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Abstract  
 
Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US 
cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral 
transmission within and among households in a theoretical metropolitan area. We recreate a 
range of urban epidemic trajectories and project the course of the epidemic under two 
counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, 
and another in which evictions are allowed to resume at baseline or increased rates. We find, 
across scenarios, that evictions lead to significant increases in infections. Applying our model to 
Philadelphia using locally-specific parameters shows that the increase is especially profound in 
models that consider realistically heterogenous cities in which both evictions and contacts occur 
more frequently in poorer neighborhoods. Our results provide a basis to assess municipal 
eviction moratoria and show that policies to stem evictions are a warranted and important 
component of COVID-19 control.  
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Introduction 
The COVID-19 epidemic has caused an unprecedented public health and economic crisis in the 
United States. The eviction crisis in the country predated the pandemic, but the record levels of 
unemployment have newly put millions of Americans at risk of losing their homes [1–7] . Many 
cities and states enacted temporary legislation banning evictions during the initial months of the 
pandemic [8,9], some of which have since expired. On September 4th, 2020, the Centers for 
Disease Control and Prevention, enacting Section 361 of the Public Health Service Act [10], 
imposed a national moratorium on evictions until December 31st, 2020 [11]. This order, like 
most state and municipal ordinances, argues that eviction moratoria are critical to prevent the 
spread of SARS-CoV-2. It is currently being challenged in federal court (Brown vs Azar [12]), as 
well as at the state and local level [13,14]. 

Evictions have many detrimental effects on households that could accelerate the spread of 
SARS-CoV-2. There are few studies on the housing status of families following eviction [15,16], 
but the limited data suggest that most evicted households "double-up"--moving in with friends or 
family--immediately after being evicted (see Methods). Doubling up shifts the distribution of 
household sizes in a city upward. The role of household transmission of SARS-CoV-2 is not fully 
understood, but a growing number of empirical studies [17–22], as well as previous modeling 
work [23,24] suggest households are a major source of SARS-CoV-2 transmission. Contact 
tracing investigations find at least 20-50% of infections can be traced back to a household 
contact [25–28]. Household transmission can also limit or delay the effects of measures like 
lockdowns that aim to decrease the contact rate in the general population [18,23,29]. 

Here we use  an epidemiological model to quantify the effect of evictions, and their expected 
shifts in household size, on the transmission of SARS-CoV-2, and the prospects of its control, in 
cities (Figure 1). We modify an SEIR (susceptible, exposed, infectious & recovered) model, 
previously described in Nande 2020 [23], to track the transmission of SARS-CoV-2 through a 
metropolitan area with a population of 1 million individuals. We use a network to represent 
contacts of the type that can potentially lead to transmission of SARS-CoV-2, between 
individuals grouped in households. We modulate the number of contacts outside the household 
over the course of the simulations to capture the varied effects of lockdown measures and their 
subsequent relaxation. We model evictions that result in 'doubling up' by merging each evicted 
household with one randomly-selected household in the network. In supplemental analyses, we 
examine what might happen if some proportion of evicted households enter homeless shelters 
or encampments. 

The model is parameterized using values from the COVID-19 literature and other demographic 
data (see Methods). The timing of progression between stages in our epidemiological model is 
taken from many empirical studies and agrees with other modeling work: We assume an ~4 day 
latent period, ~7.5 day serial interval and R 0 ~ 3 in the absence of interventions, and ~1% 
infection fatality risk. Household sizes are taken from the US Census [30]; households are 
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assumed to be well-mixed, meaning all members of a household are in contact with each other. 
Individuals are randomly assigned contacts with individuals in other households. The number 
and strength of these “external” contacts is chosen so that the household secondary attack rate 
is ~0.3 [20], and the probability of transmission per contact is approximately 2.3-fold higher for 
households, compared to external contacts [19]. Our model naturally admits a degree of 
overdispersion in individual-level R 0 values. Baseline eviction rates, which we measure as 
percent of households evicted each month, vary dramatically between cities at baseline, as do 
the expected increases due to COVID-19 (Supp. Figure 2, [31,32]). To capture this range of 
eviction burdens, we simulate city-wide eviction rates ranging from 0.1 - 2.0%. 

Our initial models assume that mixing between households occurs randomly throughout a city, 
and that evictions and the ability to adopt social distancing measures is uniformly distributed. 
However, data consistently show that both COVID-19 and evictions disproportionately affected 
the same poorer, minority communities [33–39]. We therefore extend our model to evaluate the 
effect of evictions in a realistically heterogeneous city. We provide generic results, and then 
parameterize our model to a specific example--the city of Philadelphia, Pennsylvania.  
 
Among large US cities, Philadelphia has one of the highest eviction rates. In 2016 (the last year 
complete data is available), 3.5% of renters were evicted, and 53% were cost-burdened, 
meaning they paid more than 30% of their income in rent [31,40]. In July, 2020 the Philadelphia 
city council passed the Emergency Housing Protection Act [41], in an effort to prevent evictions 
during the COVID-19 pandemic. The city was promptly sued by HAPCO, an association of 
residential investment and rental property owners [42]. Among other claims, the plaintiff 
questioned whether the legislation was of broad societal interest, rather than protecting only a 
narrow class (of at-risk renters). An early motivation behind this work was to assess this claim. 
 
 

 
Figure 1: Modeling the effect of evictions on SARS-CoV-2 transmission. We model the spread of 
infection over a transmission network where contacts are divided into those occurring within a household 
(solid grey lines) versus outside the house (“external contacts”, dotted grey lines). Social distancing 
interventions (such as venue and school closures, work-from-home policies, mask wearing, lockdowns, 
etc) are modeled as reductions in external contacts (red x’s), while relaxations of these interventions 
result in increases in external contacts towards their baseline levels. When a household experiences 
eviction (red outline), we assume the residents of that house “double-up” by merging with another house 
(blue circle), thus increasing their household contacts. Evictions can also directly lead to homelessness 
(orange outline), and residence in shelters or encampments with high numbers of contacts  
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Results 

Evictions drive increases in COVID-19 cases across cities 
We simulate COVID-19 epidemic trajectories in single metro areas over the course of 2020. To 
recreate realistic scenarios in the model, we first collected data on COVID-19 cases and deaths 
aggregated for each US metropolitan statistical area with at least 1 million residents (~50 cities). 
We then used hierarchical clustering to group the time series based on similar trajectories 
through Sept 2020, which resulted in four distinct groups of cities (Figure S3, Methods). Groups 
differed in the size of the spring wave, the degree of control in the early summer, and the 
occurrence and extent of a late summer wave (Figure S4-S8). For example, cities like New 
York, Boston, Philadelphia, and New Orleans (“Trajectory 1”) had large early epidemic peaks 
followed by dramatic and sustained reductions in cases; cities including Chicago, Baltimore, 
Seattle, and San Diego had substantial but smaller spring peaks that were controlled and then 
followed by a long plateau of cases over the summer (“Trajectory 2”); metros like St Louis, 
Raleigh, Salt Lake City, and San Francisco had much smaller spring outbreaks that were only 
partially controlled and then led to increases in the summer (“Trajectory 3”); and metros similar 
to Miami, Houston, Atlanta, and Phoenix experienced large mid-summer outbreaks (“Trajectory 
4”). We calibrated our model to each of these four trajectory types by modulating the degree of 
reduction in external contacts over time (Methods, Table S1, and Figure S9).  
 
Many local, county, and state-level eviction moratoria that were created early in the US 
epidemic were scheduled to expire in late summer 2020, so we modeled the effect of evictions 
taking place starting Sept 1 and continuing for the duration of the simulation. We assume that 
evictions happen at a constant rate per month, but that the backlog of eviction cases created 
during the moratoria results in 4 months worth of evictions occurring in the first month. We first 
considered an epidemic following Trajectory 1 (e.g. large spring epidemic peak followed by a 
strong lockdown and summer plateau, Figure 2). During fall 2020, we simulated a comeback of 
infection with a doubling time of 2-3 weeks, as has been observed across all large metros. By 
the end of 2020, 16% of individuals in our simulated scenario had caught COVID-19 in the 
absence of evictions. With a low eviction rate of 0.25%/month about 0.5% more of the 
population become infected compared to if there were no evictions. This increase corresponds 
to ~5,000 excess cases per million residents. With a 1%/month eviction rate the infection level 
was ~4% higher than baseline (Table 1). The exact values vary across simulations due to all the 
stochastic factors in viral spread considered in the model. These results highlight how the 
increased household spread that results from eviction-driven doubling-up acts synergistically 
with spread between members of different households during a growing epidemic to amplify 
infection levels. 
 
Our model predicts that even for lower eviction rates that don’t dramatically change the 
population-level epidemic burden, the individual risk of infection was always substantially higher 
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for those who experienced eviction, or who merged households with those who did, compared 
to individuals whose households did not change (relative risk of infection by the end of the year, 
~1.28 [1.21, 1.37]). However, the increased risk of infection was not only felt by those who 
doubled-up: even for individuals who were neither evicted nor merged households with those 
who did, the risk of infection compared to the counterfactual scenario of no evictions was 1.04 
for an eviction rate of 0.25%/month and 1.4 for 2.0% evictions per month (Figure 2D). This 
increased risk highlights the spillover effects of evictions on the wider epidemic in a city.  
 
 

 
Figure 2: Impact of evictions on a SARS-CoV-2 comeback during Fall 2020. We model evictions 
occurring in the context of an epidemic similar to cities following “Trajectory 1”, with a large first wave and 
strong control in the spring, followed by relaxation to a plateau over the summer and an eventual 
comeback in the fall. Monthly evictions start Sept 1, with a 4-month backlog processed in the first month. 
A) The projected daily incidence of new infections (7-day running average) with and without evictions. 
Shaded regions represent central 90% of all simulations.The first lockdown (dotted vertical line) reduced 
external contacts by 85%, under relaxation (second dotted line) they were still reduced by 70%, and 
during the fall comeback they were reduced by 60% (fourth dotted line). B) Final epidemic size by Dec 31 
2020, measured as percent of individuals who had ever been in any stage of infection. C) The predicted 
increase in infections due to evictions through Dec 31 2020, measured as excess percent of population 
infected (left Y-axis) or number of excess infections (right Y-axis). Error bars show interquartile ranges 
across simulations. D) Relative risk of infection in the presence versus absence of evictions, for 
individuals who merged households due to evictions (“Doubled-up”) and for individuals who kept their 
pre-epidemic household (“Other households”). E)-F) Same as above but assuming a second lockdown is 
instituted on Dec 1, and maintained through March 2021.  
 
We then considered the same scenario but assumed the epidemic resurgence was countered 
with new control measures imposed on Dec 1. The epidemic was eventually controlled in 
simulations with or without eviction, but the decline was slower and the intervention less 
effective at reducing epidemic size when evictions were allowed to continue (Figure 2E-H). 
Following the epidemic until March 31 2021 at which point it was nearly eliminated locally, the 
final size was 0.3% greater with 0.25%/month evictions and 3% larger with 1%/month evictions. 
Larger households, created through eviction and doubling up, allow more residual spread to 
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occur under lockdowns. Allowing evictions to resume will thus compromise the efficacy of future 
SARS-CoV-2 control efforts.  
 
