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Abstract— Many adaptive beamformers claim to produce
images with increased contrast, a feature that could enable a
better detection of lesions and anatomical structures. Contrast is
often quantified using the contrast ratio (CR) and the contrast-to-
noise ratio (CNR). The estimation of CR and CNR can be affected
by dynamic range alterations (DRAs), such as those produced by
a trivial gray-level transformation. Thus, we can form the hypoth-
esis that contrast improvements from adaptive beamformers can,
partly, be due to DRA. In this paper, we confirm this hypothesis.
We show evidence on the influence of DRA on the estimation of
CR and CNR and on the fact that several methods in the state of
the art do alter the DR. To study this phenomenon, we propose a
DR test (DRT) to estimate the degree of DRA and we apply it to
seven beamforming methods. We show that CR improvements

correlate with DRT with R
2-adj = 0.88 in simulated data

and R
2-adj = 0.98 in experiments. We also show that DRA

may lead to increased CNR values, under some circumstances.
These results suggest that claims on lesion detectability, based
on CR and CNR values, should be revised.

Index Terms— Adaptive beamforming, Capon’s minimum
variance, coherence factor, contrast metrics, dynamic range,
eigenspace-based minimum variance, filtered-delay multiply and
sum, generalized coherence factor, phase coherence factor.

I. INTRODUCTION

T
HE popularization of software beamforming has brought
numerous techniques that, by clever manipulation of

channel data, are able to exceed the contrast and resolution
provided by conventional delay-and-sum (DAS) beamforming.
We refer as adaptive beamforming to any technique where
the signal values alter the way the beamformed signal is
constructed, for instance, when the element weights are deter-
mined from the variance of the signal.

Seminal work on adaptive beamforming dates back to
the 1960s, where optimal element weights were derived for
a given signal direction to minimize the influence of jamming
signals in radio communication systems [1]–[4].
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Adaptive beamforming was first applied to medical ultra-
sound at the end of the 1980s to compensate for phase aberra-
tion artifacts produced by tissue inhomogeneities [5], [6] and
about a decade later to reduce the contribution of off-axis
targets [7]–[11]. Since then, the number of articles on adaptive
beamforming has increased exponentially [12].

Among the alleged benefits of adaptive techniques is that of
producing increased contrast, a feature that is often associated
with higher lesion detectability. Extraordinary increases in
contrast ratio (CR), and in the contrast-to-noise ratio (CNR),
with respect to DAS, are reported in the literature [13]–[18].

Another way of increasing the image contrast is by altering
the dynamic range (DR) of the beamformed images. This
is achieved, for instance, by applying a gray-level transform
on the image intensity values which can stretch or compress
the DR. Gray-level transforms have traditionally been used
in commercial scanners to emphasize certain characteristics
of the investigated tissues. This operation does not provide
new information or better lesion detection, but it can increase
the apparent contrast of the image. This has been known
for some time, and it has previously been stated that “any
nonlinear postprocessing [. . .] would be merely cosmetic,”
and that it “does not affect the intrinsic detectability of low
contrast lesions, [. . .] at least for the ideal observer” and only
“slight gains for real observers” [19]. However, these findings
seem to be forgotten in the modern ultrasound community.
The question then arises on whether some of the alleged
benefits of adaptive beamforming could be explained by a DR
transformation that is unaccounted for. If that is the case, then
some of the reported values for CR and CNR in the literature
should be revised.

Rindal et al. [20] proposed a phantom to measure the
output DR produced by any beamforming algorithm. Using
synthetic data, we showed that some adaptive algorithms seem
to transform the DR, which, in turn, affected the estimated
CR values. Here, we extend the analysis to CNR, include four
additional adaptive beamforming techniques, include the effect
on vertical gradients, and validate the result with experimental
data. We also define a DR test (DRT) that makes it possible
to quantify the degree of DR alterations.

