc, —» oo, (4.2)

2p(q )u , = g(x2) on X[ = 0, 0 < x2< h . (4.3)

The prescribed function g, assumed sufficiently smooth, must also satisfy the "self-
equilibration" condition

h
g(x2)dx2 = 0, (4.4)

/Jo
which follows from application of the divergence theorem to (1.1) and by using
(4.1)-(4.3). In fact the same argument shows that

Lp(q2)u ,dx2 = 0, z> 0, (4.5)

on every cross section L,. The problem for v is again governed by (1.12), but now
subject to the boundary conditions

v2(xt,0) = 0, v2(xl,h) = 0, x,>0, (4.6)
v, v ! -»0 (uniformly in x2) as x, ->oo, (4.7)

p{p2)v , = g(x2) onX[=0, 0 < x2 < h. (4.8)

As in the problem for u, we find that

fL „,,,p{p2)v ,dx2 = 0, z> 0. (4.9)

By combining (4.5) and (4.9), we see that

L[p(q2)u . - p(p2)v .]dx2 = 0, z > 0. (4.10)

The proof of (2.3) given in Sec. 2 remains valid for the Neumann boundary conditions
up to equation (2.13). We now introduce the functions W<l(xl , x2) {a = 1, 2, in
Cases 1, 2 respectively) by

Wa = w~wa(x,), (4.11)
where

1 fh 2 1 f^ 2 1
wi(xi) = -5~ p(q)wdx2, w2 = —-l [p(q)]~wdx2. (4.12)

"\ Jo ts2 Jo
By virtue of their definitions

rh , rh
f p(q2)Widx2=0, [ [p(q2)] lW2dx2=0.

Jo Jo
(4.13)
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By using (4.10), we can see that (2.13) can be written as

E(z)=-[ p{q2)Waw j dx2 — f [p{q2)~ p(p2)Wav {dx2
Jlz ' Jlz

- J [p{q2) - p{p2)]v tPWiPdA.
(4.14)

Thus, for the Neumann boundary conditions, (4.14) can be obtained from (2.13)
by formally replacing w in the line integral terms by Wa (a = 1, 2 in Cases 1, 2
respectively). One now proceeds from (4.14) exactly as was done in Sec. 2, except
that in (2.22), the w2 terms on the left are replaced by W2 {a = 1, 2). In deriving
this version of (2.22), one makes use of the zero average conditions (4.13). (A similar
procedure was followed in [7, 8].) In this way, one arrives at the estimates (2.47),
(2.48), where the total energies EQ, E0, and E0 are now understood to be those
associated with the Neumann boundary conditions. With this understanding, one
finds that (2.49)-(2.53) are also valid for Neumann boundary-value problems. The
techniques described in [7, 8] may be used to obtain the required bounds for the total
energies EQ, E0 in terms of the boundary data (4.3), (4.8).

Appendix A. Verification of (1.25), (1.27), and (3.36). If p(q2) and p(p2) are
defined as in (1.24) we observe that

p\p{q2) ~ p{p2)\ =PP[{ 1 +eV)"1/2- 1]
2 2ppe q

(1+eV)1/2[l+ (1+eV)1/2] (A-*)
pe2[q{q - p) + p{q - p) + p2]

(l+£V)"2[l + (l+<iV)"2]'
Clearly then

p\p(q2) p(p2)\ < PSf){q2)[eq + £P] p\ I eVlptfWiP2)?'2 (A2)
P\P{Q) PiP) I — [1 + (1+e2^2)I/2]l« /7|+(1+eV)l/4[1+(1+e2^2)1/2]- ( ")

Now setting eq — s and sp = t we seek an upper bound for

^)= i + li+j2)1/2' (AJ)
For t < 1 it is easily checked that y/ is an increasing function of s and thus that

y/(s) < 1. (A.4)

This leads to
2 3

P\P{Q2) - P(P2)\ < P£P(<12)\q -PI + *^~[p(q2)p{p2)]l/2 ■ (A.5)

By comparing with (1.20), we observe that

y,(p,e)=pe, y2(P > £) = P2/2. (A-6)
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which is (1.25). We observe further that ep < 1 is required by condition (1.18).
For p bounded, this merely imposes a restriction on the allowable magnitude of the
parameter e (see the discussion in Sec. 3).

