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Abstract

Previous research (Li et al., Understanding the disharmony between dropout and batch normalization by variance shift. CoRR

abs/1801.05134 (2018). http://arxiv.org/abs/1801.05134 arXiv:1801.05134) has shown the plausibility of using a modern deep

convolutional neural network to detect flaws from phased-array ultrasonic data. This brings the repeatability and effectiveness

of automated systems to complex ultrasonic signal evaluation, previously done exclusively by human inspectors. The major

breakthrough was to use virtual flaws to generate ample flaw data for the teaching of the algorithm. This enabled the use of

raw ultrasonic scan data for detection and to leverage some of the approaches used in machine learning for image recognition.

Unlike traditional image recognition, training data for ultrasonic inspection is scarce. While virtual flaws allow us to broaden

the data considerably, original flaws with proper flaw-size distribution are still required. This is of course the same for training

human inspectors. The training of human inspectors is usually done with easily manufacturable flaws such as side-drilled

holes and EDM notches. While the difference between these easily manufactured artificial flaws and real flaws is obvious,

human inspectors still manage to train with them and perform well in real inspection scenarios. In the present work, we use a

modern, deep convolutional neural network to detect flaws from phased-array ultrasonic data and compare the results achieved

from different training data obtained from various artificial flaws. The model demonstrated good generalization capability

toward flaw sizes larger than the original training data, and the effect of the minimum flaw size in the data set affects the a90/95

value. This work also demonstrates how different artificial flaws, solidification cracks, EDM notch and simple simulated flaws

generalize differently.

Keywords NDT · Ultrasonic testing · Machine Learning · Image classification

1 Introduction

Ultrasonic inspectors are commonly trained using simple

artificial flaws, such as EDM notches and side-drilled holes.

These two types offer a quick and cost-effective way of

demonstrating where the flaw indication should appear, but

their signal shape differs from a real service-induced crack,

like a mechanical or thermal fatigue crack. Inspectors can use

reasoning to estimate real reflectors based on these simpli-

fied signals. However, more than simple artificial flaws are
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usually required for qualification of a technique, for exam-

ple in nuclear power plants [7], to confirm performance in a

representative setting.

Difficulties arise when the inspection material is noisy

and the inspector needs to use expert judgement to distin-

guish flaws from structural noise. For example, an EDM

notch might be found much more easily than a thermal

fatigue crack in a dissimilar metal weld (DMW) inspection.

While their signals can be distinguished from each other, a

human inspector is not only looking for a specific reflector

or thermal fatigue crack but also for an explanation for any

unusual reflector. Therefore, while training and conducting

the inspections, the inspector focuses on learning and detect-

ing where the flaw indications may appear and how they stand

out compared to the surrounding noise. A human inspector

can intuitively ignore possible artefacts in the artificial flaws

and still successfully find real flaws in the inspection data.
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For machine learning, the task is much more difficult. Due

to the training process, the model can learn any and all fea-

tures related to the training data; thus, the teaching data set

determines the boundaries of the capability of the algorithm.

This learning method is useful when the task is to determine

specific features from images with high accuracy and the

training data are largely available. For ultrasonic inspection,

this is a problem since training data are not readily available

and the detection probability for the algorithm needs to be

high, while still avoiding false calls. The model may learn

incidental features of the training data, i.e. it may overfit to

the training flaws and fail to generalize to unseen flaw indica-

tions. Conversely, underfitting may cause an excessive false

call rate. Therefore, this paper aims to study how training

data from different sources can be used to train ML algo-

rithms to detect other flaw types and how the minimum flaw

size in the training set affects the a90/95 value.

1.1 Effect of Different Kinds of Flaws and Artificial
Flaws

The flaw response for ultrasonic testing is highly related to

the kind of reflector from which the sound waves are reflected

back to the transducer. The characteristics that primarily

affect the flaw response are the location and orientation of

the crack, size of the crack, opening of the crack through the

whole path and at the crack tip, fracture surface roughness

and filling of the crack with a substance. An in-depth study

of the flaw responses and crack characteristics has already

been conducted by [9,10]. For the most representative flaw

response signal, it is reasonable to assume that these charac-

teristics should be met in order to achieve the best possible

training data for machine learning as well. These character-

istics are the main reason real cracks are preferred over EDM

notches and side-drilled holes when conducting actual per-

formance demonstrations for human inspectors. In addition,

it is assumed that the larger the crack, the easier it is to detect.

This should apply for the machine learning model as well.

As the larger cracks are more critical, these types of cracks

should be reliably found.

1.2 Teaching and Generalizing theMachine Learning
Model

Since humans can use their theoretical reasoning and target

their focus on the relevant part of the data, it is possible (to a

certain extent) to use simple flaws to teach and train human

inspectors to find real flaws in inspection cases. Machine

learning models lack this theoretical reasoning and imag-

ination, and the training data must explicitly provide the

variation that the models need to learn.

