
THE EFFECT OF DEPTH COMPRESSION ON MULTIVIEW RENDERING QUALITY

P. Merkle, Y. Morvan*, A. Smolic, D. Farin
1
, K. Müller, P.H.N. de With*, and T. Wiegand

1 Dirk S. Farin, was with Eindhoven University of Technology, Eindhoven, The Netherlands. He is now with the Robert Bosch GmbH, Hildesheim,

Germany.

Fraunhofer Institute for Telecommunications

Heinrich-Hertz-Institut

Image Processing Department

Einsteinufer 37, 10587 Berlin, Germany

{merkle/smolic/kmueller/wiegand}@hhi.de

* Eindhoven University of Technology
Signal Processing Systems

P.O. Box 513, 5600 MB Eindhoven
The Netherlands

{y.morvan/P.H.N.de.With}@tue.nl

ABSTRACT

This paper presents a comparative study on different techniques
for depth-image compression and its implications on the quality

of multiview video plus depth virtual view rendering. A novel
coding algorithm for depth images that concentrates on their

special characteristics, namely smooth regions delineated by

sharp edges, is compared to H.264 intra-coding with depth-
images. These two coding techniques are evaluated in the

context of multiview video plus depth representations, where
depth information is used to render virtual intermediate camera

views of the scene. Therefore it is important to evaluate the
influence of depth-image coding artifacts on the quality of

rendered virtual views. The results of this evaluation show, that
the coding algorithm specialized on the characteristics of depth

images outperforms H.264 intra-coding, although its RD-
performance is worse.

Index Terms— Depth compression, multiview video plus

depth, free viewpoint video, image coding, view rendering.

1. INTRODUCTION

Multiview video (MVV) representations enable new
applications such as free viewpoint video (FVV) and 3D

television (3DTV) [1]. The main characteristic of 3DTV is to
offer a 3D depth impression of the observed scenery. FVV on

the other hand is characterized by providing the user the ability
to interactively select an arbitrary viewpoint in the video scene

as known from computer graphics. Both technologies do not
exclude each other, but rather can be combined into one

system. A common characteristic of such technologies is that
they use MVV data, where a real world scene is recorded by

multiple synchronized cameras.
A popular format for 3DTV uses a conventional color video

and an associated per pixel depth map and MPEG specified a

standard for efficient compression and transmission. In the
context of MVV this format is combined with multiview video

to the multiview video + depth (MVD) format, consisting of
multiple color videos with associated multiple depth data of

one scene. Since MVD representations cause a vast amount of

data to be stored or transmitted to the user, efficient
compression techniques are essential for realizing such

applications. Previous work presented various solutions for
multiview video coding (MVC), mostly based on H.264 with

combined temporal and inter-view prediction, as well as
different approaches for depth image coding, like transform- or

wavelet-based depth compression.

As a first step towards standardization of technologies for
3DTV and FVV applications, a new standard addressing

algorithms for compression, transmission and rendering of
multiview video data is currently developed by the Joint Video

Team (JVT) of VCEG and MPEG, which is scheduled to be
finalized in early 2008. As a second step, MPEG started an Ad

Hoc Group on Free Viewpoint Television recently, focusing on
FVV and 3DTV systems from a normative point of view,

including representation, generation, processing, coding and
rendering of MVD format data.

This paper is organized as follows. Section 2 is about
depth-image compression. The novel Platelet-based depth

coding algorithm is introduced and the coding results are
presented. Section 3 is about virtual view rendering, especially

its application to evaluate the effects of depth-image
compression, and presents the experimental results. Finally, the

paper concludes with Section 4.

2. COMPRESSION OF DEPTH IMAGES

The MVD format consists of several camera sequences of color
texture images and associated per sample depth images or

depth maps as illustrated in Fig. 1. Depth images are a 2D
representation of the 3D surface of the scene. Therefore the

depth range is restricted to a range in between two extremes
znear and zfar, indicating the minimum and maximum distance of

the corresponding 3D point from the camera respectively. By
quantizing the values in this range, the depth image in Fig. 1 is

specified, resulting in a grey scale image. A sequence of such

depth images can be converted into a YUV 4:0:0 format video
signal and compressed by any state-of-the-art video codec.

