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emain objective of this study is to explore the contribution of complex network together with its di�erent de�nitions of vertexes
and edges to describe the structure of proteins. Protein folds into a speci�c conformation for its function depending on interactions
between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual
components residues, and edges were interactions between residues.What is the proper time for representing a protein structure as
a network? To con�rm the e�ect of di�erent de�nitions of vertexes and edges in constructing the amino acid interaction networks,
protein domains and the structural unit of proteins were described using this method. 
e identi�cation performance of 2847
proteins with domain/domains proved that the structure of proteins was described well when �C� was around 5.0–7.5 Å, and the

optimal cuto� value for constructing the protein structure networkswas 5.0 Å (C�-C� distances) while the ideal community division
method was community structure detection based on edge betweenness in this study.

1. Introduction

Protein structure comparison and classi�cation are a di�cult
but important task since structure is a determinant for
molecular interaction and function [1]. Protein folds into a
speci�c conformation for its function depending on inter-
actions between residues. Consequently, a protein structure
can be treated as a complex system comprised of individual
components residues. 
e method of complex network has
been widely applied in various types of �elds such as disease
[2–4], drug target [5], drug design [6]. Network analysis
facilitates the characterization of such complex system and
its individual components [7, 8]. 
is provides novel insights
into understanding the protein folding mechanism [9, 10],
stability [11], function [9, 12, 13], and dynamics [14] and,
more speci�cally, the study of protein structures. Viewing the
protein structure as the an intricate network of interacting
residues, metastructure analysis was proved to be an e�ective
tool for large-scale (genome-wide) protein sequence analysis
target selection for structural genomics and the identi�cation
of intrinsically unstructured (unfolded) proteins [15]. Analy-
sis of the protein structure graphs showed that the aromatic

residues along with arginine, histidine, and methionine act
as strong hubs at high interaction cuto�s, which are found to
play a role in bringing together di�erent secondary structural
elements in the tertiary structure of the proteins [11].
rough
transforming the protein structure into residue interaction
graphs, active site, ligand-binding, and evolutionary con-
served residues were found to have high closeness values
typically. 
is property will then be used to identify key
protein residues [16]. Moreover, so�ware tools were pre-
sented for the automatized generation, 2D visualization, and
interactive analysis of residue interaction networks, which
proved that residue networks are crucial for understanding
structure-function relationships [17]. A novel web server,
RING, was presented to construct physicochemically valid
residue interaction networks interactively from PDB �les
for subsequent visualization in the Cytoscape platform [18].

e application ofCytoscape plug-ins,NetworkAnalyzer [19],
and RINalyzer [17] were demonstrated for the standard and
advanced analyses of network topologies [20].

In these studies, di�erent strategies were used to de�ne
a vertex in literature: (a) only the C� [9, 10, 15, 21–23] or
C� [21, 24] of an amino acid; (b) the center of the side
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chain [11]; (c) all atoms in a residue were taken into account
[16, 25]. Moreover, de�nition of edge also appears crucial
in the construction of such networks. 
e characterization
of protein structure is sensitive to the threshold for edges
such as 5 Å (distances between two atoms from two amino
acid residues) [25], 8 Å (C�-C� distances) [15], 8.5 Å (pairs
of amino acids) [9], and a strict cuto� value of 7 Å [9, 10,
15, 21–23] based on the discovery that representing amino
acids by C� atoms may introduce bias for cuto�s below 6.8 Å
[23].

Which strategy is more reasonable among all these
choices? Studies have been made to �nd the answer. 
ree
models were compared to prove the e�ects of the anisotropic
nature of the side chain on the identi�cation of the contact
amino acid pairs [26]. 
e main objective of this study is to
explore the contribution of complex network togetherwith its
di�erent de�nitions of vertexes and edges to describing the
structure of proteins. Automatic decomposition of protein
structures into domains remains a challenging problem
[27], and numbers of computer algorithms have been pro-
posed [27–30]. Since domains can be considered as semi-
independent structural units of a protein capable of folding
independently [31, 32], consequently, the identi�cation of
protein domains is an e�cient way to present whether a
method can describe the protein structure well. In addition,
the connections between the residues are dense within these
structural units, which are similar to the connections between
communities of the complex networks, expressing the com-
munity properties of such network well. To facilitate the
understanding of such complex systems, community division
was used to analyze these amino acid interaction networks.

e purpose of this method is to divide the vertexes of the
networks into groups, within which the connections between
the vertexes are dense and the connections between which
are sparser in the same time [33]. Moreover, a number of the
methods based on community have been published in many
�elds [34–39].

