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Abstract In this paper, we study the influence of noise on subgradient methods for
convex constrained optimization. The noise may be due to various sources, and is
manifested in inexact computation of the subgradients and function values. Assuming
that the noise is deterministic and bounded, we discuss the convergence properties for
two cases: the case where the constraint set is compact, and the case where this set
need not be compact but the objective function has a sharp set of minima (for example
the function is polyhedral). In both cases, using several different stepsize rules, we
prove convergence to the optimal value within some tolerance that is given explicitly
in terms of the errors. In the first case, the tolerance is nonzero, but in the second
case, the optimal value can be obtained exactly, provided the size of the error in the
subgradient computation is below some threshold. We then extend these results to
objective functions that are the sum of a large number of convex functions, in which
case an incremental subgradient method can be used.
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1 Introduction

We focus on the problem

minimize f (x)

subject to x ∈ X, (1.1)

where f : �n → � is a convex function, and X is a nonempty, closed, and con-
vex set in �n . We are primarily interested in the case where f is nondifferentiable.
Throughout the paper, we denote

f ∗ = inf
x∈X

f (x), X∗ = {x ∈ X | f (x) = f ∗}, dist(x, X∗) = min
x∗∈X∗ ‖x − x∗‖,

where ‖ · ‖ is the standard Euclidean norm. In our notation, all vectors are assumed to
be column vectors and a prime denotes transposition.

We focus on an approximate ε-subgradient method where the ε-subgradients are
computed inexactly. In particular, the method is given by

xk+1 = P X [xk − αk g̃k], (1.2)

where PX denotes the projection on the set X . The vector x0 is an initial iterate from
the set X (i.e., x0 ∈ X ) and the scalar αk is a positive stepsize. The vector g̃k is an
approximate subgradient of the following form

g̃k = gk + rk, (1.3)

where rk is a noise vector and gk is an εk-subgradient of f at xk for some εk ≥ 0, i.e.,
gk satisfies

f (y) ≥ f (xk)+ g′
k(y − xk)− εk, ∀ y ∈ �n . (1.4)

We consider several stepsize rules, including a rule using function values f (xk). For
this rule, we assume that the function values f (xk) are evaluated approximately, and
are replaced by f̃ (xk), where

f̃ (xk) = f (xk)+ ξk, ∀ k ≥ 0, (1.5)

and ξk is some scalar error.
We quantify the joint effect of the noise level1 (supk ‖rk‖), the approximate-

subgradient error level (lim supk εk), and the function value error (supk |ξk |). In par-
ticular, we study the convergence properties of the method (1.2) using the following
stepsize rules:

1 In our subsequent development, the supk ‖rk‖ and supk ‖rk‖ and supk |ξk | can be replaced with
lim supk→∞ ‖rk‖ and lim supk→∞ |ξk | with minor technical adjustments in the proofs of the results of
Sect. 2, and some additional care in the proofs of the results of Sect. 3 and 4.
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(a) Constant stepsize rule. The stepsize αk is fixed to a positive scalar α.
(b) Diminishing stepsize rule. The stepsize αk > 0 satisfies

lim
k→∞αk = 0,

∞∑

k=0

αk = ∞.

(c) Dynamic stepsize rule. The stepsize is given by

αk = γk
f̃ (xk)− f̃ lev

k

‖g̃k‖2 , 0 < γ ≤ γk ≤ 2, ∀ k ≥ 0, (1.6)

where f̃ (xk) is an error-corrupted function value as in Eq. (1.5), while the scalars
f̃ lev
k are the target levels approximating the optimal value f ∗. For this stepsize

rule, we consider two procedures for adjusting the target levels f̃ lev
k (cf. Sect. 2).

The issue of noise in the context of subgradient optimization was first studied by
Ermoliev in [7] (see also Ermoliev [8,9], and [10], and Nurminskii [21]), where a ran-
dom noise was considered. When the noise is deterministic, the stochastic subgradient
method analyzed by Ermoliev is similar to the special case of method (1.2) with the
diminishing stepsize αk , and the diminishing noise rk and zero εk-errors (i.e., εk ≡ 0).
In this case, the convergence of the method is not affected by the presence of noise as
long as the stepsize αk and the noise magnitude ‖rk‖ are coordinated. The presence
of (deterministic and stochastic) noise in subgradient methods was also addressed by
Polyak in [23] and [24], where the focus is on conditions under which the convergence
to the optimal value f ∗ is preserved. In Polyak’s work, the convergence of method
(1.2) with εk ≡ 0 is studied for diminishing stepsize and for a stepsize rule due to Shor
that has the form αk = α0qk , where α0 > 0 and 0 < q < 1 (see Theorem 4 of [23], or
Theorem 1 in Sect. 5 of Chapter 5 in [24]). An interesting result is shown for Shor’s
stepsize, under the assumption that the function f has a unique sharp minimum x∗. The
result shows exact convergence of the method even when the subgradient noise rk is
nonvanishing. Specifically, when the noise magnitude is “small enough” (with respect
to the “sharpness” of f ) and the initial stepsize value α0 is proportional to the distance
‖x0 − x∗‖, the iterates xk of the method converge linearly to the optimal vector x∗.
There is also related work of Solodov and Zavriev [26], where a subgradient method
and its various modifications were considered in the presence of bounded noise. This
work addresses a more general class of objective functions (including nonconvex),
but is restricted to a compact constraint set X and focused on algorithms using only
diminishing stepsize. The effects of noise for a proximal bundle method has been
recently studied by Kiwiel [16], who has considered evaluating the objective function
and its subgradients with a fixed (but possibly unknown) error ε. The aforementioned
works (except for [26] and [16]) are primarily focused on studying the diminishing
errors and the necessary conditions on these errors guaranteeing convergence of the
subgradient methods in the presence of noise.

By contrast, in this paper we are primarily concerned with cases where the noise and
subgradient approximation errors are persistent (nondiminishing). Our main objective
is to obtain error bounds on the difference between the attained function value and
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the optimal, infk≥0 f (xk)− f ∗, under a variety of noise conditions and stepsize rules.
One contribution of our work is the establishment of error bounds under a richer set of
error conditions, including simultaneous errors in the ε-subgradient and function value
computations. Another contribution is in quantifying the effects of errors and noise in
conjunction with the use of constant and dynamic stepsize rules. While these stepsize
rules have been used in ε-subgradient methods where rk ≡ 0, ξk ≡ 0, and εk > 0, they
have not been considered for cases where rk �= 0 and/or ξk �= 0. A third contribution
is the study of the effects of noise in the presence of a sharp minimum and for the
stepsize rules that we consider. We finally note that the effects of errors in the context
of incremental subgradient methods have been studied earlier only for ε-subgradients
by Solodov and Zavriev [26], and Kiwiel [15] (where rk ≡ 0, ξk ≡ 0, and εk > 0).

