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The effect of environmental contaminants on testicular
function
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Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and

environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume

of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other

changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can

mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells.

Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various

compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be

elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function

through the induction of oxidative stress and apoptosis.
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INTRODUCTION

In recent years, there has been growing concern regarding the

adverse effects of various environmental contaminants on male

reproduction. With the advent of industrialisation, economic

development and urbanisation, drastic changes have occurred in

the lifestyle and surroundings of humans that have resulted in

the extensive production and use of beneficial substances. As a

result, many potentially hazardous chemicals have been released

into the environment at an alarming rate, and their exposure to

both humans and wildlife has become inevitable. These chemicals

that have been released into the environment are a leading causative

factor in the high incidence of various pathological conditions,

including cancers.1,2 Concurrently, there has been a declining trend

in the male reproductive health of both wildlife and humans in

industrialized nations.3,4 A meta-analysis report of a 50% world-

wide decline in sperm density from 1940 to 1990 raised consid-

erable scientific and public concern regarding the imminent threat

of synthetic chemicals to male reproductive health.5 Since that

report, several studies have demonstrated the negative impact that

synthetic chemicals have on male reproductive health.6,7

Most environmental chemicals are hormonally active compounds

that target the endocrine system and cause reproductive anomalies.8–10

Some chemicals are specifically known to perturb the testicular milieu.

An increasing body of evidence suggests that environmental contami-

nants impair testicular functions by disturbing the pro-oxidant/

antioxidant balance of testicular cells, thereby activating associated

downstream pathways such as apoptosis.11 Although physiological

levels of reactive oxygen species (ROS) and apoptosis are required for

normal functioning of the testis, pathological levels can be deleterious.

This review summarizes recent studies (including those from our labor-

atory) of the toxicological effects of some of the more commonly used

environmental contaminants on the testis, with special emphasis

on elucidating the mechanisms that act via generation of ROS and

apoptosis.

THE PHYSIOLOGICAL ROLE OF ROS AND APOPTOSIS IN

SPERMATOGENESIS

The testes perform two vital, high energy-demanding functions,

namely, spermatogenesis and steroidogenesis. In the testes, sper-

matogenesis and steroidogenesis occur within seminiferous tubules

and the interstitium, respectively. These two compartments are

morphologically distinct but are functionally connected.12 During

spermatogenesis, a complex, interdependent population of undif-

ferentiated germ cells multiplies and differentiates to form sper-

matozoa. In the seminiferous epithelium, the germ cells are

sequentially organized from the base of the tubule to the lumen,

signifying the various stages of development.13 The germ cells are

fostered by the nursing Sertoli cells, which extend from the base to

the lumen of the seminiferous tubules. The tight junctions between

the Sertoli cells form an effective blood–testis barrier that regulates

the flow of nutrients and growth factors that are required for the

development of germ cells.14,15 The process of spermatogenesis is

hormonally regulated by a negative feedback loop that involves the

hypothalamus, pituitary and testis.

Several intratesticular and extratesticular regulatory processes are

involved in the regulation of normal spermatogenesis. The ROS that
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are generated during normal testicular function also play an important

role in regulating the function of the testis. Although ROS are known

to have damaging effects, controlled, low levels of ROS play a bene-

ficial role in normal testicular function. However, the production of

ROS in the testis is primarily associated with phagocytic leukocytes in

the semen,16 other cell types—such as developing germ cells and sper-

matids—are also a ready source of ROS.17 A wealth of evidence indi-

cates that ROS that are produced by sperm participate in the signal

transduction mechanism that promotes sperm capacitation, the acro-

some reaction and sperm maturation.18 However, increased levels of

ROS can be detrimental to testicular function. To overcome this, the

testis is equipped with very a potent antioxidant system that protects it

from the damaging effects of ROS. The glutathione family of proteins,

superoxide dismutase, catalase and several non-enzymatic antioxi-

dants all help the testis by counteracting any oxidative impact.19

However, overexposure to environmental toxicants has been shown

to impair the pro-oxidant/antioxidant balance in the testis and

thereby hamper testicular function.20 Thus, the spermatogenic process

can serve as both a source and a target of ROS.