In Section II, we present the algorithms under study.
In Section III, we review the current contrast quality met-
rics, present the DR phantoms used both in simulation
and in experiments, describe data processing, and introduce
the DRT. Results are presented in Section IV and discussed
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Fig. 1. Geometrical illustration of the posed scenario.

in Section V. Conclusions and further work are included
in Section VI.

II. THEORY

Without loss of generality, let us assume a linear array of
M elements, laying on the x-axis, pointing toward the positive
direction of the z-axis, as illustrated in Fig. 1. The domain,
with characteristic sound speed c0, is illuminated by a generic
transmit beam, either planar, converging or diverging. Let us
denote the signal received by element m as hm(t). Let us
denote as T the distance from the origin of the transmitted
wave to the point (x, z), and as R the distance from (x, z) to
the location of element m. If we apply the propagation delay,
1t = (T + R)/c0, we obtain the signal value at (x, z) received
by element m

sm = hm(t)|t=1t (1)

also referred to as pixel value. Note that we drop the spatial
coordinates (x, z). The symbol sm refers to the pixel value at
an arbitrary location (x, z), unless otherwise specified.

A. Delay-and-Sum (DAS)

The conventional DAS implementation is the coherent com-
bination of the pixel values as received by all elements,
yielding

bDAS =
M−1
∑

m=0

wmsm (2)

where wm is the received apodization, a static term often deter-
mined from the F-number and the pixel depth z. Equation (2)
can be written in algebraic form as

bDAS = wwwHsss (3)

where sss = [s0 s1 . . . sM−1] is a vector containing the pixel
value for every channel in the system.

B. Capon’s Minimum Variance (MV)

Capon’s minimum variance (MV) technique calculates a
data dependent set of weights www while maintaining a unity gain

in the steering direction [21]. This is posed as a minimization
problem by

minwww E{|bDAS|2} = wwwH RRRwww

s.t. wHwHwHaaa = 111 (4)

where R ≡ E{ssssss H } is the spatial covariance matrix, E is the
expected value operator, and the steering vector aaa = 111 because
it is assumed that all signals are already delayed. The solution
to (4) can be found by the method of Lagrange multipliers,
yielding

wwwMV = RRR−1aaa

aaaH RRR−1aaa
. (5)

The spatial covariance matrix is unknown, but it can be
estimated for point (x, z), assuming a linear array, by [21]

R̂RR(x, z) =
∑K

k=−K

∑M−L
l=0 sssl(x, z − k)sssl

H (x, z − k)

(2K+1)(M−L+1)
(6)

where (2K +1) is the number of axial samples, L is the length
of the subarray, and

sssl(x, z) = [sl(x, z) sl+1(x, z) . . . sl+L−1(x, z)]T . (7)

The subarray averaging improves robustness. To further
improve robustness, and numerical stability, diagonal loading
is added to the estimated covariance matrix by R̃RR(x, z) =
R̂RR(x, z) + �I, where I is the identity matrix, and

� = 1

L
tr{R̂RR(x, z)}

where tr{} is the trace operator.
The beamformed image is then computed as

bMV = 1

M − L + 1

M−L
∑

l=0

wwwH
MVsssl . (8)

C. Eigenspace-Based Minimum Variance (EBMV)

The MV can be extended into eigenspace-based minimum
variance (EBMV). Asl and Mahloojifar [22] were the first to
apply it to beamforming for medical ultrasound. They utilized
the eigenstructure of the covariance matrix aiming to obtain a
better suppression of off-axis signals. The covariance matrix
is estimated with (6) and eigendecomposed as

R̂̂R̂RDL = VVV333−1VVV H (9)

where 333 = [λ1, λ2, . . . , λL ]T are the eigenvalues in descend-
ing order, and VVV = [vvv1,vvv2, . . . vvvL ] are the corresponding
eigenvectors. The signal subspace EEEs can be constructed using
the eigenvectors corresponding to the largest eigenvalues

EEEs = [vvv1, . . . , vvv E ] (10)

where E is the number of eigenvectors creating the signal
subspace. Finally, the EBMV weight is obtained by projecting
the conventional MV weights onto the constructed signal
subspace

wwwEBMV = EEEs EEE H
s wwwMV. (11)
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The beamformed image is then computed as

bEBMV = 1

M − L + 1

M−L
∑

l=0

wwwH
EBMVsssl (12)

with sssl defined as in (7).