The motivation to study the methods with subgradient errors of the form (1.3)–
(1.5), where ‖rk‖ > 0, εk > 0, and |ξk | > 0 comes from several contexts. A common
situation arises in optimization of dual functions, where the dual function value is com-
puted with an inexact Lagrangian minimization (within ε) that yields an ε-accurate
dual function value and an ε-subgradient (see e.g., Bertsekas [2], Sect. 6.3.2). Another
interesting context comes from more recent network applications where the transmit-
ted data is quantized, as discussed in the following subsection.

1.1 Motivating example

Consider distributed optimization in networks consisting of m nodes and a fusion
center, as discussed for example in Nedić, Bertsekas, and Borkar [17] (see also Nedić
[20]). Each node i has an objective function fi known only at that node, while the
global system objective is to minimize f (x) = ∑m

i=1 fi (x) over a constraint set X .
The fusion center is responsible for updating xk and broadcasting this estimate to the
nodes in the network. In return, upon receiving xk , each node i computes a subgradient
of its objective fi at xk and sends the subgradient information to the fusion center.
However, in many applications, the communications links between the fusion center
and the nodes can handle only quantized data, (see for example, Rabbat and Nowak
[25], Kashyap, Basar, and Srikant [13], Tuncer, Coates, and Rabbat [27]). When the
quantization level of the links is Q (a positive integer), each coordinate of the estimate
xk is quantized with respect to the level Q. Thus, the nodes receive the quantized
estimate x Q

k instead of the true estimate xk . Each node i computes a subgradient gi,k

of fi at x Q
k and sends it to the fusion center. Again, due to the quantization of the

transmitted data, the fusion center receives the quantized subgradients gQ
1k, . . . , g

Q
mk

and performs the iterate update using these subgradients. In this case, the vector g̃k in
Eq. (1.2) is given by g̃k = g

Q
k = ∑m

i=1 g
Q
ik , and it can be written as follows

g̃ = gk + rk, with gk =
m∑

i=1

gik, rk =
m∑

i=1

(
g

Q
ik − gik

)
,

where gik is a subgradient of fi at x Q
k . Hence, gk ∈ ∂ f (x Q

k ) where f = ∑m
i=1 fi . By

using ε-subgradient inequality (1.4), it can be seen that gk is an εk-subgradient of f
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at xk with εk = | f (xk) − f (x Q
k ) − g′

k(xk − x Q
k )|. The noise rk is deterministic and

it is due to quantization of the subgradients g1k, . . . , gmk of the functions f1, . . . , fm

at x Q
k . The error εk and noise norm ‖rk‖ can be related2 to the quantization level Q,

given the quantization mechanism. For example, when the quantization is performed
by rounding to the closest integer multiple of 1/Q, the resulting errors rk have norm
bounded by a constant m

√
n/(2Q), where n is the size of the vector x and m is the

number of nodes. The persistent errors in function evaluation of the form (1.5) arise
when the nodes communicate their objective function values to the fusion center.

1.2 Paper organization

This paper is organized as follows: In Sect. 2, we give the convergence properties of
the method for a compact constraint set X .3 In Sect. 3, we discuss the convergence
properties of the method for the case when the objective function f has a set of sharp
minima (also known as weak sharp minima, see e.g., Burke and Ferris [5]). As a
special case, our results show that with εk ≡ 0 and the diminishing stepsize rule, the
method converges to the optimal value f ∗ even if the noise is nonvanishing but is
instead small enough (relative to the “sharpness” of the set of minima).4 In Sect. 4, we
consider an objective function f that is the sum of a large number of convex functions,
in which case an incremental subgradient method can also be used. We give analogs
of the results of Sects. 2 and 3 for incremental subgradient methods.

2 Convergence properties for a compact X

In this section we discuss the convergence properties of the method for the case when
the constraint set X is compact. In the following lemma, we give a basic relation that
holds for the iterates xk obtained by using any of the stepsize rules described in Sect. 1.

Lemma 2.1 Let X∗ be nonempty. Then, for a sequence {xk} generated by the method
with any of the stepsize rules (a)–(c), we have for all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
(

f (xk)− f ∗) + 2αkεk

+2αk‖rk‖dist(xk, X∗)+ α2
k ‖g̃k‖2.

2 Note that the total error εk + ‖rk‖ resulting from using the quantized vector g
Q
k cannot be bundled into a

“larger” ε-subgradient type error. This is because ε-subgradient errors at a given xk arise from approximat-

ing xk with some x in a neighborhood of xk . In contrast, the vector g
Q
k arises from two approximations:

approximating xk (by using a “nearby” point x Q
k ) and approximating a subgradient gk of f at x Q

k (by using

a “nearby” direction g
Q
k ).

3 The results of Sect. 2 actually hold under the weaker assumption that the optimal set X∗ is nonempty,
and the sequences {gk } and {dist(xk , X∗)} are bounded. The principal case where this is guaranteed with-
out assuming compactness of X is when f is polyhedral, and X∗ is nonempty and bounded. The case of
polyhedral f , however, is treated separately in Sect. 3, so for simplicity, in Sect. 2 we assume that X is
compact.
4 Our result for diminishing stepsize has been established by Solodov and Zavriev in [26], Lemma 4.3,
under the additional assumption that the constraint set is compact.
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Proof Using the definition of xk+1 in Eq. (1.2) and the nonexpansion property of the
projection, we obtain for all y ∈ X ,

‖xk+1 − y‖2 ≤ ‖xk − y − αk g̃k‖2

= ‖xk − y‖2 − 2αk g̃
′
k(xk − y)+ α2

k ‖g̃k‖2

≤ ‖xk − y‖2 − 2αkg
′
k(xk − y)+ 2αk‖g̃k − gk‖ · ‖xk − y‖ + α2

k ‖g̃k‖2

≤ ‖xk − y‖2 − 2αk
(

f (xk)− f (y)
) + 2αkεk + 2αk‖rk‖

·‖xk − y‖ + α2
k ‖g̃k‖2,

where in the last inequality we use the εk-subgradient property (1.4), and the fact
g̃k − gk = rk [cf. Eq. (1.3)]. The desired relation follows from the preceding inequal-
ity by letting y = PX∗ [xk], and by using the relations

∥∥xk − PX∗ [xk]
∥∥ = dist(xk, X∗), dist(xk+1, X∗) ≤ ∥∥xk+1 − PX∗ [xk]

∥∥.

��
Throughout this section, we use the following assumptions.

Assumption 2.1 The constraint set X is compact.

Assumption 2.2 The noise rk and the errors εk are bounded, i.e., for some scalars
R ≥ 0 and ε ≥ 0 there holds

‖rk‖ ≤ R, ∀ k ≥ 0, and lim sup
k→∞

εk = ε.

When the set X is compact (cf. Assumption 2.1), the optimal set X∗ is nonempty,
and the sequences {gk} and {dist(xk, X∗)} are bounded. Hence, for some positive
scalars C and d, we have

‖gk‖ ≤ C, dist(xk, X∗) ≤ d, ∀ k ≥ 0. (2.1)

Furthermore, under bounded noise (cf. Assumption 2.2), from the relation g̃k = gk +rk

[cf. Eq. (1.3)] it follows that the directions g̃k are uniformly bounded

‖g̃k‖ ≤ C + R, ∀ k ≥ 0. (2.2)

Note that under the compactness assumption, a simple bound on the distance between
the iterates xk and the optimal set X∗ can be obtained by letting d in Eq. (2.1) be equal
to the diameter of the set X (i.e., d = maxx,y∈X ‖x − y‖). More complex and tighter
bounds may be obtained using the existing error bound results discussed in Pang [22]
and the literature cited therein.