The training data itself has a strong influence on training

and generalizing the model. First of all, it is imperative to

have enough flaw data for teaching. Secondly, the labelling

of the data needs special attention to non-destructive testing

(NDT). Labelling small flaws that are indistinguishable from

the noise may cause the model to overfit on noise features

and/or result in an excessive false call rate. Lastly, the models

can converge in training, even in the absence of generalizable

features in the training data, as demonstrated by [26].

Overfitting can be mitigated by several approaches. The

obvious first choice is to increase the amount of training and

validation data. This ample data amount is seldom available

for ultrasonic testing. The second choice for decreasing over-

fitting is data augmentation when teaching data are scarce.

Traditional data augmentation, where the image is rotated,

reflected, scaled, cropped or translated, are common prac-

tices to artificially increase the amount of available data [3,6].

These methods have been used successfully in NDT and

ultrasonic inspection by [25]. For a weld scan, however, rota-

tion of the flaw might be out of the question as cracks can

form in a certain place and certain orientation for in-service

inspections. Data augmentation through virtual flaws pre-

sented in [23] has shown great promise as it allows scaling

the flaws to represent smaller flaws and changing the location

along the weld, allowing a larger variety of backgrounds for

the flaw to reside in.

In general, NDT data can be considered simple, thus there

exist options for generating data other than virtual flaws.

Alternative approaches for generating training data sets have

been used in eddy current testing by [15] to generate an ample

amount of data with an adaptive generation technique known

as Output Space Filling (OSF) with an efficient computation

time. Reference [1] used a similar approach by adding the

Partial Least Squares (PLS) feature extraction to OSF and

trained several machine learning models with this generated

data. Reference [1] stated that this data generation method

might be feasible for ultrasonic and thermographic testing.

Further generalization can be obtained by tuning the

hyperparameters. Batch size, for example, has a strong influ-

ence on learning. Reference [14] showed that generally, the

best generalization performance is achieved with a batch size

of 2 to 32 and up to 64 with a batch normalization layer. The

downside of using small batch sizes is that it slows down the

teaching of the model. Thus, large batch sizes are preferred.

Instead of further modifying or augmenting the teaching

data or decreasing the performance of the model, there are

also possibilities to affect the training of the model as well.

Dropout is one of the most common approaches. Dropout

works by zeroing out a certain amount of the layer’s out-

put values at random during training. The number of values

dropped out is determined by the dropout rate, which is

usually between 10 and 50% of the layer’s output values.

Essentially, this means that random variation is introduced

to the output, and less significant features that are only present

for the training data are valued less or cancelled out from the
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final model, thus leading to a more generalized representation

of the task. During testing, the output values are allowed to

work fully, but scaled down with the dropout rate to compen-

sate all working output values [6,24]. Dropout has been used

in ultrasonic inspection by [16] with successful results as the

performance increase was significant compared to the neural

network without the dropout for the A-signal classification.

As overfitting is one of the major problems in teach-

ing modern deep learning models, the difference between

human image recognition and machine image recognition

needs to be understood as well. Unlike a human inspector, a

machine learning model does not know the actual concept of

its task, since that is determined through the teaching data.

Even though the data might look good enough for teaching

humans and estimating the probability of detection (POD)

curves [12,21], the data might contain artefacts from the arti-

ficial flaw manufacturing process or poorly designed virtual

flaw generation. This kind of teaching, i.e., with poor data, is

demonstrated in [17], where distinguishing between wolves

and huskies was based on the feature that wolves had snow in

the background in the training data set. The effect of the poor

data is the same for NDT. When the teaching data would have

some feature such as an artefact from implantation, the flaw

detection in the model might focus on the implantation rather

than the actual flaw characteristics. Due to these reasons, it

is crucial for the NDT model to be actually tested with flaws

where these kinds of artefacts do not exist or to map which

features affect the decision the most with methods such as or

similar to grad-CAM by [18] and LIME by [17].

Generalization of the model can be increased through

adding the batch normalization layer introduced in [8]. Batch

normalization drives to remove the covariate shift from the

internal activations within the network. This has the effect of

faster learning rates and increased accuracy. As batch normal-

ization works to generalize the model, it decreases the need

for a dropout layer in some cases. In fact, the performance

of the model might decrease drastically if a dropout and a

batch normalization layers are used together. Reference [13]

recommend the use of a dropout layer after all batch normal-

ization layers on large data sets. On the other hand, Reference

[5] reported a decrease in accuracy when both layers were

used together. In general, it is recommended to use a batch

normalization in the models first and then carefully observe

the effect of an added dropout layer for the best possible

result.

Therefore, the main problem is teaching a model with too

little real flaw data, while still keeping generalization to real

flaws that the model has never seen before and still main-

taining at least human-level performance. As the flaw data

is scarce in NDT, virtual flaws present a way to mitigate the

problem. However, the more diverse the data, the better, even

with the virtual flaws. Hence, simulating the flaw responses

for training might be plausible to broaden the data efficiently.