The ROS that are produced during spermatogenesis are involved in

the regulation of apoptosis within the testis.21 Testicular apoptosis

occurs during differentiation of germ cells, which serves to adjust

the number of germ cells in the testis.22 Testicular apoptosis occurs

continuously throughout spermatogenesis, and both the intrinsic and

extrinsic apoptotic pathways have been shown to play regulatory

roles.23,24 The intrinsic (or mitochondrial) pathway involves various

pro-apoptotic and anti-apoptotic proteins that recruit and activate the

caspase cascade to induce apoptosis. The extrinsic pathway is

mediated through Fas receptor (Fas) and Fas ligand (FasL) together

with caspase proteins. Sertoli cells express Fas ligand, which signals the

killing of Fas-expressing germ cells, thereby limiting the number of

germ cells.25 Various factors such as the withdrawal of growth factors,

radiation and oxidative stress trigger apoptosis in the testis.

ENVIRONMENTAL TOXICANTS AND SPERMATOGENESIS

Several environmental toxicants induce apoptosis in germ cells,

thereby resulting in defective spermatogenesis. For example, in adult

male rats, methoxychlor (MXC) induced oxidative stress by decreas-

ing the levels of antioxidant enzymes in the testis and epididymides

when administered at 50, 100 or 200 mg kg21 body weight for 1, 4 and

7 days.26,27 However, long-term exposure to MXC at low doses (1, 10

and 100 mg kg21 body weight) elicited oxidative stress and depletion

of the activity of antioxidant enzymes in the mitochondrial and micro-

somal fractions of testis.28 A single MXC dose of 50 mg kg21 body

weight transiently increased the levels of apoptotic proteins (e.g., pro-

and cleaved caspase-3, cytochrome c, Fas and FasL in the peritubular

germ cells), which suggests the activation of the mitochondrial and

FasL-mediated death pathways upon exposure to MXC.29 A transge-

nerational study showed that administration of MXC to pregnant rats

from gestational days 7 through 15 reduced the number of germ cells

and increased the number of apoptotic germ cells in the male offspring

measured at postnatal day 17.30 Perinatal and juvenile exposure to

MXC (at 5, 50 or 150 mg kg21) has been reported to reduce sperma-

togenic potential by decreasing the volume of the Sertoli cell nucleus

and the number of Sertoli cell which suggests that MXC impairs sper-

matogenesis by targeting the Sertoli cell population in the testis.31

In male rats, intraperitoneal injection of 1,1-dichloro-2,2-bis

(p-chlorophenyl)ethylene (p,p9-DDE, a principal metabolite of

DDT) at a dose of 60 or 100 mg kg21 body weight for 10 days caused

an increase in the levels of lipid peroxidation and a decrease in the

activities of superoxide dismutase and glutathione peroxidase in the

testis. An increase in the mRNA levels of Fas, FasL, caspase-3 and

caspase-8 were also observed, which indicates that p,p9-DDE induces

apoptosis through the Fas/FasL apoptotic pathway.32 Exposing Sertoli

cells in vitro to p,p9-DDE (at 10, 30 or 50 mmol l21), beta-benzene

hexachloride (at 10, 30 or 50 mmol l21) or a combination of p,p’-DDE

and beta- benzene hexachloride (at 10, 30 or 50 mmol l21 each) led to

the activation of caspases-3, -8 and -9, which is indicative of apopto-

sis.33 Vinclozolin, a dicarboximide fungicide, was administered to

mice during gestation (15–22 days) which decreased the anogenital

distance, prostate weight, sperm count and induced changes in the

expression of the apoptosis-related proteins p51 and p21.34 A com-

parative study of the anti-androgenic effects of vinclozolin and fluta-

mide (a well-known anti-androgen drug) showed that these drugs

have transgenerational effects. Vinclozolin and flutamide (at doses

of 100 and 20 mg kg21 body weight, respectively) caused an increase

in spermatogenic cell apoptosis and a decrease in epididymal sperm in

the testis of F1 generation rats; the F2 and F3 generations were also

found to be affected in the vinclozolin-treated group but not in the

flutamide-treated group, suggesting different modes of action for

these compounds.35

Lindane (gamma-hexachlorocyclohexane), an organochlorine pes-

ticide, has been shown to impair spermatogenesis in testis. Rats that

were treated with gamma-hexachlorocyclohexane at critical stages of

testicular development (6th–30th postnatal day) exhibited elevated

levels of testicular lipid peroxidation and hydrogen peroxide synthesis,

as well as reduced levels of superoxide dismutase, catalase and ascorbic

acid.36 In addition, administering 5 mg of lindane daily for 30 days to

male albino rats led to an induction of oxidative stress in the testis,

epididymis and epididymal sperm.37,38 Exposure to a single dose lind-

ane (5 mg kg21 body weight) has been shown to increase the levels of

cytosolic cytochrome c along with pro-caspase-9 within 6 h of expo-