Next we establish (1.27) for p{q2) and p(p2) given by (1.26). Now

p\p(q2)- p(p2)\ = HP -Si' (A.7)

and we bound the expression on the right making use of an inequality from
[16, p. 356] (stated in a somewhat different form), i.e., for any real number a and
0 < a < 1/2,

a" - 1 < a(a - 1 )a'^~")/2 (A.8)

(cf. (A. 12), p. 131 of [8]). Thus

P\P(42) - P(P2)\ <pbe2p2q2{ 1 +e2)~'[l +b2/{l +e2)]"('"£ )/2

_ pbe2p[(q -p)(q + p) + p2] (A-9)

(1 +£2)[1 + bq2/{\ +e2)](1_£2)/2 '

It follows then that

1/2, 2>, . , p{q2)bpe2 f p + qp\p(q )-p(p )l < \q-p\
(A-10)

(1+e) l[l +bq2/(l +e2)](1+£ )/2J
bp*e2 [p(q2)p{p2)]l/2

l+e2[l+b2q2/{\+e2)] '

By comparing with (1.20), we observe that we may choose

i ^ bps2 \ {p + q) \ , , ,2 2,,, 2,
> e) =   2 m„ax \ ; , n+2)n } , V2(P ,e) = bp e /(l+e ).

1 + e 9 I [1 + bq /{I + e )]( }/ J
(A. 11)

This maximization leads to a complicated expression; however, if we maximize q/St
and p/9$ separately (where 2 is the denominator in the expression to be maxi-
mized) we find

be2 iYiiP,e)<- T{op+p), (A.12)
(l+e2)

where

and

a = max — - max <   t— I (A. 13)
« 3 , \ + T^2]('+e J

T=- ^ (A-14)
1 + £

Clearly the maximum occurs for q2 = [re2] 1 , and we obtain

o = b 1/2[e2/(l + e2)f2/2. (A. 15)
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Thus, we find from (A. 12) that y,(p, e) can be chosen as

y,0, e) =pbX,2& !{\ +e2){[e2/(l +£2)f /2+/7Z)1/2}. (A.16)

Equations (A.16) and (A.ll)2 give precisely the expressions (1.27).
To establish (3.36) we start with

.,2, 2„ 1(1 +?2 +S2)1/4 - (1 +p2)1/4(! +£2)1/4|
p\p(i )-p(p )\ = mp—

= n-

(l+q2 +e2)l/4(1+p2)l/4

p|(l +^2+e2)I/2-(l +P2)1/2(1 +e2)./2,

(1 + <?2 + e2)1/4(l + p2)1/4[(l + q1 + e2)1/4 + (1 + p2)l/4(l + £2)1/4] '

(A. 17)
Further simplication leads to

p\p(q2) - p(p2)\

hp\q2 -p2 - «VI
(1 + 92 + e2)"4(l + p2)l'\( 1 + „2 + e2)"4 + (1 + p2y\l + £2)"4][(1 + q2 + e2)1'2 + (1 + „2)"2(1 + £2)"2]

p(q + p)

(i+£2) l/4/>(«2)k - p\

(, + p2)'/4[(l + q2 + £2)'/4 + (1 +p2)'/4(l + £2)"4][(1 + q2 + e2)"2 + (1 + p2)'/2(l + E2)"2]

. (i+£2r"yeW)^(P2)]'/2 
[(1 + q2 + e2)( 1 + p2)]1/8[(l + q2 + £2)1/4 + (1 + />2)1/4(1 + £2)1/4][(1 + q2 + e2)1/2 + (1 + p2)'/2(l + £2)"2] '

(A. 18)
By comparing with (1.20), we see that we may choose

yt(p,e)

 (1 +e2ri/4p(q+p) 
f (1 +Py\(l +ql+ ey<+ (1 +P^!\\ + + g2 + e2)l/2+ (1 +p2)l/2(1 + g2} 1/2]

< (1 +£2)-'/4 1 J- i 1 L, l±l
(l+p2)1/4i« [(1 +<72 + £2)1/4 + (l +p2)1/4] J 1 « (1 +«2)1/2 + (l +p2)1/2