Simulated flaws have been previously used together with

virtual flaw augmentation to calculate POD by [11]. While

humans did not detect the difference between simulated and

real flaw responses, the research showed that simulated flaws

were slightly easier to detect. Thus, it might be assumed that

an ML model could be able to adequately generalize to real

flaws.

2 Materials andMethods

Inspection data was gathered from scanning a DMW mock-

up and generating flaw responses from CIVA simulations.

The location of the flaws was the same for all flaw types,

on the edge of the buffer zone, 7 to 10 mm to the carbon

steel from the weld center. The scanned flaws were aug-

mented with Trueflaw’s eFlaw [21] software, and data sets

for machine learning purposes were created.

2.1 Scanned Samples

For initial inspection data, a DMW pipe mock-up from

Swedish Qualification Centre AB (SQC) was used. The spec-

imen was 32 mm thick with an outer diameter of 898 mm. The

specimen had implanted flaws and an EDM notch as defects.

The original sample consisted of two “small” solidification

flaws 2 mm and 3 mm in size. Two large solidification flaws,

of which 17 mm was tilted toward the carbon steel side and 26

mm was straight oriented. There were two 6 mm sized flaws,

an EDM notch and a solidification flaw. In total, six differ-

ent flaws were available for training. In addition, the sample

consisted of three axial solidification flaws with heights of

6, 17 and 26 mm and one axial EDM notch with a height of

6 mm. The flaw scanning was optimized for circumferential

flaws; thus, the axial flaw indications were removed from the

teaching and testing data sets with the eFlaw process.

The inspection procedure was an optimized version of

Zetec Inc.’s procedure C3467 Zetec OmniscanPA 03 Rev A.

The inspection equipment that was used was Dynaray Lite

with two Imasonic 1.5 MHz 32 element phased array probes

in a wedge with a 7◦ roof angle set-up for TRL acquisition.

The coupling was applied through a feed water system. In

order to minimize data, only one scan line was utilized, with

a 60◦ angle. The focal law was focused on the inner surface of

the pipe and the probe positioned such that the best amplitude

response from the flaws was achieved. Data recording was

done at a 16-bit depth for best possible data quality. The

schematic of the inspection procedure can be seen in Fig. 1.

The scanned flaws were augmented with eFlaw software by

scaling down the recorded amplitude, thus representing a

wider size range of flaws similarly as in [22].
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CSSS

Flaw area in cladding

Fig. 1 Diagram of the inspection setup. TRL probe was situated on the

carbon steel side of the test mock-up and focused on inner diameter

of the pipe. The original flaws were situated on the cladding marked

with black stripes on the image. Due to export control restrictions, the

exact details of the test block’s dimensions, materials and weld cannot

be made public

2.2 Simulation Set-up

The same set-up was created in CIVA2019 simulation soft-

ware with different-sized notches. For signal generation, the

Hanning type was used, and for flaw response calculation,

the Kirchhoff and GTD model was used as per CIVA guid-

ance [4,20] in a similar simulation case, which is optimal for

simulating reflection and diffraction echoes from crack like

flaws. Unlike the paper by [20], the weld was modelled with

orthotropic anisotropy. The buttering layer of the DMW was

modelled with a polycrystalline cubic structure, with an aver-

age grain size of 1.5 µm to represent the simple simulation

case. In order to reduce calculation time, only the flaw and

the immediate surroundings of the flaw were simulated. The

resolution of the simulation was aimed to be the same as for

the scanned samples’ 2 mm scan step and 103.2 mm sound

path.

In total, six different-sized notches were simulated; at

heights of 1 through 6 mm, the width of the flaw was three

times the height. Just as with the scanned plate samples, the

flaw responses were extracted from the simulation data and

implemented in the pipe mock-up scan through the eFlaw

software and more flaws were generated by scaling down

the recorded amplitude from the simulated flaws to a total

of 10,000 simulated flaws generated by the eFlaw augmen-

tation.

Figure 2a demonstrates the original simulated B-scan

image from CIVA and Fig. 2b the pre-processed B-scan

image for a better comparison. The raw simulated signal was

used when implanting the flaw onto the scanned image with

eFlaw and pre-processed for model training. Figure 2c shows

the pre-processed simulated flaw image show to the model

and Fig. 2d pre-processed scanned EDM notch implanted

with eFlaw. The width of the simulated flaw matches well

with the scanned one. Along the sound path, the simulated

flaw is slightly longer; and after post-processing, the simu-

lated flaw looks denser than the scanned EDM notch.

As Fig. 2 demonstrates, the scanned 6 mm EDM notch

and the simulated 6 mm EDM notch look different. This

is because the aim was to use a simple simulation setup

in CIVA to set a base-line for teaching data. The size of

the flaw is accurate, and the implanted signal is plausible

for human eye as well due to the accurate modelling of

the flaw and model geometry. However, a closer simulation

could be achieved with increased accuracy in the material

and anisotropy parameters of the DMW as well as increased

detail in the simulated signal representing the used probe

more accurately as only the frequency was matched to rep-

resent the scanned signal.

