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Abstract The changes of polyphenols and triterpenoids
in three cranberry cultivars (‘Pilgrim’, ‘Stevens’, and ‘Ben
Lear)’ from different maturity stages, grown in Poland, were
determined using ultra-performance liquid chromatography
(UPLC) and photodiode detector-quadrupole/time-of-flight
mass spectrometry. Fifty-one bioactive compounds were
identified in cranberry fruits, including 48 polyphenols (19
flavonols, 8 anthocyanins, 7 phenolic acids, and 14 flavan-
3-ol oligomers) and 3 triterpenoids (betulinic, oleanolic, and
ursolic acids). The concentrations of individual polyphenolic
compounds during ripening were similar, whereas their val-
ues differed significantly. Immature fruits showed the low-
est level of polyphenolic compounds, which increased in
semi-mature cranberry fruits and did not change remarkably
in commercially mature cranberry fruits. The quantity of
phytochemical compounds during cranberry fruit ripening
depended on cultivar, and the cultivar ‘Stevens’ had sig-
nificantly higher concentrations of bioactive compounds
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and antioxidant capacity in comparison to the other tested
cultivars.
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Introduction

Cranberry fruits have gained interest as rich sources of pro-
healthy compounds, displaying high nutritive and biologi-
cal value. They are a good source of vitamins, minerals,
organic acids, fiber, and sugars [1, 2]. The most important
groups of phytochemical compounds in cranberry fruit are
polyphenolic and triterpene compounds, exhibiting strong
antioxidant properties and the ability to alleviate chronic
diseases [3-5] and influence their sensory attributes [1, 6,
7]. During the ripening of plants, there occur series of bio-
chemical reactions which lead to production of these com-
pounds. The differences in content of bioactive compounds
depend on many factors such as the cultivar of plant, region
of cultivation, soils, and stage of maturity [8].

The polyphenolics are the most widespread group of
compounds in nature. They significantly affect the plant dur-
ing its growth. Depending on the plant growth phase, the
content of polyphenols varies. For example, phenolic acid
content increases during ripening of tomatoes. In red, ripe
strawberries, the phenolic content is higher than in green,
immature ones, whereas in the case of apples, the opposite
trend is observed [8, 9]. Polyphenols display mainly anti-
inflammatory, anti-allergic, antiviral, antifungal, and anti-
hypertensive properties, and minimize the risk of metabolic
diseases [10]. Triterpene compounds, on the other hand, are
present in the resin, peel and cuticular waxes, and fruit and
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vegetable extracts, acting as protection against the attack
of insects and microorganisms. They are widespread in the
world of plants and are the subject of numerous phytochemi-
cal and pharmacological studies. Plants with high levels of
triterpenes are often used in phytotherapy because of their
valuable anticancer, antioxidative, anti-inflammatory, anti-
bacterial, antifungal, and antiprotozoal properties [11-13].

There are not enough reports about the influence of dif-
ferent ripening stages on phytochemical concentrations in
cranberry fruits. Therefore, the aim of this study was to
determine differences in content and amount of basic chemi-
cals and bioactive compounds by UPLC-PDA-MS/MS, and
antioxidant capacity (ABTS and FRAP) in the cranberry
cultivars ‘Ben Lear’, ‘Stevens’, ‘Pilgrim’. An additional goal
of this study was to compare polyphenolic and triterpenoid
compounds in three cultivars, from different maturity stages
grown in Poland. Moreover, detailed characterization of
triterpenoid and polyphenolic compounds and antioxidant
capacity from different maturity stages presented in this
paper could be useful for the food processing industry as an
important factor in good quality food and for the production
of health beneficial products and components in our daily
diet.

Materials and methods
Chemicals

Acetonitrile, formic acid, betulinic, oleanolic and ursolic
acid, ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic
acid), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid (Trolox), 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), metha-
nol, acetic acid, and phloroglucinol were purchased from
Sigma-Aldrich (Steinheim, Germany). (—)-Epicatechin,
(4)-catechin, chlorogenic acid, neochlorogenic acid, cryp-
tochlorogenic acid, dicaffeic acid, procyanidin A2, procyani-
din B2, p-coumaric acid, caffeic acid, kaempferol-3-O-galac-
toside, quercetin-3-O-rutinoside, quercetin-3-O-galactoside,
quercetin-3-0O-glucoside, cyanidin-3-O-arabinoside, cyani-
din-3-0-galactoside cyanidin-3-0O-glucoside, peonidin-3-O-
galactoside, and delfinidyn-3-O-glucoside were purchased
from Extrasynthese (Lyon, France). Acetonitrile for ultra-
performance liquid chromatography (UPLC; Gradient grade)
and ascorbic acid were obtained from Merck (Darmstadt,
Germany).