We now give the convergence properties for each of the stepsize rules described
in Sect. 1. We start with the constant stepsize rule for which we have the following
result.
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Proposition 2.1 Let Assumptions 2.1 and 2.2 hold. Then, for a sequence {xk} gener-
ated by the method with the constant stepsize rule, we have

lim inf
k→∞ f (xk) ≤ f ∗ + ε + Rd + α

2
(C + R)2.

Proof In order to arrive at a contradiction, assume that

lim inf
k→∞ f (xk) > f ∗ + ε + Rd + α

2
(C + R)2,

so that for some nonnegative integer k0 and a positive scalar ν we have

f (xk) ≥ f ∗ + εk + Rd + α

2
(C + R)2 + ν, ∀ k ≥ k0.

Next, by using Lemma 2.1 with αk = α, and the bounds on ‖rk‖, dist(xk, X∗), and
‖g̃k‖ [cf. Eqs. (2.1) and (2.2)], we obtain for all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2α
(

f (xk)− f ∗ − εk − Rd − α

2
(C + R)2

)
.

By combining the preceding two relations, we have for all k ≥ k0

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αν

≤ · · · ≤ (
dist(xk0 , X∗)

)2 − 2(k + 1 − k0)αν,

which yields a contradiction for sufficiently large k. ��
As suggested by Proposition 2.1, we expect that the error term involving the step-

size α diminishes to zero as α → 0. Indeed this is so, as shown in the following
proposition.

Proposition 2.2 Let Assumptions 2.1 and 2.2 hold. Then, for a sequence {xk} gener-
ated by the method with the diminishing stepsize rule, we have

lim inf
k→∞ f (xk) ≤ f ∗ + ε + Rd.

Proof The proof uses the fact
∑∞

k=0 αk = ∞ and a line of analysis similar to that of
Proposition 2.1. ��

We next consider the dynamic stepsize rule of Eq. (1.6). For this rule, we assume
that the function value error ξk = f̃ (xk) − f (xk) is uniformly bounded, as given in
the following.

Assumption 2.3 The function errors ξk are bounded by a scalar ξ ≥ 0, i.e., |ξk | ≤ ξ

for all k.
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We study two adjustment procedures for generating the target level f̃ lev
k , one result-

ing in a nonvanishing stepsize αk and the other one resulting in a vanishing αk . We
start with the one with nonvanishing αk . In this procedure, adapted from a stepsize
rule considered in [19], the target level f̃ lev

k is given by

f̃ lev
k = min

0≤ j≤k
f̃ (x j )− δk, (2.3)

where δk is a positive scalar that is updated as follows:

δk+1 =
⎧
⎨

⎩
βδk if f̃ (xk+1) ≤ f̃ lev

k ,

max{βδk, δ} if f̃ (xk+1) > f̃ lev
k ,

(2.4)

where β, β, δ0, and δ are fixed positive scalars, with β ≥ 1, β < 1, and δ0 ≥ δ. Note
that in this procedure, we always have δk ≥ δ. Furthermore, if we set δ0 = δ and
β = 1, then δk = δ for all k. Therefore the procedure includes, as a special case, a
procedure where δk is fixed to a positive constant.

Since the procedure (2.3)–(2.4) gives a nonvanishing stepsize αk , the convergence
property of the method is similar to that of a constant stepsize, as shown in the fol-
lowing.

Proposition 2.3 Let Assumptions 2.1–2.3 hold. Then, for a sequence {xk} generated
by the method and the dynamic stepsize rule using the adjustment procedure (2.3)–
(2.4), we have

inf
k≥0

f (xk) ≤ f ∗ + 2ξ + ε + Rd + δ.

Proof To arrive at a contradiction, assume that

inf
k≥0

f (xk) > f ∗ + 2ξ + ε + Rd + δ.

We have f̃ (xk) = f (xk) + ξk ≥ f (xk) − |ξk |, implying (by Assumption 2.3) that
f̃ (xk) ≥ f (xk)− ξ . Therefore, it follows that

inf
k≥0

f̃ (xk) > f ∗ + ξ + ε + Rd + δ. (2.5)

According to the procedure in Eqs. (2.3)–(2.4), we have δk ≥ δ for all k. Therefore,
each time the target level is attained [i.e., f̃ (xk) ≤ f̃ lev

k−1], the best current function

value min0≤ j≤k f̃ (x j ) is decreased by at least δ. In view of this and the relation in
Eq. (2.5), the target level can be attained only a finite number of times. From Eq. (2.4)
it follows that after finitely many iterations, δk is decreased to the threshold value and
remains at that value for all subsequent iterations, i.e., there is a nonnegative integer
k0 such that
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δk = δ, ∀ k ≥ k0.

By using the relations f̃ lev
k = min0≤ j≤k f̃ (x j ) − δ for k ≥ k0 and ξ ≥ ξk for all k,

and by choosing a larger k0 if necessary, from Eq. (2.5) it can be seen that for some
positive scalar ν we have

f̃ lev
k − f ∗ ≥ ξk + εk + Rd + ν, ∀ k ≥ k0. (2.6)

Next, by using Lemma 2.1, and the bounds on ‖rk‖ and dist(xk, X∗), we obtain for
all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
(

f (xk)− f ∗) + 2αkεk

+2αk Rd + α2
k ‖g̃k‖2.

By writing f (xk)− f ∗ = f̃ (xk)− f ∗ − ξk and then, by adding and subtracting f̃ lev
k ,

we obtain

(dist(xk+1, X∗)
)2 ≤ (

dist(xk, X∗)
)2 − 2αk

(
f̃ (xk)− f̃ lev

k

)

− 2αk
(

f̃ lev
k − f ∗ − ξk

) + 2αkεk

+ 2αk Rd + α2
k ‖g̃k‖2

≤ (dist(xk, X∗)
)2 − 2αk

(
f̃ lev
k − f ∗ − ξk − εk − Rd

)
, (2.7)

where the last inequality in the preceding relation follows from the definition of αk

and the following relation

−2αk
(

f̃ (xk)− f̃ lev
k

) + α2
k ‖g̃k‖2 = −γk(2 − γk)

(
f̃ (xk)− f̃ lev

k

)2

‖g̃k‖2 ≤ 0, ∀ k ≥ 0.