sure. In addition, increased colocalisation of Fas and caspase-3 in

peritubular germ cells was also observed in the testis, and this effect

was almost fully reversed within 72 h of exposure.39 The in vitro

exposure of Sertoli cells to lindane has been shown to alter gap junc-

tion intercellular communication by changing the distribution of con-

nexin 43 and zona occludens-1.40

Several studies have reported that bisphenol A (BPA) induces oxid-

ative stress in the testis, epididymis and sperm of various animal

species.41–43 Male mice that were exposed to 480 or 960 mg kg21 of

BPA from postnatal day 35 through 49 exhibited activated mitochon-

drial and Fas-mediated death pathways, increased terminal deoxynu-

cleotidyl transferase dUTP nick end labelling-positive germ cells in

stage VII–VIII, and activated caspases-3, -8 and -9, Bax, Fas and

FasL.44,45 Maternal exposure to low doses of BPA caused a significant

decrease in the efficiency of sperm production in male offspring46 and

a significant reduction in testicular weight, daily sperm production

and the efficiency of spermatogenesis (measured as daily sperm pro-

duction per gram of testis) at a dose as low as 20 mg kg21.47 A disrup-

tion of the Sertoli cell barrier and a change in the distribution of the

gap junction protein connexin 43 were observed when BPA was admi-

nistered to rats.48 BPA has also been reported to impair the function of

gap junctions in Sertoli cells through a redistribution of occluding/

zona occludin-1/focal adhesion kinase complex proteins at the blood–

testis barrier and by activating the mitogen activated protein kinase

pathway. Docking of BPA with gap junction protein connexin

26 revealed an interaction between BPA and the pore-lining

residues of the N-terminal helix and the first transmembrane helix

of connexin 26.49
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2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a polychlorinated

dibenzo-p-dioxin, is a potent environmental toxicant. Both short-

and long-term exposures to TCDD have been reported to induce

oxidative stress and decrease the levels of antioxidant enzymes in the

testis and epididymis of rats.50–52 TCDD targets dioxin-inducible fac-

tor-3—a nuclear factor that possesses a zinc-finger motif—to mediate

reproductive toxicity.53 Gestational exposure to TCDD has been

reported to impair testicular spermatogenesis and testicular develop-

ment in both rhesus monkeys and mice.54,55 Exposure of C57BL/six

mice to TCDD (50 mg kg21 body weight) caused a reduction in the

mitochondrial membrane potential of epididymal spermatozoa and

increased ROS levels in the spermatozoa, which was blocked by co-

administration with the antioxidant N-acetylcysteine. When 3-week-

old male rats were exposed for 7 days to dinbutyl phthalate, a common

plasticizer, they exhibited testicular atrophy, a loss of spermatogenic

cells and a high incidence of apoptosis in their spermatogenic cells, and

the investigators speculated that the estrogenicity of dinbutyl phthal-

ate could have contributed to these effects.56

Oral administration of the organic herbicide atrazine, to male rats at

a dose of 120 or 200 mg kg21 body weight for 7 and 16 days caused a

decrease in the activity of antioxidant enzymes and an increase in lipid

peroxidation and hydrogen peroxide synthesis, which suggests that

atrazine induced a state of oxidative stress in these animals.57

Intraperitoneal administration of dinitrobenzene (at 25 mg kg21)

caused apoptosis at spermatogenesis stages VI–VIII and IX–XIII and

increased DNA fragmentation within 6 h of exposure.58 Ad-

ministration of 1,3-dinitrobenzene to Sprague–Dawley rats caused

an upregulation of the apoptotic proteins that are involved in the

mitochondrial pathway.59 Fenvalerate administration (at a dose of

15 or 60 mg kg21 body weight) for 28 days caused an increase in the

number of terminal deoxynucleotidyl transferase dUTP nick end

labelling-positive germ cells, increased the levels of caspases-3 and

-8 in the testis and upregulated the expression of Fas and FasL in the

testis. However, fenvalerate did not activate the mitochondrial cell

death pathway or caspase-9 in the testis of rats.60 Exposure to octyl-

phenol has been shown to decrease the viability of Sertoli cells and

induce apoptosis by upregulating the expression of Bax and causing

the cleavage of procaspase-3,61 and administration of nonylphenol

activated the endoplasmic reticulum signalling pathway and induced

apoptosis in the Sertoli cells of rats.62

Most of these toxicants impair the spermatogenic process by

inducting oxidative stress and apoptosis in germ cells, and some tox-

icants target Sertoli cells and thereby hamper spermatogenesis. Several

other toxicants impair spermatogenesis and lead to infertility. The

effects of a few select environmental toxicants on spermatogenesis

are summarized in Table 1.