Cities across the US experienced diverse epidemic trajectories through August 2020, which we 
found could be summarized by three additional trajectory patterns (Figure 3, Figure S6-S8). 
These trajectory patterns, when used to calibrate our model, provide information on the 
prevalence of susceptible, infected, and previously-recovered (immune) individuals at the time 
evictions resume, as well how these cases may be distributed across households. We found 
that for all trajectories, evictions lead to significant increases in COVID-19 cases, with anywhere 
from ~1,000 to ~10,000 excess cases per million residents attributable to evictions when 
eviction rates are lower (e.g. 0.25%/month) and the fall comeback is reversed by a strong 
lockdown in December 2020, to ~ 50-100,000 excess cases for higher eviction rates (e.g 2%) 
and unmitigated epidemics (Table 1).  In most of these scenarios, there was ~1 excess infection 
in the city attributable to each eviction that took place.  
 
 

 
Figure 3:  Alternate epidemic trajectories of SARS-CoV-2 before and after evictions in a large city. 
Each panel shows the projected daily incidence of new infections (7-day running average) with and 
without evictions at 1%/month with a 4 month backlog, starting on Sept 1 2020. Shaded regions represent 
central 90% of all simulations. In the left column, spread continues unabated through Dec 31 2020, 
whereas in the second column a new lockdown is introduced on Dec 1. Each trajectory scenario is 
created by calibrating the model to a group of  US metropolitan statistical areas with similar patterns of 
spread (see Methods, Figure S5-S8). For all trajectory types, the degree of reduction in external contacts 
by control measures was modulated on dates March 25, June 15, July 15, and Oct 1, with values reported 
in Table S1.  
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Table 1. Predicted excess SARS-CoV-2 infections when evictions are continued.  Excess infections 
are measured as the increase in the cumulative percent of the population infected by Dec 31 2020 (or 
March 31 2021 if second lockdown implemented) if evictions resume on Sept 1, 2020, compared to if 
evictions were halted. Values are reported as median [IQR]. All results are from simulations of a metro 
area of 1 million individuals where evictions all result in “doubling up”. Corresponding epidemic 
trajectories are shown in Fig 2, 3. The US metropolitan statistical areas that roughly correspond to each 
scenario are shown in Figs S3, S5-S8.  
 

 
We repeated the above simulations with different values of the household secondary attack rate 
(SAR) to check the sensitivity of our results to this value (Figure S10,11). As expected, when 
household transmission is more common (higher SAR of 0.5, Figure S10) evictions have a 
slightly larger effect on the epidemic, and when it is less common (lower SAR of 0.1, Figure 
S11), the effect of evictions is slightly smaller. If we assumed transmission risk from external 
contacts was equal to household contacts, but reduced the number of external contacts to 
maintain the same R 0, results were similar to our baseline scenario (Figure S12). We also 
considered a scenario where evicted households always doubled-up with another household 
with whom they already had an external contact; results were similar (Figure S13). In a previous 
version of this work, completed before the ubiquity of the fall resurgence became apparent, we 
examined the impact of evictions under alternate fall scenarios, including a plateau of cases at 
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 Cumulative 
prevalence w/o 
evictions 

Eviction rate (%/month) 

Trajectory 0.1% 0.25% 0.5% 1% 2% 

Shown in Figure 2 

Trajectory 1 & 
comeback 

16.5 
[15.7-18.5 ] 

0.25 
[-0.24-0.63] 

0.46 
[0.36-0.87] 

1.3 
[1.0-2.3] 

4.2 
[1.9-4.9] 

8.5 
[6.4-10.8] 

Trajectory 1 & 
lockdown 

14.3 
[12.6-15.6] 

0.12 
[-0.25-0.48] 

0.29 
[0.23-0.64] 

0.90 
[0.78-1.6] 

2.9 
[1.4-3.4] 

6.2 
[4.6-8.0] 

Shown in Figure 3 

Trajectory 2 & 
comeback 

11.7 
[10.3-12.5] 

0.38 
[0.09-0.80] 

1.2 
[0.67-2.2] 

1.4 
[0.92-2.6] 

4.3 
[3.1-5.3] 

9.8 
[7.2-10.3] 

Trajectory 2 & 
lockdown 

9.1 
[7.8-10.1] 

0.18 
[0.05-0.52] 

0.80 
[0.43-1.4] 

0.93 
[0.61-1.7] 

2.9 
[2.3-3.5] 

6.9 
[5.0-7.3] 

Trajectory 3 & 
comeback 

8.9 
[7.2-10.0] 

0.41 
[-0.39-0.80] 

0.76 
[0.36-1.04] 

1.7 
[1.0-2.0] 

4.1 
[3.6-4.4] 

9.4 
[8.7-10.8] 

Trajectory 3 & 
lockdown 

6.6 
[5.4-7.5] 

0.29 
[-0.36-0.60] 

0.43 
[0.30-0.70] 

1.2 
[0.63-1.4] 

2.7 
[2.5-2.9] 

6.6 
[6.2-7.6] 

Trajectory 4 & 
comeback 

9.4 
[8.1-10.4] 

-0.07 
[-0.16-0.34] 

0.47 
[0.23-0.83] 

1.1 
[0.94-1.6] 

2.6 
[2.4-3.1] 

7.2 
[5.9-7.5] 

Trajectory 4 & 
lockdown 

8.4 
[6.9-9.2] 

0.00 
[-0.09-0.24] 

0.33 
[0.18-0.64] 

0.89 
[0.76-1.2] 

2.0 
[1.9-2.3] 

5.9 
[4.6-6.1] 
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September levels or more gradual increases [43]. We found that in general, evictions had less 
impact on infection counts when the epidemic was controlled and maintained at a constant 
plateau throughout the fall, however, a flat epidemic curve could still be associated with 
substantial detrimental effects of evictions if the incidence at the plateau is still relatively high. 

Evictions interact with urban disparities 
Our results so far assume that every household in a city is equally likely to experience an 
eviction, and that SARS-CoV-2 infection burden and adoption of social distancing measures are 
homogeneously distributed throughout the population. In reality, evictions are concentrated in 
poorer neighborhoods with higher proportions of racial/ethnic minorities [39]. Similarly, 
individuals in these neighborhood types are likely to maintain higher contact rates during the 
epidemic due to high portions of essential workers among other reasons [44–47]. Many studies 
have shown higher burdens of infection and severe manifestations of COVID-19 in these 
demographic groups  [33–38]. To examine the impact of city-level disparities on the interaction 
between evictions and disease spread (Figure 4), we simulated infection in cities consisting of 
two neighborhood types: a higher socioeconomic status (SES) neighborhood with no evictions 
and a high degree of adoption of social distancing measures (low contact rates), and a lower 
SES neighborhood with evictions, where the reduction in contact rates was less pronounced. 
We assumed that evicted households doubled-up with other households that are also in the low 
SES neighborhood (see Figure S15 for case when doubling-up can happen across 
neighborhoods). The epidemic time course was simulated using the same population-average 
transmission rates for each phase as for Trajectory 1 (Figure 2).  In the absence of evictions, 
infection prevalence differed substantially by neighborhood (Figure 4B), and despite simulating 
the same overall reduction in contacts, the epidemic burden was higher when residual contacts 
were clustered in the poorer neighborhood (Figure 2B vs Figure 4D).  
 
In this heterogeneous context, we found, for equivalent overall eviction rates, larger impact of 
evictions on COVID-19 cases than if they had occurred in a homogeneous city. For example, by 
the end of 2020, for a low eviction rate (0.25%/month) we estimate 1.7% excess cases 
attributable to evictions in the heterogeneous model, as compared to 0.5% in the homogeneous 
version described above. For the higher eviction rate (1%/month) we estimate  ~5.4% excess 
infections due to eviction, as compared to ~4.2% in the homogeneous model. Evictions also 
serve to exacerbate pre-existing disparities in infection prevalence between neighborhoods. For 
the hypothetical scenario we simulated, evictions increase the relative risk of infection for the 
low vs. high SES neighborhood from ~1.3 to ~1.5. However, due to spillover effects, individuals 
residing in the high SES neighborhood also experience an increased infection risk (up to 
1.5-fold the no-evictions scenario) attributable to the evictions occurring in the other 
demographic group. These results hold even if we assume more extreme segregation between 
residents of each neighborhood (Figure S14) or if we allow evicted individuals to double up with 
residents of the high SES neighborhood (Figure S15), though the disparities across 
neighborhoods are more extreme in the former case and less extreme in the latter. Thus, our 
results in Table 1 may underestimate the impact of evictions on COVID-19 in 
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realistically-heterogeneous US cities. The concentration of evictions in demographic groups with 
more residual inter-household transmission serves to amplify their effects on the epidemic 
across the whole city.  
 

 
Figure 4: Impact of evictions on COVID-19 epidemics in heterogeneous cities. A) Schematic of our 
model for inequalities within a city. The city is divided into a “high socioeconomic status (SES)” (purple) 
and a “low SES” (teal) neighborhood. Evictions only occur in the low SES area, and individuals living in 
this area are assumed to be less able to adopt social distancing measures, and hence have higher 
contact rates under interventions (90% vs 80% reduction in external contacts during lockdown for 85% 
overall, 75% vs 65% during relaxation for 70% overall, and 65% vs 55% during fall comeback for 60% 
overall). Before interventions, residents are equally likely to contact someone outside the household who 
lives within vs outside their neighborhood. B) Cumulative percent of the population infected over time, by 
neighborhood, in the absence of evictions. C) The projected daily incidence of new infections (7-day 
running average) with 1%/month evictions vs no evictions. Shaded regions represent central 90% of all 
simulations. D)  Final epidemic size by Dec 31 2020, measured as percent individuals who had ever been 
in any stage of infection, for the heterogenous city as compared to a homogenous city with same effective 
eviction rate and intervention efficacy. E) The predicted increase in infections due to evictions through 
Dec 31 2020, measured as excess percent of population infected (left Y-axis) or number of excess 
infections (right Y-axis). Error bars show interquartile ranges across simulations. F) Relative risk of 
infection by Dec 31 2020 for residents of the poor vs rich neighborhood. G) Relative risk of infection by 
Dec 31 2020 in the presence vs absence of evictions, for individuals who merged households due to 
evictions (“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other households”).  
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Case study: Impact of evictions in Philadelphia, PA 
Finally, we sought to combine these ideas into a data-driven case study motivated by the court 
case in Philadelphia, PA, mentioned above. In Philadelphia, like all major US cities, there is 
significant heterogeneity in housing stability and other socioeconomic factors that are relevant 
both to the risk of eviction and to COVID-19 infection [48,49]. An early study found clusters of 
high incidence of infection were mostly co-located with poverty and a history of racial 
segregation, such as in West and North Philadelphia [35]. A study of SARS-CoV-2 prevalence 
and seropositivity in pregnant women presenting to the University of Pennsylvania Hospital 
System found a more than 4-fold increase in seroprevalence among Black/non-Hispanic and 
Hispanic/Latino women, compared to white/non-Hispanic women, between April and June 2020 
[37].  
 