Plant material
Three cranberry (Vaccinium macrocarpon L.) cvs.—‘Ben
Lear’, ‘Pilgrim’, and ‘Stevens’—from four different matu-

rity stages (1st—immature, IM, 8th—semi-mature, SM,
15th—mature, MM, and 22nd—commercially mature,
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CM, of September 2016) were used in this study. Cranberry
fruits were obtained from a horticultural farm in Nowiny,
commune of Radomysl nad Sanem, Podkarpackie Region,
Poland (N: 50041'59"-50042'5" E: 2105521"-21055'8").
Soilless culture of cranberry was conducted on a substrate
of pure quartz sand, where it was possible to regulate water
and fertilizer ratios. The examined cultivars were grown on
1-hectare beds with dykes for flooding with water during
harvest and in winter. In 2016, from 24 March to 28 August
in the course of 7 procedures, the following fertilizers were
applied: Wigor S, triple superphosphate, potassium sul-
fate, Polimag S, ammonium sulfate, and magnesium sulfate
(7-hydrate). In July 2016, Dursban was used as a treatment
for May bug larvae, in the amount of 2.5 kg/ha. In each
cultivar, samples of 1 kg were collected manually, using an
identical method. Harvesting time was 8—20 September. The
total amount of fertilizers administered to the plants in 2016
was: sodium (Na) 75.5 kg, phosphorus (P) 132 kg, potas-
sium (K) 185 kg, magnesium (Mg) 52.5 kg, and sulfur (S)
512.85 kg per 1 hectare of land. Mean annual temperature
and annual total precipitation were 11.4 °C and 350.00 mm
during 2016 at the plantation of Radomysl nad Sanem.

The raw material was collected at four different maturity
stages. Next, the samples were frozen and dried using an
Alpha 1-4 LSC freeze dryer (Christ, Osterode, Germany).
The homogeneous dry material was obtained by crushing
the dried tissues using a closed laboratory mill (IKA A.11,
Germany). The powders were kept in a refrigerator (—80 °C)
until extract preparation.

Physicochemical analyses

Dry matter content was determined by a moisture analyzer
(MB 25, Ohaus, USA). Approximately 3 g of sweet cherry
homogenate was dried at 105 °C [14]. Titratable acidity
(TA) was determined by titration aliquots of homogenate
of fresh fruits by 0.1 N NaOH to an end point of pH 8.1
using an automatic pH titration system (pH-meter type 1Q
150; Warsav, Polska) and expressed as g of malic acid. The
pH was measured with the same equipment used for TA,
while the soluble solid content (SSC) was determined in
fresh juices by refractometer (AtagoRx 5000, Atago Co.
Ltd., Japan) and expressed as Brix. Pectins content was ana-
lyzed according to the Morris method [15] and expressed
as g/100 g. Results are reported as the arithmetic mean of
three independent repetitions (n = 2), taking into account the
standard deviation (SD).

Extraction procedure
The powder samples of fruits (1 g) were extracted with

10 mL of mixture containing HPLC-grade methanol
(30mL/100 mL), ascorbic acid (1.0g/100mL), and acetic
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acid in 1.0mL/100 mL of reagent. The extraction was per-
formed twice by incubation for 20 min under sonication 20
min, 20 °C, 40 kHz (Sonic 6D, Polsonic, Warsaw, Poland)
and with occasional shaking. Next, the slurry was centri-
fuged at 19,000g for 10 min, and the supernatant was filtered
through a Hydrophilic PTFE 0.20 pm membrane (Millex
Samplicity Filter, Merck, Darmstadt, Germany) and used for
analysis. The content of polyphenols in individual extracts
was determined by means of the ultra-performance liquid
chromatography-photodiode array detector-mass spec-
trometry method [16]. All extractions were carried out in
triplicate.

Identification and quantification of polyphenols

Qualitative (LC-Q-TOF-MS) and quantitative
(UPLC-PDA-FL) analyses of polyphenols (anthocyanins,
flavan-3-ols, flavonols, and phenolic acids) were performed
as described previously by Lachowicz et al. [16]. Separa-
tions of individual polyphenols were carried out using a
UPLC BEH C18 column (1.7 pm, 2.1 X 100 mm, Waters
Corporation, Milford, MA) at 30 °C. The samples (10 pL)
were injected, and the elution was completed in 15 min
with a sequence of linear gradients and isocratic flow rates
of 0.45 mL/min. The mobile phase consisted of solvent A
(2.0% formic acid, v/v) and solvent B (100% acetonitrile).
The program began with isocratic elution with 99% sol-
vent A (0—1 min), and then, a linear gradient was used until
12 min, lowering solvent A to 0%; from 12.5 to 13.5 min,
the gradient returned to the initial composition (99% A), and
then, it was held constant to re-equilibrate the column. All
measurements were repeated three times. The results were
expressed as mg per 100 g of dry matter (dm).