Since depth images represent the scene depth their
characteristics differ from texture images. Encoding depth

images with video codecs that are highly optimized to the

statistical properties and human perception of color or texture
video sequences, might be efficient but results in disturbing

artifacts. Therefore novel algorithms for depth image
compression are developed, that are adapted to their special

characteristics, namely smooth regions delineated by sharp
edges. In order to evaluate the properties of the Platelet-based

depth image coding algorithm presented in Section 2.1, the
coding results in Section 2.2 are compared to H.264 Intra-

coding as a reference.

2.1. Platelet-based Depth Coding

We present a novel approach for depth-image coding that is
based on piecewise-linear functions [2]. The idea followed is to

approximate the image content using modeling functions. In
our framework, we use two classes of modeling functions: a

class of piecewise-constant functions and a class of piecewise-
linear functions. First, regions of constant depth show smooth

regions in the depth image. These smooth regions can therefore

be approximated by a piecewise-constant function. Second,
planar surfaces of the scene like the ground plane and walls of

e.g. a room, appear as regions of gradually changing gray levels
in the depth image. Hence, such a planar region can be

approximated by a single linear function. To specify the 2D-
support of the modeling functions in the image, we employ a

quadtree decomposition that hierarchically divides the image
into blocks, i.e. nodes of different size. In some cases, the depth

image within one block can be approximated with one
modeling function. If no suitable approximation can be

determined for the block, it is subdivided into four smaller
blocks. To prevent that many small blocks are required along a

discontinuity, we divide the block into two regions separated by
a straight line. Each of these two regions is coded with an

independent function. Consequently, the coding algorithm
chooses between four modeling functions for each leaf in the

quadtree:

• Modeling function f1: Approximate the block content with a

constant function.

• Modeling function f2: Approximate the block content with a

linear function;

• Modeling function f3: Subdivide the block into two regions
separated by a straight line and approximate each region

with a piecewise-constant function (a wedgelet function);

• Modeling function f4: Subdivide the block into two regions
separated by a straight line and approximate each region

with a piecewise-linear function (a platelet function);

Figure 2 shows a quadtree decomposition of a depth image
where each node is approximated by one of the modeling

function f1, f2, f3, or f4.
The decision for each modeling function is based on a rate-

distortion decision criterion that we now detail. Considering
our lossy encoder/decoder framework, our aim is to optimize

the compression of a given image to satisfy a Rate-Distortion
(R-D) constraint. In our practical case, there are three

parameters that influence this trade-off: (1) the selection of
modeling functions, (2) the quadtree decomposition and (3) the

quantization step-size of the modeling-function coefficients.
Thus, the problem statement is to adjust each of the previous

parameters such that the objective R-D constraint is satisfied.
To optimize these three parameters in an R-D sense, the

adopted approach is to define a cost function that combines
both rate R and distortion D of the image i. Typically, the

Lagrangian cost function

iiii RRDRJ λ+=)()(

is used, where Ri and Di represent rate and distortion of the

image, respectively, and λ is a weighting factor that controls the
rate-distortion trade-off. Using the above Lagrangian cost

function principle, the algorithm successively performs three
independent parameters optimizations: (1) an independent

selection of modeling functions, (2) a quadtree decomposition

optimization and (3) the quantizer step-size selection. Let us
now detail these three parameters optimization procedures.