2.3 Training Data and Used Data Augmentation

Reference [23] used only thermal fatigue flaws as scan input;

thus, it is proven that it is viable to use thermal fatigue flaws as

teaching material to find thermal fatigue flaws. For this paper,

we generated several different teaching data sets, where cer-

tain flaw types were only shown during testing to investigate

how well the model detects the completely new flaw type.

In order to generate sufficient training data from the six dif-

ferent scanned flaws and six different simulated flaws, eFlaw

software was used to augment the flaw locations and sizes

within the training and testing data. These virtual flaws have

been previously used successfully in training humans and

evaluating POD by [12,19,21]. The indications of the six dif-

ferent scanned flaws and simulated flaws were scaled down to

represent smaller sizes up to 40% of the original indication.

This allowed the generation of 7000 different variations for

the scanned data to be used as training, validation and testing

data with roughly 50% containing flaws and 50% without

flaws. In addition, great care was taken to prevent the model

from learning the virtual flaw introduction process by copy-

ing and replacing the unflawed data as well within the set. A

total of 10,000 images were created from the simulated flaws

with the same method as for the scanned flaws.

The raw RF signal was pre-processed by fully rectify-

ing the signal to an absolute positive value. The scan data

was processed for more efficient teaching purposes, thus the

sound path was narrowed down to 2000 samples to repre-

sent the inner diameter of the mock-up where the flaws were

located. The flaw image contained 480 scan steps in total. The

B-scan dimension of 480× 2000 proved to be too slow to han-

dle, as the whole data set could not fit into the GPU memory

at the same time. In order to reduce the data set size, without

losing information from the sound path, the original B-scan
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Fig. 2 Comparison of the

simulated 6 mm EDM notch

signal and scanned 6 mm EDM

notch implanted trough the

eFlaw software. a Raw

simulated RF signal with sound

path of 2000 samples, b raw

simulated signal post processed

with max-pooling and rectified

to absolute positive value, c

simulated flaw implanted to the

weld b-scan with eFlaw and d

scanned 6 mm EDM notch

implanted to the weld B-scan

with eFlaw for comparison. The

simulated flaw seems to be

slightly longer and denser along

the sound path and more

symmetric than the reference

scanned EDM notch

was pre-processed by max-pooling the sound path with 1
4
λ.

This provided original data in the size of 480 × 118. To

further optimize the image for machine learning, the image

was normalized according to [3]. The image was reduced by

the mean value and divided by the standard deviation. If the

image was labelled as flawed, one flaw would be introduced

in the image through the eFlaw process at a random loca-

tion along the weld. Since only one weld was scanned as the

background canvas, it later showed that the model learned the

weld pattern when it was shown the whole 480-sample-wide

weld in a single training image. This led the model to overfit

on the weld rather than detecting the actual flaw indications.

This is clearly the wrong target as this would work only if

the actual inspected weld would provide an exactly identi-

cal weld image as that recorded from the mock-up, which is

impossible. This was mitigated by cropping the image area in

half. Once the image size was 240 samples wide, it allowed

the generation of images at multiple locations along the weld

and maintaining a generalization on the clean weld, as the

background kept changing. This meant that the model was

shown a “new” clean weld with no flaws as for the flawed

samples as well; thus, the initial image data was 240 × 118

samples in size.

For a proper comparison to the previously mentioned VRR

data, the model was adjusted to handle 48× 118 sized images

to determine the proper location from the data. As the image

was smaller than the original teaching data, the sound path

was further cropped to 112 samples. This allowed randomly

moving the crop window along the sound path for 6 samples,

increasing the different backgrounds for training data. The

variability of the images was further increased by a similar

data augmentation used by [25]. The image was randomly

flipped from left to right during training using the built in

function from the Tensorflow package, but not rotated or

scaled. To further validate that the taught model would not

overfit, the images with no flaws were shown only 90% of

the weld area. During testing the model would see the whole

weld.

The model was trained with the following flaw type

combinations from (a) through (f), shown in Table 1 for solid-

ification cracks and an EDM notch. The model taught with

the simulated flaws was run with two different types of com-

binations, (i) and (j) in Table 2. The tables show the amount

of flaws available for training. The total number of images is

doubled when the images without flaws is added to the data

set. 20% of this said data set would be selected as the valida-

tion set. In addition, the model was taught with only 6 mm

solidification crack (g) consisting of 558 flaw images and

only a 6 mm EDM notch (h) consisting of 599 flaw images

not included in the tables.

