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Appendix A: Additional Robustness Checks

In this appendix, we present a number of additional tables and figures as robustness checks. We
discuss these tables and figures in the main text.

Appendix B: Measurement Issues

A Measuring Years of Education

Throughout the paper we refer to the health impacts of ”years of education.” This is defined as the
age at which someone left full-time education minus five. In this Appendix we describe why years of
education is measured in this way.

The starting point is the two survey datasets used in this paper: the Health Survey of England
(HSE) and the General Household Survey (GHS). These surveys ask respondents the following
questions:

HSE ”At what age did you finish your continuous full-time education at school or college?”

GHS ”How old were you when you left there, or when you finished or stopped your course?” [In
response to ”Now thinking just of your full-time education, what type of school or college did you
last attend full-time?”]

The relationship between ”age left full-time education” and ”years of education” is governed by
English laws that determine the period of compulsory schooling (i.e., compulsory full-time education).
These laws state that students must have started school by the term after they turn five, although
students have, traditionally, started school in the term in which they turned five (Sharp, 1997).1

Before 1962, these laws stated that students could not leave until the end of the term in which
they reached the minimum school leaving age. The UK education system has three terms that run
September-December, January-April, and April-July; exact dates vary by school district. Hence,
students born in October could not leave until Christmas, students born in February could not leave
until Easter and students born in May could not leave until July. After 1962, these laws stated that
students born September-January could not leave until April, and students born February-August
could not leave until June. We illustrate the structure of these laws in Appendix Figure B1a.

Based on these laws, we can calculate the minimum number of years and school terms of full-time
education that must have been completed by someone reporting leaving at the minimum leaving age
and the maximum number of years and school terms of full-time education that must have been
completed by someone reporting leaving at the minimum leaving age. This is illustrated in Appendix
Figure B1b. The minimum is always nine years and one term for those able to leave before the 1947

1Sharp (1997) claims that these laws changed to accommodate earlier starting as pupil numbers fell in the 1970s.
This is confirmed by the survey evidence in Crawford, Dearden and Meghir (2007).
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change, ten years and one or two terms for those able to leave before the 1972 change and eleven
years and one or two terms for the rest. Because respondents that report leaving at the minimum
leaving age may not have left at the first available opportunity, the maximum is greater than this.
In particular, as seen in Appendix Figure B1b, respondents that report leaving at the minimum
leaving age could have completed one or two terms more than the minimum years and school terms
of full-time education that is completed by those that leave at the first available opportunity.

With this discussion in mind, we calculate ”years of education” as the age left full-time education
minus five. That X years of education then refers to X years and one term, X years and two
terms or X+1 years is not a problem: standard measures of completed years or grades of education
share the same property (i.e., we do not observe if fractions of grades are completed). In addition,
any measurement error in years of education will bias downwards the estimated impact of the
1947 and 1972 law changes on educational attainment. This will bias upwards our two-stage least
squares estimates of the health effects of education. Since these estimates are consistently small, this
phenomenon is likely of little importance here.

Compliance post-1972

As seen in Figure 1, non-compliance among summer-borns increases after 1972. That is, after
1972, a large fraction of students born in June, July and August appear to leave full-time education
at age fifteen or younger. In fact, while there may be a small amount of non-compliance throughout
the entire period studied, this post-1972 phenomenon is likely another consequence of the structure
of the laws.

Before 1972, when the minimum leaving age was fifteen, students were required to stay in full-time
education until part way through grade nine. Like all grades except grade ten, grade nine finishes
in mid-July. Hence only students born in late July and August could have left at fourteen (recall
that students can leave at the end of the term in which they turn fifteen, where the summer term
ends in July but for the purposes of the minimum leaving age is defined to run until September).
After 1972, when the minimum leaving age became age sixteen, students had to stay until part way
through grade ten. Grade ten finishes with the ”O level” exam period and, technically, students
finish when they complete their last exam. Since the exam period starts in late May and finishes
in mid-June, starting in 1972, students born in late June, July, and August could leave at fifteen,
technically younger than the minimum leaving age (sixteen). This can account for the apparent
increase in post-1972 non-compliance. Since the exam period is an unusual period of schooling, even
respondents that were in school throughout this period may report leaving in April. This would
further contribute to the apparent increase in non-compliance.

While this phenomenon could introduce some error into our measurement of years of education,
since all of our models control for month-of-birth dummy variables, we think it will have little
impact on our analysis. Provided these month-of-birth patterns are consistent over time in the
post-reform period, they will be controlled for in our regressions. For the 1972 reform, we interact
the month-of-birth dummies with the reform dummy, allowing the seasonal patterns to be different
pre- and post-reform since the seasonal patterns appear to change with the reform. As expected, the
non-compliance phenomenon is much less striking once we regression adjust for month of birth.

B Measurement Error in Mortality Rates

i Sources of Measurement Errors

For each birth cohort, our analysis requires a count of the population at risk of dying in each month.
As noted in the main text, for months before April 1991, we infer the population size by taking
the population of those born in England and Wales and resident in England and Wales at the time
of 1991 Census (the earliest available, enumerated April 1991) and adding deaths occurring between
the month of interest and April 1991. For months after April 1991, we subtract deaths occurring
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between April 1991 and the month of interest. In combination with the population at risk, we need
a measure of the number of deaths. Our measure of deaths is the death count of individuals dying
in England and Wales by month-year of death and month-year of birth.
There are various sources of measurement error that will drive differences between measured

mortality and true mortality:

Issues with Estimating Population Alive

1. Emigration from England and Wales: The 1991 Census will provide an inaccurate count
of the number alive in 1991 because some people will have emigrated out of England and Wales.
As we show below, this is not a first-order issue.

2. Census undercounting: The 1991 Census will provide an inaccurate count of the number alive in
1991 because of Census under-counting. According to Dale and Marsh (1993), evidence from a post-
census validation study suggests that among cohorts between ages 50 and 65 in 1991 (i.e., the co-
horts in our 1947 analysis), more than 99 percent were enumerated in the 1991 Census (Table 6.11).

3. Misreporting of age in 1991 Census: The 1991 Census will provide an inaccurate count
of the number alive in 1991 because of misreporting of age information. In part, this is because
the head of household may provide age information for other household members, and is less
likely to provide accurate information. According to Heady, Smith and Avery (1996), evidence
from a post-census validation study suggests that the error rate on the age variable is on the
order of two percent for the cohorts that we study (Table 8).

Issues with Estimating Deaths

1. Exclusion of deaths among emigrants: The death counts will provide an inaccurate count
of the number of deaths in a particular period because they will exclude deaths among emigrants.

2. Misreporting of date of birth on death records: The death counts will provide an inac-
curate count of the number of deaths in a particular period because the death certificate may
contain inaccurate date of birth information. To assess the magnitude of this problem, we used
data from the Longitudinal Study, a 1 percent sample of the 1971 Census linked to the 1981, 1991,
2001 Censuses and other vital statistics data including death records. We considered individuals
who died after 2001, and for whom the date of birth on all four Censuses agree. For less than
1.5% of these individuals did the date of birth on the death record disagree with the date of
birth on the Censuses, and in most cases these dates were off by one day. Note that while there
may be some inaccuracies in the date of birth information on death records, there is virtually
no undercounting of deaths in England and Wales (Charlton and Murphy, 1997).