D. Filtered-Delay Multiply and Sum (F-DMAS)

Filtered-delay multiply and sum (F-DMAS) for
medical ultrasound beamforming was introduced by
Matrone et al. [23]. The technique aims to increase the image
quality by multiplying the RF signals before summation.
Namely, the signed square root signal is defined as

gi j = sign
(

si s j

)

√

∣

∣si s j

∣

∣ (13)

where sign(·) denotes the sign function. The beamformed
signal bF-DMAS is then computed as

bF-DMAS =

⎡

⎣

M−2
∑

i=0

M−1
∑

j=i+1

gi j .

⎤

⎦

BPF

(14)

where [·]BPF denotes the bandpass filtering of the signal inside
the brackets. Note that (13) is the multiplication of two signals
with identical center frequency fc, and hence, it will have two
frequency components: one at 0, and one at 2 fc. Bandpass
filtering is applied to remove the dc component.

E. Coherence Factor (CF)

The coherence factor (CF) was first introduced by
Mallart and Fink [24], as the ratio between the coherent and
incoherent energy across the aperture

CF =

∣

∣

∣

∑M−1
m=0 sm

∣

∣

∣

2

M
∑M−1

m=0 |sm |2
. (15)

The CF has been used as an adaptive weight to increase the
image quality [25] as

bCF = CFbDAS. (16)

F. Generalized Coherence Factor (GCF)

Li and Li [25] generalized the CF as

GCF =
∑

n<M0
|Sn |2

∑

M
2 −1

n=− M
2

|Sn |2
(17)

where S is the M-point Fourier spectra over the aperture of
the delayed channel data

Sn =
M−1
∑

m=0

sme− j2π(m−M/2)d n
Md (18)

where n ∈ [−(M/2), (M/2)−1] is the spatial frequency index,
and M is assumed to be even, d is the pitch of the array,
and M0 is an arbitrary constant within [0, (M/2) − 1] that
specifies the low spatial frequency region, thus going from
−M0 to M0 . Note that if M0 = 0 the GCF simplifies to the CF.

The beamformed image is computed by multiplying the
DAS image with GCF

bGCF = GCFbDAS. (19)

Fig. 2. Gray-level transform (GLT) S-curve (24) in log space.

G. Phase Coherence Factor (PCF)

The PCF was introduced by Camacho et al. [26] as

PCF = max

{

0, 1 − γ

σ0
p

}

(20)

where γ is a parameter to adjust the sensitivity of PCF to out-
of-focus signals, σ0 = π/

√
3 is the nominal standard deviation

of a uniform distribution between −π and π , and p is given by

p = min {σ(φφφ), σ (φφφ A)} (21)

where φφφ = [φ1 φ2 . . . φM ] is the instantaneous phase across
the aperture, and σ(φφφ) is its standard deviation. To avoid
phase wrapping discontinuity, a set of auxiliary phases
φφφA = [φA

1 φA
2 . . . φA

M ] is computed as

φA
m =

{

φm + π, if φm < 0

φm − π, otherwise.
(22)

The beamformed image is computed using PCF as an adaptive
weight

bPCF = PCFbDAS. (23)

H. Gray-Level Transform (GLT)

For completeness, we include a GLT to illustrate how a
trivial transformation of the DR can affect the estimation of
contrast. In particular, beamformed images are transformed
using a sigmoid function (S-curve)

p̂(B) = 1

1 + e−α(B−β)
(24)

p(B) =
p̂(B) − max

(

p̂(B)
)

�
(25)

where the coefficients α, β, and � are defined in Section III-D,
and where B = 20 log10(|bDAS|). The plot of the S-curve is
shown in Fig. 2.