Analysis of proanthocyanidins by phloroglucinolysis

Direct phloroglucinolysis of freeze-dried samples was per-
formed as described by Lachowicz et al. [17]. Fruit and pom-
ace lyophilisates were weighed in an amount of 5 mg into
2-mL Eppendorf vials. Subsequently, 0.8 mL of the metha-
nolic solution of phloroglucinol (75 g/L) and ascorbic acid
(15 g/L) were added to samples. After addition of 0.4 mL of
methanolic HCI (0.3 M), the vials were incubated for 30 min
at 50 °C with continuous vortexing in a thermo shaker (TS-
100, BioSan, Riga, Latvia). The reaction was terminated
by placing the vials in an ice bath, drawing 0.6 mL of the
reaction medium and diluting with 1.0 mL of sodium acetate
buffer (0.2 M). The samples were centrifuged immediately
at 20,000g for 10 min at 4 °C and stored at 4 °C before
reverse-phase HPLC (RP-HPLC) analysis. All incubations
were done in triplicate. Phloroglucinolysis products were
separated on a Cadenza CD C18 (75 mm X 4.6 mm, 3 pm)
column (Imtakt, Japan). The liquid chromatograph was a

Waters (Milford, MA) system equipped with diode array
and scanning fluorescence detectors (Waters 474) and an
autosampler (Waters 717 plus). Solvent A (25 mL aqueous
acetic acid and 975 mL water) and solvent B (acetonitrile)
were used in the following gradients: initial, 5% B; 0—15 min
to 10% B linear; 15-25 min to 60% B linear; followed by
washing and reconditioning of the column. Other parameters
were as follows: a flow rate of 1 mL/min, an oven tempera-
ture of 15 °C, and volume of filtrate injected onto the HPLC
system was 20 pL. All data were obtained in triplicate. The
results were expressed as mg per 100 g dm.

Identification and quantification of triterpenoids

Fruit sample extraction was performed as described by Far-
neti et al. [18]. The powder samples (0.5 g) were extracted
with 5 mL of ethyl acetate and 5 mL of hexane. The extrac-
tion was performed by incubation for 20 min, 20 °C, 40 kHz
under sonication (Sonic 6D, Polsonic, Warsaw, Poland) with
occasional shaking. After the first extraction, the samples
were kept at 4 °C overnight. On the next day, the samples
were re-extracted in the same conditions. Next, the slurry
was centrifuged at 19,000g for 10 min, and the superna-
tant was evaporated to dryness. The pellet was re-extracted
using 2 mL of 100% methanol, filtered through a hydrophilic
PTFE 0.20 um membrane (Millex Simplicity Filter, Merck,
Darmstadt, Germany), and used for analysis. Identifica-
tion and quantification of ursolic, oleanolic, and betulinic
acids were done using the ACQUITY Ultra-Performance
LC system with a binary solvent manager (Waters Corp.,
Milford, MA, USA), a UPLC BEH C18 column (1.7 pm,
2.1 mm X 150 mm, Waters Corp., Milford, MA, USA),
and a Q-TOF mass spectrometer (Waters, Manchester, UK)
equipped with an electrospray ionization (ESI) source, oper-
ating in negative mode. The elution solvents were 100%
methanol (A) and 100% acetonitrile (B) (15:85, v/v). Urso-
lic, oleanolic, and betulinic acids were eluted isocratically
at a flow rate of 0.1 mL/min for 10 min at 20 °C. The m/z for
betulinic acid was 455.34, for oleanolic acid 455.34, and for
ursolic acid 455.33, and the retention times were 6.80, 7.50,
and 8.85 min, respectively. The compounds were monitored
at 210 nm. All data were obtained in triplicate. The results
were expressed as mg per kg of dm.