In this study, protein structures were represented by
complex networks, in which a vertex is a residue and an
edge is an interaction between residues. Here, di�erent cuto�
values and strategies used for de�ning a vertex were tested.
For a dataset of 2847 proteins with domain/domains, the
identi�cation performance in this study was assessed by
accuracy (Acc), whichwas de�ned as the proportion of amino
acids correctly identi�ed in the certain domain regions of
the query sequences according to the information of protein
structures in SCOP [40]. For example, suppose the domain
regions of the query sequence have 100 amino acids; if 90
of which were correctly identi�ed as belonging to domain
regions while the other 10 were misjudged as sequence
regions, then the Acc will be 90%. It was observed that when
the community divisionmethod was based on edge between-
ness, the Acc (�C�) was stable at ∼86% when �C� was around
5.0–7.5 Å, and Acc (�C�) achieved the highest value of 86.68%
when �C� was 5.0 Å. In addition, when the community
division method was based on random walks, the Acc (�C�)
was ∼81% when �C� was around 6.5–7.5 Å, and Acc (�C�)
achieved the highest value of 81.87% when �C� was 7.0 Å and

Table 1: 
e composition of proteins contained in the dataset.

Number of domains 1 2 3 4 5 6 7

Number of proteins 1450 1077 230 66 19 3 2

the step size was 10. 
e identi�cation performance proved
that the optimal cuto� value for constructing the protein
structure networks was 5.0 Å (C�-C� distances), while the
ideal community division method was community structure
detection based on edge betweenness in this study.
e results
suggested that the amino acid interaction networks are an
e�cient method for describing the structure of proteins,
and the di�erent de�nitions of vertexes and edges do have
important e�ect in this process.

2. Materials and Methods

2.1. Data Collection and Data Set Construction. 
e infor-
mation on domains in proteins in this study were collected
from ASTRAL SCOP [40] version 1.75 database. Protein
domains in SCOP are grouped into species and hierarchically
classi�ed into families, superfamilies, folds, and classes [41].

is database organizes proteins hierarchically according to
their families and folds, which is generally considered as the
standard for protein structure classi�cation [42]. In order to
ensure the nonredundancy of the data, only these proteins
with a pairwise sequence identity ≤30% were downloaded,
and only those in which the structures were solved by X-ray
crystallography with resolution ≤2.5 Å were kept for the clear
structure of the proteins. Finally, the remaining 2847 proteins
were le� for this research. 
e compositions of the dataset
were listed in Table 1.

2.2. Protein Structure Network. Protein structures can be
represented as complex networks where amino acids are
the nodes and their interactions are the edges [43]. In this
study, each protein was considered a small self-governed
network system. 
e structure of proteins was transformed
into a complex network by taking amino acid residues as
the vertexes and the interactions between the amino acid
residues as edges. Various protein structure networks were
constructed to investigate the protein structure and the
in�uence of di�erent strategies in building them.

Here, edges are de�ned in three ways, and from which
the optimal cuto� value was �nally chosen. Two amino acid
residues have a connection if (a) the distance between C�
(de�ned as �C�) is 3–10 Å (step size of 0.5 Å, 15 di�erent
numerical values in all); (b) the distance between the centers
of the side chains (de�ned as �cent) is 3–10 Å (step size of
0.5 Å, 15 di�erent numerical values in all); (c) the distance
between any atoms of the amino acid residues (de�ned as
�atm) is 0–6 Å (step size of 0.5 Å, 13 di�erent numerical
values in all).
e semidiameters of the atoms were taken into
consideration. 
e amino acid residues interaction networks
de�ned in this study are as shown in Figure 1, 3D structure of
which is quite distinct.
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Figure 1: 
e amino acid residues interaction network. PDB code 1BZ7, chain A.
e 3D structure of which is shown above together with its
side, top and upward view. Here, the vertex is de�ned as C�, and the edge is C�-C� distances which is set at 7.5 Å. Each point in the �gure
represents an amino acid in the chain, which is also the vertex of the network. Ligatures between the vertices are the edge of the network,
which illustrate the interaction between the amino acids. For contrasting the �gure of community division with this complex network, each
vertex is colored based on its identity in SCOP. Here, reddish purple and blue represent di�erent domain regions in this chain.