To include these important disparities in our modeling, we first used principal component 
analysis on a suite of socioeconomic indicators to classify zip codes in the city [50]. We 
obtained three zip code typologies: a higher income cluster, a moderate income cluster, and a 
low income cluster. The lower income cluster has both very high eviction rates and higher rates 
of service industry employment and essential workers. Properties of the sub-populations are 
summarized in Table 3 and detailed in Tables S1-S2.  
 
We then translated these findings into our model by dividing the simulated city into three 
sub-populations. The fraction of external contacts of individuals residing in each cluster that 
were with individuals in each other cluster was estimated using co-location events measured by 
anonymous mobile phone data, which only includes interactions outside of homes and 
workplaces (see Table S5, Methods, Supplemental Methods). Individuals preferentially mix with 
others residing in the same cluster. The degree of adoption of social distancing measures, 
which differed for each sub-population and for each contact type, was assumed to be 
proportional to the reductions observed in the mobility data (Table S6). Cluster 1 experienced 
the largest reductions in mobility, followed by Cluster 3 then Cluster 2.  Evicted households 
were merged with other households in the same sub-population. There are no datasets 
available tracking the geographic origin and destination of individuals experiencing evictions, but 
general housing relocations observed using the same mobility data were predominantly within 
the same cluster (Figure S16).  
 
By tuning only the infection prevalence at the time that strong social distancing policies were 
implemented in March, we found that our model matched our best available information on the 
COVID-19 epidemic trajectory in Philadelphia (Figure 5). The simulated epidemic grew 
exponentially with a doubling time of 4-5 days until late March. Daily incidence of cases peaked 
shortly thereafter and deaths peaked with a delay of ~ 1 month. Post-peak, new cases and 
death declined with a half-life of ~ 3 weeks. In early June, control measures were relaxed, 
leading to a plateau in cases and deaths that lasted until early October. The seroprevalence 
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over time predicted by the model was in general agreement with results from large serological 
surveys in different populations in Philadelphia or Pennsylvania as a whole [36,37,52,53], and 
our model predicted large disparities in seroprevalence among the clusters.  
 
Simulations suggest that allowing evictions to resume could substantially increase the number 
of people with COVID-19 in Philadelphia by Dec 31, 2020, and that these increases would be 
felt among all sub-populations, including those with lower eviction rates (Figure 5). We predict 
that with evictions occuring at only their pre-COVID-19 rates, the epidemic would infect an extra 
0.3% of the population (~ 4700 individuals). However, many analyses suggest that eviction rates 
could be much higher in 2020 if allowed to resume, due to the economic crisis associated with 
COVID-19 (Figure S2, [32,51]). If eviction rates double, the excess infections due to evictions 
would increase to 0.9%; with a 5-fold increase in evictions, predicted by some economic 
analyses, this would increase to 2.6% or ~53,000 extra infections. At this rate we estimate a 
1.5-fold [1.3,1.6] increase in risk of infection for individuals in households that doubled-up, and a 
1.1-fold [1.1,1.2] relative risk in other households, compared to  the counterfactual situation in 
which a complete eviction moratorium was in place and enforced. Despite the differences in 
both baseline infection rates and eviction rates, all three sub-populations experienced similar 
proportional increases in infection levels due to eviction (Figure 5H,I).  Overall our results 
suggest that eviction moratoria in Philadelphia have a substantial impact on COVID-19 cases 
throughout the city.  
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Figure 5: A detailed example of how evictions might affect SARS-CoV-2 transmission in the city of 
Philadelphia, Pennsylvania, USA. A) Map of Philadelphia, with each zip code colored by the cluster it 
was assigned to. Properties of clusters are Table 2 and Supplemental Tables 1-2 B) Schematic of our 
model for inequalities within the city. Each cluster is modeled as a group of households, and the eviction 
rate and ability to adopt social distancing measures vary by cluster. C) Simulated cumulative percent of 
the population infected over time, by cluster, in the absence of evictions. Data points from seroprevalence 
studies in Philadelphia or Pennsylvania: x [52], + [36], triangle [53], square [37].  D) The projected daily 
incidence of new infections (7-day running average) with evictions at 5-fold the 2019 rate vs no evictions. 
Shaded regions represent central 90% of all simulations. E)  Final epidemic size by Dec 31 2020, 
measured as percent individuals who had ever been in any stage of infection. F) The predicted increase 
in infections due to evictions through Dec 31 2020, measured as excess percent of population infected 
(left Y-axis) or number of excess infections (right Y-axis). Error bars show interquartile ranges across 
simulations. G) Relative risk of infection by Dec 31 2020 for residents compared by neighborhood. H-I) 
Relative risk of infection by Dec 31 2020 in the presence vs absence of evictions, for individuals who 
merged households due to evictions (“Doubled-up”, H) and for individuals who kept their pre-epidemic 
household (“Other households”, I). 
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Table 2:  Properties of neighborhood clusters in Philadelphia used in simulations 
 

 
 

Discussion 
Our analysis demonstrates that evictions can have a measurable impact on the spread of 
SARS-CoV-2 in cities, and that policies to stem them are a warranted and important component 
of epidemic control. The effect of evictions on an epidemic is not limited to those who were 
evicted and those who received evicted families into their homes. Other households 
experienced an increased risk of infection due to spillover from the transmission processes 
amplified by evictions in the city.  
 
The most immediate implication of our findings is their relevance to the continued debate taking 
place in US legislatures and courts over the fate of  local and national eviction moratoria. Our 
results suggest that the CDC-mandated national order prohibiting evictions from Sept 4 - Dec 31 
2020 likely prevented thousands of excess COVID-19 infections for every million metropolitan 
residents. Moreover, simulations show that allowing evictions would increase the relative risk of 
infection for all households, not just a narrow class of those experiencing eviction. Thus, the 
legislation is of broad societal interest. A federal judge, citing testimony based on an earlier 
version of this model, recently issued an opinion in favor of the city of Philadelphia’s eviction 
moratorium [42]. More generally, our simulations show that in the case of COVID-19, preventing 
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 Population 
in cluster 
(%) 

Eviction rate 
at baseline 
(%/month) 

Estimated 
essential 
workers 
(%) 

Mobility 
reduction 
(%, June 
2020) 

Summary of cluster 
characteristics 

Cluster 1 17 0.07 0.30 89 High income, high % renters, low 
% cost burdened, low %<age 18, 
low % female headed 
households, high mobility rate, 
high % white/Asian 

Cluster 2 38 0.12 0.50 72 Intermediate income, high % >65, 
low % renteres, high cost 
burdened renters, high % foreign 
born, racial/ethnically diverse 

Cluster 3 45 0.21 0.54 82 High poverty, low income, high % 
renters, high vacancy, high % 
female headed households, high 
service workers, high % 
Black/Hispanic 

Total (1.58 
million) 

0.15 0.48 79  
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evictions is clearly in line with the mandate of the Public Health Service Act to invoke measures 
“necessary to prevent the introduction, transmission, or spread of communicable diseases” [10]. 
 
Across all scenarios evictions aggravated the COVID-19 epidemic in cities. The effect was 
greatest in scenarios when the epidemic was growing rapidly during the time evictions took 
place, but evictions also significantly increased the number of individuals infected under strong 
control measures. Even results of models that assume a homogenous population show 
significant effects of evictions on the city-wide prevalence of SARS-CoV-2 infection. However, 
when we modeled a heterogeneous city, the effect was more pronounced--presumably because 
the increase in household size is more concentrated, and those sections of the city affected by 
evictions, more connected.  
 
The fates of households that experience eviction is difficult to track. Existing data suggest that 
historically the majority of evictions have led to doubling up (e.g. Fragile Families Study [54]) 
and we therefore chose to focus our modeling on this outcome. However, the current economic 
crisis is so widespread it is unlikely that other households will be able to absorb all evicted 
families if moratoria are revoked, and thousands of people could become homeless, entering 
the already-over-capacity shelter system or encampments [6,7,55–57].  Shelters could only 
increase the impact of evictions on cases of COVID-19. The risk of contracting COVID-19 in 
homeless shelters can be high due to close contact within close quarters, and numerous 
outbreaks in shelters have been documented [7,58].  A recent modeling study suggests that, in 
the absence of strict infection control measures in shelters, outbreaks among the homeless may 
recur even if incidence in the general population is low and that these outbreaks can then 
increase exposure among the general population [59]. When we assigned even a small 
proportion of evicted households to a catchall category of shelters and encampments (Figure 
S17), with an elevated number of contacts, evictions unpredictably gave rise to epidemics within 
the epidemic, which then, predictably, spread throughout the city. These results are qualitatively 
in line with the effects of other high-contact subpopulations, such as those created by students 
in dorms [60,61] or among prisoners [62–64]. 
 
Other modeling studies have investigated 'fusing households' as a strategy to keep 
SARS-CoV-2 transmission low following the relaxation of lockdowns [23,65,66]. The strategy 
has been taken up by families as a means to alleviate the challenge of childcare among other 
issues [67,68]. Indeed there are conditions, especially during a declining epidemic, that fusing 
pairs of households does not have much effect on infection on the population scale [23]. While 
these findings are not in discord with our work, a voluntarily fused household is a very different 
entity than an involuntarily doubled-up household. While a fused household can separate in 
subsequent periods of higher transmission, a doubled-up household would likely not have such 
an option.  
 
All uninfected families are alike; each infected family is infected in its own way. Our model 
simplifies the complex relationships within households which might affect the risk of ongoing 
transmission within a home, as well as the complex relationships that might initially bring a 
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pathogen into a home (e.g. [69]). Relatedly, we choose a constant household secondary attack 
rate. A number of analyses suggest  that the average daily risk to a household contact might be 
lower in larger households [17,19,22]. We hesitate to generalize this finding to households in 
large US cities that face possible eviction.  Empirical studies of secondary attack rate in 
households of different sizes, in the relevant population and with adequate testing of 
asymptomatic individuals, are badly needed. If they show that infection rate does not scale with 
household size, then our estimates on the expected effects of eviction would be too large. We 
also have not considered the effects of household crowding, nor the age structure of 
households--evicted and otherwise--which can influence outcomes in a network model such as 
ours [70,71]. We have not considered the effects of foreclosures and other financial impacts of 
the epidemic which will likely also lead to doubling up and potentially homelessness.  There are 
likely more complicated interactions between COVID-19 and housing instability that we have not 
modeled, such as the possibility that COVID-19 infection could precipitate housing loss [57], that 
eviction itself is associated with worsening health [72,73], or that health disparities could make 
clinical outcomes of COVID-19 infection more severe among individuals facing eviction or 
experiencing homelessness [59,74,75]. Finally we note that our model is not meant to be a 
forecast of the future course of the epidemic, nor the political and individual measures that might 
be adopted to contain it. We limit ourselves to evaluating the effect of evictions across a set of 
scenarios, and we limit our projections to the coming months. We also do not consider the 
possible effects of re-infection, or other details that contribute to the uncertainty of SARS-CoV-2 
epidemic trajectories. 
 