By using inequality (2.6) in relation (2.7), we have

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αkν ≤ · · · ≤ (
dist(xk0 , X∗)

)2

− 2ν
k∑

j=k0

α j , ∀ k ≥ k0. (2.8)

Since f̃ (xk)− f̃ lev
k ≥ δ and ‖g̃k‖ ≤ C + R for all k [cf. Eq. (2.2)], from the definition

of αk it follows that

αk ≥ γ
δ

(C + R)2
, ∀ k ≥ k0,

which when substituted in Eq. (2.8) yields a contradiction for sufficiently large k. ��
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In the following algorithm, we describe a path-based procedure for adjusting the
target levels f̃ lev

k . This procedure is based on the algorithm of Brännlund [4], which
was further developed by Goffin and Kiwiel [12].
The path-based procedure

Step 0 (Initialization) Select x0 ∈ X , δ0 > 0, and B > 0. Set σ0 = 0, f̃ rec−1 = ∞. Set
k = 0, l = 0, and k(l) = 0 [k(l) will denote the iteration number when the
l-th update of f̃ lev

k occurs].
Step 1 (Function evaluation) Calculate f̃ (xk) and g̃k , where g̃k is given by Eq. (1.3).

If f̃ (xk) < f̃ rec
k−1, then set f̃ rec

k = f̃ (xk). Otherwise set f̃ rec
k = f̃ rec

k−1 [so that

f̃ rec
k keeps the record of the smallest value attained by the iterates that are

generated so far, i.e., f̃ rec
k = min0≤ j≤k f̃ (x j )].

Step 2 (Sufficient descent) If f̃ (xk) ≤ f̃ rec
k(l) − δl

2 , then set k(l + 1) = k, σk = 0,
δl+1 = δl , increase l by 1, and go to Step 4.

Step 3 (Oscillation detection) If σk > B, then set k(l + 1) = k, σk = 0, δl+1 = δl
2 ,

and increase l by 1.
Step 4 (Iterate update) Set f̃ lev

k = f̃ rec
k(l) − δl . Select γk ∈ [γ , 2] and calculate xk+1

via Eq. (1.2) with the stepsize (1.6).
Step 5 (Path length update) Set σk+1 = σk + αk‖g̃k‖. Increase k by 1 and go to

Step 1.

The algorithm uses the same target level f̃ lev
k = f̃ rec

k(l) − δl for k = k(l), k(l) +
1, . . . , k(l + 1)− 1. The target level is updated only if sufficient descent or oscillation
is detected (Step 2 or Step 3, respectively). It can be shown that the value σk is an upper
bound on the length of the path traveled by iterates xk(l), . . . , xk for k < k(l + 1).
If the target level f̃ lev

k is too low (i.e., sufficient descent cannot occur), then due to
oscillations of xk the parameter σk eventually exceeds the prescribed upper bound B
on the path length and the parameter δl is decreased.

We have the following result for the path-based procedure.

Proposition 2.4 Let Assumptions 2.1–2.3 hold. Then, for a sequence generated by
the method and the path-based procedure, we have

inf
k≥0

f (xk) ≤ f ∗ + 2ξ + ε + Rd.

Proof At first, we show that l → ∞. Suppose that l takes only a finite number of
values, say l = 0, 1, . . . , l̄, then

σk + αk‖g̃k‖ = σk+1 ≤ B, ∀ k ≥ k(l),

so that limk→∞ αk‖g̃k‖ = 0. But this is impossible, since

αk‖g̃k‖ = γk
f̃ (xk)− f̃ lev

k

‖g̃k‖ ≥ γ
δl

2(C + R)
, ∀ k ≥ k(l).

Hence l → ∞.
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Now, to arrive at a contradiction, assume that infk≥0 f (xk) > f ∗ + 2ξ + ε + Rd.
Then, in view of f̃ (xk) = f (xk)+ ξk and |ξk | ≤ ξ for all k, it follows that

inf
k≥0

f̃ (xk) > f ∗ + ξ + ε + Rd. (2.9)

If δl is decreased at Step 3 only a finite number of times, then there must be an infi-
nite number of sufficient descents, so that for some nonnegative integer l̄ we have
δl = δl̄ > 0 for all l ≥ l̄. Each time a sufficient descent is detected, the current best
function value min0≤ j≤k f̃ (x j ) is decreased by at least δl̄/2, so in view of Eq. (2.9)
there can be only a finite number of sufficient descents, which is a contradiction.
Therefore δl must be decreased at Step 3 infinitely often, i.e., liml→∞ δl = 0, so that
for a sufficiently large positive integer l̄ and a positive scalar ν we have [cf. Eq. (2.9)]

inf
j≥0

f̃ (x j )− δl − f ∗ ≥ ξ + εk + Rd + ν, ∀ k ≥ k(l), ∀ l ≥ l̄.

Consequently [since f̃ lev
k = min0≤ j≤k(l) f̃ (x j )− δl and ξ ≥ ξk]

f̃ lev
k − f ∗ ≥ ξk + εk + Rd + ν, ∀ k ≥ k(l̄).

Similar to the proof of Proposition 2.3, it can be seen that for all k we have [cf. Eq. (2.7)]

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
(

f̃ lev
k − f ∗ − ξk − εk − Rd

)
,

from which, by using the preceding relation, we obtain for all k ≥ k(l̄)

(
dist(xk+1, X∗)

)2 ≤(
dist(xk, X∗)

)2 − 2αkν ≤ · · · ≤ (
dist(xk(l̄), X∗)

)2−2ν
k∑

j=k(l̄)

α j .

Hence
∑∞

k=0 αk is finite.
Let L be given by

L =
{

l ∈ {1, 2, . . .} | δl = δl−1

2

}
.

Then from Steps 3 and 5 we have

σk = σk−1 + αk−1‖g̃k−1‖ =
k−1∑

j=k(l)

α j‖g̃ j‖, (2.10)

so that, whenever
∑k−1

j=k(l) α j‖g̃ j‖ > B at Step 3, we have k(l +1) = k and l +1 ∈ L .
Therefore
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k(l)−1∑

j=k(l−1)

α j‖g̃ j‖ > B, ∀ l ∈ L ,

which combined with the fact ‖g̃k‖ ≤ C + R for all k [cf. Eq. (2.2)] implies that for
all l ∈ L

(C + R)
k(l)−1∑

j=k(l−1)

α j > B.

By summing, since the cardinality of L is infinite, we obtain

∞∑

k=0

αk ≥
∑

l∈L

k(l)−1∑

j=k(l−1)

α j >
∑

l∈L

B

C + R
= ∞,

which contradicts the finiteness of
∑∞

k=0 αk . ��
Note that the results of Propositions 2.3 and 2.4 have twice the error ξ coming from

the erroneous function evaluations. This can be attributed to the fact that the error in
the difference f̃ (xk)− f̃ lev

k can reach ±2ξ .
In all the results of Propositions 2.1–2.4, the total error within which the optimal

value f ∗ is approached has additive form, and it includes the error terms coming
from the εk-subgradient bound ε and the bound R on the noise magnitude. In Propo-
sition 2.1, the total error also includes a term related to the size of the nonvanishing
stepsize, while in Propositions 2.3 and 2.4, there is an additional error related to the
inexact function values used in the dynamic stepsize. In the presence of persistent noise
(R > 0), the total error in approaching f ∗ is not zero even when εk-subgradients are
replaced by subgradients (ε = 0).