2.3. Community Division. Tools for network analysis are
�rmly grounded on the results in graph theory [44], including
which network community structure plays an important role
in organizing and understanding the complex networks. 
e
network communities were identi�ed as dense groups of the
network, whose nodes have a much stronger in�uence on
each other than on the rest of the network [35]. Moreover,
the connections between the residues are dense within
domains, which express the community properties of such
network well. Based on this characteristic, in this study,
the community division methods were used to divide the
whole sequences into potential domain regions. Two di�erent
methods were employed here: community structure detec-
tion based on edge betweenness and community structure via
short random walks, and between which the more ideal one
was �nally choosen.

2.3.1. Community Structure Detection Based on Edge Between-
ness. Algorithms based on betweenness have been widely
applied in various types of networks such as email messages,
animal social networks, collaborations of jazz musicians,
metabolic networks, and gene networks [33, 45–49]. Formore
detailed description of this method, refer to papers [45, 50].

e principle of the community structure detection based
on edge betweenness is that it seems that all the shortest
paths from one module to another must traverse through the
edges connecting separate modules, which have high edge
betweenness in that case.

As a result, this algorithm is performed by calculating
the edge betweenness of the graph and removing the edge
with the highest edge betweenness score gradually in order to

obtain a hierarchical map.
is rooted tree is the dendrogram
of the graph, the leaves are the individual vertices, and the
roots represent the whole graph. Finally, a numeric matrix is
constructed using this algorithm.

2.3.2. Community Structure via Short Random Walks. Algo-
rithms based on random walks have been applied in various
researches of networks [50, 51]. 
is algorithm tries to
�nd densely connected subgraphs which are also known
as communities in a graph via short random walks. 
e
principle of this algorithm is that short random walks are
likely to stay in the same community. It takes every single
node as an independent community at �rst, then those of
which tally with certain rules were incorporated together step
by step. It introduces � as a distance between the vertices,
which shall be small if the two vertices are in the same
community and large if they are not.

3. Results and Discussion

3.1. Community Division Based on Edge Betweenness. In
this section, community division method based on edge
betweenness was applied on complex networks, and the
e�ect of di�erent cuto� values of edges for constructing
complex networks was analyzed. 
en, an optimized cuto�
value was identi�ed. 
e �owchart of these two steps, amino
acid interaction network together with community division
methods, is shown in Figure 2.

For the fairness of the contrast, all complex networks
constructed by di�erent cuto� values were analyzed by
community divisionmethod, which insures themost optimal
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Figure 2: 
e �owchart of the amino acid interaction network together with community division method. PDB code 1BZ7, chain A. Each
point in the �gure represents an amino acid in the chain, which is also the vertex of the network. Ligatures between the vertices are the edge of
the network, which illustrate the interaction between the amino acids. Here, the reddish purple and blue represent di�erent domain regions
in this chain based on the identity in SCOP. Firstly, an amino acid complex network was constructed with the vertex de�ned as C�, and the
edge as C�-C� distance which was set at 7.5 Å, as shown in (a). Secondly, community division was based on edge betweenness, and the �rst
edge with the highest edge betweenness score was removed, as shown in (b). 
irdly, more edges were removed based on the algorithm, and
(c) shows that three edges were removed. Fourthly, the community division was �nished when the correct number of edges was removed,
as shown in (d); two di�erent domains have been clearly separated, and �ve edges were removed for this protein. Finally, if the community
division is taken continually, more communities will be found in the complex network. (e) shows the result of community division for chain
A of protein 1BZ7 a�er removing 500 edges in this complex network, and many more communities illustrate the wrong results according to
the identity in SCOP.

results. In order to obtain the best prediction performance,
di�erent cuto� values were evaluated based on multidomain
proteins. 15 di�erent values (3–10 Å) of the �C� and the �cent
(step size of 0.5 Å) were optimized, respectively, and so were
other 13 di�erent distance values (0–6 Å) of �atom (step size
of 0.5 Å).