Note that the suggested S-curve compresses the signal inten-
sity in the [−30, 0]-dB interval, effectively making the light
regions more uniform, and stretches the DR from −30 dB and
downward, effectively making the dark regions even darker.
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III. MATERIALS AND METHODS

A. Image Quality Metrics

No clear consensus exists yet on how to measure the
contrast of ultrasound images. Perhaps, the most widespread
definition [14], [23], [27] is the one in [28]

CR = µROI

µB
(26)

where µ = E{|b|2} is the expected value of the power of the
beamformed signal, in the linear scale, over a certain region;
and where ROI and B denote, respectively, a region of interest
and a background region. If the signal power is proportional
to the backscattering coefficient, which is the case for speckle
signals beamformed with DAS, then CR is proportional to the
ratio of the particle concentration in both regions. CR, often
referred to as contrast ratio, can be expressed in the logarithmic
scale as

CR[dB] = 10 log10 CR. (27)

Detection probability not only depends on the mean value
of the signal power but also on its variance. An alternative
measure of contrast can be found in [29], a measure that
became later known as the contrast-to-noise ratio

CNR = |µROI − µB|
√

σ 2
ROI + σ 2

B

(28)

where σ =
√

E{(|b|2 − µ)2} is the standard deviation of the
power of the beamformed signal, in the linear scale. CNR is
an estimate of the detection probability of a lesion. In partic-
ular, for the case of circularly symmetric Gaussian-distributed
signals, which is the case of speckle signals beamformed with
DAS, CNR is bounded to the interval [0, 1]. This metric has
been used by many authors [14], [16], [23], [27].

Even though (26) and (28) were originally proposed to be
applied to signal power in natural units, many authors have
chosen to insert log-compressed values in them, effectively
defining the alternative metrics

CRLC[dB] = |µ̃ROI − µ̃B| (29)

where µ̃ = E{20 log10(|b|)} is the expected value of the
log-compressed values within the ROI and B regions, and

CNRLC[dB] = |µ̃ROI − µ̃B|
√

σ̃ 2
ROI + σ̃ 2

B

(30)

where σ̃ =
√

E{(20 log10(|b|) − µ̃)2} is the standard deviation
of the log-compressed signal within the ROI and B region.
We include the subindex LC to denote the metrics computed
on log-compressed values.

Although (29) is similar to (27), they are not identical
since 10 log10(E{|b|2}) �= E{20 log10(|b|)}. CNR and CNRLC
take completely different values and cannot be directly com-
pared. Although both are thought to be estimates of the
lesion detection probability, CRLC can take values larger
than 1, even for speckle signal beamformed with DAS. Several
authors [13], [16], [22], [30], [31] have chosen (29) and (30)
to quantify contrast.

Fig. 3. (a) Experimental and (b) simulated DR phantoms shown with
60-dB DR.

In [14], [15], [17], [25], [26], and [32], it is not
explicit whether logarithmic or natural units have been used.
In some others, variations of the classical definitions are
used [17], [22], [31].

B. Experimental Data

One element synthetic transmit aperture imaging (STAI)
data sets are used. 204 STAI data sets were recorded with
a Verasonics Vantage 256 system (Verasonics, Kirkland,
WA, USA) and an L-11 linear array (128-element,
300-µm pitch) transmitting at 5.28 MHz. The probe was
mounted on a 3-D position system Physik Instrumente [Physik
Instrumente (PI) GmbH Co. KG, Karlsruhe, Germany] with a
minimum incremental motion of 0.1 µm.

Several tissue mimicking targets were made following the
instructions in Annex II of IEC60601-2-37 [33] and cut into
the following shapes:

1) T1: A 20 × 17 mm block with a 8.5-mm-diameter
circular hole,

2) T2: A 2 × 10 mm block.

In addition, a 200-µm nylon line was used as a wire target.
The targets were placed in a water tank at 23 ◦C. The

3-D positioning system allowed us to control the target relative
position respect to the probe. Multiple data sets were recorded
separately, in particular as follows.