We caution against using the precise numerical estimates from our model to infer the effects of 
eviction moratoria in particular locations. While we have attempted to use the best current 
estimates of epidemiological parameters for COVID-19 transmission and to calibrate our model 
to epidemic trajectories common across US cities, many uncertainties remain. For example, 
there is uncertainty in our estimates of the basic reproduction number, the serial interval, the 
duration of immunity, the infection fatality rate, the fraction of transmission occurring within vs 
outside of households, the distribution of external contacts across individuals and households 
and the manner in which they are reduced during different stages of the epidemic. These 
quantities may vary by setting and over time. The distribution of cases across demographic 
groups (e.g. age, race/ethnicity) is not considered in detail in our model, but may impact the 
output.  Our analyses of different common COVID-19 epidemic trajectories and our sensitivity 
analyses using different parameter assumptions suggest our qualitative results are robust, but 
that the precise numbers depend on the details. Ideally, observational studies of households 
conducted in localities where evictions moratoria (temporarily) expired or were ignored could 
provide more direct evidence for the impact of evictions on COVID-19 transmission.  No such 
studies exist to date. A recent preprint by Leifheit et al, taking a difference in difference 
approach at the state level, suggests there was some signal of increasing cases when moratoria 
ended [77]. However, there are likely other contemporaneous policy decisions affecting 
COVID-19 transmission that occured in states allowing local eviction moratoria to lapse, making 
the assignment of causality difficult.  
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Cities are the environment of an ever-increasing proportion of the world's population [76], and 
evictions are a force which disrupts and disturbs them. Just as abrupt environmental change 
can alter the structure of populations and lead to contact patterns that increase the 
transmissibility of infectious agents [78], evictions change with whom we have the closest of 
contacts-- those inside the home-- and this change, even when it affects only a small proportion 
of a population, can significantly increase the transmission of SARS-CoV-2 across an 
interconnected city.  

Methods 
Modeling SARS-CoV-2 spread and clinical progression 

We describe the progression of COVID-19 infection using an SEIRD model, which divides the 
population into the following stages of infection: susceptible (S), exposed (infected but not yet 
infectious) (E), infected (I), recovered and assumed to be immune (R), and deceased (D).  This 
model was previously described in Nande et al [23] and is similar to many other published 
models [29,71,79–81].  All our code is available in a Github repository : 
https://github.com/alsnhll/COVID19EvictionSimulations. We assume that the average duration 
of the latent period is 4 days (we assume transmission is possible on average 1 day before 
symptom onset), the average duration of the infectious period is 7 days (1 day presymptomatic 
transmission + 6 days of symptomatic/asymptomatic transmission), the average time to death 
for a deceased individual was 20 days, and the fraction of all infected individuals who will die 
(infection fatality ratio, IFR) was 1%. The distribution of time spent in each state was 
gamma-distributed with mean and variance taken from the literature (see Supplemental 
Methods). Transmission of the virus occurs, probabilistically, from infectious individuals to 
susceptible individuals who they are connected to by an edge in the contact network at rate β .  

Creating the contact network 

We create a two-layer weighted network describing the contacts in the population over which 
infection can spread. One layer describes contacts within the household. We divide the 
population into households following the distribution estimated from the 2019 American 
Community Survey of the US Census [30]. In this data all households of size 7 or greater are 
grouped into a single “7+” category, so we imputed sizes 7 through 10 by assuming that the 
ratio of houses of size n to size n+1 was constant for sizes 6 and above. We assume that all 
individuals in a household are in contact with one another. The second layer constitutes 
contacts outside the household (e.g. work, school, social). While the number of these external 
contacts is often estimated from surveys that ask individuals about the number of unique close 
face-to-face or physical contacts in a single day, how these recallable interactions of varying 
frequency and duration relate to the true effective number of contacts for any particular infection 
is not clear. Therefore, we took a different approach to estimating external contact number and 
strength.  
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We assumed a separate transmission rate across household contacts ( β HH) and external 
contacts (β EX). To estimate the values of these transmission rates, and the effective number of 
external contacts per person, we matched three values from epidemiological studies of 
SARS-CoV-2.  First, since the transmission probability of household contacts is more easily 
measured empirically than that for community contacts, we backed out a value of household 
transmission rate (β HH) that would give a desired value of the secondary attack rate (SAR) in 
households. We used a household SAR of 0.3, based on studies within the United States as 
well as a pooled meta-analysis of values from studies around the world [17,18,20]. Secondly, 
we assumed that the secondary attack rate for household contacts was 2.3-fold higher than for 
external contacts, based on findings from a contact tracing study [82]. We used this to infer a 
value for the transmission rate over external contacts ( β EX). Finally, we chose the average 
number of external contacts so that the overall basic reproductive ratio, R 0, was ~3, based on a 
series of studies [83–85]. We did this assuming that the distribution of external contacts is 
negative binomially distributed with coefficient of variation of external contacts of 0.5, and using 
a formula for R 0 that takes this heterogeneity into account [86]. We explore the effects of 
different assumptions surrounding R 0, the household SAR, and the ratio between the 
transmission rate within and between households in sensitivity analyses, shown in the 
Supplement.  

Modulating contact rates to recreate epidemiological timelines 
 
We assume that the baseline rate of transmission across external contacts represents the value 
early in the epidemic, before any form of intervention against spread (e.g. workplace or school 
closures, general social distancing, masking wearing). To recreate the trajectories of COVID-19 
in U.S. cities throughout 2020, we instituted a series of control measures and subsequent 
relaxations in the simulations at typical dates they were implemented in reality. In the model, 
these modulations of transmission were encoded as reductions in the probability of transmission 
over external contacts. The timing and strength of these modulations in external contacts were 
chosen in a model calibration procedure that involved first clustering U.S. metro areas into 
groups based on common epidemic time courses and then tuning the model to recreate a 
trajectory typical of each group (described below, see Figure S3-S8, Table S1). For the 
simulations involving cities divided into multiple neighborhoods, we represented disparities by 
allowing the strength of these control measures to differ depending on the origin and destination 
neighborhood of each external contact. For the theoretical two-neighborhood city (Figure 4), 
individuals in the higher SES neighborhood were assumed to be better able to adopt social 
distancing measures and thus were modeled with larger reductions in external contacts. For 
Philadelphia, the reductions were informed by mobility data which tracked co-locations occurring 
between residents of different zipcodes (see Details below).  

 
Categorizing city-specific COVID-19 trajectories 
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To estimate the impact of evictions on COVID-19 transmission, it is necessary to realistically 
simulate the state of the epidemic at the time evictions are occuring. Theoretically, this would 
require estimates of infection prevalence over time, the distribution of infections across 
households, real-time estimates of contact rates of infectious individuals, as well as knowing 
how the epidemic would unfold in the future. Since in general we don’t have direct estimates of 
these quantities, our approach was to create realistic scenarios by simulating the entire 
epidemic course before evictions began, reproducing the trajectories seen in data. Then, for 
forward projections (which in our case is Sept 1 2020 onwards), we considered alternate 
scenarios of epidemic control and infection resurgence.  

Our simulation is at the level of a single U.S. metropolitan area. To avoid the extreme 
computational costs of fitting a stochastic network model to every U.S. city of interest and 
including all the observational processes that affect real data (like testing rates, reporting 
delays, etc), we take a simplified model calibration approach. First, we collected county-specific 
daily COVID-19 case and death reports from the New York Times database (which is based on 
reports from state and local health agencies)[87], and aggregated these into metropolitan 
statistical areas (MSAs). Then, we chose all metropolitan areas with at least 1 million residents 
(53 cities) and used dynamical time warping and hierarchical clustering (using the hclust 
function with method ward.D  and the dtw  package in R) on case and death time courses 
(normalized by population) up to Aug 31 2020 to group cities with similar trajectories. Four 
groups naturally emerged from this analysis (Figure S3), representing at one extreme metros 
like New York City and Boston that had large first waves followed by a long period of control 
over the summer, and at the other extreme cities like Houston and Phoenix that had their 
epidemic peak over the summer. For all city groups, we observed that the epidemic could 
roughly be broken down into five phases with corresponding date ranges 1) early epidemic: 
pre-March 25, 2) lockdown: March 25-June 15, 3) relaxation: June 15 - July 15, 4) continued 
relaxation or increased control: July 15 - Oct 1, 5) fall wave: Oct 1 - end of 2020. We then 
created a trajectory with the model to match each city-group, where during each phase we 
chose a degree of reduction in external contacts using a simple binary search such that the 
growth rate of cases or deaths was within the range observed for cities in that group (Table S1). 
The time between initial epidemic seeding (with 10 individuals) and the first lockdown was 
chosen to reproduce the size of the first wave. Because of issues with testing limitations and 
reporting mild or asymptomatic infections, the fraction of cases reported has most likely 
changed dramatically over the course of 2020, and so we prioritize recreating trajectories of 
deaths (vs cases) along with an assumed 1% IFR to infer total cases (Figure S9).  
 
Modeling the impact of evictions 

We initially assume all evictions result in “doubling up”, which refers to when an evicted 
household moves into another house along with its existing inhabitants. There are very few 
studies reporting individual-level longitudinal data on households experiencing evictions 
[15,88–90], and none of those (to our knowledge) have published reports of the fraction of 
households that experience each of the possible outcomes of eviction (e.g. new single-family 
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residence, doubling-up, homeless, etc). The best evidence available on doubling-up comes from 
the Fragile Families and Child Wellbeing Study, one of the only large-scale, longitudinal studies 
that follows families after eviction [15,16].  The study sampled 4700 randomly selected births 
from a stratified random sample of US cities >200,000 population [54], and has followed 
mothers, fathers and children from 1998 to the present.  Among other topics, interviewers asked 
respondents whether they had been evicted, doubled up, or made homeless in the previous 
year.  In four waves of available interviews among 4700 respondents in 1999-2001, 2001-2003, 
2003-2006, and 2007-2010, 402 mothers reported being evicted in the previous year.  Of these, 
an average of ~65% reported having doubled up. 

Based on the eviction rate, a random sample of houses are chosen for eviction on the first day 
of each month, and these houses are then each “merged” with another randomly-chosen 
household that did not experience eviction. In a merged household, all members of the 
combined household are connected with edges of equal strength as they were to their original 
household members. A household can only be merged once.  