First, threshold of 7 Å, which has been reported to be
an important distance parameter because all contacts are
complete and legitimate (not occluded) at this distance [23],

was analyzed.
e results were obtained a�er the community
division. 
e identi�cation performance in this study was
assessed by accuracy, which was de�ned as the proportion of
amino acids correctly identi�ed in the certain domain regions
of the query sequences.When the �C� and the �cent were 7 Å,
respectively, the results are 86.21% and 85.16%, respectively.

More cuto� values were tested via di�erent strategies
of vertex. First, the average accuracies for all the proteins
de�ned by �C� were listed in Table 2. 
e results indicated
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Table 2:
e accuracies of all proteins de�ned by �C� based on edge
betweenness.


reshold Accuracy

3 Å 2.15

3.5 Å 2.17

4 Å 78.96

4.5 Å 83.42

5 Å 86.68

5.5 Å 86.45

6 Å 85.54

6.5 Å 85.76

7 Å 86.21

7.5 Å 85.92

8 Å 85.21

8.5 Å 84.75

9 Å 84.28

9.5 Å 83.71

10 Å 83.86

Table 3:
e accuracies of all proteins de�ned by�cent based on edge
betweenness.


reshold Accuracy

3 Å 2.14

3.5 Å 2.59

4 Å 3.79

4.5 Å 7.42

5 Å 33.99

5.5 Å 78.87

6 Å 84.53

6.5 Å 85.04

7 Å 85.16

7.5 Å 85.52

8 Å 84.89

8.5 Å 84.48

9 Å 83.83

9.5 Å 83.56

10 Å 83.40

that when the method was based on the edge betweenness,
Acc (�C�) achieved the highest 86.68% when �C� was 5.0 Å.
When �C� was around 5.0–7.5 Å, the accuracies were around
86%, and the bias of the numerical values in this area was
small (∼1%). 
is illustrated that the cuto� values in this
area re�ected protein structure well. Second, the average
accuracies for all the proteins de�ned by �cent were listed
in Table 3. 
e results indicated that Acc (�cent) achieved
the highest 85.52% when �cent was 7.5 Å. When �cent was
around 6.5–8.0 Å, Acc (�cent) showed relatively ideal values
around 85%, which illustrated that the cuto� values in this
area re�ected protein structure well. However, the bias of the
numerical values was evident for all the numerical values
of �cent. Acc (�cent) were lower than 10% when �cent was
around 3.0–4.5 Å, which were generated by the otherness

Table 4: 
e accuracies of all proteins de�ned by �atom based on
edge betweenness.


reshold Accuracy

0 Å 85.06

0.5 Å 85.36

1.0 Å 85.58

1.5 Å 85.59

2 Å 85.06

2.5 Å 84.39

3 Å 83.73

3.5 Å 83.50

4 Å 83.95

4.5 Å 83.93

5 Å 83.51

5.5 Å 83.45

6 Å 83.31

of the size of side chains. 
ird, the average accuracies for
all the proteins de�ned by �atom were listed in Table 4.

e results indicated that when the distance between any
atoms of the amino acid residues de�ned as �atom was taken
into consideration, the superiority of the diversity of the
volume of atoms should also be taken into consideration.
Acc(�atom) achieved the highest value of 85.59% when �atom
was 1.5Å. When �atom was around 0.0–2.0 Å, Acc (�atom)
showed relatively ideal values around 85%, and the bias of the
numerical values in this area was small (∼0.6%). When the
cuto� values were bigger than 2.0 Å, Acc (�atom) decreased
monotonically as�atom increased.
at is, overlarge�atom will
lead to the incorrect identi�cation of the interactions among
amino acids, which will distort the actual protein structure.