1) A data set was recorded with T1 centered at
(−5.5, 17.5) mm.

2) 200 data sets were recorded with T2 placed at
z = 44 mm depth with x ranging from −20 to 20 mm
to be combined into the lateral gradient.

3) Three additional data sets were recorded with the wire
target at x = 12 mm and depth z = [10, 20, 30] mm.

The 204 data sets were normalized in amplitude and
combined into a single data set via weighted addition of
RF channel data. Weights were selected so as to produce a
final gradient of 1.8 dB/mm, covering the normalized range
[0,−50] dB from −14 to 14 mm. Note that this operation is
done on RF channel data and hence before any beamforming
operation. The gradient from [0,−50] dB, −14 to 14 mm was
selected to avoid unwanted effects from the edges of the image
and ensure that the gradient was linear. The ROI used for
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contrast estimation is shown in Fig. 3(a) circumscribed by the
red circle, while the background area is shown between the two
blue circles. The experimental data set is available for down-
load from ht .tp://ww .w.USTB.no/publications/dynamic_range/.

C. Simulated Data

A data set was generated using Field II [34], [35].
A 128-element, 300-µm pitch linear probe was simulated
transmitting a 2.5-cycle Gaussian-modulated sinusoidal pulse
with a center frequency of 5.13 MHz. Element height was set
to λ/2 to produce a uniform field of view and rule out the
effect of elevation focusing [36].

A phantom was designed to match the experimental data
set as close as possible. The simulated phantom is shown
in Fig. 3(b), consisting of point targets, a hypoechoic cystic
region, and two bands with monotonically decreasing speckle
intensity.

1) A 10-mm-wide lateral gradient at z = 44 mm depth,
of 1.8 dB/mm covering a normalized scattering intensity
range of [0,−50] dB from x = −14 mm to x = 14 mm.

2) A 5-mm-wide axial gradient at x = 16.5 mm in the
azimuth direction, of 1.8 dB/mm covering a normalized
scattering intensity range of [0,−50] dB from z = 10
to z = 39 mm. The axial gradient is not present in the
experimental data.

In addition, and different from the experimental data set,
four rectangular speckle regions are placed at z = 30 mm
depth with intensities 0, −10, 0, and −35 dB to help
the discussion of the results. We ensure well developed
speckle [37] using 650 scatterers per mm3. The scatters are
placed on a 2-D plane using Gaussian random amplitude to
mimic positions in elevation. The ROI used for the contrast
estimation is circumscribed by the red circle in Fig. 3(b),
while the background region is that between the two blue
circles. The simulated data set can be downloaded from
ht.tp://ww .w.USTB.no/publications/dynamic_range/.

D. Data Processing

Both the simulated and experimental data sets were beam-
formed with the UltraSound ToolBox (USTB) [38] using a
dynamic expanding aperture with F number 1.75 and a
rectangular window, both in transmit and receive.

All the transmit signals were delayed and combined to
produce globally focused images. The beamformers described
in Section II were applied only on the receive channels.

Some of the algorithms have user-settable parameters.
For MV, L was set to 50% of the active receive channels,
K = 1.5λ, and a diagonal loading factor of 1 = 1/100 was
used as suggested in [21]. The number of eigenvectors used
in EBMV was selected adaptively using the eigenvectors with
eigenvalues larger than δ = 0.5 times the maximum eigenvalue
as suggested in [22]. For GCF, the value M0 = 2 was used as
suggested in [25]. For PCF, γ = 1 was chosen as suggested
in [26]. For the S-curve in the GLT algorithm, we used
α = 0.12, β = −40, and � = 0.008.