Homelessness is another possible outcome of eviction. However, a number of studies of the 
homeless population show that doubling-up often precedes homelessness, with the vast 
majority of the homeless reporting being doubled-up prior to living in a shelter [91–93]. In the 
Fragile Families Study data described above, only ~17.4% reported having lived in a shelter, car 
or abandoned building. We subsequently model the minority of evictions that result directly in 
homelessness. These evicted households instead enter a common pool with other homeless 
households, and, in addition to their existing household and external connections, are randomly 
connected to a subset of others in this pool, mimicking the high contact rates expected in 
shelters or encampments. We consider 10% of evicted households directly becoming homeless, 
and the other 90% doubling up. Individuals are assigned to ‘shelters’ of size drawn from a 
Poisson distribution with mean 20 and are connected to all other individuals in that shelter only. 
This number is estimated from considering both sheltered and unsheltered people, which each 
represent about half of individuals experiencing homelessness [55]. Data suggesting the 
average size of shelters is ~25 people, based on assuming ~half of the ~570K homeless on any 
given night are distributed over 12K US shelters, which is similar to a Lewer et al estimate for 
the UK (mean 34, median 21) [59]. Unsheltered individuals are expected to have less close, 
indoor contacts, bringing down the average, and the portion of unsheltered homeless may grow 
as shelters reach capacity [55]. In the model, these connections get rewired each month, since 
the average duration of time spent in a single shelter is ~ 1 month [94]. Contacts among 
homeless individuals are not reduced by social distancing policies. As a result, during the time 
evictions take place, the individual-level R 0 for the homeless is ~1.5-fold the pre-lockdown R 0 for 
the general population, similar to Lewer et al [59].  
 
Evictions begin in our simulations on September 1, 2020 and continue at the first of each month 
at a rate which we vary within ranges informed by historical rates of monthly evictions in 
metropolitan areas and projected increases (0%, .25%, .5%, 1%, or 2%) (see justification of this 
range in Supplemental Methods). Note that the denominator in our eviction rate is the total 
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number of households, not the number of rental units. We assume a backlog of 4 months of 
households are evicted immediately when evictions resume, corresponding to the months 
during which most local or state eviction moratoria were in place (May through August 2020).  

Extension of the model to incorporate heterogeneity in eviction and contact rates 

To capture heterogeneities in cities we divide the simulated city (population size 1 million) in two 
equal sized interconnected subpopulations--one consisting of high socioeconomic status (SES) 
households, and the other with low SES households. Connections between households 
(external contacts) could occur both within the same neighborhood and between the different 
neighborhoods. We considered two types of mixing for external connections - homogeneous 
mixing where 50% of external connections are within one's neighborhood and heterogeneous 
mixing where 75% of external connections are within one’s neighborhood creating a more 
clustered population. Households in the low SES subpopulation experience all of the evictions in 
the city, and these evicted households are doubled-up with households from the same 
subpopulation. To capture the higher burden of infection with COVID-19 consistently observed 
in poorer sections of cities [33–39], during intervention we down-weighted external contacts 
among the low SES subpopulation less than in the high SES subpopulation (Table S1).  
 
Application to the city of Philadelphia, Pennsylvania, USA 
 
To estimate the impact of evictions in the specific context of Philadelphia, PA, we first 
developed a method to divide the city up into a minimal but data-driven set of subpopulations, 
and then encode this into the model (as described above), taking into account the different rate 
of evictions and of adoption of social distancing measures across these subpopulations.  
 
To create the subpopulations and capture key aspects of heterogeneity in the city, we first 
extracted 20 socio-economic and demographic indicators for each zip code of the city from the 
2019 US Census, and ran an unsupervised principal component analysis [50] to cluster the zip 
codes based on similarities. The analysis resulted in three typologies: Cluster 1, a higher 
income rental neighborhood, Cluster 2, a moderate income and working-class owner 
neighborhood, and Cluster 3, a low-income rental neighborhood (Supplemental Table 1-2). 
Using zip code-level eviction rates for 2016 sourced from Eviction Lab [31], we estimated 0.7% 
of households in Cluster 1, 0.12% of those in Cluster 2, and 0.21% of those in Cluster 3 faced 
eviction each month at baseline. We consider scenarios where these rates are increased 2, 5 
and 10-fold during the pandemic.  
 
We used mobility data provided by Cuebiq to estimate the degree of contact between residents 
of the different clusters and how it varied throughout the epidemic. Cuebiq uses data from 
mobile phone users who have opted-in to share location information with certain applications, 
and we defined contacts using co-location events where two individuals were in the same 
8-character geohash for 15-minutes or more. All data was anonymous and corrected for degree 
of population sampling (see Supplementary Methods for details). The percent of all 

20 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.10.27.20220897doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220897
http://creativecommons.org/licenses/by/4.0/


within-Philadelphia contacts that occur with residents of a particular cluster is shown in Table 
S5. Between ~50-75% of contacts were with individuals living in the same cluster, whereas 
~15-35% occurred in any other specific cluster.  
 
We then calibrated our model to match the best available information regarding the epidemic 
trajectory for Philadelphia. The goal was to create a trajectory that captured the size of the 
epidemic peak (measured by daily death counts), the growth rate or decline of cases during 
each major phase of the epidemic (early phase, post-lockdown, post-relaxation, fall comeback), 
and the observed seroprevalence at different timepoints [36,37,52,53]. The reduction in mobility 
over time, measured as the percent reduction in contacts between residents of a pair of clusters 
averaged over 1 month, was used to determine the reduction in external contacts during each 
epidemic phase. To do this, in simulations we imposed a strong lockdown (overall 90% 
reduction in contacts) on March 23, 2020 when the cumulative prevalence of infected individuals 
was approximately 3% of the total population. This intervention was relaxed on June 15, 
allowing cases and deaths to plateau over the summer (overall 77% reduction in contacts). We 
further relaxed measures (overall 66% reduction in contacts) on Oct 1 2020 to create a fall 
comeback. Since no changes in mobility were observed during this time despite large increases 
in cases observed during this time period, we hypothesized that other biological or behavioral 
factors not represented in mobility data must be responsible for this comeback, and 
implemented it in the model as 15% increase in β EX. During each phase, each of the three 
clusters obtained via the typology analysis had different strengths of social distancing measures 
in their interactions with each other cluster (Table S6).  
 
Data on the fate of evicted households is extremely rare, and we do not know how likely evicted 
individuals would be to double-up with a household within their cluster or in another cluster. To 
estimate this, we created a cohort of individuals from the Cuebiq data who’s inferred home 
location had changed between Feb 2020 and Oct 202. Figure S16 reports the frequency of 
moves to and from each cluster. This data suggests that the vast majority of relocations were to 
other houses within the same cluster. Assuming that movement patterns following eviction 
would be similar, in the model we assumed that evicted individuals always double-up with 
another household in the same cluster.  

Data Availability 
 
All COVID-19 case and death data used in this study were downloaded from the 
publically-available New York Times repository in Github: 
https://github.com/nytimes/covid-19-data 
 
Data on the distribution of US household sizes and on socio-demographic indicators of zipcodes 
in Philadelphia was obtained from the 2019 United States Census: 
https://www.census.gov/data/tables/2019/demo/families/cps-2019.html 
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Mobility data used in this study is available from Cuebiq through their Data for Good program 
(https://www.cuebiq.com/about/data-for-good/). Restrictions apply to the availability of this data, 
which was used under license for the current study, and so are not publically available. All data 
aggregated at the level of zip-code clusters that was used in the models is presented in the 
Supplemental Tables.  More detailed data is available from the authors upon reasonable 
request and permission from Cuebiq, and any researchers interested in working with the data 
can apply for an independent license from Cuebiq. Aggregated mobility metrics at the national, 
state, and CBSA level are publically available at https://covid19.gleamproject.org/mobility. 

Code Availability 
 
All our simulation code is available in a Github repository : 
https://github.com/alsnhll/COVID19EvictionSimulations. The repository also contains code for 
downloading and processing COVID-19 case and death data from the New York Times 
repository.  
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Supplement 

Supplemental Methods 

Model details and parameters 
 
We simulate the spread of SARS-CoV-2 using a modified version of the standard SEIR 
(Susceptible, Exposed, Infectious, Removed) model that allows for gamma-distributed durations 
of infection and infection spread over a network of contacts. We estimate the duration of the 
latent period (E stage. time before onset of infectiousness) as 4 4 days, based on an±  
incubation period duration of 5 4 days [95,96] and assuming 1 day of pre-symptomatic±  
transmission (similar to other models [97,98], and based on estimates of the portion of 
transmission that is pre-symptomatic [99] and the observation that viral load peaks at/before 
time of symptom onset [100–102]). Then, we assume a serial interval distribution of 7.5 5 days±  
(measured in the absence of rapid case isolation or other controls) [85,95,103,104] and back 
out an infectious period duration of 7 4 (length of I1 state). This value is also consistent with±  
estimates of the duration of high-level viral shedding [100] and of the symptomatic phase of mild 
(non-hospitalized) infection [104–107].  These are the main parameters governing the 
relationship between the input value of R 0 (which we use to back calculate the β's) and the rate 
of early exponential growth rate observed in the simulation before any social distancing.  

Although not the focus of this work, our model also offers the ability to track the progression to 
more serious clinical stages of infection as well as recovery (R) and death (D) [23]. Here we use 
these other infection stages (i.e. hospitalization, ICU stay) only to include realistic 
approximations for the distribution of the timing from symptom onset to death (~20 10 days, in±  
agreement with [106,108,109]) and for the portion of infected individuals who may eventually die 
(~1%, in agreement with [110–113]). Tracking deaths help us to recreate the trajectories of the 
epidemic across different US metropolitan areas (Figures 3, S3-8): Since seroprevalence 
surveys across the US have suggested that cases are massively underreported, we calibrate 
the model to reproduce the epidemic size in terms of death counts and use the IFR to infer total 
cases.  

In results that report “seroprevalence”, this was extracted from the model as the fraction of all 
currently living residents who were in the R stage, which is a rough surrogate. For results 
reporting “final epidemic size” or cumulative prevalence, we counted all individuals who had 
ever been in any stage of infection (i.e. E, I, R, or D).  
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Calculating the secondary attack rate 
 
The secondary attack rate (SAR) is defined as the fraction of contacts of an infected individual 
who are infected directly by them over the course of their infectious period. For an individual 
with infectious period of length T, the SAR is: 
 
AR S = 1 − e−βT (1) 

 
For a population of individuals in whom the infectious period is gamma distributed with mean  T 
and shape parameter k , as in our model, the population-average SAR is : 
 
AR S =  

(βT /k + 1)k
(βT /k + 1) −1k  

(2) 

 
 
Considering transmission within households, we use observed values of the household SAR 
and our parameters of the infectious period ( T, k ) to back out the transmission rate within 
households: 
 

 βHH = ( kT )(( 1
1−SARHH ) k

1

− 1) (3) 

 

Estimating R 0 for heterogeneous networks 
 
We divide contacts down into two types - household and external - and similarly, the overall R0 
can be decomposed into two components: 
 

  R0 = RHH + REX (4) 
 
For a fixed uniform random network where everyone has n  contacts, R 0 can be approximated 
by: 
 

 T  (n )R0 = β − 1 (5) 
 
where the  refers to the fact that an individual cannot infect the contact who infected them.− 1   
   
However, for random networks with significant variance in the number of contacts per individual, 
this formula substantially underestimates R 0. Early in an epidemic, highly-connected individuals 
are more likely to be infected, and so R 0 is more accurately estimated as: 
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  T   T ( 1 V ) )  T ( n (1 V ) )  βT  ( n )  R0 = β  ( <x>
<x >2 − 1 ) = β < x > ( + C 2 − 1 = β + C 2 − 1 =  ′ − 1      (6) 

 
where  is the average degree, is the coefficient of variation, and  is an “effective” degreen VC n′  
that takes into account the heterogeneity [86,114].  
 