(1) Modeling function selection. First, we assume that an
optimal quadtree segmentation and quantizer step-size is

provided. Since the rate and distortion are additive functions
over all blocks, an independent optimization can be performed

within the blocks. Therefore, for each block, the algorithm
selects the modeling function that leads to the minimum coding

cost of the Lagrangian cost function.
(2) Quadtree decomposition. To obtain an optimal quadtree

decomposition of the image, a well-known approach is to
perform a so-called bottom-up tree-pruning technique. The

guiding principle is to parse the initial full tree from bottom to
top and recursively prune nodes (i.e. merge blocks) of the tree

according to a decision criterion. Similarly to the modeling
function selection procedure, the decision criterion is based on

a Lagrangian cost function that merges (prunes) four children
nodes whenever the sum of the four coding costs is higher than

the coding cost of the parent node.
(3) Quantizer selection. Quantizer selection is the problem of

selecting a (scalar) quantizer that corresponds to the quadtree
decomposition of the depth image. For example, it is not

appropriate to combine a coarse quantization with a fine
quadtree decomposition. To properly quantize modeling

Fig. 1. Example for the MVD format with texture image (left) and

corresponding depth-image (right).

Fig. 2. Example of a quadtree decomposition. Each block, i.e.

node, of the quadtree is approximated by one modeling function.

functions coefficients, we re-use the principle of the
Lagrangian cost function and select the quantizer that

minimizes the Lagrangian coding cost of the image.

As a final step, to reduce the redundancy between nodes in
the quadtree, a predictive coding technique is introduced. In

more detail, this means that we decorrelate the remaining
dependencies between each block to further enhance coding

efficiency. For more details related to the depth coding
algorithm, we refer to our paper [2].

2.2. Coding Results

We conducted the coding experiments for two MVD test data

sets named “Breakdancers” and “Ballet”, both consisting of
eight linearly arranged camera views. From both test data sets

the first depth image of the sequence was compressed for each
camera view at different qualities. First the depth images were

encoded and decoded with the Platelet-based coder presented in
the last section, revealing that the proposed algorithm can

approximate large smooth areas as well as sharp edges with a
single node. Second, the same depth images were encoded and

decoded with a standard conforming H.264 coder as I frames.

The rate-distortion results of these coding experiments are
shown in Fig. 3. Except for very low bitrates H.264 intra-

coding outperforms the Platelet-based coding approach in terms
of PSNR performance. In addition to these objective results

Fig. 4 shows examples for the subjective quality at a very low
bit rate, highlighting the typical coding artifacts for the two

evaluated coding algorithms.

3. VIRTUAL VIEW RENDERING

The main advantage of MVD representations in contrast to
MVV is that due to the availability of depth information 3D

rendering based applications like FVV can be realized.
Multiview video + depth data together with camera geometry

provides the possibility to synthesize or render arbitrary
intermediate views from a 3D representation of the scene.

Virtual view rendering uses pairs of neighboring original
camera views to render arbitrary virtual views on a specified

camera path between them. The relation between points in 3D
scene space and the values in a depth image is defined by the

projection matrix and the quantization function, allowing for
projecting and unprojecting depth data. First the depth images

are unprojected, resulting in a colored 3D particle cloud for
each original camera. Next the projection matrix of a virtual

camera is calculated from the two original cameras projection
matrices by spherical linear interpolation (SLERP) and linear

interpolation (LERP). These methods originate from computer
graphics in the context of quaternion interpolation. Now the

two original camera’s colored point clouds can be projected

into the virtual camera view, as depicted in Fig. 5 left and right
top. In a next step these two rendered color images are blended

into each other, using the information from the rendered depth
maps as well as texture weighting according to the virtual

camera’s position relative to the original cameras, as depicted
in the middle of Fig. 5.

3.1. Evaluation of Compression Effects

We now describe a method for analyzing the impact of depth

compression on the quality of rendered virtual views [3]. For
this purpose the rendering technique described in the previous

section is first applied to uncompressed input data, resulting in
a reference output image. In a second step the same virtual

view is rendered by using compressed input data. The impact of
coding artifacts on the quality of rendered views can now be

Fig. 3. Rate-distortion curves for “Breakdancers” (top) and
“Ballet” (bottom) depth images, comparing Platelet-based and

H.264 Intra coding.

Fig. 5. Rendering of a virtual intermediate view from the pro-

jected MVD data of two neighboring original cameras.