We do not know whether the bounds in Propositions 2.1–2.4 are sharp when all
errors are persistent (ε > 0, R > 0, and ξ > 0). However, we know that the bounds
of Propositions 2.1 and 2.2 are sharp in the special case when R = 0. Specifically,
in subsequent Example 2.1, we show that the error bound of Proposition 2.1 is sharp
when R = 0 and ε = 0, in which case the bound depends only on the stepsize value
α. Furthermore, in Example 2.2, we show that the error bound of Proposition 2.2 is
sharp when R = 0.

Example 2.1 Consider the problem of minimizing f (x) = C2|x | over x ∈ �. Con-
sider the subgradient method using a constant step α and starting with x0 = αC2/2.
The subgradient of f at x0 is g0 = C2 and the next iterate is x1 = x0 − αC2 = −x0.
Subsequently, the subgradient of f at x1 is g1 = −C2, and the next iterate is x2 = x0.
Therefore, the method generates a sequence {xk} that “oscillates” between x0 and
−x0. The function value is constant along this sequence, i.e., f (xk) = αC2/2 for all
k. Since f ∗ = 0, we have

lim inf
k→∞ f (xk)− f ∗ = αC2

2
,
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thus, showing that the error due to the use of a constant stepsize is persistent, and that
the estimate of Proposition 2.1 is sharp when R = 0 and ε = 0.

Example 2.2 Consider the problem of minimizing f (x) = |x | over x ∈ �. For ε > 0,
it can be seen that

∂ε f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

[−1,−1 − ε
x ] for x < − ε

2 ,

[ − 1, 1] for x ∈ [− ε
2 ,

ε
2 ],

[1 − ε
x , 1] for x > ε

2 .

Consider the ε-subgradient method starting with x0 = ε. We have

∂ε f (x0) =
[

1 − ε

x0
, 1

]
= [0, 1].

Thus, g = 0 is an ε-subgradient of f at x0. Suppose that at x0 we use the direction
g0 = g. Then, the ε-subgardient method starting at x0 (with any stepsize) does not
move, and converges trivially to x0. Since f ∗ = 0 and f (x0) = x0, we have

lim inf
k→∞ f (xk)− f ∗ = x0 = ε.

This shows that the error ε is persistent, and also makes the estimate of Proposition 2.2
sharp when R = 0.

Note that Example 2.2 also makes the estimate of Proposition 2.4 sharp when R = 0
and ξ = 0.

3 Convergence properties for f with a sharp set of minima

In this section we assume that the objective function f has a linear growth property: it
increases at least linearly as we move to nonoptimal feasible points starting from the
set of optimal solutions. In particular, we say that a convex function f has a sharp set
of minima over a convex set X , when the optimal set X∗ is nonempty and for some
scalar µ > 0 there holds

f (x)− f ∗ ≥ µ dist(x, X∗), ∀ x ∈ X. (3.1)

For such a function, we have the following result.

Lemma 3.1 Let the function f have a sharp set of minima. Then, for a sequence {xk}
generated by the method with any of the stepsize rules (a)–(c), we have for all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
µ− ‖rk‖

µ

(
f (xk)− f ∗)

+ 2αkεk + α2
k ‖g̃k‖2.
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Proof The relation is implied by Lemma 2.1 and the property of f in Eq. (3.1) ��
In what follows we consider a noise sequence {rk} whose norm bound R is lower

than µ, i.e., R < µ, which we refer to as low level noise. In particular, we assume the
following.

Assumption 3.1 The function f has a sharp set of minima [cf. Eq. (3.1)]. The noise
rk and the errors εk satisfy Assumption 2.2. Furthermore, {rk} is a low level noise (i.e.
R < µ).

For the constant and diminishing stepsize rules, we also assume the following.

Assumption 3.2 There is a positive scalar C such that

‖g‖ ≤ C, ∀ g ∈ ∂εk f (xk), ∀ k ≥ 0,

where ∂εk f (x) is the set of all εk-subgradients of f at x .
Assumptions 3.1 and 3.2 hold, for example, when the optimal set X∗ is nonempty

and the function f is polyhedral, i.e.,

f (x) = max
1≤ j≤p

{a′
j x + b j },

where a j ∈ �n and b j ∈ � for all j , in which case the scalars µ and C are given by

µ = min
1≤ j≤p

{‖a j‖ | a j �= 0}, C = max
1≤ j≤p

‖a j‖.

In the next two propositions, we give the convergence results for the method with
a constant and a diminishing stepsize.

Proposition 3.1 Let Assumptions 3.1 and 3.2 hold. Then, for a sequence {xk} gener-
ated by the method with the constant stepsize rule, we have

lim inf
k→∞ f (xk) ≤ f ∗ + µ

µ− R

(
ε + α

2
(C + R)2

)
.

Proof The proof is based on Lemma 3.1 and a line of analysis similar to that of
Proposition 2.1. ��
Proposition 3.2 Let Assumptions 3.1 and 3.2 hold. Then, for a sequence {xk} gener-
ated by the method with the diminishing stepsize rule, we have

lim inf
k→∞ f (xk) ≤ f ∗ + µε

µ− R
.

Proof The proof uses Lemma 3.1, and a line of analysis similar to that of Proposi-
tion 2.1 combined with the fact

∑∞
k=0 αk = ∞. ��

In the convergence analysis of the dynamic stepsize rule, we use a condition on the
subgradients gk weaker than Assumption 3.2, and a condition on the parameters γk

stronger than (1.6) These conditions are stated in the following.
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Assumption 3.3 The sequence {gk} is bounded whenever {dist(xk, X∗)} is bounded.
The parameters γk in the dynamic stepsize rule (1.6) are such that

γk ≤ 2
µ− R

µ
, ∀ k ≥ 0.

The first condition in Assumption 3.3 holds, for example, when X∗ is bounded. Using
this assumption,5 we give a convergence property of the dynamic stepsize rule and
the adjustment procedure (2.3)–(2.4).

Proposition 3.3 Let Assumptions 2.3, 3.1 and 3.3 hold. Then, for a sequence {xk}
generated by the method and the dynamic stepsize rule with the adjustment procedure
(2.3)–(2.4), we have

inf
k≥0

f (xk) ≤ f ∗ + 2ξ + µε

µ− R
+ δ.

Proof To arrive at a contradiction, assume that

inf
k≥0

f (xk) > f ∗ + 2ξ + µε

µ− R
+ δ,

or equivalently

µ− R

µ

(
inf
k≥0

f (xk)− δ − 2ξ − f ∗
)
> ε.