Analysis of sugar by the HPLC-ELSD method

An analysis of sugar by the HPLC-ELSD method was per-
formed according to the protocol described by Oszmiariski
and Lachowicz [10]. Calibration curves (R*> = 0.9999) were
created for glucose, fructose, sorbitol, and sucrose. All data
were obtained in triplicate. The results were expressed as
mg per 100 g dm.
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Determination of antioxidant activity .
S s 5 5 sz
The samples for analysis were prepared as described previ- = = < 9 o<
ously by Lachowicz et al. [16]. Freeze-dried fruits (0.5 g) "
were mixed with 10 mL of MeOH/water (80:20%, v/v) + 1% % § 5 f § §
HCI, sonicated at 20 °C for 15 min, and left for 24 h at 4 °C. 2 -
Then, the extract was again sonicated for 15 min and centri- E < < < < <
fuged at 15,000g for 10 min. 2 |2 s & &3
The ABTS radical cation and ferric reducing antioxidant s & &8 =3¢z
power (FRAP) methods were also used as described by Re S 9 9 3%
et al. [19] and Benzie and Strain [20], respectively. Briefly, s[d & & &8
10 pL of the supernatant was mixed with 990 uL of ABTS © e s s
or FRAP. After 6 and 10 min of reaction, the absorbance s & 2 <3
was measured at 734 nm for ABTS and 593 nm for FRAP, g_l Z :' :_' :5' "
respectively. Determinations by the ABTS and FRAP meth- é = s T s %
ods were performed using the UV-2401 PC spectrophotom- & & 2 23| =
eter (Shimadzu, Kyoto, Japan). The antioxidant activity was % % 3%l s
expressed as mmol of Trolox per 100 g of dm. = = S & a8 %
. . g2 2 228
Statistical analysis 5 s 3 S oS 3| 3
3 ;I :_I :—rl O‘:I ;I _q:)
i . - Els|= = o 95|y
Statistical analysis, one-way ANOVA, and principal com- ml= s
ponent analysis (PCA) were conducted using Statistica ver- 4 § § g 5 § §
sion 12.5 (StatSoft, Krakéw, Poland). Significant differences éﬁ A
(p < 0.05) between mean values were evaluated by one-way z gl = ° <8
ANOVA and Duncan’s multiple range test. Pearson’s cor- 2 g & = =3 \\é
relations were determined using Microsoft Excel 2010. é b E z, E, E g
a;:g_) § o S o ISR §
3 W s = = oal| &
Results and discussion = g 2 = 22|z
B H H H H H| §
Basic chemical composition g @ E
Z s 5 X 3|z
The analytical results of cranberry fruits for dry weight, total é 2 EI El jtl EI EI %
carotenoids, pectins, titratable acidity, pH, and sugars of the E ; sl < o a3 %
three cranberry cultivars are given in Table 1. Significant ié s s = ss| g
differences (p < 0.05) were revealed for the investigated b S 3 35 35 TE)
basic chemical parameters among all cultivars grown in g sl 203 22 f
Poland. & © S
The average content of dry matter in the cranberry fruits g § § 2 2 5 g
was 13.0 g/100 g in cv. ‘Pilgrim’ and was 0.8 and 5.4% lower E S E
in cvs. ‘Stevens’ and ‘Ben Lear’, respectively. These results S g|d = 9 )&
were comparable to those obtained in fruits of the cranberry g B S %
cultivars grown in Poland [21]. The average amount of total k= T % % 39 g
carotenoids varied from 0.3 in cv. ‘Stevens’ to 0.4 g/100 g é s|d S & J2|E
for cvs. ‘Ben Lear’ and ‘Pilgrim’. The average value of pH 8 ” e
of cranberry fruits of analyzed cultivars ranged from 2.8 Ei s 3 2 22 E
in cvs. ‘Stevens’ and ‘Pilgrim’ to 3.0 for cv. ‘Ben Lear’, § g) uNtl g il £ g %
respectively. Titratable acidity and the ratio of sugar (soluble ; =N a .
solids) to acid contents are two important determinants of § 8 = % ‘fl =
fruit taste and consumer’s acceptability. The average content - =2 5 é’ En g Eu S % é
of total titratable acidity in different cultivars, expressed as = § g §§ &E %D ‘_E % gl = &
2/100 g of citric acid, varied from 2.2 to 2.3 g/100 g for cvs. €188 |58 e 22| 3 &
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‘Ben Lear’ and ‘Stevens’ and ‘Pilgrim’, respectively. The
results of the acidity content and pH of cranberry varie-
ties tested were comparable with those of Oszmiariski et al.
[21], Uwieczkowska et al. [22] and Shin et al. [23]. Pectin
is one form of soluble fiber responsible for the prevention of
diabetes, obesity, and cardiovascular disease [24, 25]. The
average pectin value in cranberry fruits of the tested culti-
vars ranged from 0.7 to 0.8% for cvs. ‘Pilgrim’ and ‘Stevens’
and ‘Ben Lear’.

Glucose, fructose, and sucrose were the main sugars ana-
lyzed in all the cultivars of cranberry fruits (Fig. 1). Accord-
ing to the literature data [26] in cranberry and raspberry,
the main sugar were also fructose, glucose, and sucrose,
and their amount varied based on the phases of ripeness.
The average amount of total sugar in cranberry cultivars
harvested in different maturity stages grown in Poland was
4.57 g/100 g in cv. ‘Ben Lear’, and it was 5.7 and 13.1%
higher than cvs. ‘Pilgrim’ and ‘Stevens’, respectively. The
concentration of total sugar increased remarkably in fruit

vs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ ripening (38.4,
34.9, and 40.9%, respectively), from immature to the com-
mercially mature stage. According to research by Ferreyra
et al. [27], the total concentration of sugars increased along
all the ripening different maturity stages in the strawberry
cultivar ‘Selva’. Furthermore, during fruit ripening, the
content of sugars in cv. ‘Pilgrim’ increased from phase
immature to semi-mature by around 11.1%, from phase
semi-mature mature by around 14.4% and from phase
mature to commercially mature by around 19.0%; in cv.
, respectively, and in cv.
‘Ben Lear’—24.5, 21.2, and 0.5%, respectively. The major

sugar identified in cranberry fruits of analyzed cultivars was
fructose (range from 58.9 to 68.7% of total sugar) followed
by glucose (range from 29.6 to 39.3%) and sucrose (range
from 1.7 to 1.9%). Researched fruits of cranberry, raspberry,
and strawberry contained higher fructose and glucose and
lower sucrose. The low amount of sucrose in the fruits may
result from enzymatic hydrolysis from the leaves after their
translocation. Furthermore, fructose is sweeter than sucrose
or glucose, and its concentration is a desirable sensory trait
[21, 26, 27].

Identification and quantification of phenolic compounds
in cranberry

Identification and quantification of 48 compounds belong-
ing to anthocyanins, phenolic acids, flavonols, and flavan-
3-ols were based on a comparison of their retention times
(Rt) and MS and MS/MS data with available standards and
published data. The identification and concentration phe-
nolic results are presented in Table 2. Structures of these
compounds were identified by comparison of their spectral
and MS and/or MS/MS data to those reported in previous
studies [21, 28-31].

