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ABSTRACT 
 

This paper presents a comparative study on different techniques 
for depth-image compression and its implications on the quality 

of multiview video plus depth virtual view rendering. A novel 
coding algorithm for depth images that concentrates on their 

special characteristics, namely smooth regions delineated by 

sharp edges, is compared to H.264 intra-coding with depth-
images. These two coding techniques are evaluated in the 

context of multiview video plus depth representations, where 
depth information is used to render virtual intermediate camera 

views of the scene. Therefore it is important to evaluate the 
influence of depth-image coding artifacts on the quality of 

rendered virtual views. The results of this evaluation show, that 
the coding algorithm specialized on the characteristics of depth 

images outperforms H.264 intra-coding, although its RD-
performance is worse. 

 
Index Terms— Depth compression, multiview video plus 

depth, free viewpoint video, image coding, view rendering. 
 

1. INTRODUCTION 
 

Multiview video (MVV) representations enable new 
applications such as free viewpoint video (FVV) and 3D 

television (3DTV) [1]. The main characteristic of 3DTV is to 
offer a 3D depth impression of the observed scenery. FVV on 

the other hand is characterized by providing the user the ability 
to interactively select an arbitrary viewpoint in the video scene 

as known from computer graphics. Both technologies do not 
exclude each other, but rather can be combined into one 

system. A common characteristic of such technologies is that 
they use MVV data, where a real world scene is recorded by 

multiple synchronized cameras.  
A popular format for 3DTV uses a conventional color video 

and an associated per pixel depth map and MPEG specified a 

standard for efficient compression and transmission. In the 
context of MVV this format is combined with multiview video 

to the multiview video + depth (MVD) format, consisting of 
multiple color videos with associated multiple depth data of 

one scene. Since MVD representations cause a vast amount of 

data to be stored or transmitted to the user, efficient 
compression techniques are essential for realizing such 

applications. Previous work presented various solutions for 
multiview video coding (MVC), mostly based on H.264 with 

combined temporal and inter-view prediction, as well as 
different approaches for depth image coding, like transform- or 

wavelet-based depth compression.  

As a first step towards standardization of technologies for 
3DTV and FVV applications, a new standard addressing 

algorithms for compression, transmission and rendering of 
multiview video data is currently developed by the Joint Video 

Team (JVT) of VCEG and MPEG, which is scheduled to be 
finalized in early 2008. As a second step, MPEG started an Ad 

Hoc Group on Free Viewpoint Television recently, focusing on 
FVV and 3DTV systems from a normative point of view, 

including representation, generation, processing, coding and 
rendering of MVD format data.  

This paper is organized as follows. Section 2 is about 
depth-image compression. The novel Platelet-based depth 

coding algorithm is introduced and the coding results are 
presented. Section 3 is about virtual view rendering, especially 

its application to evaluate the effects of depth-image 
compression, and presents the experimental results. Finally, the 

paper concludes with Section 4. 
 

2. COMPRESSION OF DEPTH IMAGES 
 

The MVD format consists of several camera sequences of color 
texture images and associated per sample depth images or 

depth maps as illustrated in Fig. 1. Depth images are a 2D 
representation of the 3D surface of the scene. Therefore the 

depth range is restricted to a range in between two extremes 
znear and zfar, indicating the minimum and maximum distance of 

the corresponding 3D point from the camera respectively. By 
quantizing the values in this range, the depth image in Fig. 1 is 

specified, resulting in a grey scale image. A sequence of such 

depth images can be converted into a YUV 4:0:0 format video 
signal and compressed by any state-of-the-art video codec. 

Since depth images represent the scene depth their 
characteristics differ from texture images. Encoding depth 

images with video codecs that are highly optimized to the 



statistical properties and human perception of color or texture 
video sequences, might be efficient but results in disturbing 

artifacts. Therefore novel algorithms for depth image 
compression are developed, that are adapted to their special 

characteristics, namely smooth regions delineated by sharp 
edges. In order to evaluate the properties of the Platelet-based 

depth image coding algorithm presented in Section 2.1, the 
coding results in Section 2.2 are compared to H.264 Intra-

coding as a reference. 
 

2.1. Platelet-based Depth Coding 
 

We present a novel approach for depth-image coding that is 
based on piecewise-linear functions [2]. The idea followed is to 

approximate the image content using modeling functions. In 
our framework, we use two classes of modeling functions: a 

class of piecewise-constant functions and a class of piecewise-
linear functions. First, regions of constant depth show smooth 

regions in the depth image. These smooth regions can therefore 

be approximated by a piecewise-constant function. Second, 
planar surfaces of the scene like the ground plane and walls of 

e.g. a room, appear as regions of gradually changing gray levels 
in the depth image. Hence, such a planar region can be 

approximated by a single linear function. To specify the 2D-
support of the modeling functions in the image, we employ a 

quadtree decomposition that hierarchically divides the image 
into blocks, i.e. nodes of different size. In some cases, the depth 

image within one block can be approximated with one 
modeling function. If no suitable approximation can be 

determined for the block, it is subdivided into four smaller 
blocks. To prevent that many small blocks are required along a 

discontinuity, we divide the block into two regions separated by 
a straight line. Each of these two regions is coded with an 

independent function. Consequently, the coding algorithm 
chooses between four modeling functions for each leaf in the 

quadtree: 

• Modeling function f1: Approximate the block content with a 

constant function. 