3. Inclusion of deaths among immigrants: The death counts include immigrants who died in
England and Wales and as such, the death counts do not measure deaths among the population
of interest (i.e., those born in England and Wales).

ii Simulated Impacts of Measurement Error

In this section, we use simulations to assess the consequences of these various measurement errors.
We only consider the 1947 change although our conclusions will also apply to the 1972 change. The
basic strategy is as follows. First, we assume reduced-form mortality effects of the ROSLA of a
particular size and generate data for UK- and non-UK born populations that are consistent with
these ROSLA effects (ROSLA effects for non-UK born populations are assumed to be zero). Second,
we add measurement error to these data (e.g., by deleting a fraction of the observations equal to the
assumed rate of Census under-counting). We do not factor emigration into these simulations since
emigration impacts both the population and death counts. Hence, provided the ROSLAs do not
affect the composition of emigrants, emigration should not make our estimates of the mortality effects
of the ROSLAs inconsistent. As argued in the main text, however, we suspect the ROSLAs had
little impact on the composition of emigrants. Third, we compare the assumed true effects and the
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effects estimated with the error-ridden data and infer the likely size of any measurement error biases.
We now describe the steps of the simulation in more detail:

1. Create hazard rates of death for cohorts born between 1925 and March 1933 (pre-
reform cohorts). The Human Mortality Database provides hazard rates of death by age and
year. For our purposes, we need these expressed by month-year of birth and month-year of death
(the level of aggregation of our data). To do this, we convert the hazard rates to survival rates for
integer age a and month m ∈ {1, 12} that aggregates to the age-in-years survival rate and evolves
according to ln(sa,m+1

sa,m
) = 1

12
sa+1−sa

sa
where sa is the survival rate for integer age a and sa,m is the

survival rate at age a and month m. The survival rate is equal to (1-hazard rate). Since we do
not observe monthly survival rates in these data, we could have made any number of assumptions
about the evolution of the monthly survival rates (subject to them aggregating to the correct
age-in-years survival rates). This assumption ensures there is no discontinuity in the monthly
hazard from month 12 at age a to month 1 at age a+1. To get the hazards for cohort month-year
of birth, we assume the year-of-birth hazards refer to cohorts born in June of each year and we
linearly interpolate (estimated separately at every age level) to generate hazards for other months.

2. Create hazard rates of death for cohorts born between April 1933 and 1940. We
use the trends in age-specific mortality rates across these cohorts to simulate the hazards for
every month-year of birth cohort. Specifically, we use these estimated trends in age-specific
mortality and, for ages 16 and older, we assume a shift in the hazard rate driven by exposure
to the ROSLA. The assumed hazard effects are derived from the assumed log-odds effects (i.e.,
the assumed effect of the ROSLA).

3. Use the hazard rates from steps 1 and 2 to generate the fraction dying at each
point in time. The hazard rates are used as parameters in the binomial distribution. We assume
each cohort starts with 40,000 members, roughly the average cohort size across these cohorts.

4. Factor in measurement error from (a) undercounting in the Census, (b) misreport-
ing of age information in the Census, and (c) misreporting of age information on
the death certificate. For (a), we assume that some fraction of individuals are missing from
the Census count. For (b) and (c), we model reported age at death as follows: the reported age
is the true age with probability equal to 1-measurement error rate, and errors are then spread
uniformly over the 6 months before and after the true age. We assume that the errors in the
Census and death certificates are independent.

5. Follow steps 1.-3. to simulate the size of the immigrant population. We use a similar
procedure to simulate cohorts of immigrants, the only difference being that these do not experience
any ROSLA effect. We make an assumption about the immigration rate in each cohort (see below).

6. Calculate the size of the population of natives in the 1991 Census using results
from steps 3 and 4.

7. Calculate the number of deaths in each month (natives and immigrants).
8. Combine data from steps 6 and 7 to calculate Census and death counts to estimate

mortality effects from the two-step procedure described in the text.

There are five parameters to be chosen here: (1) the ROSLA effect on mortality (2) the fraction of
immigrants in the population (3) the Census undercount rate (4) reported age errors on the Census
and (5) reported age errors on the Death Certificates. We constrain (3)-(5) to be the same as we expect
them to be of roughly equal magnitudes. We consider ROSLA effects of 0 (baseline), -0.05, -0.1, -0.15
and -0.2, where these numbers are effects on the log-odds ratio. The last of these is comparable to the
smallest effect implied by the results of Lleras-Muney (2005). We consider immigration rates of 0 (base-
line), 0.1 (most likely) and 0.2 (worst-case). Data from the 1991 Census suggests that for the cohorts
relevant to the 1947 reform, the immigration rate (i.e., fraction of the UK population that is an immi-
grant) is around 0.1. We consider undercount and age error rates of 0% (baseline) and 2% (worst-case).
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For each combination of assumptions, the following Table provides mean errors (i.e., estimated
effect less true effect) based on 100 replications (sampling variation is very small). Thus, because
we consider all true effects to be negative, negative error rates imply that the measured effect is
further away from zero than the true effect.

Immigration=0% Immigration=10% Immigration=20%
Error=0% Error=2% Error=0% Error=2% Error=0% Error=2%

Effect=0 0.0016 0.0027 0.0004 0.0004 0.0007 0.0008
Effect=-0.05 0.0014 0.0017 -0.0039 -0.0039 -0.0074 -0.0074
Effect=-0.10 -0.0004 0.0003 -0.0082 -0.0083 -0.0153 -0.0155
Effect=-0.15 -0.0063 -0.0066 -0.0127 -0.0130 -0.0241 -0.0244
Effect=-0.20 0.0112 0.0082 -0.0181 -0.0186 -0.0325 -0.0332

Note: the error percentages (e.g., Error=0%) refer to the error rate of the parameters (3)-(5) discussed
above.

The numbers in this Table point to three conclusions.

1. Error rates in date of birth and Census undercounting do not appear to generate
significant bias. This can be seen in every pair of cells that vary the error rate holding the
effect size and the immigration rate constant.

2. The percent bias is increasing negatively in the immigration rate. For example, look-
ing at the last row under a zero error rate assumption, the bias is 5.6% (0.0112) for an immigration
rate of 0%, 9.1% (-0.0181) for an immigration rate of 10% and 16.25% (-0.0325) for an immigration
rate of 20%. Thus, the larger the immigration rate the larger the bias towards finding a protective
effect of education.

3. The percent bias is less than the immigration rate. For example, looking at the last
column, the bias for effect sizes of -0.05, -0.1, -0.15 and -0.2 are -0.00738 (14.8%), -0.0155 (15.5%),
-0.0244 (16.3%) and -0.0332 (16.6%), all less than the assumed immigration rate of 20%.

iii Intuition

The previous simulation results suggest that measurement issues are unlikely to bias our estimates.
We now complement these simulation exercises with a mathematical analysis of the biases driven
by measurement error. In particular, under some simplifying assumptions, we derive bounds on
the size of these biases.

The key to this analysis is the observation that the measured log-odds ratio for cohort c in period
t is approximately equal the true log-odds ratio for cohort c in period t plus six error terms:

ln(Ôct) ∼ ln(O∗
ct) + e1ct + e2ct + e3ct + e4ct + e5ct + e6ct

where the measured log-odds ratio is ln(Ôct) and the true log-odds ratio is ln(O∗
ct).

We prove this fact in the ”Derivations” section below. This observation is useful for three reasons.
First, the coefficients estimated in the first step of our hazard analysis (i.e., the cohort fixed effects)

are closely related to the measured period-t log-odds ratio (i.e., ln(Ôct)). Specifically, although
the first step of estimating the mortality effects involves the use of data pooled across several time

periods and a model that includes age fixed effects, the dependent variable above (i.e., ln(Ôct)) is
equivalent to the set of birth cohort fixed effects that would be generated by a first step logit model
estimated on data for a single period t without age fixed effects. Second, the true mortality effects
of the ROSLA should correspond to the discontinuity in the true period-t log-odds ratio (i.e., the
discontinuity in ln(O∗

ct)). That is because other forces impacting the true period-t log-odds ratios
(i.e., cohort trends and age trends) should be smooth through the ROSLA threshold. Third, it
follows that if we can bound the discontinuities in the error terms (i.e., difference in the average
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error term for those born immediately after the 1933 April threshold and the average error term
for those born immediately before the 1933 April threshold) in the equation above, then we can
bound the extent to which our estimates of the ROSLA effect on mortality (i.e., the discontinuity

in ln(Ôct)) differ from the true ROSLA effect on mortality (i.e., the discontinuity in ln(O∗
ct)).

As shown in the ”Derivations” section below, under some mild assumptions additional to those
made in the simulations section, we can derive the bounds for each of the discontinuities in the
ejct terms where j = 1,2, ...,6 from the equation above. We denote a discontinuity in ejct as e

RD
jt .