The variation in household sizes is small, so we use Eq 5 for R 0HH, but we since we allow a large 
variation in external degree to account for realistic heterogeneity in human contact patterns and 
the degree of superspreading seen for SARS-CoV-2, we use Eq 6 for R 0EX. The combined R 0 is 
therefore: 
 

T (w n n w f f )) R0 = β HH HH + wEX ′EX − ( HH
 
HH + wEX

 
EX  (7) 

   
We define the weights of the household (external) layer ( ) such that andwHH wEX βHH = β wHH  

. The average contacts in each layer are and , and the effective degree ofβEX = β wEX wHH wEX  
the external layer (taking into account variance in connectivity) is . Insteadn (1 )n′EX =  EX + CV 2

EX  
of the  term seen for R 0 values for single layer networks (Eqs 5, 6), the  value takes− 1 f− wi

 
i  

into account the fraction of infections caused by a particular contact type, with the terms given 
by   and .fHH = w nHH HH

w n +w nHH HH EX ′EX
1fEX =  − fHH  

 
We define the weight of household contacts to be unity ( ), so that the model value of wHH = 1 β
represents the rate of transmission over household contacts ( = ). Then we back out theβ βHH  
weight of external contacts ( ) from literature reports of the increased rate of transmissivity inwEX  
households relative to outside (i.e. from reports of ).w  /wEX HH   
 
We can then use Eq 7 with fixed values of R 0, T, wHH, wEX, n HH, and CVEX to back out a value of 
n EX.  
 

 n = 2
1  w(( R0

βT +  EX) +  √  w  w n (w )( R0
βT +  EX)

2
+ 4 HH HH HH − wEX )  

 
 n  w n )/wn′EX = ( −  HH HH EX  (8) 

 
/(1 )nEX = n′EX + CV 2

EX  
 
Based on the desired n EX and CVEX, the parameters of a negative binomial distribution with 
parameters p (probability of success) and r (number of successes) are: 
 

 /(CV  n ) r = nEX
2
EX EX − 1  

 
 /(r n ) p = r +  EX (9) 
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Estimating eviction rates across the US during the COVID-19 pandemic 
 

To estimate the range of possible eviction rates across U.S. cities, we used data from 
Eviction Lab [31] and from an analysis by Stout [32]. Eviction rates are often expressed as rates 
per rental household so we scale the eviction rate per all households according to the percent of 
renter households in an area. Historically, across U.S. cities baseline evictions rates vary from 
~0.1%/month to ~1%/month (Figure S2). However, high unemployment rates due to COVID-19 
have already increased the potential eviction rate by creating a backlog of eviction filings 
throughout the country that could move forward quickly if current eviction moratoria were 
removed or struck down [7], and the continued high unemployment rates will only increase the 
eviction rate in metropolitan regions compared to their historical baselines. 

To account for the uncertainty in the growth of eviction filings due to COVID-19 over the 
next year, we look at the fold-increase in unemployment in the same cities (compared to 2019) 
and assume that eviction rates (without any policies preventing evictions) could be increased by 
the same amount. Unemployment data was from the Bureau of Labor Statistics via the 
Department of Numbers (Figure S2A). In addition, we took estimates produced at a state-level 
by the consulting firm Stout, which used more detailed data on household income, savings, rent 
costs, unemployment, and recent national surveys (Figure S2B). These analyses suggest that 
eviction rates up to ~2%/month are reasonable, though even higher rates are estimated with this 
method for some regions of the country. We consider the following eviction rates: 0% 
(comparison case), 0.1%, 0.25%, 0.5%, 1%, 2%/month which represent the spectrum of eviction 
rates for the majority of metropolitan regions.  

Cluster specific down weighting of external contacts during intervention 

Two clusters: In the case where the population was divided into two clusters - one for high 
socioeconomic status (SES) households and one for low SES households, there are three types 
of external connections that can occur. Connections between individuals belonging to high SES 
households ( ), those between low SES households ( ) and connections between onex11 x22  
individual in a high SES household with one in a low SES household ( ). We reduce thex12  
weights of each type of contact (  )  such that the effective intervention efficacy, r , r  1r11  22  12 <   
of each cluster is reduced by the desired amounts ( , ). The relationship between theη1 1η2 <   
reduction in weights of each type of contact and the effective intervention efficacy of each 
cluster can be calculated via the following system of equations,  

x  r  0.5 x  (x 0.5 x ) r11 11 +  12 12 = η1 11 +  12  

 0.5x  r  x  (0.5x x ) r12 12 +  22 22 = η2 12 +  22  
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This system of equations is underdetermined as it has two equations and three unknowns (
). We fix  and solve for ., r , rr11  22  12 r12 = r22 = η2 r11 =  x11

η (x + 0.5x )−η  0.5x1 11 12 2 12  

 

Typological analysis of Philadelphia zip codes 

Socio-economic indicators relevant to describing housing stability and COVID vulnerability were 
used to perform principal component analysis (PCA) and clustering to classify neighborhood 
types in the city of Philadelphia [50]. Data was collected by zip code tabulation areas from the 
2019 US Census. The full list of indicators used and their value for each cluster is provided in 
Supplemental Table S3.  

PCA and clustering resulted in three typologies (shown in Figure 5A): a higher income rental 
neighborhood, a moderate income and working class owner neighborhood, and a low income 
rental neighborhood. Cluster 1, the higher income neighborhood, is defined by high incomes 
and high housing costs. Cluster 2 is a slightly older, ownership centered neighborhood with 
lower poverty rates. Cluster 3, the lower income rental neighborhood, is defined by higher 
poverty rates, lower incomes, more children, and higher rates of service industry employment 
and essential workers. Details of these clusters are provided below. Considering the 
socio-economic stratification among these typologies, it’s likely that Type 3 zip codes will face 
higher levels of health and socio-economic vulnerabilities due to COVID-19. We then analyzed 
the population, household, and rental household tabulations, race, ethnicity, and eviction rates 
of each cluster, which were variables not included during the PCA. 

To get the monthly eviction rate per household in Philadelphia for each cluster, we use eviction 
rate data reported for each zip code, from Eviction Lab [31]. Eviction Lab reports eviction rate 
per rental unit per year, and we used the reported fraction of all households that were renters 
(vs owners) to reframe the eviction rate as per all households per month.  

Cluster 1: Cluster 1 is defined by higher housing costs and higher income when compared to 
the overall mean of the city. When compared to the overall mean, these zip codes have 
significantly higher median home values, higher gross rents, higher incomes, and a higher per 
capita income. They are predominantly rental units with lower rates of poverty and cost 
burdened households than the overall mean. Additionally, the percentage of residents who are 
essential workers is lower than the overall mean of the city. Considering the high housing costs, 
lower cost burdened rates, and lower rates of essential workers, it’s likely that these zip codes 
are economically stable and less vulnerable to the health and socio-economic impacts of 
COVID-19. When analyzing race and ethnicity of the clusters (see Supplemental Table S3), 
Cluster 1 zip codes are predominantly white with a small share of the population being residents 
of color. Cluster 1 zip codes also see the lowest eviction filing rates and eviction rates at 3.3% 
and 1.45% per rental household per year, respectively. 
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Cluster 2: Cluster 2 is defined by higher rates of homeownership and a slightly older population 
compared to the overall mean. Vacancy rates, poverty rates, and mobility rates are lower than 
the overall mean. When analyzing the overall means of all variables in this cluster (see 
Supplemental Table S1), the median household income is about equal to the overall mean and 
the median home value is just above the overall mean. Additionally, these zip codes have 
higher rates of essential workers among their residents when compared to the city’s overall 
mean. Considering the socio-economic conditions of this cluster, it’s likely that this type of 
neighborhood is moderate income and working class. Cluster 2 neighborhoods are far more 
diverse than cluster 1 neighborhoods (Supplemental Table S3), but still skew white with the 
overall mean of the white population in zip codes in cluster 1 being 51 percent. Cluster 2 sees a 
higher concentration of Black residents and a slight increase in the Latino population when 
compared to cluster 1. Zip codes in cluster 1 also see substantially higher eviction filing rates 
and eviction rates compared to cluster 1. The mean eviction filing rate and eviction rate are 
7.8% and 3.8% per rental household per year, respectively. 

Cluster 3: Cluster 3 represents lower income zip codes with higher rates of female headed 
households, higher poverty rates, higher vacancy rates, lower home values, and lower incomes 
when compared to the overall means of these indicators. These zip codes also have higher 
rates of residents employed in the service industry and as essential workers. This indicates that 
households in this type of neighborhood are more vulnerable to the health and socio-economic 
impacts of COVID-19. Zip codes in cluster 3 are predominantly nonwhite with higher Black and 
Latino populations than cluster 1 and 2. Eviction filing rates and evictions rates are also higher 
in cluster 3 zip codes than in other areas of the city with an eviction filing rate of 10.2% and an 
eviction rate of 4.7% per rental household per year. 

Using mobility data to determine contact patterns and quantify social 
distancing in Philadelphia 

Throughout the COVID-19 pandemic, aggregated mobile device data has been used for building 
and parameterizing epidemic models [29,115–118], as well as studying the impact of the 
pandemic on our mobility and social contacts [44,45,47,119,120]. Here, we use aggregated 
mobile phone data from more than 13,000 opted-in, anonymous users in Philadelphia, PA, USA 
to estimate the probability that residents of different zip codes (or zip code clusters) interact with 
one another in a given day based on co-location. This results in an estimated contact matrix 
where each entry corresponds to the average number of interactions that a resident of zip code 
zi  has with residents of zip code zj . We use data from Cuebiq, which provides data to academic 
and humanitarian initiatives through its Data for Good program 
(https://www.cuebiq.com/about/data-for-good/). These data are first-party and collected from 
anonymous users who have opted in to share their location data. The privacy of these users is 
further enhanced in several ways: First, users’ “personal areas” such as home locations are 
up-leveled to the Census block group level, which preserves key demographic properties while 
obscuring sensitive location information. Second, the measures derived from these data are 
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again aggregated to the zip code level, further eliminating any identifiable information of the 
users. We have used these data with similar processing schemes in previous COVID-19-related 
papers [29,119,121,122].  

Selecting a panel of users 
 
In this study we consider mobility data from 13,333 users that have personal areas in the city of 
Philadelphia. These users were sampled from a larger panel of more than 5 million users 
nationwide. This original panel represents a subset of all active users in the Cuebiq dataset who 
met the following criteria: 1) users who were active in the dataset for at least 21 days during 
each month from January to June 2020, 2) users whose devices reported on average at least 
one location ping per hour, and 3) users with an average device geolocation accuracy of less 
than 50 meters.For more details about the criteria and composition of the panel, as well as the 
rationale for the selection criteria, see Klein et al. [119]. To see an interactive dashboard of 
different collective physical distancing measures that were computed with these data, see 
http://covid19.gleamproject.org/mobility. 
 