Then, in view of f̃ (xk) = f (xk)+ ξk and |ξk | ≤ ξ for all k, it follows that

µ− R

µ

(
inf
k≥0

f̃ (xk)− δ − ξ − f ∗
)
> ε. (3.2)

By the adjustment procedure (2.3)–(2.4), we have δk ≥ δ for all k. Hence, each
time the target level is attained [i.e., f̃ (xk) ≤ f̃ lev

k−1], the current best function value

min0≤ j≤k f̃ (x j ) decreases by at least δ. Thus, in view of Eq. (3.2) the target level
can be attained only a finite number of times. Then, according to Eq. (2.4), there is a
nonnegative integer k0 such that

δk = δ, ∀ k ≥ k0,

so that the target levels f̃ lev
k satisfy

f̃ lev
k = min

0≤ j≤k
f̃ (x j )− δ, ∀ k ≥ k0.

5 Our subsequent results only require that the condition γk ≤ 2 µ−R
µ holds for large enough k.

123
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By choosing a larger k0 if necessary, from the preceding relation and Eq. (3.2) it can
be seen that for some positive scalar ν we have

µ− R

µ

(
f̃ lev
k − ξk − f ∗) ≥ εk + ν, ∀ k ≥ k0. (3.3)

Now, by using Lemma 3.1, the relation f (xk) = f̃ (xk)− ξk , and the definition of
αk , we obtain for all k,

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
µ− R

µ

(
f̃ (xk)− ξk − f ∗)

+ 2αkεk + αkγk
(

f̃ (xk)− f̃ lev
k

)

= (
dist(xk, X∗)

)2 − αk

(
2
µ− R

µ
− γk

) (
f̃ (xk)− f̃ lev

k

)

− 2αk

(
µ− R

µ

(
f̃ lev
k − ξk − f ∗) − εk

)

≤ (
dist(xk, X∗)

)2 − 2αk

(
µ− R

µ

(
f̃ lev
k − ξk − f ∗) − εk

)
,

(3.4)

where in the last inequality above we use the facts f̃ (xk) − f̃ lev
k ≥ δk > 0 and

2(µ− R)/µ− γk ≥ 0 for all k. By substituting Eq. (3.3) in the preceding inequality,
we have for all k ≥ k0

(
dist(xk+1, X∗)

)2 ≤(
dist(xk, X∗)

)2 − 2αkν ≤ · · ·≤(
dist(xk0 , X∗)

)2 − 2ν
k∑

j=k0

α j ,

(3.5)

implying the boundedness of {dist(xk, X∗)}. Hence {gk} is also bounded (cf. Assump-
tion 3.3), so that ‖g̃k‖ ≤ C + R for all k, where C is such that ‖gk‖ ≤ C for all k. Using
the boundedness of g̃k and the fact f̃ (xk)− f̃ lev

k ≥ δ for all k, from the definition of
αk we obtain

αk ≥ γ
δ

(C + R)2
, ∀ k ≥ 0,

which when substituted in Eq. (3.5) yields a contradiction for sufficiently large k. ��
In the next proposition, we give the convergence properties of the path-based pro-

cedure.

Proposition 3.4 Let Assumptions 2.3, 3.1 and 3.3 hold. Then, for a sequence {xk}
generated by the method and the path-based procedure, we have

inf
k≥0

f (xk) ≤ f ∗ + 2ξ + µε

µ− R
.
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Proof We at first show that l → ∞. Assume that l takes only a finite number of values,
say l = 0, 1, . . . , l̄, then at Step 3, we have for all k > k(l̄)

B ≥ σk = σk−1 + αk−1‖g̃k−1‖ ≥
k−1∑

j=k(l̄)

α j‖g̃ j‖ ≥
k−1∑

j=k(l̄)

‖x j+1 − x j‖.

Therefore αk‖g̃k‖ → 0 and {xk} is bounded, so that ‖g̃k‖ ≤ C + R for all k, where C
is such that ‖gk‖ ≤ C for all k. Thus from the definition of αk we obtain

αk‖g̃k‖ ≥ γ
δl̄

2(C + R)
, ∀ k ≥ k(l̄),

contradicting the fact αk‖g̃k‖ → 0. Hence, we must have l → ∞.
Now, in order to arrive at a contradiction, assume that infk≥0 f (xk) > f ∗ + 2ξ +

µε
µ−R , implying that

inf
k≥0

f̃ (xk) > f ∗ + ξ + µε

µ− R
. (3.6)

If δl is decreased at Step 3 only a finite number of times, then there must be an
infinite number of sufficient descents, so that for some nonnegative integer l̄ we have
δl = δl̄ > 0 for all l ≥ l̄. Each time a sufficient descent is detected, the current best
function value min0≤ j≤k f̃ (x j ) is decreased by at least δl̄/2, so in view of Eq. (3.6)
there can be only a finite number of sufficient descents, which is a contradiction.
Hence δl must be decreased at Step 3 infinitely often so that liml→∞ δl = 0. Let l̄ be
a sufficiently large positive integer and ν be a positive scalar such that [cf. Eq. (3.6)]

µ− R

µ

(
inf
j≥0

f̃ (x j )− δl − ξ − f ∗
)

≥ εk + ν, ∀ k ≥ k(l), ∀ l ≥ l̄.

Then by using the fact f̃ lev
k = min0≤ j≤k(l) f̃ (x j )− δl and ξ ≥ ξk , we obtain

µ− R

µ

(
f̃ lev
k − ξk − f ∗) ≥ εk + ν, ∀ k ≥ k(l̄).

Similar to the proof of Proposition 3.3, it can be seen that for all k we have [cf. Eq. (3.4)]

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk

(
µ− R

µ

(
f̃ lev
k − ξk − f ∗) − εk

)
,

from which, by using the preceding relation, we obtain for all k ≥ k(l̄)

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αkν

≤ · · · ≤ (
dist(xk(l̄), X∗)

)2 − 2ν
k∑

j=k(l̄)

α j .
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Hence

∞∑

k=0

αk < ∞ (3.7)

and the sequence {dist(xk, X∗)} is bounded. By Assumption 3.3 the sequence {gk} is
bounded, and therefore ‖g̃k‖ ≤ C + R for all k, where C is such that ‖gk‖ ≤ C for
all k. Then, we consider the index set L given by

L =
{

l ∈ {1, 2, . . .}
∣∣∣ δl = δl−1

2

}
,

and by using the same line of analysis as in the corresponding part of the proof of
Proposition 2.4, we obtain the relation

∑∞
k=0 αk > ∞, thus contradicting Eq. (3.7).

��
We now discuss how the noise rk and the εk errors affect the established error

estimate results. We consider two extreme cases: the case when ε = 0 and the low
level noise is persistent (µ > R > 0), and the case when ε > 0 and there is no noise
(R = 0).

When subgradients instead of ε-subgradients are used (i.e., ε = 0) and the low
level noise is persistent, the error in the estimate of Proposition 3.2 vanishes and the
convergence to the exact value f ∗ is obtained. By contrast, exact convergence cannot
be guaranteed in the corresponding result of Proposition 2.2 of Sect. 2. In particular,
the error estimate of Proposition 2.2 is persistent (does not diminish to zero) even
when ε = 0, and thus only convergence to an approximation of the value f ∗ can be
guaranteed.