We divide each of these discontinuities by |αRD
t |, the absolute value of the discontinuity in the true

log-odds mortality ratio, to express each of the discontinuities in the error terms as a percentage
of the true ROSLA mortality effect. In particular, we show that:

|eRD
1t |
|αRD

t |
< ed(1−m)|(1 + |αRD

t |)(1 +
|αRD

t |
2

)

|eRD
2t |
|αRD

t |
< i(1−m)[1 + |αRD

t |]

|eRD
3t |
|αRD

t |
= 0

|eRD
4t |
|αRD

t |
< ed[1 +

|αRD
t |
2

]

|eRD
5t |
|αRD

t |
< i(1−m)

|eRD
6t |
|αRD

t |
< 2us + es(1− us)(1 +

|αRD
t |
2

)

where ed and es are the rates of age misclassification on the death certificates and in the Census,
respectively, and us is the rate of undercounting in the Census. The parameters i and m are the
immigration rate (ratio of immigrants to total population in England and Wales) and emigration
rate (the fraction of native-born outside of England and Wales), respectively.2

Before deriving these bounds, we use them to provide some intuition for the three conclusions
that we drew from the simulation exercise:

1. Error rates in date of birth and Census undercounting do not appear to generate
significant bias. If the error rates (i.e., ed, es, and us are all zero, the biases associated with
the first, fourth and sixth terms disappear. But if these error rates are 2%, the biases associated
with these error terms are still tiny.

2. The bias is increasing negatively in the immigration rate. The only non-trivial biases
here are those associated with the second and fifth error terms. Since these are proportional
to the immigration rate, this conclusion is not surprising. Note that while we only bound the
absolute value of the bias here, the simulations suggested that the bias will be towards finding
a more protective effect of education.

3. The bias is less than the immigration rate. Since the second and fifth terms are both
roughly bounded by the immigration rate itself, and since the other terms are small, an upper

2One might wonder why the emigration rate appears here, given that we have argued that emigration will have
equal impacts on population and death counts and hence no effect on our estimates. The reason is that while this
is true in the absence of any other measurement errors, there are interactions between emigration and these errors.
Still, we expect these effects to be small so we did not model them in our simulation analyses. We assume that
the emigration rate is the same among pre- and post-ROSLA cohorts.
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bound on the overall percent bias is roughly twice the immigration rate. Although this is greater
than the immigration rate, it is still not surprising that the simulations suggested that the percent
bias is less than the immigration rate. First, these are bounds, hence the actual biases may be
much smaller. Second, we are considering the sum of the absolute value of each bias. Since they
need not take the same sign, the absolute value of the sum could be much smaller.
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iv Derivations

We now derive this measured log-odds equation and these six error bounds.

Measured log-odds equation
Our measured log-odds ratio is defined as follows:

ln(Ôt) = ln(
D̂t

P̂t − D̂t

)

where Ôt is the measured log-odds ratio in period t, D̂t is the measured number of deaths, and

P̂t is the measured population size. We can express the difference between the measured log-odds
of death and the true log-odds of deaths as

ln(Ôt)− ln(O∗
t ) = ln(

D̂t

D∗
t

)− ln( P̂t − D̂t

P ∗
t −D∗

t

)

where the ∗ are used to denote the true values. As discussed in the main text, our estimate of
deaths at time t is

D̂t = D∗
t −DE∗

t +DI
t +DEW#

t

where D∗
t represents all deaths to individuals who were born in England and Wales, DE

t represents
deaths to emigrants who were born in England and Wales but died elsewhere, DI

t represents deaths

to immigrants who died in England and Wales, and DEW#
t is the measurement error in the deaths

measured in England and Wales (i.e., measurement error related to date of birth). For any point
in time t, let s be the relevant Census year used in the calculation of the population size at time
t (see text for more details). Then, analogously, our estimate of the population at time t is

P̂t = P ∗
t − PE∗

t + PEW#
s +1t<s

s−1∑
i=t

DEW#
i +1t<s

s−1∑
i=t

DI
i−1t>s

t−1∑
i=s

DEW#
i −1t>s

t−1∑
i=s

DI
i

where P ∗
t represents the population count of individuals alive at time t who were born in England and

Wales, PE∗
t represents population of emigrants who were born in England andWales but live elsewhere,

PEW#
s is the measurement error in the population measured in England and Wales (i.e., measurement

error related to date of birth and Census undercounting), and 1 represents the indicator function.

Then, we can substitute these expressions for P̂t and D̂t into the equation for the difference between
the measured log-odds of death and the true log-odds of death above. The resulting equation is:

ln(Ôt)− ln(O∗
t ) = ln(1 +

−DE∗
t +DI

t +DEW#
t

D∗
t

)

−ln(1 + −(P
E∗
t −DE∗

t ) + PEW#
s + f(DEW#) + f(DI)

P ∗
t −D∗

t

)

where

f(DEW#) = 1t<s

s−1∑
i=t

DEW#
i −1t>s

t−1∑
i=s

DEW#
i −DEW#

t
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and

f(DI) = 1t<s

s−1∑
i=t

DI
i−1t>s

t−1∑
i=s

DI
i −DI

t

Using the facts that ln(1 + y) ∼ y for small y, P ∗
t −D∗

t = P ∗
t+1, and P

E∗
t −DE∗

t = PE∗
t+1,

ln(Ôt)− ln(O∗
t ) ∼

DEW#
t

D∗
t

+
DI

t

D∗
t

+
PE∗
t+1

P ∗
t+1

− DE∗
t

D∗
t

− f(DEW#)

P ∗
t+1

− f(DI)

P ∗
t+1

− PEW#
s

P ∗
t+1

Define each part of the right-hand side of the equation above as follows:

e1t =
DEW#

t

D∗
t

e2t =
DI

t

D∗
t

e3t =
PE∗
t+1

P ∗
t+1

− DE∗
t

D∗
t

e4t =
f(DEW#)

P ∗
t+1

e5t =
f(DI)

P ∗
t+1

e6t =
PEW#
s

P ∗
t+1

Biases
Discontinuities in these six error terms will bias our estimates of the ROSLA mortality effects

(i.e., drive a wedge between the regression discontinuity in the true log-odds mortality ratio and the
regression discontinuity in the measured log-odds mortality ratio). To simplify, we define ROSLA
discontinuities in each of the error terms as the difference between the value of the error term for
the first post-ROSLA cohort (i.e., April 1933) and the value for the first pre-ROSLA cohort (i.e.,
March 1933).

Definitions
Before deriving expressions for the terms, it is useful to define the following expressions:

xLt ≡ (xct|c =March1933)

xRt ≡ (xct|c = April 1933)

xRD
t ≡ xRt − xLt

v(xt) ≡
xRt − xLt
xLt
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where the first two equivalence statements are conditional statements. We also define:

αRD ≡ ln(O)∗Rt − ln(O)∗Lt

where ln(O)∗ is the true log odds ratio.3

We make several assumptions to derive bounds for each of the terms of the bias expression. First,
as in the simulation, we assume that a fraction uc of residents are not counted at the Census, and that
this fraction is constant across cohorts. Second, we assume that because of age misreporting, the Cen-
sus assigns only a fraction 1−es of those that belong to cohort c to cohort c, and assigns a fraction es

2
of those in cohorts c−1 and c+1 to cohort c. We make an equivalent assumption for death counts; the
analogous error rate for death counts is ed. Third, we assume that true death and population counts
among the last two pre-ROSLA are equal and that the true death and population counts among the
first two post-ROSLA cohorts are equal. While one can imagine more complicated structures for the
measurement error (e.g., that used in the simulations), it seems reasonable to assume that misclassifi-
cation is symmetric (i.e., misclassified deaths are as likely to be assigned to older as to younger cohorts)
and “local” (i.e., misclassified deaths to cohort c are more likely to be assigned to cohort c+1 than to
cohort c+10). Fourth, we assume that the initial population sizes of the pre- and post-ROSLA cohorts
near the threshold are the same; this assumption is consistent with our simulation assumptions. Fifth,
we assume that for any time t, the ratio of true deaths in England and Wales to the true population
size in t+1 is less than 1

256
.4,5 Sixth, we assume that the sum of annual hazards is less than 1.6

These assumptions give rise to the following expressions for measured variables:

D̂EW
Lt = [(1− ed

2
)DEW∗

Lt +
ed
2
DEW∗

Rt ]

D̂EW
Rt = [(1− ed

2
)DEW∗

Rt +
ed
2
DEW∗

Lt ]

P̂EW
Ls = (1− us)[(1−

es
2
)PEW∗

Ls +
es
2
PEW∗
Rs ]

P̂EW
Rs = (1− us)[(1−

es
2
)PEW∗

Rs +
es
2
PEW∗
Ls ]

where PEW∗ is the true population of native-borns living in England andWales and a similar definition
apples to DEW∗ In deriving bounds on the biases, we make repeated use of the following inequalities:
Inequality 1:

0 < v(P ∗
t ) < |αRD|

Inequality 2:

D∗
Lt

D∗
Rt

<
H∗

Lt

H∗
Rt

< 1 + |αRD|

3Here we exclude the t subscript as we implicitly assume that the treatment has the same effect on the log-odds
ratios at all points in time.