The concentration of the polyphenolics in cranberry
fruit determination in cultivars (‘Pilgrim’, ‘Stevens’ and
‘Ben Lear’) grown in Poland is presented in Table 3 and
Fig. 2. Total concentration of polyphenolic compounds
in fruits depends on, among other things, cultivar (Wang
et al. [26]). The main classes of polyphenols in the ana-
lyzed cranberry cultivars were: flavan-3-ols (from 41.5 to
52.2%) > flavonols (from 18.6 to 30.5%) > anthocyanins

6
. £ m O
=
4 - = et —_
= ]
=
3 —_— =
2 -
o] I l
Pllgrlm Stevens Ben Lear

] Glucose

Fructose ™ Sucrose

Fig. 1 Content of sugar (g/100 g) (values are mean + standard deviation, n = 3) of cranberry fruits of three cultivars harvested at different matu-
rity stages. /M immature, SM semi-mature, MM mature, CM commercially mature
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Table 2 Identification of

. No. Tentative identification® Rt (min) Amax (M) MS [H-M]"/ MS/MS frag-
cran.berry fruits of thre@ [H-M]* ments (7m/2)
cultivars harvested at different
maturity stages 1 p-Coumaroyl-hexose 3.38 310 325 163

2 Caffeoyl dihexoside 3.64 320 503 341/179
3 Delfinidyn-3-0-glucoside® 3.65 520 464* 303
4 A-type PA-tetramer 3.72 280 1151 289
5 B-type PA-dimer® 3.88 280 577 289
6 Caffeoyl hexoside 3.96 320 341 179
7 Caffeoyl hexoside isomer 4.15 320 341 179
8 Cyanidin-3-0-galactoside® 4.17 515 449* 287
9 Chlorogenic acid® 4.28 320 353 191/146
10 (4)-catechin® 4.30 280 289 245/203
11 Cyanidin-3-O-glucoside® 4.42 515 449* 287
12 p-Coumaroyl-hexose isomer 4.47 310 325 163
13 Cyanidin-3-0-arabinoside® 4.67 515 419* 287
14 p-Coumaroyl-hexose isomer 4.81 310 325 163
15 B-type PA-dimer® 4.92 280 577 289
16 Peonidin-3-0-galactoside® 4.98 515 463* 301
17 Sinapyl-hexose 5.07 320 385 223
18 Peonidin-3-O-glucoside 5.26 515 463* 301
19 (—)-Epicatechin® 5.30 280 289 245/203
20 Peonidin-3-O- arabinoside 5.48 515 433* 301
21 A-type PA-trimer 5.61 280 863 289
22 Malvidin-3-0O-arabinoside 5.80 520 463* 331
23 A-type PA-tetramer 5.89 280 1151 289
24 Myricetin-3-0-galactoside® 6.10 355 479 317
25 Myricetin-3-O-glucoside 6.21 355 479 317
26 A-type PA-trimer 6.31 280 863 289
27 Myricetin-3-O-pentoside 6.41 355 449 317
28 A-type PA-dimer® 6.54 280 575 289
29 Myricetin-3-O-pentoside 6.73 355 449 317
30 Myricetin-3-O-pentoside 6.84 355 449 317
31 Quercetin-3-0-galactoside® 7.00 355 463 301
32 Myricetin-3-O-glucuronide 7.11 355 493 317
33 B-type PA-dimer 7.14 280 577 289
34 A-type PA-dimer 7.31 280 575 289
35 Quercetin-3-O-pentoside 7.44 350 433 301
36 Quercetin-3-O-pentoside 7.61 350 433 301
37 A-type PA-tetramer 7.61 280 1151 289
38 A-type PA-trimer 7.71 280 863 289
39 Quercetin-3-O-pentoside 7.79 350 433 301
40 Methoxyquercetin-hexoside 7.93 350 477 315
41 Methoxyquercetin-pentoside 8.03 350 447 315
42 Quercetin-3-0-glucoside® 8.06 355 463 301
43 Quercetin-p-coumaroyl-hexoside 8.47 313 609 463/301
44 Quercetin-3-0-rhamnoside 8.70 350 447 301
45 Phloridzin 8.94 280 435 285
46 Methoxyquercetin-pentoside 8.95 350 447 315
47 Methoxyquercetin-hexoside 9.10 350 477 315
48 Quercetin-p-coumaroyl-hexoside 9.75 313 609 463/301

#Identification by comparison of MS data with the literature and their identification is tentative

® Identification confirmed by commercial standards
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(from 8.0 to 24.4%) > phenolic acids (from 5.0 to 12.1%).
No differences in the tested cranberry cultivars in the
amount of polyphenols and slight differences in the amount
of polyphenols were found among examined cultivars
during ripening. The average concentration of the poly-
phenolics in cranberry cultivars from different maturity
stages ranged from 3601.9 mg/100 g dm in cv. ‘Ben Lear’
to 4142.1 mg/100 g dm in cv. ‘Stevens’. According to
Oszmianski et al. [28], the content of polyphenolic com-
pounds in cranberry cvs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’
was 2.0, 2.5, and 3.0 times higher than the same cultivars in
this study in the commercially mature phase. The phenolic
compounds in cranberry fruits depend on many factors, such
as environmental factors, climatic conditions during growth,
place of growth, and agricultural practices [27].