(A.19)
(l+£2)-1/4p

(l+p2)1/2 + [(l + «2)(l+p2)]l/4'

where the second quantity in braces has been bounded above by unity.
Clearly, also

y2(p, e) = (1 + e2)~1/8p2

x max{[(l + q" + £2)(1 + p2)] 1/8
Q

r/i 2 2.1/4 /t 2x1/4,- 2.1/4,-1X [(1 +q +£ ) +(1 +p ) (1 +£ ) ]

r /1 2 , 2.1/2 , ,, , 2,1/2,. , 2,1/2,-Kx[(l +<? +£ ) + (1 +p ) (1 +£ ) ] }
/1 , 2, —1/4 2

< (1 + £ ) p

(A-20)

4(1 +£2)3/4

= (1 +£2)"V/4.
Inequalities (A.19) and (A.20) yield the desired expressions (3.36).
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Appendix B. Proof of (3.4). If v is a harmonic function that vanishes on the lateral
sides of R and vanishes at infinity, then it follows from Hopfs second principle that
p2 = |Vv|2 must take its maximum value on the end z = 0. Furthermore, Payne
and Philippin [ 17] have shown that if g is any other harmonic function in R , then
the quantity eag\Vv\2, for any real constant a , also takes its maximum value either
at X[ = oo or at some point on the boundary of R . We apply this result making the
special choice g — 2x{, that is, we define

r\ 2ax. 2 r, 71 /n 1 \6 = e lp , 0 < a < T. (B.l)
n

We remark that since p2 is 0(e~2nX[/h) as x{ —> oo, for our choice of a we are
assured that the maximum does not occur at infinity. It is also easily seen that the
maximum cannot occur on x2 = 0 or x2 = h. To see this suppose that the maximum
did occur at a point Q on x2 = h , x{ > 0 . Then since 6^0 in R , it follows from
Hopf s second principle that

<M>

But, at each point on x2 — h ,

= 2(v,iv, 12 + ^,2^,22)^' = 2(v,iv,n ~ v,2v,\0e2aX' =°> (B-3)

since both v 1 and v ,, vanish on x2 = h . Thus, 6 cannot take its maximum
value on x2 — h, xx > 0. A similar argument shows that the maximum value is
not taken on x2 = 0, x, > 0. Thus the maximum must occur on = 0. If
the maximum occurs at (0, 0) or (0, h), then the assumed continuity (recall that
v 6 C2(R) n C'(-R)) assures us that

p2 < max{[/'(0)]2, [/'(^)]2} • (B.4)

On the other hand, suppose that the maximum value of 6 occurs at a point (2, =
(0, jc2) for 0 < x2 < h . Then at 2, , we have (again by using Hopfs second
principle)

2
V, ,U 11 +U 2U,12 + aP <0' (B-5)

v xv n + v 2v 22 = 0. (B.6)

By using the differential equation and the boundary condition (1.15) at xx = 0, we
may rewrite these expressions as

-v + f'v n +ap2 <0, (B.7)

«,i^,.2 + /'/" = 0. (B.8)

If v 1 (G[) = then by (B.8) it follows that f"{Qx) = 0 (since f'(Qx) 7- 0,
otherwise p would vanish at this point). This would again lead to

P2 <[/'((2,)]2. (B.9)
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However, if v X{QX) / 0, we may eliminate v 12 between (B.7) and (B.8) to find
that at Qx

p2{a-f"/v ]}< 0 (B.10)
or

v]x{Qx) < [f"(Qi)f/a2. (B.ll)
Thus, we have shown that if the maximum occurs at any point (2, on ^ =0, then

p2<a-2[f"(Ql)]2 + [f'(Ql))2
< max {a"2[/"(x2)]2 + [/'(x2)]2}, ^B'12^

x2e[0,h]

where the last inequality takes (B.4) into account. Taking the limit as a —► n/h , we
arrive at (3.4). In our arguments we have used the obvious fact that if the maximum
value of p2e2ax' occurs at a point on x, = 0 then the computed bound for p2e2aX]
is also a bound for p .