When approximate subgradients are used (i.e., ε > 0)and there is no noise (R = 0),
the resulting error in the estimates of Props. 3.2 and 3.4 does not vanish even when the
function evaluations are exact (ξ = 0 in Proposition 3.4). In particular, the resulting
error is proportional to the limiting error ε associated with εk-subgradients used in the
method. This demonstrates the different nature of the noise rk and the errors associated
with using εk-subgradients.

We do not know whether the error bounds of Propositions 3.1–3.4 are sharp when all
errors are persistent (ε > 0, R > 0 and ξ > 0.) We note, however, that the estimates of
Propositions 3.1–3.4 are identical to those of Propositions 2.1–2.4, respectively, when
there is no noise (R = 0). In this case, Examples 2.1 and 2.2 on sharpness of the results
in Propositions 2.1 and 2.2 obviously apply to the results of Propositions 3.1 and 3.2.
In addition, our estimate of Proposition 3.2 is tight when ε > 0 and 1 > R ≥ 0, as
seen in the following example.6

Example 3.1 Consider the problem of Example 2.2. The set of minima is X∗ = {0}
and the sharp minima parameter µ is equal to 1. Let the ε-subgradient noise bound
be R with 0 ≤ R < 1. Consider the ε-subdifferential ∂ε f (x0) at a point x0 = ε

1−R .

6 This example is based on Example 5.1 given by A. Belloni in Lecture Notes for IAP 2005 Course, which
is available at http://web.mit.edu/belloni.
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According to the form of the ε-subdifferential set ∂ε f (x), as given in Example 2.2,
we have

∂ε f (x0) =
[

1 − ε

x0
, 1

]
= [R, 1].

Thus, g = R is an ε-subgradient of f at x0. Suppose that at x0 we use the noisy
direction g̃0 = g + r with the noise r = −R. Then g̃0 = 0, the method (1.2) starting
at x0 does not move, and converges trivially to x0. Since f ∗ = 0 and f (x0) = x0, we
have

lim inf
k→∞ f (xk)− f ∗ = x0 = ε

1 − R
.

This shows that the error ε is persistent, and also makes the estimate of Proposition 3.2
sharp (for µ = 1).

4 Implications for incremental εk-subgradient methods

In this section we consider a special case of problem (1.1), where the function f is
the sum of a large number of component functions fi , i.e.,

f (x) =
m∑

i=1

fi (x),

with each fi : �n → � convex. In this case, to solve the problem, an incremental
method can be applied, which exploits the special structure of f . The incremental
method is similar to the method (1.2). The main difference is that at each iteration, x
is changed incrementally through a sequence of m steps. Each step is a noisy subgra-
dient iteration for a single component function fi , and there is one step per component
function. Thus, an iteration can be viewed as a cycle of m subiterations. If xk is the
vector obtained after k cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (4.1)

where ψm,k is obtained after the m steps

ψi,k = PX
[
ψi−1,k − αk g̃i,k

]
, i = 1, . . . ,m, (4.2)

with

g̃i,k = gi,k + ri,k, (4.3)

where gi,k is an εi,k-subgradient of fi at ψi−1,k , ri,k is a noise, and

ψ0,k = xk . (4.4)
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Without the presence of noise, the incremental method has been studied by Kibardin
[14], Nedić and Bertsekas [18,19], Nedić, Bertsekas, and Borkar [17] (see also Nedić
[20]), Ben-Tal, Margalit, and Nemirovski [1], and Kiwiel [15]. The incremental idea
have been extended to min-max problems through the use of bundle methods by
Gaudioso, Giallombardo, and Miglionico [11]. The presence of noise in incremental
subgradient methods was addressed by Solodov and Zavriev in [26] for a compact
constraint set X and the diminishing stepsize rule. See [3] for an extensive reference
on incremental subgradient methods.

4.1 Convergence results for a compact constraint set

Here, we show that the results of Sect. 2 apply to incremental method (4.1)–(4.4).
For this, we use the following boundedness assumption on the noise ri,k and the
εi,k-subgradients.

Assumption 4.1 There exist positive scalars R1, . . . , Rm such that for each i =
1, . . . ,m,

‖ri,k‖ ≤ Ri ∀ k ≥ 0. (4.5)

There exist scalars ε1 ≥ 0, . . . , εm ≥ 0 such that for each i = 1, . . . ,m,

lim sup
k→∞

εik = εi.

Under the assumption lim supk→∞ εik = εi for some scalar εi ≥ 0, it can be seen that
supk εik is finite. Let us denote it by ε̃i , i.e., for each i = 1, . . . ,m,

ε̃i = sup
k
εik .

Since the ε-subdifferential sets are nested as ε increases, in view of εi,k ≤ ε̃i , it follows
that ∂εi,k fi (x) ⊆ ∂ε̃i fi (x) for any x . Therefore, for each i

∪k∂εi,k fi (ψi−1,k) ⊆ ∪k∂ε̃i fi (ψi−1,k) ⊆ ∪x∈X∂ε̃i fi (x).

Under the compactness of the set X , the set ∪x∈X∂ε̃i fi (x) is compact for each i (see
Dem’yanov and Vasil’ev [6], Corollary on page 77), implying that there exist a constant
Ci such that for all x ∈ X ,

‖g‖ ≤ Ci ∀ g ∈ ∂εi,k fi (x) and ∀ k ≥ 0. (4.6)

Since the subdifferential set ∂ fi (x) is contained in the ε-subdifferential set ∂εi,k fi (x),
it follows that for all i = 1, . . . ,m and x ∈ X ,

‖g‖ ≤ Ci ∀ g ∈ ∂ fi (x). (4.7)
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We now give a basic lemma which will be used for the analysis of the incremental
methods similar to the manner in which Lemma 2.1 was used for the non-incremental
methods. For a compact set X (cf. Assumption 2.1), we have the following result.

Lemma 4.1 Let Assumptions 2.1 and 4.1 hold. Then, for a sequence {xk} generated
by the incremental method and any stepsize rule, we have for all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
(

f (xk)− f ∗) + 2αkεk

+2αk R̃ dist(xk, X∗)+ α2
k

(
(C̃ + R̃)2 − S̃

)
,

where εk = ∑m
i=1 εi,k for all k, and

R̃ =
m∑

i=1

Ri , C̃ =
m∑

i=1

Ci , S̃ = 2
m−1∑

i=1

Ri

m∑

j=i+1

C j + 2
m∑

i=2

Ri

i−1∑

j=1

R j . (4.8)

Proof Using the nonexpansion property of the projection, the noise and the subdif-
ferential boundedness [cf. Eqs. (4.5) and (4.6)], we obtain for all y ∈ X , all i , and
all k,

‖ψi,k − y‖2 ≤ ‖ψi−1,k − αk g̃i,k − y‖2

≤ ‖ψi−1,k − y‖2 − 2αk g̃
′
i,k(ψi−1,k − y)+ α2

k ‖g̃k‖2

≤ ‖ψi−1,k − y‖2 − 2αk
(

fi (ψi−1,k)− fi (y)
) + 2αkεi,k

+ 2αk Ri‖ψi−1,k − y‖ + α2
k (Ci + Ri )

2, (4.9)

where the last inequality follows from the fact

g̃′
i,k(ψi−1,k − y) = g′

i,k(ψi−1,k − y)+ r ′
i,k(ψi−1,k − y)

≥ g′
i,k(ψi−1,k − y)− Ri‖ψi−1,k − y‖

[cf. Eqs. (4.3) and (4.5)] and the εi,k-subgradient inequality for fi at ψi−1,k

g′
i,k(ψi−1,k − y) ≥ fi (ψi−1,k)− fi (y)− εi,k, ∀ y ∈ �n .