• Modeling function f2: Approximate the block content with a 

linear function; 

• Modeling function f3: Subdivide the block into two regions 
separated by a straight line and approximate each region 

with a piecewise-constant function (a wedgelet function); 

• Modeling function f4: Subdivide the block into two regions 
separated by a straight line and approximate each region 

with a piecewise-linear function (a platelet function); 

Figure 2 shows a quadtree decomposition of a depth image 
where each node is approximated by one of the modeling 

function f1, f2, f3, or f4. 
The decision for each modeling function is based on a rate-

distortion decision criterion that we now detail. Considering 
our lossy encoder/decoder framework, our aim is to optimize 

the compression of a given image to satisfy a Rate-Distortion 
(R-D) constraint. In our practical case, there are three 

parameters that influence this trade-off: (1) the selection of 
modeling functions, (2) the quadtree decomposition and (3) the 

quantization step-size of the modeling-function coefficients. 
Thus, the problem statement is to adjust each of the previous 

parameters such that the objective R-D constraint is satisfied.  
To optimize these three parameters in an R-D sense, the 

adopted approach is to define a cost function that combines 
both rate R and distortion D of the image i. Typically, the 

Lagrangian cost function 
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is used, where Ri and Di represent rate and distortion of the 

image, respectively, and λ is a weighting factor that controls the 
rate-distortion trade-off. Using the above Lagrangian cost 

function principle, the algorithm successively performs three 
independent parameters optimizations: (1) an independent 

selection of modeling functions, (2) a quadtree decomposition 

optimization and (3) the quantizer step-size selection. Let us 
now detail these three parameters optimization procedures. 

(1) Modeling function selection. First, we assume that an 
optimal quadtree segmentation and quantizer step-size is 

provided. Since the rate and distortion are additive functions 
over all blocks, an independent optimization can be performed 

within the blocks. Therefore, for each block, the algorithm 
selects the modeling function that leads to the minimum coding 

cost of the Lagrangian cost function.  
(2) Quadtree decomposition. To obtain an optimal quadtree 

decomposition of the image, a well-known approach is to 
perform a so-called bottom-up tree-pruning technique. The 

guiding principle is to parse the initial full tree from bottom to 
top and recursively prune nodes (i.e. merge blocks) of the tree 

according to a decision criterion. Similarly to the modeling 
function selection procedure, the decision criterion is based on 

a Lagrangian cost function that merges (prunes) four children 
nodes whenever the sum of the four coding costs is higher than 

the coding cost of the parent node. 
(3) Quantizer selection. Quantizer selection is the problem of 

selecting a (scalar) quantizer that corresponds to the quadtree 
decomposition of the depth image. For example, it is not 

appropriate to combine a coarse quantization with a fine 
quadtree decomposition. To properly quantize modeling 

 

Fig. 1. Example for the MVD format with texture image (left) and 

corresponding depth-image (right). 

 
 

Fig. 2. Example of a quadtree decomposition. Each block, i.e. 

node, of the quadtree is approximated by one modeling function. 



functions coefficients, we re-use the principle of the 
Lagrangian cost function and select the quantizer that 

minimizes the Lagrangian coding cost of the image. 

As a final step, to reduce the redundancy between nodes in 
the quadtree, a predictive coding technique is introduced. In 

more detail, this means that we decorrelate the remaining 
dependencies between each block to further enhance coding 

efficiency. For more details related to the depth coding 
algorithm, we refer to our paper [2]. 

 

2.2. Coding Results 

 
We conducted the coding experiments for two MVD test data 

sets named “Breakdancers” and “Ballet”, both consisting of 
eight linearly arranged camera views. From both test data sets 

the first depth image of the sequence was compressed for each 
camera view at different qualities. First the depth images were 

encoded and decoded with the Platelet-based coder presented in 
the last section, revealing that the proposed algorithm can 

approximate large smooth areas as well as sharp edges with a 
single node. Second, the same depth images were encoded and 

decoded with a standard conforming H.264 coder as I frames. 

The rate-distortion results of these coding experiments are 
shown in Fig. 3. Except for very low bitrates H.264 intra-

coding outperforms the Platelet-based coding approach in terms 
of PSNR performance. In addition to these objective results 

Fig. 4 shows examples for the subjective quality at a very low 
bit rate, highlighting the typical coding artifacts for the two 

evaluated coding algorithms. 
 

3. VIRTUAL VIEW RENDERING 

 

The main advantage of MVD representations in contrast to 
MVV is that due to the availability of depth information 3D 

rendering based applications like FVV can be realized. 
Multiview video + depth data together with camera geometry 

provides the possibility to synthesize or render arbitrary 
intermediate views from a 3D representation of the scene. 