Operationalizing opportunities for contact in mobile device data 
 
We define an opportunity for contact as two devices being spatially co-located for some period 
of time. Here, spatial co-location is based on the longitude-latitude position of two devices, such 
that if two devices are within the same 8-character geohash , they qualify as being co-located. A 
geohash is a compressed string representation of the full longitude-latitude coordinates, and the 
more characters in a geohash, the finer scale resolution it will have; 8-character geohash are 
typically 25m2, with the largest dimensions being 19m x 38m at the equator [123]. Following 
guidance from the CDC about what constitutes a close contact, we treat co-location events of 
15 minutes or more as a successful opportunity for contact. In sum: we define an opportunity for 
contact as a pair of devices being within the same 8-character geohash for 15-minutes or more. 
 
Spatially-aggregated contact patterns across zip codes 
 
In order to arrive at an aggregated cluster-to-cluster contact probability matrix, we first estimate 
a zip code-to-zip code contact matrix. This is done by first assigning each user to a “personal 
area” (i.e., an inferred home location—up-leveled to the zip code to preserve privacy—based on 
periods of nightly inactivity). Using these personal areas, we can estimate the likelihood that a 
resident of zip code zi interacts with a resident of a nearby zip code z j based on the sum of 
observed contact opportunities between users with personal areas of z i and zj . 
 
We re-weight observed contacts between users with personal areas in zip codes z i and zj  in 
order to account for possible sampling bias in our panel of users. To do this, we first define f i to 
be n i  / N i , which is the number of users with personal areas in the zip code, n i , divided by the 
total population of the zip code, N i . The adjusted estimate for the total number of contacts 
between a pair of zip codes z i and zj  is then defined as Xij  = cij  / (fi  * fj), where cij  is the observed 

35 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2021. ; https://doi.org/10.1101/2020.10.27.20220897doi: medRxiv preprint 

http://covid19.gleamproject.org/mobility
https://doi.org/10.1101/2020.10.27.20220897
http://creativecommons.org/licenses/by/4.0/


number of contacts between users with personal areas in zip codes zi and zj . We normalize this 
to a per capita level within a given zip code by dividing by the population of that zip code, x ij  = Xij 
/ N i . When referring to “contacts” between a pair of regions (e.g. zip codes or clusters), we are 
referring to this quantity.  
 
At the zip code level, we are now left with a 46 x 46 weighted contact matrix, 𝚾τ , where τ 
denotes a time frame of interest. We define 𝚾ref to be the baseline contact matrix, corresponding 
to the average activity between January 16 and February 28, 2020, excluding holidays (as in 
Klein et al. [119]). Each week’s average contact patterns between pairs of zip codes can now be 
compared to the “typical” or baseline period, which was chosen because it represents activity 
after winter holidays and before large scale mobility disruptions were observed nationwide. 
Together, this lets us define the final matrix of interest, which describes the percent of typical 
contacts between regions. That is, elements Wij  of the matrix Wτ = 𝚾τ/𝚾ref correspond to the 
percent of typical activity between zip codes zi  and zj. Lastly, we aggregate this into a 
cluster-to-cluster (3 x 3) matrix by taking the weighted sum of the elements of Wτ (zip code to 
zip code contacts); for every zip code in a given cluster, we add together the average contacts 
proportionally based on the typical total number of contacts, x i  = ∑xij . 
 
Note that we exclude zip code 19112 from our analyses for privacy reasons due to its small 
population (estimates on the order of n=10 residents according to the 2019 ACS Survey). 
 

Using mobile device data to estimate relocation patterns in Philadelphia 
 
As mentioned above, we assume that users are more likely to relocate within the same cluster                
in the event of an eviction. We validate that assumption by studying the change in personal                
areas in our panel of users. In order to calculate this percentage, we recompute the (up-leveled)                
average nighttime location of the users in our panel during February and October, 2020. We use                
this position as a coarse estimate of the home zip code of these users. Among users whose                 
home zip codes changed between February and October, we construct a matrix corresponding             
to the percent of relocations to each of the other zip codes in Philadelphia. In order to ensure                  
user privacy, we only report percentages in this analysis. 
 
The results of this analysis are shown in Figure S16, where each element of this “relocation                
matrix” represents the percent of users who started (in February) with a home zip code in a                 
given cluster and ended up (in October) with a home zip code in another cluster. Note that the                  
large majority of relocations take place within the same cluster. Users in Cluster 1 are more                
likely to relocate to other clusters than those in Cluster 2 and Cluster 3. While more systematic                 
demographic analyses of these within-city relocation patterns are surely warranted, we use the             
results in Figure S16 only to parameterize our estimates of the rate of within- and               
between-cluster relocations for the epidemic simulations studied here. 
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Supplemental Figures 
 

 
 
Figure S1: Degree distributions in the network. A) Distribution of household sizes. B) Distribution of 
the number of household contacts (degree). C) Distribution of the number of non-household (external) 
contacts. 
 
 
 

 
Figure S2: Baseline and estimated future eviction rates across selected US cities/districts and 
states. A) Baseline eviction rates (blue) and estimated increase in eviction rate based on increased 
unemployment rate (red). Data from Eviction Lab [31]. Rates are percent of all households experiencing 
eviction per month. In a city of ~1 million people and a US-average household size of ~2.5, an eviction 
rate of 0.1%/month corresponds to about 400 evictions per month, and a rate of 2%/month works out to 
8000/month. These cities were chosen to represent diversity in size, geography, and eviction rates B) 
Estimates for the percent of households facing eviction per month over the next four month in each state. 
Values came from an analysis from consulting firm Stout [32] and were based on US census data and 
surveys. 
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Figure S3: Clustering cities based on COVID-19 epidemic trajectories. Dendrogram from results of 
hierarchical clustering of US metropolitan statistical areas based on the trajectory of COVID-19 cases and 
deaths through Sept 1 2020. City names are colored based on group membership when four clusters 
were chosen. See Methods for details.  
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Figure S4: Characteristics of the epidemic trajectory in each group of cities. A) Growth rates cases, 
measured for two weeks starting from the stated date.  B) Peak deaths observed in each stated date 
interval. Box plots show median, IQR, and 95th percentiles. All metrics were extracted from rolling 7-day 
averages of the daily incidence of new cases or deaths. See Methods for details.  
 