Flavan-3-ols

The average content of the flavan-3-ols in cranberry cultivars
harvested in different maturity sages ranged from 1733.1
in cv. ‘Ben Lear’ to 1958.1 mg/100 g dm in cv. ‘Pilgrim’
(Table 3 and Fig. 2). According to Oszmiariski et al. [28],
the amounts of polyphenolic compounds in cranberry cvs.
‘Stevens’, ‘Pilgrim’, and ‘Ben Lear’ were 1.2, 1.1, and 1.3
times lower than the same cultivars, in this study, in the com-
mercially mature phase. The concentrations of polymer pro-
cyanidins (the major group of flavan-3-ols) were heterogene-
ous and depended on maturity of fruits, and they declined
remarkably during fruit cv. ‘Pilgrim’, ‘Stevens’, and ‘Ben
Lear’ ripening, by around 9.4, 15.2, and 19.0%, respectively,
from the immature stage to the commercially mature stage.
Similar results were obtained by Oszmianski et al. [28] for
cranberry cultivars ‘Pilgrim’, ‘Ben Lear’, and ‘Stevens’. In
addition, the content of flavan-3-ol monomers [(+)catechin
and (—)epicatechin] increased slightly during ripening from
the immature stage to the commercially mature stage in cv.
‘Pilgrim’ (25%), and decreased in cvs. ‘Stevens’ and ‘Bel
Lear’ (2.0 and 36.8%, respectively).

Flavonols

The average concentration of flavonols in the cran-
berry cultivars analyzed at different maturity stages was
1201.6 mg/100 g dm in cv. ‘Pilgrim’ and was 36.1 and
18.7% higher than cvs. ‘Ben Lear’ and ‘Stevens’, respec-
tively (Table 3 and Fig. 2). According to Oszmianski et al.
[28], the concentration of flavonol compounds in cranberry
cvs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ were 3.0, 3.2, and
2.9 times higher than the same cultivars in this study in
the commercially mature phase. The content of flavonols
in cranberry cultivars harvested at different maturity stages
increased by 25, 9, and 1% in cvs. ‘Pilgrim’ ‘Stevens’, and
‘Ben Lear’, respectively, from the immature stage to the

commercially mature stage. Similar results were obtained
by Ferreyra et al. [27] for strawberry. The major flavonol
compounds in cranberry fruits of analyzed cultivars were
quercetin-3-0-galactoside (from 31.3 to 38.4% of total fla-
vonols), myricetin-3-0-galactoside (from 20.4 to 29.0%),
and quercetin-3-0O-pentoside (from 10.1 to 11.8%). Similar
results were obtained by Oszmiariski et al. [21] and White
et al. [32].

Anthocyanins

The average content of anthocyanins in three cranberry
cultivars harvested at different maturity stages was
690.4 mg/100 g dm in cv. ‘Ben Lear’ and it was 50.6 and
6.0% higher than cvs. ‘Pilgrim’ and ‘Stevens’, respec-
tively (Table 3 and Fig. 2). According to Oszmiarski
et al. [21], the content of polyphenolic compounds in
cranberry cvs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ was
2.3, 1.9, and 2.4 times higher than the same cultivars in
this study in the commercially mature phase. It was sug-
gested that the concentration of anthocyanins in cranberry
fruits depends mainly on cultivar, growing place, envi-
ronmental, climatic, and genetic factors [16]. The com-
position of anthocyanins increased remarkably in fruit
cvs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ during ripening
(57.3, 47.0, and 30.0%, respectively), from the immature
to the commercially mature stage. Furthermore, during
fruit ripening, the content of anthocyanins in cv. ‘Pilgrim’
increased from the immature to the semi-mature phase
by around 17.0%, from the semi-mature mature phase by
around 6.0% and from the mature to commercially mature
phase by around 26.3%; in cv. ‘Stevens’—21.0, 21.0, and
25.0%, respectively, and in cv. ‘Ben Lear’—52.7, 20.7,
and 20.0%, respectively. Similar results were reported by
Ferreyra et al. [27] for strawberry. In addition, the major
anthocyanin compounds in cranberry fruits of analyzed
cultivars were cyanidin-3-O-galactoside (from 32.6 to
45.0% of total anthocyanins) and peonidin-3-0O-galac-
toside (from 22.7 to 32.2%). According to Oszmiariski
et al. [28], cyanidin-3-0O-galactoside and peonidin-3-O-
galactoside were also major compounds (23.3-30.0% and
33.1-39.3%) of all the anthocyanins in cranberry cultivars.
The anthocyanin composition in cranberry fruits depends
on the climate, cultivar, growing location, genetic traits,
and environmental factors [27].