It was observed that when the community division
method was based on edge betweenness, the Acc (�C�) was
stable at ∼86%, which illustrated that the network charac-
terization of protein structure would not be limited by its
type. Furthermore, Acc (�cent) was ∼1% lower than that of
Acc (�C�), which was generated by the cuto� value. 
at
is, the side chains of the amino acids have a certain space
volume, and a big cuto� value signi�es the space overlap
of the atoms from di�erent amino acids, which is obviously
inappropriate for protein structure. In conclusion, Acc (�cent)
was lower than Acc (�C�) and Acc (�atom), which illustrated
that the space speci�city of the side chains of amino acids
a�ects the construction of the amino acids complex networks.
It was observed that the highest accuracy obtained was
86.68% (�C� = 5.0 Å). 
at is, the optimal cuto� value was

5.0 Å (C�-C� distances) when the ideal community division
method was based on edge betweenness.

3.2. Community Division Based on Random Walks. In this
section, the community division method based on random
walks was analyzed. 
e same cuto� values were evaluated
here based on multidomain proteins, that is, 15 di�erent
numerical values (3–10 Å) of the �C� and the �cent (step size

of 0.5 Å) and other 13 di�erent numerical values (0–6 Å) of
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Table 5: Acc (�C� ) and Acc (�cent) of all proteins based on random

walks under 7 Å of di�erent step sizes.

Step size 3 4 5 6 7 8 9 10

Acc (�C� ) 77.37 78.56 79.84 80.21 80.93 81.23 81.43 81.93

Acc (�cent) 76.39 77.62 78.56 79.12 79.64 80.05 80.13 80.70

Table 6: 
e accuracies of all proteins de�ned by �C� based on
random walks.


reshold Accuracy

3 Å 0

3.5 Å 0

4 Å 67.14

4.5 Å 69.65

5 Å 73.84

5.5 Å 79.87

6 Å 80.39

6.5 Å 81.09

7 Å 81.93

7.5 Å 81.85

8 Å 80.97

8.5 Å 80.48

9 Å 80.46

9.5 Å 79.95

10 Å 79.71

�atom (using a step size of 0.5 Å). In addition, the step sizes
of the community division based on random walks were also
optimized here.

First, threshold of 7 Å [23] was analyzed for all the
proteins. When the �C� and the �cent were 7 Å, respectively,
the results are listed in Table 5.

It was observed that when the community division
method was based on random walks under the threshold
of 7 Å via di�erent step sizes, the highest Acc (�C�) and
Acc (�cent) were 81.93% and 80.70%, respectively. 
e nume-
ric values of them all were ∼4% lower than that for edge
betweenness, which was generated by the method itself. 
at
is, the algorithm based on the random walks attempted
to �nd a given length called step size, which is obviously
inappropriate for domains of di�erent sizes. In large domains,
a short length will not project all the amino acids in the same
community.

More cuto� values were tested via di�erent strategies
of vertex. First, the average accuracies for all the proteins
de�ned by �C� were listed in Table 6. 
e results indicated
that Acc (�C�) achieved the highest 81.87% when �C� was
7.0 Å and the step size was 10. When �C� was around 6.5–

7.5 Å, the accuracies were around 81%, and the bias of the
numerical values in this area was small (∼1%).
is illustrated
that the cuto� values in this area re�ected protein structure
well. However, the numeric of Acc (�C�) was ∼5% lower than
that for edge betweenness. Second, the average accuracies for
all the proteins de�ned by �cent were listed in Table 7. 
e
results indicated that Acc (�cent) achieved the highest value of

Table 7: 
e accuracies of all proteins de�ned by �cent based on
random walks.


reshold Accuracy

3 Å 0

3.5 Å 0

4 Å 0

4.5 Å 0

5 Å 0

5.5 Å 5.05

6 Å 59.20

6.5 Å 78.34

7 Å 80.63

7.5 Å 80.63

8 Å 80.77

8.5 Å 80.20

9 Å 79.60

9.5 Å 79.64

10 Å 79.41

Table 8: 
e accuracies of all proteins de�ned by �atom based on
random walks.