4The earliest data point in our sample is 1970 and we have population counts from the April 1991 Census. Thus,
the gap in months between the 1991 Census and January 1970 is 256 months.

5In the Human Mortality Database, the maximum ratio of annual deaths to annual population is 0.019. Dividing
this ratio by 12 to derive a monthly death rate gives 0.001583, considerably less than 1

256 .
6The sum of the annual hazards to age 72 is 0.38 according to Human Mortality Database. We would expect

that the sum of monthly hazards (not available from the Human Mortality Database) to be similar.

10



Inequality 3:

0 ≥ |v(D∗
t )| < |αRD|

where H∗
Rt is the true hazard rate (i.e., ratio of deaths to population) among the post-reform cohort.

We prove each of these in turn:

Proof of Inequality 1

To begin, note v(P ∗
t ) =

P∗
Rt−P∗

Lt

P∗
Lt

. Thus, since ln(1 + y) ∼ y for small y,

v(P ∗
t ) ∼ ln(1 +

P ∗
Rt

P ∗
Lt

− 1) = ln(P ∗
Rt)− ln(P ∗

Lt)

Also, by definition,

αRD = ln(
H∗

Rt

1−H∗
Rt

)− ln( H∗
Lt

1−H∗
Lt

)

After some algebra along with invoking the ln approximation, it can be shown that

αRD ∼ H∗
Rt −H∗

Lt

(1−H∗
Rt)H

∗
Lt

Now we derive expressions for P ∗
Lt and P

∗
Rt

P ∗
t = P ∗

1

t−1∏
i=1

(1−H∗
i )

whereH∗
t is the true hazard of death at time t and P ∗

1 is the initial population size. Then, it follows that

ln(P ∗
Lt) = ln(P ∗

L1

t−1∏
i=1

(1−H∗
Li))

A similar expression follows for ln(P ∗
Rt). Invoking the fact that ln(1+y) ∼ y for small y, it is true that

ln(P ∗
Lt) ∼ ln(P ∗

L1)−
t−1∑
i=1

H∗
Li

Using these expressions for P ∗
Lt and P ∗

Rt, ln(1 + y) ∼ y for small y, and the assumption that
P ∗
R1 = P ∗

L1, we have

v(P ∗
t ) ∼

t−1∑
i=1

(H∗
Li −H∗

Ri)

11



Thus, combining the expressions for αRD and v(P ∗
t ), we have

v(P ∗
t ) ∼

t−1∑
i=1

−αRD(1−H∗
Ri)H

∗
Li

Since the hazard rates are bounded by 0 and 1 and assuming αRD < 0,

v(P ∗
t ) < −αRD

t−1∑
i=1

H∗
Li

Since in our data
∑t−1

i=1H
∗
Li < 17 thus v(P ∗

t ) > 0+,

v(P ∗
t ) < −αRD ≤ |αRD|

Proof of Inequality 2

To show
H∗

Lt

H∗
Rt
< 1 + |αRD|, assuming that education reduces the hazard of death and using the ln

approximation, it follows that

|αRD| = ln(
H∗

Lt

H∗
Rt

1−H∗
Rt

1−H∗
Lt

) > ln(
H∗

Lt

H∗
Rt

) ∼ H∗
Lt

H∗
Rt

− 1

To show
D∗

Lt

D∗
Rt
<

H∗
Lt

H∗
Rt
, after using algebra invoking the definitions of v(D∗

t ), v(H
∗
t ), and v(P

∗
t ), it is

true that

v(D∗
t ) = v(H∗

t ) + v(P ∗
t )
H∗

Rt

H∗
Lt

Since v(P ∗
t ) > 0,

v(D∗
t ) > v(H∗

t )

which implies that

D∗
Rt

D∗
Lt

>
H∗

Rt

H∗
Lt

Proof of Inequality 3
To show |v(D∗

t )| < |αRD|, we consider the cases of v(D∗
t ) < 0 and v(D∗

t ) > 0.

Case I: v(D∗
t ) < 0

If v(D∗
t ) < 0, then

|v(D∗
t )| = −v(D∗

t ) =
D∗

Lt −D∗
Rt

D∗
Rt

D∗
Rt

D∗
Lt

7From the Human Mortality Database, the sum of the annual hazards to age 72 is 0.38. The sum of the monthly
hazards (not available from the HMD) should be similar.
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Then because v(D∗
t ) < 0, it is true that D∗

Lt > D∗
Rt, so

|v(D∗
t )| <

D∗
Lt −D∗

Rt

D∗
Rt

Invoking Inequality 2,
D∗

Lt

D∗
Rt
< 1 + |αRD|,

|v(D∗
t )| < |αRD|

Case II: v(D∗
t ) > 0

If v(D∗
t ) > 0, note that as shown earlier, v(D∗

t ) = v(H∗
t ) + v(P ∗

t )
H∗

Rt

H∗
Lt
. v(H∗

t ) < 0 and subsequently
H∗

Rt

H∗
Lt
< 1 because the assumption that education reduces mortality. From inequality 1, it is true

that v(P ∗
t ) < |αRD|. Hence

|v(D∗
t )| < |αRD|

Biases Associated with the Error Terms
We can now derive the biases associated with the error terms.

Discontinuity in Error Term 1: e1t =
DEW#

t

D∗
t

Following the definition of this error term, the discontinuity in the error term can be expressed as:

eRD
1t =

DEW#
Rt

D∗
Rt

− DEW#
Lt

D∗
Lt

It follows that

eRD
1t =

DEW#
Lt

D∗
Rt

[v(DEW#
t )− v(D∗

t )]

Given our measurement error assumptions, it is true that v(DEW#
t ) = −2. Using this fact along

with the definition of DEW#
Lt , which simplifies to ed

2
(DEW∗

Rt −DEW∗
Lt ),

eRD
1t =

ed
2
(
DEW∗

Rt −DEW∗
Lt

DEW∗
Lt

)(
DEW∗

Lt

D∗
Rt

)(−2− v(D∗
t ))

= ed[−v(DEW∗
t )](

DEW∗
Lt

D∗
Lt

)(
D∗

Lt

D∗
Rt

)[1 +
v(D∗

t )

2
]

Since we only assume that immigrants of post-reform cohorts have different mortality rates than na-

tives,
DEW∗

Lt

D∗
Lt

= (1−m), where m is the fraction of immigrants in the England/Wales population. Thus,

eRD
1t = ed[−v(D∗

t )](1−m)(
D∗

Lt

D∗
Rt

)[1 +
v(D∗

t )

2
]

We cannot sign this expression because we cannot sign v(DEW∗
t ): the hazard of death decreases

with the reform but the at-risk population increases through the ROSLA threshold. However, taking

13



the absolute value of the expression above,

|eRD
1t | ≤ ed|v(D∗

t )|(1−m)(
D∗

Lt

D∗
Rt

)[1 +
|v(D∗

t )|
2

]

Invoking Inequality 2 and Inequality 3,

|eRD
1t |
|αRD|

< ed(1−m)(1 + |αRD|)(1 + |α
RD|
2

)

Discontinuity in Error Term 2: e2t =
DI

t

D∗
t

Following the definition of this second error and recognizing the DI
Rt = DI

Lt since we assume the
population of immigrants is equal on both sides of the threshold:

eRD
2t = − DI

Lt

D∗
Rt

v(D∗)

Taking the absolute value of this expression and using Inequality 3,

|eRD
2t |
|αRD|

<
DI

Lt

D∗
Rt

Using Inequality 2 and the fact that DI
Lt < (1−m)iD∗

Lt where i is the fraction of the immigrants
in the England/Wales population,

|eRD
2t |
|αRD|

< i(1−m)(1 + |αRD|)

Discontinuity in Error Term 3: e3t =
PE∗
t+1

P∗
t+1
− DE∗

t

D∗
t

Provided the ROSLA does not change the composition of emigrants, e3t will be smooth even if
the ROSLA changes the probability of emigration. In contrast, if the ROSLA “improved” the
composition of emigrants, then eRD

3t would be positive. The intuition follows: a change in emigration
decreases measured deaths but also the measured population. The impacts cancel out provided
the composition of emigrants is unchanged.