2.4 UsedML Architecture

A more refined deep neural network model was constructed

based on [23]. To further enhance the accuracy, the dimen-

sions of the latter convolutional layers and the dense layer

were increased, and the max pooling layer with the batch nor-

malization layer was added after each convolutional layer

for increased generalization and overfitting reduction. The

model architecture can be seen in Fig. 3. The optimized net-
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Table 1 Flaw sets for training

and flaw images �
�

�
�

��
Size

Set
a) All flaws b) Small c) Medium d) Large e) No larges f) No smalls

Flaws total: 3442 1090 1157 1195 2247 2352

2 mm

3 mm

6 mm

6 mm (EDM)

17 mm

26 mm

Table 2 Simulated flaw sets for training and flaw images

�
�

�
�

��
Size

Set
i) All j) No smalls

Flaws total: 4982 3360

1 mm

2 mm

3 mm

4 mm

5 mm

6 mm

work structure was a result of trial and error by adjusting

the dimensions of each layer. Dropout was left out of the

model as batch normalization proved to be sufficient and

using both dropout and batch normalization together seemed

to yield variability in the results. The model was taught with

the training data variations presented in Sect. 2.3.

2.5 Performance Evaluation

POD and false calls were used to measure the performance

of the model. The POD curve was a hit/miss POD calculated

according to regular standard MIL-HDBK-1823a [2]. POD

is a valid way to measure the performance of the model,

since it is used for evaluating the performance of humans

as well. In addition, this enables comparison between the

model result and human VRR data, since they were evaluated

with the same data and standard. If the model were overly

sensitive, it would show as false calls in the evaluation or if

the model would overfit and constantly miss flaw types never

seen before, this would easily be seen in the POD curve as

erratic behaviour.

The performance evaluation was divided into two data sets

from the virtual flaws described in Sect. 2.3. The first test data

set would contain 4700 to 7000 samples, depending on which

flaw set from Table 1 was used for training. Only the flaw

types that were not used in training would be shown to the

model to evaluate the generalization capability. The second

data set would contain 1000 samples with all the available

flaw types. Even though the same flaw types used in training

are expected to be more easily found, they do not have an

effect on finding the flaw types never shown to the model in

training and are in the data set only to avoid flaw size gaps

in the POD evaluation.
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Fig. 3 Used optimized network

structure

Input

shape: 48, 112, 1

Convolution 1

output: 48, 112, 96

Maxpool 1

output: 24, 28, 96

Batch norm 1

output: 24, 28, 96

Convolution 2

output: 24, 28, 80

Max pool 2

output: 12, 14, 80

Batch norm 2

output: 12, 14, 80

Convolution 3

output: 12, 14, 74

Max pool 3

output: 6, 7, 74

Batch norm 3

output: 6, 7, 74

Convolution 4

output: 6, 7, 30

Max pool 4

output: 1, 1, 30

Batch norm 4

output: 1, 1, 30

Flatten

output: 30

Dense

output: 30

Logits

output: 1

After testing with the data set, which contained images

from random locations of the DMW with or without a flaw,

the model was shown the same ultrasonic weld image as a

human would see in a traditional inspection. This was done

by dividing the whole weld image to 48-sample-wide images

with the location coordinate as metadata. The images would

be shown to the model, and the model would evaluate whether

or not the location contains a flaw. In case of a hit, the image

centre line would be highlighted in green on the weld image.

3 Results

The results have been divided into two sections: testing the

generalization capability of the model; and comparison to

human performance with similar ultrasonic data.

3.1 Testing the Generalization

For POD calculations, the data was adjusted similarly as in

[22] when there were no missed flaws; 0 to 0.2 mm sized

misses were added to the calculation. When the data faced

zero separation, a missed flaw was added with a size 0.1

mm larger than the smallest flaw found. These adjustments

needed to be done for the POD calculation to converge some

of the results. However, this has little effect on the final POD.

The predictions for the differently trained models have

been plotted in Fig. 4. The model was trained with the flaw

combinations (a)–(j) described in Sect. 2.3 and in Tables 1

and 2. The tested flaws have not been shown to the said

model before. This enables testing how well the model is

capable of generalization when trained with different flaws

and tested with completely different flaws. For POD hit/miss

evaluation, all the indications scoring higher than 50% was

considered as hits, and false calls when no flaw was in the

data. If the prediction was less than 50% and flaw existed in

the data, it was marked as a miss. The POD was tested with a

data set containing all the flaw types and 1000 samples. The

PODs for different models can be found in Fig. 5, except for

the simulated flaws, as the performance was so unreliable

due to false calls that it was not comparable to other models.

For cases (a), (b) and (e) in Fig. 5, adding zeros from size 0

to 0.2 mm and zero separation management have been used

due to low or no misses. (a) and (e) gave no POD before the

adjustment and (b) changed to a more conservative a90/95

value of 1.05 mm from 0.75 mm.

As expected, the model trained with all the available flaw

types provided perfect results with no missed flaws and zero

false calls. This test was done to set the benchmark for other

training data sets.