reshold Accuracy

0 Å 80.39

0.5 Å 80.58

1.0 Å 80.82

1.5 Å 80.70

2 Å 80.79

2.5 Å 80.08

3 Å 79.55

3.5 Å 79.35

4 Å 79.24

4.5 Å 78.98

5 Å 78.68

5.5 Å 78.36

6 Å 77.49

80.77% when �cent was 8.0 Å and the step size was 10. When
�cent was around 7.0–8.5 Å, Acc (�cent) showed relatively ideal
values around 80%, which illustrated that the cuto� values in
this area re�ected protein structure well. However, the bias
of the numerical values was evident for all the numerical
values of �cent, which were generated by the otherness of the
side chains. 
e numeric of Acc (�cent) was ∼5% lower than
that for edge betweenness, and Acc (�cent) was as low as 0%
when�C� was around 3.0–5 Å, whichmay be produced by the
looseness of the complex networks constructed under these
thresholds. 
ird, the average accuracifes for all the proteins
de�ned by �atom were listed in Table 8. 
e results indicated
that when the distance between any atoms of the amino acid
residues de�ned as �atom was taken into consideration, the
superiority of the diversity of the volume of atoms should
also be taken into consideration. Acc (�atom) achieved the
highest value of 80.82% when �atom was 1.0 Å and the step
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Table 9: 
e optimal accuracies of each dataset based on edge betweenness.

Dataset 1 2 3 4 5 6 7 8

�C� 7.00 Å 5.50 Å 5.50 Å 5.00 Å 5.50 Å 5.00 Å 5.50 Å 5.50 Å

Accuracy 84.67 89.08 87.07 86.52 87.35 87.26 86.95 86.50

�cent 6.50 Å 7.50 Å 7.50 Å 7.50 Å 7.50 Å 7.50 Å 7.50 Å 7.50 Å

Accuracy 82.51 86.93 86.50 85.74 86.17 86.58 85.85 85.49

�atom 1.00 Å 1.00 Å 0.50 Å 1.00 Å 1.50 Å 1.00 Å 1.00 Å 1.00 Å

Accuracy 82.89 87.54 86.24 86.13 86.94 86.61 85.61 85.80

Table 10: 
e optimal accuracies of each dataset based on random walks.

Dataset 1 2 3 4 5 6 7 8

�C� 6.00 Å 7.50 Å 7.50 Å 7.50 Å 7.50 Å 7.00 Å 7.50 Å 7.00 Å

Step size 10 10 10 10 10 10 10 10

Accuracy 75.34 85.00 82.46 81.61 83.20 83.39 82.25 81.93

�cent 7.00 Å 7.00 Å 8.00 Å 8.00 Å 8.00 Å 8.00 Å 7.50 Å 7.00 Å

Step size 10 10 10 10 9 10 10 10

Accuracy 74.62 84.95 80.97 80.89 81.84 82.67 80.61 80.79

�atom 0.50 Å 1.50 Å 0.50 Å 1.00 Å 1.50 Å 1.00 Å 1.00 Å 1.00 Å

Step size 10 10 10 9 10 10 10 10

Accuracy 74.85 84.66 81.20 81.11 82.36 82.97 81.45 80.95

size was 10. When �atom was around 0.0–2.5 Å, Acc (�atom)
showed relatively ideal values around 80%, and the bias of
the numerical values in this area was small (∼1%). However,
the numeric of Acc (�atom) was 5% lower than that for edge
betweenness.

In conclusion, Acc (�cent) was lower than Acc (�C�) and
Acc (�atom). It was observed that when the community
division method was based on random walks, the numeric of
the accuracy was lower than that based on edge betweenness
all the while, which indicated that the ideal community
division method for this research was community structure
detection based on edge betweenness. Moreover, the value
of Acc (�cent) was the worst via both the two community
division methods all along. Similar results were obtained in
the study of side chain contact models; three models were
compared and the isotropic sphere side chain (ISS) model
was the worst in accuracy.
ey proved that the model which
took the spatially anisotropic nature of the side chain into
consideration would eliminate about 95% of the incorrectly
counted contact pairs in the ISS model [26]. However, this
kind of practicalmodels do have lessmoderate computational
cost than the popular representationmodel such as the use of
C� atom, which is proved to be e�ective for the kind of the
data in this study.