Algebraically, given that PE∗
t+1 =mP ∗

t+1, D
∗
t = P ∗

t−1 − P ∗
t = P ∗

t (1−H∗
t ), and D

E∗
t =mD∗

t , then

e3t = (1−m)(1− i)− (1−m)(1− i)
= 0

Thus,

|eRD
3t |
|αRD|

= 0

Discontinuity in Error Term 4: f(DEW#)
P∗
t+1

14



This error term is the sum of a number of terms of the form:

DEW#
i

P ∗
t+1

The discontinuity in this term can be expressed, after some algebra, as:

eRD
4t =

DEW#
Li

P ∗
Rt+1

[v(DEW#
i )− v(P ∗

t+1)]

Since v(DEW#
i ) = −2, we have:

eRD
4t = [−DEW#

Li ][
2 + v(P ∗

t+1)

P ∗
Rt+1

]

Taking the absolute value and recognizing that P ∗
Rt+1 > P ∗

Lt+1 because we assume that the reform
reduces mortality:

|eRD
4t | < |DEW#

Li |[
2 + v(P ∗

t+1)

P ∗
Lt+1

]

Since DEW#
Li = ed

2
DEW∗

Li v(DEW∗
i ),

|eRD
4t | < ed|v(DEW∗

i )|D
EW∗
Li

P ∗
Lt+1

[1 +
v(P ∗

t+1)

2
]

Since v(DEW∗
i ) = v(D∗

i ),

|eRD
4t | < ed|v(D∗

i )|
DEW∗

Li

P ∗
Lt+1

[1 +
v(P ∗

t+1)

2
]

Invoking Inequality 3,

|eRD
4t | < ed|αRD|D

EW∗
Li

PEW∗
Lt+1

(1−m)|[1 + |α
RD|
2

]

The discontinuity in e4 is the sum of many such discontinuities, depending how far period t is from
the Census period. Although this sum could be as large as 256 terms (21 years (1970-1991) x 12

months + 4 months),8 our data suggest that
DEW∗

Li

PEW∗
Lt+1

< 1
256

for any periods t and i.9 This implies that:

|eRD
4t |
|αRD|

< ed(1−m)[1 +
|αRD|
2

]

8The Census is conducted in April.
9Using the Human Mortality Database, the maximum ratio of annual deaths to population is 0.019. Dividing

by 12 for a monthly death rate gives 0.00158, well below 1
256 . Therefore, the sum of these terms will be less than 1.
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Discontinuity in Error Term 5: f(DI)
P∗
t+1

The fifth error term e5t is the sum of a number of terms of the form:

DI
i

P ∗
t+1

Like the fourth term, we can write the discontinuity of the error term, after some algebra, as:

eRD
5t =

DI
Li

P ∗
Rt+1

[v(DI
i )− v(P ∗

t+1)]

Since v(DI
i ) = 0 as we assume deaths to immigrants are smooth through the discontinuity,

eRD
5t =

DI
Li

P ∗
Rt+1

[−v(P ∗
t+1)]

Thus, since P ∗
Rt+1 < P ∗

Lt+1 as we assume that hazard rates decline with education:

|eRD
5t | <

DI
Li

P ∗
Lt+1

v(P ∗
t+1)

Invoking Inequality 1 followed by the fact that
DEW∗

Li

D∗
Li

=
PEW∗
Lt+1

P∗
Lt+1

,

|eRD
5t | <

DI
Li

P ∗
Lt+1

|αRD|

< DI
Li|αRD|D

EW∗
Li

D∗
Li

1

PEW∗
Lt+1

=
DI

Li

DEW∗
Li

DEW∗
Li

D∗
Li

DEW∗
Li

PEW∗
Lt+1

|αRD|

Since
DEW∗

Li

D∗
Li

= (1−m) and
DI

Li

DEW∗
Li

= i,

|eRD
5t | < i(1−m)

DEW∗
Li

PEW∗
Lt+1

|αRD|

Although the discontinuity in e5 could consist of a sum of up to 256 such terms,
DEW∗

Li

PEW∗
Lt+1

< 1
256

for

any t and i (using the logic invoked earlier for the 4th term) hence:

|eRD
5t |
|αRD|

< i(1−m)

Discontinuity in Error Term 6: PEW#
s

P∗
t+1

Following the algebra like we did for the 4th and 5th error terms, the discontinuity in the 6th error

16



term can be written as:

eRD
6 = −P

EW#
Ls

P ∗
Rt+1

[v(PEW#
s )− v(P ∗

t+1)]

Using the definition of v(PEW#
s ) along with the definitions of PEW#

Rs and PEW#
Ls , we have

eRD
6 =

PEW#
Ls

P ∗
Rt+1

[
[(1− us)es + us](P

EW∗
RS − PEW∗

LS )

PEW#
Ls

+ v(P ∗
t+1)]

Multiplying by
PEW∗
Ls

PEW∗
Ls

and then later using the definition of v(P ∗
s ),

eRD
6 =

PEW∗
Ls

P ∗
Rt+1

[(1− us)es + us](P
EW∗
RS − PEW∗

LS )

PEW∗
Ls

+
PEW#
Ls

P ∗
Rt+1

v(P ∗
t+1)

=
PEW∗
Ls

P ∗
Rt+1

[(1− us)es + us]v(P
∗
s ) +

PEW#
Ls

P ∗
Rt+1

v(P ∗
t+1)

Now consider two cases for PEW#
Ls : One where PEW#

Ls > 0 and the other where PEW#
Ls < 0.

Case I: PEW#
Ls > 0

We know from previous calculations that PEW#
Ls = (1− us)[(1− es

2
− 1

1−us
)PEW∗

Ls + es
2
PEW∗
Rs ]. Thus,

it follows that then PEW#
Ls < (1−us)es2 (P

EW∗
Rs −PEW∗

Ls ). Hence, after some simplification and using
the definition of v(P ∗

s ), it is true that

eRD
6 <

PEW∗
Ls

P ∗
Rt+1

[(1− us)es + us]v(P
∗
s ) +

PEW∗
Ls

P ∗
Rt+1

(1− us)
es
2
v(P ∗

s )v(P
∗
t+1)

Case II: PEW#
Ls < 0

In this case, then the second term in the expression for eRD
6 will be negative. Thus,

eRD
6 <

PEW∗
Ls

P ∗
Rt+1

[(1− us)es + us]v(P
∗
s )

After simplifying the formula for PEW#
Ls , it is true that PEW#

Ls = (1−us)[es2 (P
EW∗
Rs −PEW∗

Ls )]−usPEW∗
Ls .