By summing over i in (4.9) and by using εk = ∑m
i=1 εi,k , we have for all y ∈ X and k

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

m∑

i=1

(
fi (ψi−1,k)− fi (y)

) + 2αkεk

+ 2αk

m∑

i=1

Ri‖ψi−1,k − y‖ + α2
k

m∑

i=1

(Ci + Ri )
2
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≤ ‖xk −y‖2−2αk

(
f (xk)− f (y)+

m∑

i=1

(
fi (ψi−1,k)− fi (xk)

)
)

+ 2αkεk

+ 2αk

(
R̃‖xk − y‖ +

m∑

i=1

Ri‖ψi−1,k − xk‖
)

+ α2
k

m∑

i=1

(Ci + Ri )
2,

where R̃ = ∑m
i=1 Ri . By using the subdifferential boundedness and the fact ‖ψi,k −

xk‖ ≤ αk
∑i

j=1 C j for all i, k, from the preceding relation we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
(

f (xk)− f (y)
) + 2α2

k

m∑

i=2

Ci

i−1∑

j=1

C j + 2αkεk

+ 2αk R̃‖xk − y‖ + 2α2
k

m∑

i=2

Ri

i−1∑

j=1

C j + α2
k

m∑

i=1

(Ci + Ri )
2

= ‖xk − y‖2 − 2αk
(

f (xk)− f (y)
) + 2αkεk + 2αk R̃‖xk − y‖

+α2
k

⎛

⎝2
m∑

i=2

(Ci + Ri )

i−1∑

j=1

C j +
m∑

i=1

(Ci + Ri )
2

⎞

⎠.

After some calculation, it can be seen that

2
m∑

i=2

(Ci + Ri )

i−1∑

j=1

C j +
m∑

i=1

(Ci + Ri )
2 = (C̃ + R̃)2

− 2
m−1∑

i=1

Ri

m∑

j=i+1

C j − 2
m∑

i=2

Ri

i−1∑

j=1

R j = (C̃ + R̃)2 − S̃,

where C̃ , R̃ and S̃ are as given in Eq. 4.8. From the preceding two relations we obtain
for all y ∈ X and k

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
(

f (xk)− f (y)
) + 2αkεk

+ 2αk R̃‖xk − y‖ + α2
k

(
(C̃ + R̃)2 − S̃

)
,

The desired inequality follows from the preceding relation, by letting y = PX∗ [xk]
and using the relations

∥∥xk − PX∗ [xk]
∥∥ = dist(xk, X∗), dist(xk+1, X∗) ≤ ∥∥xk+1 − PX∗ [xk]

∥∥.

��
We consider the incremental method using the constant, the diminishing, and the

modified dynamic stepsize rule. The modification of the dynamic stepsize rules con-
sists of replacing ‖g̃k‖2 by (C̃ + R̃)2 − S̃ in Eq. (1.6), and at Step 5 of the path-based

123



The effect of deterministic noise in subgradient methods

procedure, the parameter σk should be updated by

σk+1 = σk + αk

√
(C̃ + R̃)2 − S̃.

In this case, however, the modified dynamic stepsize rule may result in a small stepsize
value αk .

Using Assumptions 2.1 and 4.1, we can show that the results of Props. 2.1–2.4
apply to a sequence {xk} generated by the incremental method, where in the estimates
of Sect. 2 we replace R by R̃ and (C + R)2 by (C̃ + R̃)2 − S̃, and we let ε = ∑m

i=1 εi

(with εi as defined in Assumption 4.1). This can be seen by using Lemma 4.1 in place
of Lemma 2.1.

4.2 Convergence results for f with sharp set of minima

In this section, we show that the results of Sect. 3 also hold for an incremental
εk-subgradient method. We consider an objective function f with a sharp set of min-
ima, as defined in Eq. (3.1).

We also use the following subgradient boundedness assumption.

Assumption 4.2 There exist scalars C1, . . . ,Cm such that for each i = 1, . . . ,m,

‖g‖ ≤ Ci ∀ g ∈ ∂ fi (xk) ∪ ∂εi,k fi (ψi−1,k) and ∀ k ≥ 0,

where ∂ fi (x) and ∂ε fi (x) denote the sets of all subgradients and ε-subgradients of fi

at x , respectively.
This assumption holds, for example, when each function fi is polyhedral. Under

the two preceding assumptions, we have a refinement of the basic relation shown in
Lemma 4.1, as follows.

Lemma 4.2 Let Assumptions 4.1 and 4.2 hold. Assume also that the function f has
a sharp set of minima [cf. Eq. (3.1)]. Then, for a sequence {xk} generated by the
incremental method and any stepsize rule, we have for all k

(
dist(xk+1, X∗)

)2 ≤ (
dist(xk, X∗)

)2 − 2αk
µ− R̃

µ

(
f (xk)− f ∗)

+ 2αkεk + α2
k

(
(C̃ + R̃)2 − S̃

)
,

where εk = ∑m
i=1 εi,k for all k, and the scalars R̃, C̃ , and S̃ are given in Eq. (4.8).

Proof Similar to the proof of Lemma 4.1, using Assumption 4.1 and the subgradient
boundedness of Assumption 4.2, we can show that the basic relation of Lemma 4.1
holds. In particular, we have for all k

(dist(xk+1, X∗))2 ≤ (dist(xk, X∗))2−2αk( f (xk)− f ∗)+ 2αkεk + 2αk R̃ dist(xk, X∗)

+α2
k ((C̃ + R̃)2 − S̃).
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Since f has a sharp set of minima, it follows by Eq. (3.1) that dist(xk, X∗) ≤ (
f (xk)−

f ∗)/µ. By substituting this relation in the preceding inequality, we immediately obtain
the desired relation. ��

For the incremental method, the noise ri,k is a low level noise when R̃ < µ where
R̃ = ∑m

i=1 Ri and Ri is the norm bound on the noise sequence {ri,k} as in Assump-
tion 4.1. For a function f with sharp minima and low level noise, using Assump-
tions 4.1 and 4.2, we can show that the results of Props. 3.1–3.4 apply to a sequence
{xk} generated by the incremental method. In this case, the results of Sect. 3 hold with
R̃ instead of R and with ε = ∑m

i=1 εi , where εi is as given in Assumption 4.1. (In
case of Proposition 3.1, we also have (C̃ + R̃)2 − S̃ instead of (C + R)2.) This can
be seen by using Lemma 4.2 in place of Lemma 3.1 and a line of analysis identical to
that of Sect. 3.
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