It is perhaps worth mentioning the curious fact that if the portion of the boundary
on which nonzero data are given were not the flat end x, = 0 but rather a curve that
is convex outward to the left, e.g., a semicircular cap, then bounds for p could be
obtained by using the following result of Payne [18]:

rl
2 ,p < max

S

f 7
•SS + f22/ \ J ,sK (S)

(B. 13)

where f s, f ss are the first and second tangential derivatives of / on the convex
curve, respectively, and k(s) is the curvature. For a flat end, however, k(s) = 0,
and the bound becomes meaningless.

Appendix C. Verification of (2.46). In the motivation for assumption (1.20) given
in Sec. 1, it was pointed out that one way of looking at this hypothesis was to think
of the first term on the right of (1.20) as a measure of the difference in p(s), p(s)
(5 > 0) at different values of their arguments and the second term as a measure of
the difference between p(s) and p(s) for the same value of their arguments. With
this in mind, suppose that p and p are such that

1/Ks) - /5(s0| < c3e2 max[/>(s), £(s)] (C. 1)
for some constant c3 > 0. For a given p, p, it is desirable to choose c3 as small
as possible. (We recall from Sec. 1 a similar observation concerning the choices of
m , M , m , M .) It follows that if p{s) > p(s), then

and if p(s) < p(s), then

p(s)<p(s)<p(s)(l-e2c3) (C.2)

p(s) < p{s) < p(s)(l -£2c3) ', (C.3)

where we assume that 1 - £2c3 > 0. Thus, in general

P(s) < p(s)(l -e2c3) 1 (C.4)



464 C. O. HORGAN and L. E. PAYNE

and

(C.6)

p{s) < p{s){\ -e2c3) '. (C.5)

We look now at Case 1 and Case 2 separately.
Case 1. From (C.4), (1.16), and (C.5) we have

P(s) < {Mx + Kxs~p{s)}{ 1 - e2c3r'

< {Ml + AT,s[|0(s) - />(•*)! + />(s)]}(l - e2c3)_1

< Mx{ 1 - e2c3)_1 + ^15{e2c3p(5)(l - e2c3)"' + />(s)}(l - e2c3)_1

= Af,( 1 - e2C3)_1 + ^,(1 - £2c3)~2sp(s) .

Similarly, making use of (C.5), (1.7), and (C.4) we have

p(s) < Mx( \ - e2c3)-1 + ATj(l - e2ci)~2sp{s). (C.7)

It is also easily seen from (C.4), (C.5) and (1.16), (1.17) that

p{s) > m,(l - £2c3), (C.8)

P(s) > mx{\ -e2c3). (C.9)

Now clearly from (C.7), (C.9), and (1.16) it follows that we can take

Mx < Mx(\ - £2c^) ', Ahj > m,(l - e2c3), (C. 10)

and thus we have
nm.nmx 2 n{\-cx)mx

W> = hW,-hM~^~°C') >"' = 2A(l+c,)A/, ■ (CII)

provided
(1-C1)<2(l+Cl)(l-£2C3)2. (C.12)

The inequality (C.12) clearly holds for sufficiently small e .
Case 2. We now rewrite (C.4) and (C.5) as

[p{s)]~l <iP(s)(l -e2c3)] ', (C.13)

t^)]-' <t^)(l ~e2c,)]~l. (C.14)

Then, from (C.13), (1.8), and (C.14) we obtain

[/>(*)] 1 <[M2 + K2sp(s)](l-e2c3fl

< M2( 1 -e2c3)~l +K2( 1 -e2ciy2sp{s).
(C.15)

The last inequality in (C.15) follows as in the proof of (C.6). Similarly, from (C.14),
(1.17), and (C.13) we obtain

[p(s)]~l < MJ1 -e2c,)_1 + KJ1 -e2c.)~2sp(s), (C.16)

and as before

[/?(•?)] ' > fhJ\ -£2c3), [/?(s)] ' > mJl-e2c,). (C.17)
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Thus, again we arrive at

(C18)

provided (C.12) holds. We have thus shown that if p and p satisfy (C.l) and e
is sufficiently small, then (2.46) will hold. We remark that, in the three examples
discussed in Sec. 3, (C.l) is satisfied.
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