Since mortality rates are a declining function of education, it is true that −usPEW∗
Ls < PEW#

Ls < 0.
Thus,

|eRD
6 | < us

PEW∗
Ls

P ∗
Rt+1

v(P ∗
t+1)

Combining Case I and Case II together (i.e., if |eRD
6 | < a or |eRD

6 | < b, then |eRD
6 | < a+ b), it

follows that:

|eRD
6 | <

PEW∗
Ls

P ∗
Rt+1

[(1− us)es + us]v(P
∗
s ) +

PEW∗
Ls

P ∗
Rt+1

(1− us)
es
2
v(P ∗

s )v(P
∗
t+1) + us

PEW∗
Ls

P ∗
Rt+1

v(P ∗
t+1)
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Dividing both sides by |αRD|, invoking Inequality 1, and using the assumption that hazard rates
decline with education such that P ∗

Rt+1 > P ∗
Lt+1, we have

|eRD
6 |
|αRD|

<
PEW∗
Ls

P ∗
Lt+1

{[(1− us)es + us] + (1− us)
es
2
|αRD|+ us}

Since PEW∗
Lt+1 = (1−m)P ∗

Lt+1,

|eRD
6 |
|αRD|

<
PEW∗
Ls

PEW∗
Lt+1

(1−m){[(1− us)es + us] + (1− us)
es
2
|αRD|+ us}

If
PEW∗
Ls

PEW∗
Lt+1

(1−m) < 1,10 then

|eRD
6 |
|αRD|

< 2us + es(1− us)(1 +
|αRD|
2

)

Appendix C: The Impacts of the Compulsory Schooling Changes on Earnings

In this Appendix, we report estimates of the earnings impacts of the two law changes. Although
other studies have estimated these impacts, our empirical specification differs from that used in
those studies, hence it is worth using it to re-analyze these impacts. The main difference between
our specification and those used previously is the level at which across-cohort comparisons are made.
While the previous literature made these comparisons at the year-of-birth level, we make these
comparisons mainly at the month-year of birth level.

Previous estimates
Four studies have used these compulsory schooling law changes to estimate the earnings returns

to education: Harmon and Walker (1995), Oreopoulos (2006), Devereux and Hart (2010) and
Grenet (2010). All use year-of-birth comparisons. Harmon and Walker (1995) was the first study
to use the law changes to generate instrumental variables estimates of the earnings returns to
education. They use Family Expenditure Survey (FES) data for the years 1978-1986 and focus on
males aged 18-64. The instruments in their model are dummy variables indicating the leaving age
facing respondents (fifteen or sixteen) and they also control for survey year, age and age squared.
They obtain instrumental variables estimates of the effect of an additional year of education on
log earnings of 0.15, much larger than the least squares estimate they calculate, 0.06. They obtain
similar estimates when they used an ordered probit to model years of education (to account for the
categorical nature of the data).

Oreopoulos (2006) notes that while Harmon and Walker (1995) control for age and survey year,
they may not take full account of cohort trends. Oreopoulos (2006) instead focuses on the 1947
change and accounts for cohort trends using a regression discontinuity approach that controls for a
fourth-order polynomial in year of birth. In addition to exploiting variation induced by the 1947
change, he also uses a difference-in-difference approach to exploit variation in the timing of this
British change relative to a comparable change that took place in Northern Ireland in the 1950s.
Using both approaches, he obtains large instrumental variables estimates for men and women,
comparable to those found by Harmon and Walker (1995). For example, using only British data, his

10For the last period in our dataset, the Human Mortality Database suggests that
PEW∗
Ls

PEW∗
Lt+1

∼ 1.22, hence this

expression will be true when m ∼ 0.19. Although this is probably too high, multiplying the final expression here
by a number slightly greater than 1 will not change the fact that biases driven by this sixth error term are small.
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instrumental variables estimate of the effect of an additional year of education on log earnings is 0.15
with a standard error of 0.06 for men and 0.15 with a standard error of 0.13 for women. These
estimates are based on General Household Survey (GHS) data for the years 1983-1998; the sample
includes those born in Britain between 1921 and 1951 (aged 32-64 at the time of the surveys).

Devereux and Hart (2010) estimate earnings returns using regression discontinuity models
based on similar specifications and estimation samples. Again, they only have access to data at
the year-of-birth level. The innovation in their study is the use of large samples of high-quality
administrative earnings data. For men, their estimates are much closer to conventional least squares
estimates (around 0.05-0.06); for women, their estimates are not statistically different from zero.
Devereux and Hart (2010) also report estimates using GHS data and GHS samples that correspond
closely to the sample based on the administrative data (excluding the self-employed, including
foreign-born). For men, they obtain instrumental variables estimates of the effect of an additional
year of education on weekly earnings of nearly 6 percent (standard error of 2 percent). For women
the corresponding estimates are 1.5 percent (standard error of 3 percent). They conclude that the
earnings returns to additional years of education may be closer to least squares estimates than was
previously thought.
Grenet (2010) uses large samples of Labor Force Study (LFS) data to estimate the earnings

impacts of the 1972 compulsory schooling change. He uses data at the year-of-birth level, after first
standardizing year of birth to be relative to the relevant birth threshold. For both men and women,
he obtains estimates close to although slightly lower than least squares estimates (7 percent versus
10 percent). These are, however, reasonably precise (standard errors around 0.03) and appear to be
robust to age controls and alternative polynomial specifications.

New estimates based on month-year of birth
Both the 1947 and 1972 law changes were introduced part way through the year. As such,

we estimate their earnings impacts using models at the month-year of birth level. Our estimation
sample is similar to that used by Devereux and Hart (2010), who also focus on British-only data. In
particular, we choose the sample of employees that were born in Britain between 1921 and 1945 and
that report working between 1 and 84 hours in the previous week. We also discard observations for
which real hourly wages (in 2001) are less than one pound or greater than 150 pounds. Unfortunately,
month-year of birth is not available in the GHS until 1985. This means that our samples are smaller
than those used by Devereux and Hart (2010). It also means that if we used the same age restrictions
(between ages 25 and 60), we would not observe outcomes for those born before 1925. We therefore
expand the age range to include those up to age 64; Harmon and Walker (1995) and Oreopoulos
(2006) focus on similar age ranges.

Appendix Table C1 reports estimates of the reduced-form effects of the 1947 change on both
earnings and on the probability of being observed working a certain number of hours (i.e., selecting
into the sample). We report separate estimates for men and women and for each outcome we report
estimates from two specifications. In column (1) we report the estimate from a specification similar
to that used by Devereux and Hart (2010). That is, we use a global polynomial (over the same
data window) with a fourth-order polynomial in the running variable (in our case month-year of
birth). In column (2) we report estimates based on a local linear regression approach. The log
weekly earnings and log hourly earnings are either condition on 1-84 hours of work per week or
normal hours (defined as 35-60 hours of work per week).

If the treatment is defined as ”years of primary and secondary schooling,” as in Devereux and
Hart (2010), the instrumental variable estimates will be roughly twice as large as the reported
reduced-form estimates; if the treatment is defined as ”years of full-time education” (i.e., primary
and secondary plus post-secondary education), the instrumental variables estimates will be closer
to three times as large. That is because, empirically, the law changes have a larger impact on
total years of primary and secondary schooling than they do on total years of full-time education.
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Presumably that is because the extra year of secondary schooling is, for some, a substitute for
additional post-secondary education that would otherwise have been obtained. In the extreme
case, if all students that leave at the compulsory age pursue at least one year of post-secondary
education, and if students compelled to stay for an extra year in secondary school reduce by one
year the amount of post-secondary education pursued, the compulsory schooling change will have
large impacts on total years of primary and secondary schooling and no impact on total years of
full-time education.

The estimates presented in this Table suggest that for men, the 1947 change increased earnings
by nearly 8 log points. The global polynomial estimates (column (1)) are very close to the preferred
local linear estimates (column (2)). The local linear estimates are also fairly robust to bandwidth
choice. As Devereux and Hart (2010) also found, estimates for hourly earnings are slightly smaller
than those for weekly earnings. Appendix Figure C1 shows the graph corresponding to the weekly
earnings estimates. This figure superimposes fitted lines from the local linear approach on the
scatterplot of raw data by month-year of birth. The local linear fit covers a bandwidth of 40 months.

It is tempting to use the point estimates in Appendix Table C1 to claim that the 1947 change
had earnings effects on the order of those of Harmon and Walker (1995) and Oreopoulos (2006). We
think that our samples are too small to pinpoint the precise magnitude of these effects. For example,
when we focus on the 90 per cent of this sample that works ”normal” hours, the estimates (second
set of rows in Appendix Table C1) are much closer to those reported by Devereux and Hart (2010).
Instead, we view our results as consistent with all of the previous literature in that we find that this
reform had statistically significant effects on male earnings.
Turning to women, we find negative but not statistically significant effects of the 1947 change

on earnings. Again, these effects are smaller when we focus on the 90 per cent of this sample with
regular hours (10-50, again defined using the data). These findings are broadly in line with those
of Devereux and Hart (2010), who also find negative but statistically insignificant estimates. To
the extent that we worry about these negative point estimates, it is important to note that the point
estimates for the ”observed working” outcomes suggest that the 1947 change may have induced
some women to enter the labor force. But they are not statistically significant.