ROS GENERATION AND APOPTOSIS IN STEROIDOGENESIS

Together with germ cells and Sertoli cells, Leydig cells also play

an important role in the regulation of spermatogenesis. Leydig

cells produce testosterone, which is important for the mainten-

ance of both secondary sexual functions and spermatogenesis. It

has long been known that Leydig cells originate from the

mesenchymal cells that are present in the interstitium of the

testis. Postnatal development of Leydig cells involves their trans-

formation through three stages called progenitor, immature and

adult Leydig cells. During the prepubertal and pubertal stages of

development, there is an increase in the number of Leydig cells

due to the differentiation of mesenchymal cells into Leydig cells

and the mitotic division of newly formed Leydig cells.63 Although

the cellular mechanisms involved in maintaining a constant

population of Leydig cells are not well understood, apoptosis is

thought to play an important role in the regulation of these

cells.64 However, increased apoptosis can cause a decline in tes-

tosterone production that could impair fertility.

Testosterone biosynthesis occurs in the Leydig cells under the

influence of luteinizing hormone (LH). Binding of LH to its recep-

tor in a Leydig cell initiates a series of events that include an

increase in intracellular cyclic adenosine monophosphate (cAMP),

translocation of cholesterol into mitochondria, conversion of cho-

lesterol to pregnenolone, translocation of pregnenolone into the

smooth endoplasmic reticulum and the conversion of pregnenolone

to testosterone through a cascade of reactions that are catalysed by

the cytochrome P-450 family of proteins.65 The process of steroi-

dogenesis itself can serve as a source of ROS.66 The products that

are formed during normal steroidogenesis can act as pseudosub-

strates and interact with P-450 enzymes, resulting in the formation

of a pseudosubstrate–P-450–O2 complex, which is a source of dam-

aging free radicals due to the inability of the pseudosubstrate to

undergo hydroxylation.67

Table 1 Environmental toxicants that affect spermatogenesis

Toxicant Dose and duration Observed effects Reference

4-tert-octylphenol Injection of 20 or 80 mg for 2 months Decreased sperm count, increased head

abnormalities of the sperm

87

Atrazine Oral administration of 120 or 200 mg kg21

body weight for 7 and 16 days

Increased oxidative stress, decreased epididymal

sperm motility, viability and defoliation of germ cells

57

2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD)

Intraperitoneal injection of 50 mg kg21

body weight

Decreased percentage of tubules containing sperm,

decreased sperm count, decreased germ cell count and

Sertoli cell index and upregulation of testis-specific proteins

88

Aroclor 1254 Intraperitoneal injection of 0.75, 1.5 or

3 mg kg21 day-1

Decreased weight of the testis, decreased sperm count,

motility and daily sperm production, decreased levels

of mitochondrial antioxidant enzymes

89

Methyl parathion Single intraperitoneal injection of 20 mg kg21

body weight and sperm collected on the

7th and 28th day

Decreased sperm quality, decreased DNA integrity of

spermatozoa and reduced mitochondrial membrane potential

90

1,1-dichloro-2,2 bis(p-chlorophenyl)

ethylene (p,p9-DDE)