The sound speed in the simulation was 1540 m/s, while
for the experimental data set, 1470 m/s was used. All images

were compensated to obtain uniform speckle intensity in the
whole field of view. This was done differently in the simu-
lated and experimental data. In the simulation, an analytical
compensation was used that accounted for the focal depth
and element directivity. Details on this compensation are
given in [36] together with data and code. In the experiment,
the compensation was carried out empirically. A uniform
block of Agar was imaged, with fully developed speckle,
and the estimated intensity field was spacially averaged and
inverted. Both processes could be seen as a software time gain
compensation performed on a uniform reference.

The beamforming grid was 1024 × 2048 pixels to cover the
demands of F-DMAS in the axial direction, since F-DMAS
produce a frequency component at 2 fc, and of MV in the
lateral direction [39]. The code used to beamform the images
and reproduce all the results in this manuscript is avail-
able at ht.tp://ww .w.USTB.no/publications/dynamic_range/ for
MATLAB (The MathWorks, Natick, MA, USA).

E. Dynamic Range Test (DRT)

With gradients in both the simulated and experimental data
set, we can define a DRT as

DRT = 1

10
(31)

where 1 denotes the gradient of a given beamforming method,
estimated via linear regression, and 10 denotes the theoretical
gradient, as fixed in the simulated and experimental data. DRT
measures how many decibels the output DR deviates from the
theoretical, for each decibel of the input DR.

For the simulated data set, we have both an axial and
a lateral gradient and DRT can be estimated for both. For
simplicity, the reported DRT value will be the average of the
DRT in the axial and lateral directions. For the experimental
data set, DRT is estimated in the lateral gradient.

The data sets and code to perform the test are available at
ht.tp://ww .w.USTB.no/publications/dynamic_range/.

IV. RESULTS

The images produced by all the methods in Section II
are shown in Fig. 4, for both simulated [Fig. 4(a)–(h)], and
experimental [Fig. 4(i)–(p)] data.

Fig. 5 shows the contrast of the hypoechoic cyst, for
both simulated and experimental data, using the metrics in
Section III-A and for all methods under study. As expected,
we observe a good correlation between CR and CRLC for
all methods and data type, while CNR and CNRLC are not
obviously correlated.

The method showing the highest CR and CRLC is GLT
followed by EBMV, CF, or PCF. GLT also shows the best
CNR, followed by DAS and GCF. GLT has the highest CNRLC
followed by EBMV and MV.

To study how each of the studied methods altered the DR,
the mean intensity profile along the gradients was computed,
and it is shown in Fig. 6. Simulated and experimental data are
plotted in the same figure against the ground truth.

In general, we see a good agreement between the sim-
ulated and experimental results. As expected, DAS follows
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Fig. 4. Images of the simulated phantom (a–h) and the experimental phantom (i–p) for all beamformers under study. The images are shown with 60-dB
dynamic range.

the ground truth closely. MV shows also a good agreement,
while EBMV abruptly drops at −30 dB. F-DMAS shows a
slight compression of the DR within 0 and −25 dB, and DR
stretching from −25 dB and downward. The other adaptive

beamformers (CF, GCF, and PCF) show a similar output DR
that stretches the DR from −20 dB and downward.

To illustrate how DR transformations can affect the visibility
of clinically relevant structures, we included four speckle
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Fig. 5. Measured contrast of the simulated and the experimental hypoechoic cyst at (−5.5, 17.5) mm using all contrast metrics as defined in Section III-A.
(a) CR. (b) CRLC . (c) CNR. (d) CNRLC .

Fig. 6. The normalized average response of both the axial and lateral gradient for the simulation and the lateral gradient for the experimental data plotted
against the theoretical response. The simulated axial gradient is measured between z = 10 mm and z = 38 mm, while the simulated and experimental lateral
gradient is measured between x = −14 mm and x = 14 mm.

regions in the simulated phantom, with backscattering intensity
of 0, −10, 0, and −35 dB, as shown in Fig. 7(a)–(h) in a
60-dB DR. The average lateral response through the speckle
regions are shown in Fig. 8. The four speckle regions are easily
observed in the DAS and MV images. The visibility of the
−35-dB region is significantly reduced in the F-DMAS, GCF,

and GLT images; while the region is completely removed in
the EBMV, CF, and PCF images.