Fig. 4. Examples for coding artifacts: Original uncompressed

(left), H.264 Intra (middle) and Platelet-based (right).

analyzed by comparing the reference picture with the one
rendered with compressed input data in terms of objective and

subjective quality.

3.2. Rendering Results

In the case of depth image coding we conducted these

experiments on the quality of rendered virtual views in order to
identify which coding algorithm performs better. For this

purpose we rendered a series of virtual views along the camera
path, using compressed depth images and uncompressed color

textures, to determine the PSNR versus the reference. By doing
so for the depth images from R-D points, where both coding

algorithms produce the same bit rate (see markers in Fig. 3), we
obtain two PSNR values, indicating which coding algorithm

performs better for low, middle, and high bitrates. Fig. 6 and
Tab. 1 show, that in most cases Platelet-based coded depth

images achieve a equal or better rendering quality, although
their coding quality is worse than H.264 Intra. In return this

means that Platelet-based coding would clearly outperform
H.264 intra-coding in virtual view rendering quality, if

comparing compressed depth images with equal PSNR.

4. CONCLUSIONS

We have presented a comparative study on depth-image

compression, intended to answer the question, which effect
different types of coding artifacts have on the quality of virtual

view rendering for MVD data. The Platelet-based depth-image
coding algorithm was introduced, separating continuous

regions by straight lines along their boundaries by modeling
them with piecewise-constant or -linear functions. A

comparison of the R-D performance turned out that it is being
outperformed by H.264 Intra-coding, which is optimized for bit

rate efficiency to a great extent. Since depth image compression
only has an impact on the quality of rendered virtual camera

views in a MVD application scenario, we presented a technique
for rendering and analyzing virtual views from compressed and

uncompressed MVD data. The results indicate that a worse
coding PSNR does not imply a worse rendering PSNR for

Platelet-based depth coding, leading to the conclusion that this
depth coding approach enables higher rendering quality than

H.264 coding, because depth discontinuities are better
preserved. Consequently the development of advanced

algorithms for MVD coding needs to optimize the R-D
performance with respect to not only the distortion of the

original camera view, but also the distortion of rendered
intermediate views. This requires future research to address

joint compression and rendering algorithms as well as
appropriate quality metrics.

6. ACKNOWLEDGMENTS

This work is supported by European Union 6th Framework
Program under Grant No. FP6-511568 (3DTV NoE Project).

We would like to thank the Interactive Visual Media Group of
Microsoft Research for providing the “Ballet” and

“Breakdancers” data sets.

6. REFERENCES

[1] H. Ozaktas, and L. Onural, Three-Dimensional Television:
Capture, Transmission, and Display, Springer, Heidelberg,

December 2007.

[2] Y. Morvan, D. Farin and P. H.N. de With, “Depth-Image
Compression based on an R-D Optimized Quadtree

Decomposition for the Transmission of Multiview Images”,
ICIP 2007, IEEE International Conference on Image

Processing, San Antonio, TX, USA, September 2007.

[3] P. Merkle, A. Smolic, K. Müller, and T. Wiegand,
“Multi-view Video Plus Depth Representation and Coding”,

ICIP 2007, IEEE International Conference on Image
Processing, San Antonio, TX, USA, September 2007.

Fig. 6. Quality of rendered virtual views along the camera path at
a middle depth bit rate for “Breakdancers” (top) and “Ballet”

(bottom) test data.

Breakdancers
 Bitrate [kbps] 150 400 850

 ∆PSNR [dB] Coding 0.80 -1.04 -1.14

 ∆PSNR [dB] Rendering 0.90 -0.13 -1.04

Ballet
 Bitrate [kbps] 250 650 900

 ∆PSNR [dB] Coding -0.76 -2.35 -2.40

 ∆PSNR [dB] Rendering 1.38 0.84 -0.35

Tab. 1. Comparison of ∆PSNR from coding and virtual view
rendering for low, middle and high bit rates, where ∆PSNR is the
average difference in PSNR results between H.264 Intra and

Platelet-based depth coding.