When training with only the smallest flaws, the model

generalizes well on the larger flaws. Predictions for the flaws

can be seen in Fig. 4b. There is a slight deviation for the pre-

dictions for the EDM notch and 17 mm solidification crack,

which was slightly tilted compared to the 6 mm and 26 mm

solidification cracks, both of which yielded almost perfect

predictions but also had with three reported false calls. The

POD for the model trained with only small flaws can be seen

in Fig. 5b for which no misses on the 17 mm flaws were

reported while few of the smaller flaws were missed. The

POD is the same as for the case with all available flaws (a),

since the smallest flaw available for training is the same.

When the model was trained with the 6 mm solidification

crack and the 6 mm EDM notch, the model managed to gen-

eralize well on the larger flaws, while generalization towards

the smaller solidification cracks was not impressive. As seen

in Fig. 4c the model missed one 17 mm solidification crack

for the larger testing set but found all with the smaller test set

size for POD. This is well within the a90/95 limit, as the larger

test set contained over 500 samples of virtually augmented

17 mm solidification cracks, which were not shown to the

model during the training of the (c) set. The augmentation

for this flaw group was from 2.4 to 6 mm, and the a90/95

value was 3.45 mm, which can be seen in Fig. 5c.

The results for the model trained with only large flaws

yielded similar results in Fig. 4d and the POD in Fig. 5d.

Through the augmentation process, the smallest flaw for

training was 6.8 mm. The model did poorly in finding smaller

flaws, with the exception of the 6 mm solidification cracks,

for which every flaw was found. This also has a decreasing

effect on the POD and a90/95 values.
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Fig. 4 Predictions vs. flaw size

when testing with unseen flaws,

with exception to a. Threshold

for detection was set to 50% a

all flaws used for training. All

flaws found with no false calls.

b Only small flaws, 2 and 3 mm

used for training. All flaws

found, 3 false calls. c Only

medium flaws, 6 mm

solidification crack and EDM

notch used for training. One

miss on 17 mm flaw, no false

calls, poor performance on

smaller flaws. d Only large

flaws, 17 and 26 mm used for

training. Only 6 mm

solidification cracks found

reliably, no false calls. e Large

flaws, 17 mm and 26 mm

removed for training. Some of

the 17 mm flaws missed, no

false calls. f Small flaws, 2 and 3

mm removed for training.

Smaller flaws are not found with

high consistency, no false calls.

g Only 6 mm solidification

crack used for training. Only

largest flaws are found reliably,

consistent misses on 6 mm

EDM notch, no false calls. h

Only 6 mm EDM notch used for

training. Generalizes well on

larger flaws and 6 mm

solidification crack, missing

constantly smaller flaws, no

false calls. i Trained with all

simulated flaws. 131 False calls,

missing constantly every flaw

type. j Small simulated flaws

removed. 78 Calls, misses from

every flaw type, slightly better

performance compared to i

When training without the large flaws, the model general-

izes well with the larger flaws. Predictions for the flaws can be

seen in Fig. 4e. There is a slight deviation for the predictions

for the 17 mm solidification crack, as similarly seen when

training only with the medium sized flaw in Fig. 4c, com-

pared to 26 mm solidification cracks, which yielded perfect

predictions. Again, the testing set for never before seen flaws

was significantly larger than the testing set for POD measure-

ment, which contained all the flaw types. Thus, missing 6 of

the 17 mm flaws in a testing set containing over 500 flaws is

within statistical limits. The POD for the model trained with-

out the large flaws can be seen in Fig. 5e where no misses

on 17 mm flaws were reported, which meant that the model

made no misses or false calls.

When the small flaws were excluded from training, the

result was the same as when training with only the medium

sized flaws in Fig. 4c. Predictions can be seen in Fig. 4f and

the POD in Fig. 5f.
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Fig. 5 POD when testing with

all flaw types. a All flaws used

for training. All flaws found

with no false calls. 0 to 0.2 mm

sized misses added for POD

convergence. b Only small

flaws, 2 and 3 mm used for

training. Two 2 mm sized flaws

missed with no false calls. 0 to

0.2 mm misses added for more

conservative POD. c Only

medium flaws, 6 mm

solidification crack and EDM

notch used for training. Smallest

flaw size in training set was 2.4

mm and a90/95 was 3.45 mm. d

Only large flaws, 17 and 26 mm

used for training. As the 6 mm

solidification cracks are found

reliably, it improves the POD

whereas the 6 mm EDM notches

are mostly missed. e Large

flaws, 17 mm and 26 mm

removed from the training set.

No false calls and 0 to 0.2 mm

sized missed added for

convergence. f Small flaws, 2

and 3 mm removed from

training set. Smaller flaws are

not found with high consistency,

same a90/95 result as in c since

smallest flaw size was the same.

g Only 6 mm solidification

crack used for training. Only

largest flaws are found reliably,

consistent misses on 6 mm

EDM notch, the worst a90/95. h

Only 6 mm EDM notch used for

training. Generalizes well on

larger flaws and 6 mm

solidification crack, missing

smaller flaws, but performs

better than c and f with a90/95 of

2.55

When using only one flaw type, the training set tends to get

dangerously small. When the model was trained with only a 6

mm solidification crack, the result deteriorates considerably.