For completeness, we have included examples of the full
DRT defined in Section III-E for DAS, EBMV, and CF for
the simulated data set in Fig. 9(a)–(c) and the experimental
data set in Fig. 9(d)–(f). The region used to estimate the
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Fig. 7. Enlarged images of part of the simulated image containing speckle regions with two smaller speckle regions with a difference in echogenicity of
10 dB, left, and 35 dB, right. The images are shown with 60 dB dynamic range. Notice, that the speckle region between x = −0.5 and x = 2 mm is present
in the DAS and MV image, partly visible in the F-DMAS, GCF and GLT image but completely gone for EBMV, CF, and PCF image.

Fig. 8. Average lateral response through the speckle regions shown in Fig. 7.

gradient is indicated with the dashed color in the B-mode
image and plotted in the subplot with the corresponding color.
The theoretical and estimated gradients are in the subplot.
In Fig. 9(g), the DRT values, the ratio between the estimated
and the theoretical gradient, is plotted for all beamformers.

V. DISCUSSION

All the studied adaptive beamformers produce higher CR
than DAS as measured by (26) or (29), with the exception of
MV which only improves the contrast in the simulated case.
However, one can get an arbitrarily high contrast using the
trivial GLT, as shown in Fig. 5(a) and (b). This proves that
higher CR does not necessarily mean better image quality or
better lesion detection.

Using the classical definition of CNR given in (28),
we observe that GLT holds the highest value. Again, this
proves the point that a trivial transformation of DR can lead
to increased CNR values.

If the definition in (30) is used, GLT has a slightly higher
value than EBMV. This proves that DR transformations can
alter the estimation of CNR, and that a higher CNR does not
necessarily mean better lesion detectability.

Using the suggested DRT, we observe that EBMV,
F-DMAS, CF, GCF, PCF, and GLT all produce DR stretching.
This is evident from Fig. 6 where we observe that only
the DAS and MV follow the linear drop of the horizontal
intensity gradient. The test reveals the DR transformation
curves associated with each technique: EBMV has an abrupt
drop between −30 and −35 dB; whereas, F-DMAS, CF, GCF,
PCF, and GLT have a parabolic curve that stretches the region
below −20 dB. We observe that the gradient of the curve is
notably smaller for F-DMAS, which fits the findings in [40].

From the examples of the DRT in Fig. 9, and the resulting
gradients in Fig. 6, we can observe that the resulting gradients
for most of the beamformers seem to be of higher orders
than a linear line. However, a linear line is suitable as an
intuitive indicator to determine if a beamformer is alternating
the DR. Thus, the DRT values, plotted in Fig. 9(g), provide a
quantitative indication of the DR alteration of the beamformer.
It should also be mentioned that the selected DR of the
gradient will affect the resulting DRT values and that we chose
the largest DR possible while still maintaining a linear gradient
in the experimental data.

We observe that the increase in CRLC with respect to that of
DAS seems to be correlated with the amount of DR stretching
as measured by the DRT. Fig. 10 shows the DRT value, for
all the methods except GLT, versus the CRLC improvement
compared to DAS. We observe that R2-adj = 0.88 (0.72 when
including the GLT) for simulated data and R2-adj = 0.98
(0.98 when including the GLT) for experimental data. This
indicates that CR enhancement in the tested algorithms may
be merely due to DR stretching. The GLT curve was chosen to
fit the experimental results, and this choice probably explains
the lower R2-adj for the simulated data.

In [20], we suggested that DR transformations could be
compensated by a calibration of the beamformed images, using
the gradient response. In [20], we tested this approach on
several algorithms and observed a dramatic reduction in CR
improvement. However, even though known phantoms can be
calibrated, adaptive beamformers can produce DR transfor-
mations that are dependent on the structures in the image.
In other words, the DR transformation curve of an adaptive
beamformer is often image-dependent: it can differ from
patient to patient, from organ to organ, or even between areas
of the same image. This is illustrated in Fig. 11. In Fig. 11(a),
the estimated gradient is shown for all methods after compen-
sation, producing perfect linear slopes as expected. However,
if we observe the intensity of the block along the depth
z = 30 mm, in Fig. 11(b), we see that the calibrated signals
still differ from the theoretical for some of the methods.