In Appendix Table C2, we present estimates of the effects of the 1972 change, not investigated by
Oreopoulos (2006) or Devereux and Hart (2010). Because this reform had smaller impacts on years of
education, around 0.2-0.3, it is harder to detect earnings effects in samples of this size. For example,
a reduced-form earnings effect of 0.015 would scale up to an instrumental variables estimate of 0.06,
roughly the size of the estimate found for the 1947 change by Devereux and Hart (2010). For men, the
point estimates exceed 0.015 using small bandwidths but not otherwise. For women with regular hours,
point estimates of the earnings effects are also larger, although again imprecise. Both are consistent
with the estimates of Grenet (2010), but his estimates are muchmore precise because he uses labor force
survey data rather than health data. The obvious conclusion is that the GHS samples are too small to
shed light on the earnings effects of the 1972 change. Our data are more powerful for determining the
health and mortality effects of the change given the measurement error in earnings in these survey data.

Appendix D: Migration Issues

As emphasized in the data section, our mortality counts will exclude individuals who left England.
As there is some evidence from Malamud and Wozniak (2010) that higher-educated individuals
have higher propensities to migrate, migration could cause us to undercount deaths among the
post-reform cohorts relative to the pre-reform cohorts. But because the population counts are also
affected by emigration, differential emigration rates by cohort will not impact our estimates except
to the extent that the ROSLAs affect the composition of emigrants.
Nevertheless, we estimate the effect of the 1947 compulsory school reform on migration to the
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United States.11 Of course, this analysis excludes other large receiving countries. In 2007, Australia
(59 thousand emigrants), Spain (21 thousand emigrants), France (20 thousand emigrants), the United
States (19 thousand emigrants), and Poland (18 thousand emigrants) were the top five intended
countries for emigrants from the United Kingdom (ONS, 2008). Birth cohort details needed for the
research design are not available in the public-use versions of the Canadian and Australian Censuses.
Emigrants to the United States from the United Kingdom accounted for roughly 6 percent of all
emigrant flows in 2007 (ONS, 2008).

To test for migration differences by cohort, we use the 1960, 1970, and 1980 US Census data and
the 2005-2007 American Community Surveys (the only datasets with information on quarter of birth).
For each dataset, we present separate regression discontinuity estimates of the effect of the reform
on the fraction of individuals of each birth cohort born in England or Wales appearing in the United
States (Appendix Table D1). Consistent with the results of Malamud and Wozniak (2010), nearly all
of these estimates are positive, although only 3 out of 15 are statistically significant at the 5 percent
level. For the male/female pooled regressions, the magnitudes vary from a 1-percent negative effect
(1980 Census) to a 32-percent positive effect (2006 ACS). Since our mortality estimates are small
and our migration estimates are, on balance, positive, we do not think that differential migration
patterns can explain our mortality results.
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Appendix Figure A1: Cohort size and percent stillborn

Notes: Estimates reported above panels are based on a regression of the outcome on the relevant ROSLA dummy and a linear cohort trend interacted with this 
dummy (using 24 observations on either side of the threshold). The estimated discontinuities are based on local linear regressions; the standard errors of the 
estimates are presented in parentheses. The fitted values of these local linear regressions are also plotted.



Appendix Figure A2: The impact of the 1947 change on mortality by 5-year age group

Notes: The log odds ratio is defined as the logarithm of the odds of dying for the relevant cohort relative to the January 1926 cohort. Estimates are based on a 
balanced cohorts. Points represent the log odds death ratio for each month-year of birth cell.  The estimated discontinuities are based on local linear regressions; the 
standard errors of the estimates are presented in parentheses. The fitted values of these local linear regressions are also plotted. 



Appendix Figure A3: The impact of the 1972 change on mortality by 5-year age group

Notes: The log odds ratio is defined as the logarithm of the odds of dying for the relevant cohort relative to the March 1950 cohort. Estimates are based 
on a balanced cohorts. Points represent the log odds death ratio for each month-year of birth cell.  The estimated discontinuities are based on local linear 
regressions; the standard errors of the estimates are presented in parentheses. The fitted values of these local linear regressions are also plotted. 



Appendix Figure B1a: Stylized description of compulsory school laws by month of birth

Notes: Not all local schools authorities followed the school entry policy depicted above: some admitted all students at the start of the academic year in which they 
turned five (i.e., in September); others had two rather than three points of entry.
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Notes: The x-axis denotes different birth cohorts. For example, the first part of the x-axis refers to those between January and April over the years 1919-1932.  The y-axis 
displays the minimum and maximum years and terms of full-time education for those who report leaving at the minimum school leaving age. There exists a minimum and a 
maximum because students that report leaving at the minimum school leaving age (e.g., 15) could have left at the first available opportunity or could have continued for 
one or two more terms before leaving. For example, people born between January and April in the years 1919-1932 who report leaving at the compulsory school leaving 
age (14) would have spent 9 years and one term in full-time education had they left at the first opportunity. If they did not leave at the first opportunity, they could have 
received 9 years and two terms or 10 years of education. Since they report leaving at 14, they could not have received ten years and one term of education (or more) . See 
Appendix B for more details.

Appendix Figure B1b: Maximum/Minimum years and terms of full-time education for those leaving at 
minimum leaving age by birthdate
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Appendix Figure C1: The impact of the 1947 change on male earnings

Notes: Scatter plot based on sample as described in notes to Appendix Table C1. Fitted solid line based on birth cohort 
(defined by month-year of birth) interacted with being born after April 1933. Estimated discontintuity refers to coefficient on 
this dummy variable; its standard error is presented in parentheses. 
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Appendix Table A2: The impact of  the 1947 change on mortality rates by sex

Panel A: Men Panel A: Men
Overall Ages 45-49 Ages 50-54 Ages 55-59 Ages 60-64 Ages 65-69

Reduced-Form Estimate 0.009 0.026 0.031 -0.001 -0.0238 0.021
(0.006) (0.015) (0.016) (0.011) (0.0122) (0.014)

Bandwidth in Months 30 81 51 49 30 29

Panel B: Women Panel B: Women
Overall Ages 45-49 Ages 50-54 Ages 55-59 Ages 60-64 Ages 65-69

Reduced-Form Estimate 0.0116 0.0421 -0.003 -0.006 -0.011 0.022
(0.0061) (0.0211) (0.016) (0.020) (0.009) (0.016)

Bandwidth in Months 41 55 58 32 82 35

Notes: The estimates report the log-odds ratio for the probability of  dying for those just to the right of  the birth cohort threshold for the 1947  change versus 
those just to the left of  the threshold. The estimates are derived from a two-step procedure described in the text.  All regressions use data by month-year of  
birth cohort from the Office of  National Statistics along with Census population counts. Regressions include calendar month-of-birth fixed effects Chosen 
bandwidths are based on a cross-validation procedure described in the text. Robust standard errors are presented in parentheses.



Appendix Table A3: The impact of the 1972 change on mortality rates by sex

Panel A: Men
Overall Ages 20-24 Ages 25-29 Ages 30-34 Ages 35-39 Ages 40-44

Reduced-Form Estimate -0.023 -0.065 0.038 -0.003 0.001 -0.016
(0.033) (0.111) (0.046) (0.062) (0.041) (0.057)

Bandwidth in Months 49 36 69 76 53 42

Panel B: Women
Overall Ages 20-24 Ages 25-29 Ages 30-34 Ages 35-39 Ages 40-44

Reduced-Form Estimate 0.025 -0.111 -0.122 0.0003 0.097 0.033
(0.027) (0.079) (0.081) (0.0766) (0.035) (0.062)

Bandwidth in Months 43 82 70 76 73 45
Notes: The estimates report the log-odds ratio for the probability of dying for those just to the right of the birth cohort threshold for the 1972 change 
versus those just to the left of the threshold. The estimates are derived from a two-step procedure described in the text.  All regressions use data by 
month-year of birth cohort from the Office of National Statistics along with Census population counts. Regressions include calendar month-of-birth 
fixed effects; in the case of the 1972 change, these are allowed to vary on either side of the threshold. Chosen bandwidths are based on a cross-
validation procedure described in the text. Robust standard errors are presented in parentheses.