Intraperitoneal injection of 20, 60 or 100 mg kg21

body weight for 10 days

Increased oxidative stress and increased

levels of FasL, caspase-3 and caspase-8

32

Malathion Single intraperitoneal injection of 240 mg kg21 body

weight and killed on 1, 8, 16, 35 and 40 days

Decreased sperm count, increased incidence of

teratozoospermia and depletion of seminiferous tubules

91
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ENVIRONMENTAL TOXICANTS AND STEROIDOGENESIS

Several endocrine-disrupting chemicals increase the production of

ROS in the testis and disrupt steroidogenesis. However, very few stud-

ies have analysed toxicant-induced apoptosis in Leydig cells. Within

the steroid hormone biosynthetic pathway, steroidogenic acute regu-

latory protein (StAR), cytochrome P-450, cytochrome P-450 17ahy-

droxylase/17,20 lyase/17,20 desmolase, 3b-hydroxysteroid dehydrogenase

(3b-HSD) and 17b-hydroxysteroid dehydrogenase (17b-HSD) are recog-

nized as important targets for the actions of endocrine-disrupting

chemicals. Exposing purified rat Leydig cells to the polychlorinated

biphenyl Aroclor 1254 at concentrations of 10210–1027 mol l21 caused

a significant decline in the activities of enzymatic and non-enzymatic

antioxidant enzymes, an increase in the levels of ROS and a decrease in

the mRNA levels of cytochrome P-450scc, 3b-HSD and 17b-HSD.68

Exposing mice to 2,29,4,49,5-pentachlorobiphenyl and 2,29,4,49,5,59-hex-

achlorobiphenyl 10 or 100 mg kg21 body weight for 6 weeks increased

the prevalence of apoptotic Leydig cells within the first week of expo-

sure.69 Studies from our laboratory have demonstrated the inhibitory

effect of lindane (at 5 mg kg21 body weight) on testicular steroidogenic

enzymes, 3b-HSD and 17b-HSD, which was accompanied by an induc-

tion of oxidative stress upon exposure for 30 days.37 Furthermore, a single

exposure of lindane at a dose of 5 mg kg21 body weight caused a transient

decrease in testicular steroidogenesis by decreasing the levels of StAR

protein, 3b-HSD and 17b-HSD after 12 and 24 h.70 When fed to rats

at 7.5 or 10 mg kg21 body weight for 15 and 30 days, the insecticide

endosulfan inhibited testicular androgen biosynthesis; a significant

decrease in the levels of the plasma gonadotrophin’s follicle-stimulating

hormone and LH, plasma and testicular testosterone and 3b-HSD and

17b-HSD was observed at both doses.71 Administration of 1 mg kg21

body weight of endosulfan for 30 days to rats caused a decrease in the

specific activities of both 3b-HSD and 17b-HSD as well as a decrease in

testicular DNA and RNA levels.

MXC and its metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichlor-

oethane exhibit weak estrogenic and anti-androgenic activities and

exert their effects through oestrogen and androgen receptors, respect-

ively. In our laboratory, we showed that a single dose of MXC at 50 mg

kg21 body weight caused oxidative stress and a transient inhibition of

StAR protein and steroidogenic enzymes, 3b-HSD and 17b-HSD in

the testis of rats.73 Exposing Leydig cells (progenitor, immature and

adult cells) isolated from 21-, 35- and 9-day-old rats to MXC and 2,2-

bis-(p-hydroxyphenyl)-1,1,1-trichloroethane decreased the mRNA

levels of P-450scc, decreased testosterone production and decreased

cholesterol utilisation by Leydig cells, thereby inhibiting testosterone

biosynthesis at all stages of development.74 It has also been shown that

MXC and 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane inhibit

the activities of 3b-HSD and 17b-HSD in both human and rat testis.