All the smaller cracks are missed, EDM notches are barely

detected and the model struggles to detect the larger 17 mm

and 26 mm cracks without false calls. The predictions can be

seen in Fig. 4g and the POD in Fig. 5g. However, the model

trained with only a 6 mm EDM notch proved to perform

well compared to the same-sized solidification crack. The

predictions of the model trained with only a 6 mm EDM

notch can be seen in Fig. 4h and the POD in Fig. 5h. There is

a slight deviation for the 17 mm solidification crack, but 6 mm

and 26 mm are found consistently. The majority of the 3 mm

solidification cracks are found, while the 2 mm solidification

crack tends to go unnoticed, which has an improving effect

on the POD. When training with only the EDM notch, the

model achieves the best a90/95 value when there are no small

flaws included in the training set.

The results when training with all the simulated flaws can

be seen in Fig. 4i and results for the training with simulated

123



24 Page 10 of 13 Journal of Nondestructive Evaluation (2021) 40 :24

flaws without the smaller flaws in Fig. 4j. A generalization

to real defects proved to be not possible for the simple simu-

lated flaw. Even though the flaw sizes ranged from 1 to 6 mm,

there were no indications of improvement, as false calls were

an issue when tested with real flaws. The most concerning

observation was that, while the model was capable of general-

ization to larger flaws from smaller flaws, this was not the case

for the simulated flaws. The model kept constantly missing

some of the largest flaws for both training data sets. The only

difference was that when the smallest flaws were removed

from the data set, performance increased by decreasing the

false calls and a number of missed flaws. Unfortunately, there

were still inconsistent misses on the large flaws as well.

3.2 Testing with FullWeld B-Scan and Comparison
with Human Performance

Instead of the previous training and testing, the ultrasonic B-

scan image was divided into 48-sample-wide windows with

a step of one sample and shown to the model in consecutive

order moving from left to right. The centre line of the image

would be highlighted as green if prediction would exceed

over 50%. The results for VRR data performance can be

seen in Fig. 6 for three different training methods: (a) model

trained without smallest and largest flaws, (b) model trained

without the 3 mm and 17 mm flaws and (c) model trained

with only the largest flaws left in the training data. The grey

colored prediction shows the centre line of the model window

with size 48 × 112 samples (window width 96 mm).

When the model was presented with similar ultrasonic

data as for humans, Sample 8 from [22], the model kept its

performance well and acted predictably. When the model

came across an edge of the flaw and moved forward it kept

detecting it until the window had completely moved past the

flaw. The exception can be seen in (a) and (b) in Fig. 6, where

the 13.6 mm flaw is detected only by the edges of the flaw

and not at all in the middle of the flaw. This might be due

because when the window is on top of the large flaw and the

training set has not consisted of enough large flaws over the

size of the inspection window, the model cannot detect the

flaw in those areas. In Fig. 6c, where the training data set

has contained only the large flaws, the model is capable of

detecting the large flaws in the middle as well, granted the

detection is easy as the model has been taught with the same

flaw type.

When considering human performance, all human inspec-

tors found all the large flaws, but the two 1.6 mm and 2.4 mm

flaws were missed by a couple of inspectors. Those misses

might have been caused by interpreting the flaw as not large

enough to indicate a flaw. Model (a), which had no 2 mm

and 26 mm flaw types in training, barely found the 1.6 mm

flaws. Case (b) in Fig. 6 which was trained without the 3

mm and 17 mm flaw types got the perfect score on the small

flaws. Case (c), which was trained with only the large flaw

types, found the 3 mm flaw type and the second 2 mm flaw

type easily while having difficulties with the other 2 mm

flaw types. One of the reasons for these detections is that the

same flaw is presented to the model multiple times as the

window moves over it. Thus, there are more opportunities

for finding the right features for detection compared to the

test in Sect. 3.1, where detection was based only on a sin-

gle attempt. This explains why the 1.6 mm flaw gets detected

partially for models (a) and (c). This shows that the model has

the potential for human-level performance, as these smaller

flaws had not been shown to the model before.

4 Discussion

Detection accuracy seems to be highly related to the smallest

flaw size used in training. While the model is capable of

finding larger flaws than it is used to train with, the detection

probability decreases once the tested flaws start to be smaller

than those used in the training data set. This is good for

qualification purposes, as it can be shown that the model

generalizes better in finding the larger flaws consistently, as

they are also the most critical ones to be found. In addition,

the model’s accuracy can be adjusted by using the flaw size

range required for the task.

While the flaws available for training were limited, certain

observations regarding the flaw type could be made. When

the model was trained with an EDM notch within the training

set or just with the EDM notch available, the generalization of

the model was better than with the solidification cracks only.