3.3. �e Stability Analysis of the Method. To verify the
stability of the method, 8 datasets were constructed based on
multidomain proteins. 
e �rst dataset was composed of 100
proteins, and every other dataset contained 100 proteinsmore
than the previous one. 
at is, the 8th dataset contained 800
proteins.


e same operationswere taken based on these 8 datasets.
Di�erent numerical values of �C� (3–10 Å), �cent (3–10 Å),

and �atom (0–6 Å) were optimized based on two community
division methods. 
e highest accuracies for each dataset
were listed in Tables 9 and 10.

It was observed that when the community division
method was based on edge betweenness, Acc (�C�) for each
database got the highest results around ∼86%–89% when
�C� was ∼5.00–5.50 Å, which were quite close to the result

86.68% when �C� was 5.00 Å. However, results for database
one was a little bit di�erent, 84.67% when �C� was 7.00 Å,
which may be generated by the lack of statistically signi�cant
result in the small amount of the proteins. Acc (�cent) for each
database got the highest results around∼85%-86%when�cent
was 7.50 Å, which were quite close to the result 85.52% when
�cent was 7.50 Å. However, results for database one was a little
bit di�erent, 82.51% when �cent was 6.50 Å, which may be
generated by the lack of statistically signi�cant result in the
small amount of the proteins. Acc (�atom) for each database
got the highest results around ∼82%–87% when �atom was
∼0.50−1.50 Å, which were quite close to the result 85.59%
when �C� was 1.50 Å.

When the community division method was based on
random walks, Acc (�C�) for each database got the highest

results around∼81%–85%when�C� was∼7.00–7.50 Å and the
step size was 10, which were quite close to the result 81.87%
when �C� was 7.0 Å and the step size was 10. Acc (�cent)
for each database got the highest results around ∼80%–84%
when �cent was 7.00–8.00 Å, which were quite close to the
result 80.77% when �cent was 8.0 Å and the step size was 10.
Acc (�atom) for each database got the highest results around
∼80%–84% when �atom was ∼0.50–1.50 Å and the step size
was 10, which were quite close to the result 80.82% when
�C� was 1.00 Å and the step size was 10. However, results
for database one was a little bit di�erent under these three
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conditions, whichmay be generated by the lack of statistically
signi�cant result in the small amount of the proteins.

It is observed from the results that the complex networks
together with the community division methods constructed
in this study were stable, which proved the creditability of the
research. On the other hand, it was observed that when the
community divisionmethodwas based on edge betweenness,
the Acc (�C�) was stable at ∼86% when �C� was around

5.0–7.5 Å, and the optimal cuto� value for constructing the
protein structure networks was 5.0 Å (C�-C� distances) in
this study.

4. Conclusion


emain objective of this study is to explore the contribution
of complex network together with its di�erent de�nitions of
vertexes and edges to describing the structure of proteins.
When applying ourmethod on a dataset of 2847 proteinswith
domain/domains, it was observed that when the community
division method was based on random walks, the numeric of
the accuracy was lower than that based on edge betweenness
all the while, which indicated that the ideal community
division method for this research was community structure
detection based on edge betweenness. When the commu-
nity division method was based on edge betweenness, the
Acc (�C�) was stable at ∼86% when �C� was around 5.0–

7.5 Å, and Acc (�C�) achieved the highest value of 86.68%

when �C� was 5.0 Å. 
e identi�cation performance proved
that the optimal cuto� value for constructing the protein
structure networks was 5.0 Å (C�-C� distances), while the
ideal community division method was community structure
detection based on edge betweenness in this study.
e results
suggested that the amino acid interaction networks are an
e�cient method for describing the structure of proteins,
and the di�erent de�nitions of vertexes and edges do have
important e�ect in this process. Distance should be taken into
consideration to prevent unnecessary deviation. Moreover,
the optimized network model could be further applied in
future study for the number and position of protein domain
prediction.
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