The mode of action has been suggested to be by competition with the

cofactors and not the substrate.75

TCDD is the most toxic dioxin congener and is known to inhibit

steroidogenesis in the testis.76,77 In vitro administration of TCDD at a

concentration of 0.2 or 2 ng ml21 has been shown to suppress hCG-

induced testosterone production in purified Leydig cells. A decrease in

progesterone secretion together with a decrease in P-450scc mRNA and

protein levels were also observed, and it has been speculated that TCDD

exerts these effects by decreasing cAMP signalling in rat Leydig cells.78

When given to mice for 6 weeks at a dose of 35 or 70 mg kg21,

permethrin, a popular synthetic pyrethroid insecticide used to control

pests, impaired the mitochondrial membranes in Leydig cells and dis-

rupted testosterone biosynthesis by decreasing the protein and mRNA

levels of StAR and P-450scc. It was hypothesized that permethrin exerts

this effect by diminishing the delivery of cholesterol into the mitochon-

dria and decreasing the cellular conversion of cholesterol to pregneno-

lone.79 Administration of aldrin, an organochlorine insecticide, for 13

or 26 days, impaired steroidogenesis by suppressing the activities of 3b-

HSD and 17b-HSD and through the release gonadotrophins from the

pituitary.80 Oral exposure to atrazine at a dose of 50 of 200 mg kg21

body weight from postnatal day 23–30 caused downregulation of the

expression of the LH receptor gene, reduced cAMP levels, decreased

cholesterol transport and decreased 17b-HSD activity. It has been pro-

posed that atrazine inhibits Leydig cell steroidogenesis by inhibiting the

expression of genes that are involved in steroidogenesis.81 Oral admin-

istration of linuron, a urea-based herbicide, at doses of 50 or 75 mg

kg21 body weight to pregnant rats from gestational day 13–18, caused a

reduction in testosterone levels in fetal testis.82

BPA, a monomer used in the manufacturing of plastics and other

products, is a ubiquitous environmental toxicant. BPA at 480 or 960 mg

kg21 day21 has been shown to induce apoptosis of Leydig and germ cells

via the upregulation of Fas, FasL and caspase-3.44 Subcutaneous admin-

istration of BPA (at 100 or 200 mg kg21 day21) and estradiol decreased

the plasma and testicular levels of estradiol, steroidogenic enzymes and

cholesterol carrier proteins in Leydig cells. A decrease in both the number

of Leydig cells and the levels of estrogen receptor-amRNA was also found

following administration with BPA.83 BPA has also been shown to induce

Nur77 gene expression, an orphan nuclear receptor that is involved in

steroidogenesis, thereby altering steroidogenesis in testicular Leydig

cells.84 Administering the industrial chemical 4-nonylphenol to rats at

250 mg day21 for 50 days decreased testosterone levels by inhibiting P-

450c17, an important enzyme in testosterone synthesis in Leydig cells.85

Table 2 Environmental toxicants that affect steroidogenesis

Toxicant Dose and duration Observed effects Reference

Aroclor 1254 In vitro exposure at 1027, 1028, 1029, 10210 mol l21 for 24 h

under basal and LH-stimulated conditions

Decreased LH-stimulated testosterone production, decreased activity of

antioxidant enzymes and steroidogenic enzymes

92

Bisphenol A Subcutaneous injection of 20, 100 or 200 mg kg21 day21 for

6 weeks

Decreased plasma levels of testosterone and LH, cholesterol carrier protein

and steroidogenic enzymes and decrease numbers of Leydig cells

83

Endosulfan Oral administration of 1 mg kg21 body weight for 30 days Decreased activity of steroidogenic enzymes and 3b-hydroxysteroid

dehydrogenase

72

Atrazine Oral gavage of 50, 200 mg kg21 for 15 days or 300 mg kg21 for

7 days

Decreased plasma and testicular testosterone levels, 3b-hydroxysteroid

dehydrogenase and aryl hydrocarbon receptor expression

93

Fenvalerate Oral administration of 60 mg kg21 body weight from postnatal day

35 to PND 63

Decreased testosterone biosynthesis, downregulated expression of P-450scc

and 17a-hydroxylase cytochrome P-450

94

Benzopyrene Inhalation of 5, 75 or 100 mg benzopyrene m23, 4 h daily for 10 days Decreased plasma testosterone levels 95

Prochloraz 31.3, 62.5 or 125 mg kg21 day21 postnatal day 23 to 42 or 51 Decreased serum testosterone levels 96

LH, luteinizing hormone.
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Triclosan is a chemical which is widely used in various antimicrobial

preparations. Leydig cells that were exposed to triclosan (at 0.001,

0.01, 0.1, 1 and 10 mmol l21) showed a significant decrease in the

enzymatic activity of adenylyl cyclase, which was followed by

decreased synthesis of cAMP. The transcriptional and translational

activity of P-450scc, 3b-HSD, 17b-HSD and StAR were also decreased

in a dose-dependent manner.86 Most toxicants impair steroidogenesis

and decrease Leydig cell function by inducing ROS and/or by decreas-

ing the levels of steroidogenic enzymes. Table 2 summarizes several

key studies that reported the effects of environmental contaminants on

steroidogenesis.

CONCLUSIONS

Several studies have clearly demonstrated that environmental contami-

nants cause an imbalance in the pro-oxidant and antioxidant status of

the testis. Normal testicular spermatogenesis and steroidogenesis are

sources of ROS. Although physiological levels of ROS are needed for

spermatogenesis, an excess of ROS resulting from environmental con-

taminants can have deleterious effects; a proposed mechanism of

action for these toxicants is depicted in Figure 1. In addition, oxidative

stress has also been associated with pathological levels of apoptosis in

germ cells and Leydig cells. Future research should be directed towards

studying the apoptotic effects of all toxicants that are commonly pre-

sent in the environment.
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