The most drastic effect could be observed when training with

only the 6 mm solidification crack and 6 mm EDM notch in

Fig. 4g and h, respectively. The comparison of these two flaw

responses in Fig. 7 shows that the flaws look completely dif-

ferent. Also, the model trained with the EDM notch could

find the solidification cracks. Whereas the model taught with

only the 6 mm solidification crack struggled to find simi-

lar cracks and kept constantly missing the same-sized EDM

notch. This indicates that the model might have learned fea-

tures related to the solidification crack, not the pure crack

indication. While the data set size was small for the single

flaw types, the two types performed completely differently

with the same data size. This could also be observed when

the model was trained with only the larger flaws in Fig. 4d,

where the detection of the 6 mm EDM notch is clearly lower

and separated from the 6 mm solidification crack, which was

detected with high reliability.

When comparing the performance to the whole weld

image from the VRR data, the model showed consistent per-

formance with similar results to the initial testing. The major

observation was the performance drop for the larger 17 mm

flaw, especially when the model was taught with the largest
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Fig. 6 VRR test B-scan image,

flaw locations are 220, 350, 590,

720, 820 and 880 mm along the

scan axis and at a depth of 1100

samples on the sound path. Flaw

sizes are 20.8 mm, 4.8 mm, 13.6

mm, 1.6 mm, 2.4 mm, 1.6 mm

virtually augmented from 26, 6,

17, 2, 3 and 2 mm flaws

respectively. Flaw predictions

are highlighted as grey area. a

Model trained without the

smallest 2 mm and largest 26

mm flaw. Detection of the 17

mm flaw is unreliable on the

middle of the flaw but more

certain on the edges, 2 mm flaw

at 720 mm is barely detected. b

Model trained without the 3 mm

and 17 mm flaws. Detection of

17 mm solidification crack is

purely based on detecting from

the edges. c Model trained with

only the largest 17 and 26 mm

flaws. Detection of the 17 mm

solidification crack is reliable,

but one of the two 2 mm flaws at

720 mm seems to be difficult to

find

Fig. 7 Comparison between 6 mm EDM notch (above) and 6 mm solid-

ification crack (below). The solidification crack clearly has two peaks

whereas the EDM notch has a clear single peak

flaws completely left out of the training set. While the large

flaw was found, the detection relied mostly on detecting the

flaw from its edges. This indicates that when the flaw is large

enough (i.e., wider than the observation window), the model’s

performance decreases drastically, as it has not experienced a

similar situation when training with only small flaws. There-

fore, it is highly beneficial to have larger flaws in training

to compensate for this performance decrease. This observa-

tion is consistent with the results in Sect. 3.1 where some of

the 17 mm flaws were unexpectedly missed when the model

was taught without the large flaws. In addition, the 17 mm

solidification crack was slightly tilted, thus it gave a slightly

different flaw indication than the 26 mm solidification crack

in Table 1.

The effect of the smallest flaw in the data set could be

seen with all real flaws. When small 2 and 3 mm flaws were

included in the data set, the a90/95 value was 1.05 mm. This

result might be overly optimistic, as the flaw type was the

same for testing as for training, while the flaws themselves

were new through the virtual flaws. With medium 6 mm flaws

as the smallest flaws, the a90/95 rose to 3.45 mm and to 2.55

mm with the EDM notch. The better performance for the

lone EDM notch can be explained for better generalization

and focus on the real indication discussed above. When the

smallest original flaw was 17 mm, the a90/95 rose to 7.65 mm.

The decrease in performance can be explained by missing the

EDM-type flaws in large number. However, there is a clear

link to the a90/95 value and the smallest available flaw for

training.
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The number of false calls seemed to increase as the small-

est flaw size in the data set decreased. For these data sets

and flaw types in Fig. 4a, b, the threshold for the increased

number of false calls seemed to be when only the small 2

and 3 mm flaws were used, resulting in 3 false calls and a

rise in prediction values where flaws did not exist. However,

these flaws might have been still too large and clearly visible

for a proper threshold determination. The effect of the small

flaw size is seen more clearly with the simulated flaws, as

the false calls are decreased by 40% when the simulated flaw

sizes 1 and 2 mm are excluded from the training set. These

said flaws were deemed undetectable by the human eye as

well.

Even though the simulated data did not provide reliable

results compared to the real flaws, it needs to be noted that

the simulation of the DMW case was largely simplified. It

may be plausible to enhance the performance by simulating

the subject in more detail, thus decreasing the false calls

and improving generalization if the simulated flaw response

represents the subject in greater detail.

5 Conclusions

Modern deep learning models have proven highly efficient

and reliable in image recognition tasks. It is clear that the

same approach can be used for NDT applications such as

ultrasonic inspection. However, as these models extract the

features related to detection on their own, great care needs

to be taken when designing a data set for training a machine

learning model for ultrasonic inspection:

• Smallest flaw size detected is related to the smallest flaw

size available in the training data set.

• Flaw types may generalize differently, e.g. solidifica-

tion cracks generalized worse to EDM notches than vice

versa.

• Using small flaws that are nearly undetectable in training

may lead to deteriorated model performance.
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