Phenolic acids
The average concentration of phenolic acids in analyzed
cranberry cultivars harvested at different maturity stages

ranged from 236.8 in cv. ‘Ben Lear’ to 351.5 mg/100 g dm in
cv. ‘Pilgrim’ (Table 3 and Fig. 2). According to Oszmiarski

@ Springer
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Pilgrim
O Anthocyanins @ Flawonols

Stevens
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Ben Lear

mPhenolic acids mFlavan-3-ole

Fig. 2 Content of polyphenolic compounds (g/kg dm) (values are mean + standard deviation, n = 3) of cranberry fruits of three cultivars har-
vested at different maturity stages. /M immature, SM semi-mature, MM mature, CM commercially mature
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Fig. 3 Antioxidant activity (umol Trolox/g dm) (values are mean =+ standard deviation, n = 3) of fruits in cranberry three cultivars harvested at
different maturity stages. /M immature, SM semi-mature, MM mature, CM commercially mature

et al. [21] the content of phenolic acids in cranberry cvs.
‘Pilgrim’, ‘Stevens’ and ‘Ben Lear’ was 1.2, 1.1, and 1.5
times higher than the same cultivars in this study in the
commercially mature phase. The content of phenolic acids
decreased remarkably in tested cultivars of cranberry fruits
from 36.5 to 12.3% from cvs. ‘Stevens’ to ‘Ben Lear’,
respectively. In addition, during fruit ripening, the concen-
tration of phenolic acids in cv. ‘Ben Lear’ slightly decreased
(by around 2.8%) from the immature to semi-mature phase

@ Springer

and then increased from the semi-mature mature phase by
around 15.1%, and the last level was decreased from the
mature to commercially mature phase by around 21.6%; in
cv. ‘Pilgrim’—26.5, 0.02, and 5.9%, respectively, and in cv.
‘Stevens’—34.5, 2.4, and 5.3%, respectively. During dif-
ferent maturity phases of the plant, phenolic acid content
is changed, for example, phenolic acids content increases
during ripening of tomatoes. In ripe strawberries, the phe-
nolic content is higher than in immature ones; in the case of
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apples, the opposite trend is observed [33]. Similar changes
are observed in different varieties of cranberries. The major
phenolic acid compounds in all cranberry cultivars were
caffeoyl hexoside (from 34.6 to 54.1% of total phenolic
acids) and caffeoyl dihexoside (from 16.5 to 35.0%). Fur-
thermore, the decrease of phenolic acid content is also con-
firmed in research by Macheix and Fleuriet [34], Ferreyra
et al. [27], and Dragovic-Uzelac et al. [35].

Identification and quantification of triterpenoids
in cranberry fruits

Table 3 shows the data after determination of triterpenoids
in the fruits of three cultivars of cranberry fruits of differ-
ent maturity stages. The detected compounds were identi-
fied as betulinic, ursolic, and oleanolic acids based on their
molecular ion [M-H]™ at m/z 455.3, MS profiles with the
fragmentation pathways, UV-Vis spectra, and the retention
times (Rt) of authentic standards.

The average composition of triterpenoids in all tested
cranberry cultivars harvested at different maturity stages
ranged from 2528.0 in cv. ‘Pilgrim’ to 3201.5 mg/kg dm
in cv. ‘Ben Lear’. The content of triterpenoids increased
remarkably in fruit cvs. ‘Pilgrim’, ‘Stevens’ and ‘Ben Lear’
ripening (9.0, 24.1, and 22.6%, respectively), from the
immature to the commercially mature stage. Furthermore,
during fruit ripening, the concentration of triterpenoids in
cv. ‘Pilgrim’ increased from the immature to semi-mature
phase by around 0.1%, from the semi-mature mature phase

Fig. 4 PCA mean showing the

by around 6.7%, and from the mature to commercially
mature phase by around 2.4%; in cv. ‘Stevens’—1.8, 0.2,
and 22.6%, respectively, and in cv. ‘Ben Lear’—18.0, 1.8,
and 3.9%, respectively. In addition, the major triterpenoid
compound in cranberry fruits of analyzed cultivars was urso-
lic acid; it ranged from 22.7 to 32.2% of total triterpenoids.
However, in cvs. ‘Pilgrim’ and ‘Stevens’, a drop in ursolic
acid content of around 84.0 and 32.0% was noted. According
to Kondo [36], the concentration of ursolic acid in cranberry
fruits ranges from 60 to 110 mg/100 g fm. Furthermore,
Szakiel et al. [37] reported that ursolic acid was the pre-
dominant triterpenoid compound present in cranberry (20%
of all wax extract), sweet cherry (60%), and apple (98%).
McKenna et al. [38] observed the presence of polymeric
terpenes belonging to the group of phytosterols in cranberry
pomace and wax coat (Fig. 2).