Outcomes OLS RF IV Bandwidth N

-0.092 0.025 0.056 60 122,723
(0.010) (0.014) (0.032)
-0.030 0.014 0.029 79 77,443
(0.010) (0.017) (0.034)
-0.055 0.002 0.005 40 31,177
(0.018) (0.025) (0.050)

-0.084 0.001 0.003 43 117,462
(0.013) (0.029) (0.076)
-0.187 0.023 0.061 72 94,450
(0.030) (0.026) (0.070)
-0.080 0.030 0.089 57 61,896
(0.015) (0.048) (0.151)

Outcome OLS IV-2 IV-3 IV-4 OLS (LM) N
Obese (BMI>30) -0.021 0.018 0.016 0.028 -0.016 97,115
(Depvar mean 0.21) (0.001) (0.016) (0.015) (0.016) (0.005)  
p-value (overid/LM) 0.27 0.31 0.39 0.00
Overweight (BMI>25) -0.024 0.010 0.003 0.000 -0.001 97,115
(Depvar mean = 0.622) (0.001) (0.017) (0.016) (0.017) (0.005)  
p-value (overid/LM) 0.22 0.29 0.12 0.95
BMI -0.279 0.270 0.205 0.312 -0.081 97,115
(Depvar mean = 26.83) (0.010) (0.173) (0.164) (0.162) (0.050)  
p-value (overid/LM) 0.02 0.04 0.43 0.01
Hypertension -0.010 -0.029 -0.029 -0.025 -0.018 79,298
(Depvar mean = 0.365) (0.001) (0.018) (0.018) (0.018) (0.006)  
p-value (overid/LM) 0.54 0.55 0.97 0.71  
Diastolic blood pressure -0.058 -0.094 0.038 -0.389 -0.296 79,298
(Depvar mean = 76.01) (0.027) (0.445) (0.423) (0.423) (0.146)  
p-value (overid/LM) 0.003 0.01 0.36 0.83  

Notes: Each panel presents summary estimates for the group of variables listed in the first column. 
The estimates are based on standardized versions of these variables hence effect sizes are in 
standard deviation units (see text for details).

Notes:  This table presents estimates of the effects of years of education on various outcomes using data from the 
Health Survey of England (pooled waves 1991-2004). See notes to Table 5b.

Panel A: 1947 ROSLA

Currently smoke, ever 
smoke
Obese, overweight, 
hypertension

Appendix Table A5: Education effects on clinical health measures

Appendix Table A4: Education effects on summary health 
measures

Health bad, longstanding 
illness, reduced activity

Panel B: 1972 ROSLA

Health bad, longstanding 
illness, reduced activity
Currently smoke, ever 
smoke
Obese, overweight, 
hypertension



Appendix Table C1: Earnings impact of 1947 change to compulsory schooling

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
Hours: 1-84 0.070 0.081 0.038 0.049 -0.001 -0.006 -0.072 -0.079 -0.044 -0.041 -0.005 0.011

(0.028) (0.037) (0.022) (0.031) (0.017) (0.023) (0.045) (0.053) (0.025) (0.031) (0.015) (0.020)
N 11964 3462 11964 3462 22553 7181 11133 3075 11133 3075 24364 7792
Normal hours 0.047 0.044 0.035 0.028 0.010 0.005 -0.069 -0.049 -0.053 -0.026 -0.016 0.000

(0.022) (0.031) (0.022) (0.031) (0.015) (0.019) (0.043) (0.050) (0.025) (0.029) (0.015) (0.020)
N 11022 3156 11022 3156 22553 7181 10152 2787 10152 2787 24364 7792

Appendix Table C2: Earnings impact of 1972 change to compulsory schooling laws

Hours: 1-84

N 6545 6545 9327 5964 5964 10462
Normal hours

N 6168 6168 9327 5359 5359 10462

-0.105
(0.038)

0.056
(0.020)

0.113
(0.064)

0.035
(0.038)

0.104
(0.057)

0.111
(0.057)

Log Hourly Earnings Observed Working
0.067

(0.056)
0.097

(0.052)
0.041

(0.026)
0.073

(0.073)
0.044

(0.032)
-0.086
(0.028)

Notes:  We report reduced-form estimates from local linear regression models using the month-year of birth discontinuity design of outcomes on birth 
month, a dummy for birth month after September 1957, and an interaction of birth month and this dummy. The bandwidth is 40 months on either side of 
September 1957. Normal hours, determined from the data, are defined as 35-60 for males and 10-50 for females.

Panel A: Men Panel B: Women
Log Weekly Earnings Log Hourly Earnings Observed WorkingLog Weekly Earnings Log Hourly Earnings Observed Working

Notes: In column (1) we report reduced-form estimates from a global polynomial regression specification similar to that used by Devereux and Hart (2008), 
the main difference being that the column (1) estimates are generated using a month-year of birth discontinuity design, as opposed to the year-of-birth 
discontinuity design of Devereux and Hart (2008). In column (2) we report reduced-form estimates from local linear regression models of outcomes on 
month of birth, a dummy for birth month after April 1933, and an interaction of birth month and this dummy. The bandwidth is 40 months on either side 
of April 1933. The observed working outcomes refer to the probability of being observed to work 1-84 hours (in the top panel) and working normal hours 
in the bottom panel. These are not conditional on working at all, hence can be interpreted as the probability of being in the samples used in the earnings 
analysis. Normal hours, determined from the data, are defined as 35-60 for males and 10-50 for females.

Panel A: Men Panel B: Women
Log Weekly Earnings Log Hourly Earnings Observed Working Log Weekly Earnings



Appendix Table D1: Effect of 1947 change to compulsory schooling laws
on migration to US

Reduced-Form Estimate 0.145 -0.039 0.059 0.099 -0.098 0.040
(0.079) (0.137) (0.079) (0.105) (0.127) (0.149)

Percent in US for 1933Q1 0.13 0.79 0.55 0.19 0.46 1.08
Bandwidth in Quarters 20 34 14 27 28 28
Dataset 1960 Census 1970 Census 1980 Census 2005 ACS 2006 ACS 2007 ACS

Reduced-Form Estimate 0.686 0.649 -0.084 0.0004 0.225 0.357
(0.523) (0.216) (0.127) (0.2202) (0.200) (0.171)

Percent in US for 1933Q1 1.23 1.38 1.49 1.06 0.76 1.23
Bandwidth in Quarters 10 35 14 30 31 30
Dataset 1960 Census 1970 Census 1980 Census 2005 ACS 2006 ACS 2007 ACS

Reduced-Form Estimate 0.216 0.332 -0.010 0.041 0.089 0.014
(0.209) (0.156) (0.067) (0.131) (0.127) (0.132)

Percent in US for 1933Q1 0.67 1.08 1.01 0.62 0.60 1.15
Bandwidth in Quarters 12 27 14 28 30 23
Dataset 1960 Census 1970 Census 1980 Census 2005 ACS 2006 ACS 2007 ACS

Panel A: Men

Panel B: Women

Panel C: Overall

Notes: This table presents regression discontinuity estimates of the effect of the 1947 reform on immigration to the United States 
from persons born in England or Wales. The bandwidth is chosen using the cross-validation procedure discussed in the text. 
These regressions include a fully-interacted linear polynomial in quarter-year of birth cohort relative to April 1947. The migration 
rate equals the number of persons appearing in the US dataset divided by the size of the quarter-year of birth cohort multiplied by 
100. All of these regressions use data by quarter-year of birth cohort data from the Office of National Statistics. Calendar quarter-
of-birth fixed effects are included in the regressions. Regressions are weighted by the number of births. Reported bandwidths are 
in quarters. Robust standard errors are presented in parentheses.