This can be explained. The pixel intensity produced by
coherent-based methods, such as CF, PCF, and GCF, is highly
dependent on the ratio of coherent to incoherent energy, which
in turn depends on the slope of the gradient. In gradients that
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Fig. 9. Examples of the DRT defined in Section III-E. (a)–(c) DAS,
EBMV, and CF on the simulated data set, while (d)–(f) on experimental data.
(g) Resulting DRT value for all beamformers.

change slowly, along the lateral direction, this ratio will be
larger than in gradients that change more abruptly. Hence,

Fig. 10. Improvement in CRLC compared to DAS plotted against the DRT
value which is the ratio between the estimated and the theoretical gradient.
The results from the (a) simulated and (b) experimental data.

Fig. 11. (a) Simulated lateral gradient after calibration is plotted.
(b) Response through the speckle regions as in Fig. 8 but after calibration.

it becomes then impossible to find a single calibration curve
for the whole image and for the whole algorithm.

Consider the phantom in Fig. 12(a) where only the axial
gradient is included. Fig. 12(b) shows the DR transformation
curves for DAS, CF, GCF, F-DMAS, MV, EBMV, and PCF.
Note that, in this case, all beamformers leave the output
DR almost unaltered. We must then conclude that it is the
presence of the other structures, in the lateral direction, that
induces DR stretching. Based on these two results, we now
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Fig. 12. (a) DAS image of the simulated phantom with all other elements
of the phantom removed but the axial gradient. (b) Average response of the
axial gradient, when only the axial gradient is present in the image, is plotted
for all beamformers.

believe, contrary to in [20], that compensating for the effect
is extremely difficult, if not impossible.

Even though we cannot correct DR transformations, it is
important to be aware of its consequences. The images
in Figs. 7 and 8 illustrated that DR stretching can lead to
some information not being displayed, information that could
be clinically relevant. In most cases that information could be
recovered if the image is displayed using a different dynamic
scale, but that will also reduce the apparent visual contrast that
seems to correlate with the increase in C and CNR values.

We showed that DR transformation makes any estimation
of CR and CNR questionable, and given that some adaptive
beamformers transform the output DR, it follows that claims
on lesion detectability based on CR and CNR estimates should
be revised. We have introduced data sets and code making it
possible to investigate whether and how much a beamforming
method is alternating the DR.

The results presented here expose a dangerous weakness of
our image quality metrics. This weakness must be remediated.
We must lay the groundwork upon which we build the new
techniques. A new metric for contrast must be sought, one
that is immune to DR transformations, and help us assess the
relevance of present and future beamforming techniques.

VI. CONCLUSION

We propose a dynamic range test to estimate the out-
put dynamic range of any beamforming algorithm. This
test, comprising data and code, is made publicly available
through the UltraSound ToolBox (USTB, ht .tp://ww .w.ustb.no/
publications/dynamic_range/), allowing anyone to check if
an algorithm transforms the output DR of the beamformed
images.

We applied the proposed test to several state-of-the-art
algorithms: DAS, MV, EBMV, F-DMAS, CF, GCF, and PCF.
We show that some state-of-the-art beamformers alter the DR
either by compressing it, by stretching it, or by a combination
of both. The amount of dynamic range alteration, as measured
by the dynamic range test, correlates the CR improvement with
R2-adj = 0.88 for the simulated data and R2-adj = 0.98 for
the experimental data.

Our results show that improvements in CR and CNR can,
for some beamformers, be explained by a stretching of the
dynamic range. Thus, claims on lesion detectability based
on the CR and CNR metrics should be revised, and metrics
immune to dynamic range alterations should be sought.
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