Antioxidant capacity

Results of the antioxidant capacity of tested cranberry
cultivars grown at different maturity stages measured
by the free radical-scavenging activity (ABTS) and the
ferric reducing/antioxidant power (FRAP) methods are
presented in Fig. 3. Significant differences were observed
among tested cultivars and breeding clones according to
these assays. The average antioxidant capacity in cran-
berry fruits of analyzed cultivars harvested at differ-
ent maturity stages in the ABTS assay was 124.7 umol
Trolox/g dm in cv. ‘Pilgrim’, and it was 9.8 and 14.9%

PCA 1v 2 (82.40%)

relationship among bioactive 1,2
compounds and antioxidant
activity of cranberry fruits of 101 Steyens
three cultivars. TPC total phe-
nolic compounds, F3o flavan- 08 r Pd“
3-ols, TS total sugar, 7T total ANT
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-1,0
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04 02 00 02 04 06 08 10 12
p1(60.17%)
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higher than cvs. ‘Stevens’ and ‘Ben Lear’, respectively,
while, in the FRAP assay, it was 219.6 umol Trolox/g dm
in cv. ‘Pilgrim’ and it was 12.7 and 16.9% higher than
cvs. ‘Stevens’ and ‘Ben Lear’, respectively. According
to Oszmiariski et al. [28], the antioxidant capacity meas-
ured by the ABTS and FRAP assay in cranberry culti-
vars ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ was around 2
times higher and around 3 times lower than antioxidant
capacity in the same cultivars of cranberry harvested at
different maturity stages. Namiesnik et al. [39] reported
that antioxidant capacity measured by ABTS assay ranged
from 10.72 to 72.76 pmol/g dm, while FRAP assay val-
ues ranged from 3.28 to 26.97 pmol/g dm, which was
lower than our results. The antioxidant capacity (as with
the ABTS and FRAP assay) increased remarkably in
fruit cvs. ‘Pilgrim’, ‘Stevens’, and ‘Ben Lear’ ripening
(ABTS—21.7, 24.9, and 31.9%, and FRAP—22.1, 21.9,
and 28.1, respectively), from the immature to the com-
mercially mature stage. However, during fruit ripening,
the antioxidant capacity measured by ABTS and FRAP
assay in cv. ‘Pilgrim’ increased from the immature to
the semi-mature phase by around 11.8 and 6.6%, from
the semi-mature mature phase by around 11.1 and 12.9%
and from the mature to the commercially mature phase
by around 0.2 and 4.4%; in cv. ‘Stevens’—6.5, 11.1, and
9.6 (ABTS assay), and 6.6, 7.7, and 9.4% (FRAP assay),
respectively, and in cv. ‘Ben Lear’—2.0, 15.1, and 18.1%
(ABTS assay) and 11.0, 1.9, and 17.7% (FRAP assay),
respectively. Research by Shin et al. [23] and Sreela-
tha and Padma [40] showed that capacity is increasing
in strawberry and Moringa oleifera, and was similar to
the results of cranberries harvested at different maturity
stages.

Principal component analysis (PCA)

The study’s average results from different maturity stages
(1st—immature, IM, 8th—semi-mature, SM, 15th—mature,
MM, and 22nd—commercially mature, CM, of September
2016) grown in Poland cranberry cultivars ‘Pilgrim’, ‘Ste-
vens’, and ‘Ben Lear’ in their phytochemical composition
and antioxidant activity were emphasized during PCA.
Two main PCAs for the analyzed four genotypes grown in
Poland accounted for 82.40% of the total variability, PC1 for
60.19%, and PC2 for 12.18% (Fig. 4). The results obtained
from PCA using the linkage method among groups indicated
the presence of four clusters:

1. Stevens with higher concentrations of total phenolic
compounds (TPC), phenolic acids (PA), and acidity. In
addition, a positive correlation with antioxidant activity
(FRAP and ABTS) was detected;

@ Springer

2. Pilgrim with high contents of flavonols, polymeric pro-
cyanidins (PP) and total flavan-3-ols (F30) and a posi-
tive correlation with antioxidant activity (FRAP and
ABTS);

3. Ben Lear with high correlation of carotenoids and total
sugar (TS);

4. Anthocyanins (ANT), total triterpenoids (TT), and pec-
tins with a negative correlation with antioxidant activity.

Conclusions

The composition and amount of basic chemicals, bioac-
tive compounds, and antioxidant activity within fruits such
as cranberry is important for their quality and beneficial
effects. An investigation of the basic chemicals, bioactive
compounds, and antioxidant activity of three cranberry
cultivars harvested at different maturity stages was per-
formed in this study. We confirmed quantitative differ-
ences of phytochemical compounds and antioxidant capac-
ity in cranberry cultivars in individual phases of growth.
Qualitative differences of polyphenols, triterpenoids, and
antioxidant activity in the three examined cranberry cul-
tivars during ripening were not observed. ‘Pilgrim’ culti-
var had significantly lower contents in its fruits of active
compounds, such as phenolic compounds, triterpenoids,
and antioxidant capacity in comparison to the two cvs.
‘Stevens’ and ‘Ben Lear’. The highest amount of bioac-
tive compounds was determined in commercially mature
cranberry, decreasing to semi-mature and immature stages
of ripening, whereas the changes in concentration of some
triterpenoids and polyphenols at semi-mature and com-
mercially mature stages were not uniform. Cranberry fruits
can be used for the food processing industry as an impor-
tant ingredient in good quality food and for the production
of health beneficial products; therefore, choosing the right
maturity stage and cultivars of the fruit is important. Fur-
thermore, mature cranberry fruits represent a very good
and diverse source of active compounds and antioxidant
properties and thus should be a valuable component of
our daily diet.
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