Virtual view rendering uses pairs of neighboring original 
camera views to render arbitrary virtual views on a specified 

camera path between them. The relation between points in 3D 
scene space and the values in a depth image is defined by the 

projection matrix and the quantization function, allowing for 
projecting and unprojecting depth data. First the depth images 

are unprojected, resulting in a colored 3D particle cloud for 
each original camera. Next the projection matrix of a virtual 

camera is calculated from the two original cameras projection 
matrices by spherical linear interpolation (SLERP) and linear 

interpolation (LERP). These methods originate from computer 
graphics in the context of quaternion interpolation. Now the 

two original camera’s colored point clouds can be projected 

into the virtual camera view, as depicted in Fig. 5 left and right 
top. In a next step these two rendered color images are blended 

into each other, using the information from the rendered depth 
maps as well as texture weighting according to the virtual 

camera’s position relative to the original cameras, as depicted 
in the middle of Fig. 5. 

 

3.1. Evaluation of Compression Effects 

 
We now describe a method for analyzing the impact of depth 

compression on the quality of rendered virtual views [3].  For 
this purpose the rendering technique described in the previous 

section is first applied to uncompressed input data, resulting in 
a reference output image. In a second step the same virtual 

view is rendered by using compressed input data. The impact of 
coding artifacts on the quality of rendered views can now be 

 
 

 
 

Fig. 3. Rate-distortion curves for “Breakdancers” (top) and 
“Ballet” (bottom) depth images, comparing Platelet-based and 

H.264 Intra coding. 

 
 

Fig. 5. Rendering of a virtual intermediate view from the pro-

jected MVD data of two neighboring original cameras. 

   
 

Fig. 4. Examples for coding artifacts: Original uncompressed 

(left), H.264 Intra (middle) and Platelet-based (right). 



analyzed by comparing the reference picture with the one 
rendered with compressed input data in terms of objective and 

subjective quality.  

 

3.2. Rendering Results 

 
In the case of depth image coding we conducted these 

experiments on the quality of rendered virtual views in order to 
identify which coding algorithm performs better. For this 

purpose we rendered a series of virtual views along the camera 
path, using compressed depth images and uncompressed color 

textures, to determine the PSNR versus the reference. By doing 
so for the depth images from R-D points, where both coding 

algorithms produce the same bit rate (see markers in Fig. 3), we 
obtain two PSNR values, indicating which coding algorithm 

performs better for low, middle, and high bitrates. Fig. 6 and 
Tab. 1 show, that in most cases Platelet-based coded depth 

images achieve a equal or better rendering quality, although 
their coding quality is worse than H.264 Intra. In return this 

means that Platelet-based coding would clearly outperform 
H.264 intra-coding in virtual view rendering quality, if 

comparing compressed depth images with equal PSNR. 

 

4. CONCLUSIONS 

 
We have presented a comparative study on depth-image 

compression, intended to answer the question, which effect 
different types of coding artifacts have on the quality of virtual 

view rendering for MVD data. The Platelet-based depth-image 
coding algorithm was introduced, separating continuous 

regions by straight lines along their boundaries by modeling 
them with piecewise-constant or -linear functions. A 

comparison of the R-D performance turned out that it is being 
outperformed by H.264 Intra-coding, which is optimized for bit 

rate efficiency to a great extent. Since depth image compression 
only has an impact on the quality of rendered virtual camera 

views in a MVD application scenario, we presented a technique 
for rendering and analyzing virtual views from compressed and 

uncompressed MVD data. The results indicate that a worse 
coding PSNR does not imply a worse rendering PSNR for 

Platelet-based depth coding, leading to the conclusion that this 
depth coding approach enables higher rendering quality than 

H.264 coding, because depth discontinuities are better 
preserved. Consequently the development of advanced 

algorithms for MVD coding needs to optimize the R-D 
performance with respect to not only the distortion of the 

original camera view, but also the distortion of rendered 
intermediate views. This requires future research to address 

joint compression and rendering algorithms as well as 
appropriate quality metrics. 
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Fig. 6. Quality of rendered virtual views along the camera path at 
a middle depth bit rate for “Breakdancers” (top) and “Ballet” 

(bottom) test data. 

Breakdancers  
      Bitrate [kbps] 150 400 850 

      ∆PSNR [dB] Coding 0.80 -1.04 -1.14 

      ∆PSNR [dB] Rendering 0.90 -0.13 -1.04 

Ballet  
      Bitrate [kbps] 250 650 900 

      ∆PSNR [dB] Coding -0.76 -2.35 -2.40 

      ∆PSNR [dB] Rendering 1.38 0.84 -0.35 
 

Tab. 1. Comparison of ∆PSNR from coding and virtual view 
rendering for low, middle and high bit rates, where ∆PSNR is the 
average difference in PSNR results between H.264 Intra and 

Platelet-based  depth coding. 