Figure S5: Cities following “Trajectory 1” of COVID-19 cases and deaths. Daily incidence of cases 
and deaths (per million, 7-day rolling average) in US metropolitan statistical areas that were assigned to 
the “Trajectory 1” group by hierarchical clustering of the time series. Note that the anomalously low cases 
in mid August in the Boston area are due to an approximately one week lapse in reporting at the county 
level in Massachusetts. The irregularities in the Providence area data are due to irregular county-level 
reporting in Rhode Island.  
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Figure S6: Cities following “Trajectory 2” of COVID-19 cases and deaths. Daily incidence of cases 
and deaths (per million, 7-day rolling average) in US metropolitan statistical areas that were assigned to 
the “Trajectory 2” group by hierarchical clustering of the time series.  
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Figure S7: Cities following “Trajectory 3” of COVID-19 cases and deaths. Daily incidence of cases 
and deaths (per million, 7-day rolling average) in US metropolitan statistical areas that were assigned to 
the “Trajectory 3” group by hierarchical clustering of the time series.  
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Figure S8: Cities following “Trajectory 4” of COVID-19 cases and deaths. Daily incidence of cases 
and deaths (per million, 7-day rolling average) in US metropolitan statistical areas that were assigned to 
the “Trajectory 4” group by hierarchical clustering of the time series.  
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Figure S9: Calibrated model trajectories for each group of cities. All panels show daily incidence of 
new cases and deaths per million individuals, applying a 7-day rolling average. Top row: Case and death 
data for each metropolitan area assigned to each trajectory group by the clustering algorithm (see Figure 
S3). along with the group median (bolded line). Bottom row: Simulated case and death values from model 
scenarios calibrated to each group. Each simulated trajectory consists of up to five distinct phases of the 
epidemic wherein the number of external contacts is reduced by a fixed amount. The phases are the early 
exponential phase (pre March 25), the spring period of control/lockdown (March 25 - June 15), a 
relaxation of controls and possible summer resurgence (June 15 - July 15), an optional re-imposition of 
some controls (July 15 - Oct 1), and a fall comeback (Oct 1 onwards). Parameters describing each 
trajectory are given in Table S1. Note that in the data, cases are likely under-reported, especially during 
early phases of the epidemic, whereas the simulation counts all infections, so produces a higher ratio of 
cases to deaths. 
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Figure S10: Impact of evictions on a SARS-CoV-2 comeback during Fall 2020 for a higher 
household SAR. We model evictions occurring in the context of an epidemic similar to cities following 
“Trajectory 1”, with a large first wave and control in the spring, followed by relaxation to a plateau over the 
summer and an eventual comeback in the fall. Monthly evictions start Sept 1, with a 4-month backlog 
processed on the first month. The household secondary attack rate (SAR) was 0.5. A) The projected daily 
incidence of new infections (7-day running average) with and without evictions. Shaded regions represent 
central 90% of all simulations.The first lockdown (dotted vertical line) reduced external contacts by 85%, 
under relaxation (second dotted line) they were still reduced by 70%, and during the fall comeback they 
were reduced by 60% (fourth dotted line). B) Final epidemic size by Dec 31 2020, measured as percent of 
individuals who had ever been in any stage of infection. C) The predicted increase in infections due to 
evictions through Dec 31 2020, measured as excess percent of population infected (left Y-axis) or number 
of excess infections (right Y-axis). Error bars show interquartile ranges across simulations. D) Relative 
risk of infection in the presence versus absence of evictions, for individuals who merged households due 
to evictions (“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other 
households”). E)-F) Same as above but assuming a second lockdown is instituted on Dec 1, and 
maintained through March 2021.  
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Figure S11: Impact of evictions on a SARS-CoV-2 comeback during Fall 2020 for a lower 
household SAR. We model evictions occurring in the context of an epidemic similar to cities following 
“Trajectory 1”, with a large first wave and control in the spring, followed by relaxation to a plateau over the 
summer and an eventual comeback in the fall. Monthly evictions start Sept 1, with a 4-month backlog 
processed on the first month. The household secondary attack rate (SAR) was 0.1. A) The projected daily 
incidence of new infections (7-day running average) with and without evictions. Shaded regions represent 
central 90% of all simulations.The first lockdown (dotted vertical line) reduced external contacts by 85%, 
under relaxation (second dotted line) they were still reduced by 70%, and during the fall comeback they 
were reduced by 60% (fourth dotted line). B) Final epidemic size by Dec 31 2020, measured as percent of 
individuals who had ever been in any stage of infection. C) The predicted increase in infections due to 
evictions through Dec 31 2020, measured as excess percent of population infected (left Y-axis) or number 
of excess infections (right Y-axis). Error bars show interquartile ranges across simulations. D) Relative 
risk of infection in the presence versus absence of evictions, for individuals who merged households due 
to evictions (“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other 
households”). E)-F) Same as above but assuming a second lockdown is instituted on Dec 1, and 
maintained through March 2021.  
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Figure S12: Impact of evictions on a SARS-CoV-2 comeback during Fall 2020 when household and 
external contacts have equal transmission risk. We model evictions occurring in the context of an 
epidemic similar to cities following “Trajectory 1”, with a large first wave and control in the spring, followed 
by relaxation to a plateau over the summer and an eventual comeback in the fall. Monthly evictions start 
Sept 1, with a 4-month backlog processed on the first month. A) The projected daily incidence of new 
infections (7-day running average) with and without evictions. Shaded regions represent central 90% of all 
simulations.The first lockdown (dotted vertical line) reduced external contacts by 85%, under relaxation 
(second dotted line) they were still reduced by 70%, and during the fall comeback they were reduced by 
60% (fourth dotted line). B) Final epidemic size by Dec 31 2020, measured as percent of individuals who 
had ever been in any stage of infection. C) The predicted increase in infections due to evictions through 
Dec 31 2020, measured as excess percent of population infected (left Y-axis) or number of excess 
infections (right Y-axis). Error bars show interquartile ranges across simulations. D) Relative risk of 
infection in the presence versus absence of evictions, for individuals who merged households due to 
evictions (“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other households”). 
E)-F) Same as above but assuming a second lockdown is instituted on Dec 1, and maintained through 
March 2021.  
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Figure S13: Impact of evictions on a SARS-CoV-2 comeback during Fall 2020 when doubling up 
occurs with a connected household. We model evictions occurring in the context of an epidemic similar 
to cities following “Trajectory 1”, with a large first wave and control in the spring, followed by relaxation to 
a plateau over the summer and an eventual comeback in the fall. Monthly evictions start Sept 1, with a 
4-month backlog processed on the first month. A) The projected daily incidence of new infections (7-day 
running average) with and without evictions. Shaded regions represent central 90% of all simulations.The 
first lockdown (dotted vertical line) reduced external contacts by 85%, under relaxation (second dotted 
line) they were still reduced by 70%, and during the fall comeback they were reduced by 60% (fourth 
dotted line). B) Final epidemic size by Dec 31 2020, measured as percent of individuals who had ever 
been in any stage of infection. C) The predicted increase in infections due to evictions through Dec 31 
2020, measured as excess percent of population infected (left Y-axis) or number of excess infections 
(right Y-axis). Error bars show interquartile ranges across simulations. D) Relative risk of infection in the 
presence versus absence of evictions, for individuals who merged households due to evictions 
(“Doubled-up”) and for individuals who kept their pre-epidemic household (“Other households”).  
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Figure S14: Impact of evictions on COVID-19 epidemics in heterogeneous cities with preferential 
mixing. A) Schematic of our model for inequalities within a city. The city is divided into a “high 
socioeconomic status (SES)” (purple) and a “low SES” (teal) neighborhood. Evictions only occur in the 
low SES area, and individuals living in this area are assumed to be less able to adopt social distancing 
measures, and hence have higher contact rates under interventions (90% vs 80% reduction in external 
contacts during lockdown for 85% overall, 75% vs 65% during relaxation for 70% overall, and 65% vs 
55% during fall comeback for 60% ). Before interventions, residents are more likely (75% external 
contacts are within one’s neighborhood) to contact someone outside the household who lives within vs 
outside their neighborhood. B) Cumulative percent of the population infected over time, by neighborhood, 
in the absence of evictions. C) The projected daily incidence of new infections (7-day running average) 
with 1%/month evictions vs no evictions. Shaded regions represent central 90% of all simulations. D) 
Final epidemic size by Dec 31 2020, measured as percent individuals who had ever been in any stage of 
infection, for the heterogenous city as compared to a homogenous city with same effective eviction rate 
and intervention efficacy. E) The predicted increase in infections due to evictions through Dec 31 2020, 
measured as excess percent of population infected (left Y-axis) or number of excess infections (right 
Y-axis). Error bars show interquartile ranges across simulations. F) Relative risk of infection by Dec 31 
2020 for residents of the poor vs rich neighborhood. G) Relative risk of infection by Dec 31 2020  in the 
presence vs absence of evictions, for individuals who merged households due to evictions (“Doubled-up”) 
and for individuals who kept their pre-epidemic household (“Other households”).  
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Figure S15: Impact of evictions on COVID-19 epidemics in heterogeneous cities with 
cross-neighborhood doubling up. A) Schematic of our model for inequalities within a city. The city is 
divided into a “high socioeconomic status (SES)” (purple) and a “low SES” (teal) neighborhood. Evictions 
only occur in the low SES area (though doubling up is equally likely to happen with individuals in any 
area), and individuals living in the low SES area are assumed to be less able to adopt social distancing 
measures, and hence have higher contact rates under interventions (90% vs 80% reduction in external 
contacts during lockdown for 85% overall, 75% vs 65% during relaxation for 70% overall, and 65% vs 
55% during fall comeback for 60% overall). Before interventions, residents are equally likely to contact 
someone outside the household who lives within vs outside their neighborhood. B) Cumulative percent of 
the population infected over time, by neighborhood, in the absence of evictions. C) The projected daily 
incidence of new infections (7-day running average) with 1%/month evictions vs no evictions. Shaded 
regions represent central 90% of all simulations. D)  Final epidemic size by Dec 31 2020, measured as 
percent individuals who had ever been in any stage of infection, for the heterogenous city as compared to 
a homogenous city with same effective eviction rate and intervention efficacy. E) The predicted increase 
in infections due to evictions through Dec 31 2020, measured as excess percent of population infected 
(left Y-axis) or number of excess infections (right Y-axis). Error bars show interquartile ranges across 
simulations. F) Relative risk of infection by Dec 31 2020 for residents of the poor vs rich neighborhood. G) 
Relative risk of infection by Dec 31 2020 in the presence vs absence of evictions, for individuals who 
merged households due to evictions (“Doubled-up”) and for individuals who kept their pre-epidemic 
household (“Other households”).  
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Figure S16: Relocation probabilities between clusters. Left: Map of Philadelphia, with each zip code              
colored by the cluster it was assigned to. Right: Among users in our panel who have a different estimated                   
home location between February and October 2020, this matrix shows the percent of users who relocated                
from/to each cluster. Note that most moves took place within the same cluster. 
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Figure S17: Impact of evictions on a SARS-CoV-2 when evictions can lead to homelessness. We 
model evictions occurring in the context of an epidemic similar to cities following “Trajectory 1”, with a 
large first wave and control in the spring, followed by relaxation to a plateau over the summer and an 
eventual comeback in the fall. Monthly evictions start Sept 1, with a 4-month backlog processed on the 
first month. Each month, 10% of evicted individuals become homeless and are assigned to a shelter, 
while the remaining 90% double-up. Each shelter size is drawn from a Poisson distribution with mean = 
20 individuals. A)-B) The projected daily incidence of new infections (7-day running average) with (0.25% 
households per month) and without evictions. Shaded regions represent central 90% of all 
simulations.The first lockdown (dotted vertical line) reduced external contacts by 85%, under relaxation 
(second dotted line) they were reduced by 70%, and under the fall comeback they were reduced by 60% 
(fourth dotted line). In B) a second lockdown is imposed on Dec 1 and maintained through March 2021. 
C)-D)  The predicted increase in infections through C) Dec 31, 2020 and D) March 31, 2021 due to 
evictions with (orange) and without (red) the inclusion of shelters for each of the above scenarios. It is 
measured in terms of an excess percent of the population infected. 
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Supplemental Tables 
Table S1: Parameters used for each simulated epidemic trajectory.  
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   Reduction in external contacts (%) 

 
Base- 
line R 0 

Cumulative 
prevalence at 
lockdown (%) 

Early phase 
(pre March 25) 

Lockdown  
(March 25) 

Relaxation  
(June 15) 

Control  
(July 15) 

Comeback 
(Oct 1) 

Trajectory Group (Figures 2, 3) 

1 3 3 0 85 70 70 60 

2 3 1 0 85 65 75 60 

3 3 0.2 0 77 65 80 60 

4 3 0.2 0 75 60 80 65 

Sensitivity analyses (Figures S10-S12) 

High SAR 3.5 3 0 87 75 75 65 

Low SAR,  
Equal Weight 3 3 0 80 65 65 55 

Equal Weight 3 3 0 85 70 70 60 

Two-Neighborhood 

Low-SES 3 3 0 80 65 65 55 

High-SES 3 3 0 90 75 75 65 
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Table S2: Seroprevalence over time in simulated epidemic trajectories 
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  Seroprevalence (%) 
 

Scenario April 1 June 1 September 1 December 1 January 1 March 1 

Trajectory 1 & 
comeback 

0.9 
[0.5-1.0] 

8.1 
[4.9-9.1] 

9.4 
[6.0-10.5] 

11.9 
[9.1-12.8] 

15.2 
[13.9-16.4] - 

Trajectory 1 & 
lockdown 

0.9 
[0.5-1.0] 

8.1 
[4.9-9.1] 

9.4 
[6.0-10.5] 

11.9 
[9.1-12.8] 

13.7 
[11.8-14.6] 

14.6 
[13.1-15.6] 

Trajectory 2 & 
comeback 

0.3 
[0.2-0.4] 

3.4 
[2.0-3.6] 

4.4 
[2.7-4.8] 

6.1 
[4.5-7.0] 

9.2 
[8.4-10.5] - 

Trajectory 2 & 
lockdown 

0.3 
[0.2-0.4] 

3.4 
[2.0-3.6] 

4.4 
[2.7-4.8] 

6.1 
[4.5-7.0] 

7.7 
[6.6-8.9] 

8.7 
[7.8-10.0] 

Trajectory 3 & 
comeback 

0.1 
[0.0-0.1] 

1.1 
[0.7-1.1] 

2.7 
[1.9-2.8] 

4.3 
[3.2-4.6] 

7.1 
[5.8-7.9] - 

Trajectory 3 & 
lockdown 

0.1 
[0.0-0.1] 

1.1 
[0.7-1.1] 

2.7 
[1.9-2.8] 

4.3 
[3.2-4.6] 

5.7 
[4.6-6.4] 

6.6 
[5.5-7.4] 

Trajectory 4 & 
comeback 

0.1 
[0.0-0.1] 

1.2 
[0.8-1.2] 

4.3 
[3.1-4.4] 

6.5 
[5.0-6.9] 

8.4 
[7.2-9.2] - 

Trajectory 4 & 
lockdown 

0.1 
[0.0-0.1] 

1.2 
[0.8-1.2] 

4.3 
[3.1-4.4] 

6.5 
[5.0-6.9] 

7.6 
[6.3-8.3] 

8.3 
[7.0-9.0] 
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Table S3: Socioeconomic indicators used to classify zipcodes in Philadelphia into clusters.  
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  Mean by Cluster 

Indicator Description Overall mean Cluster 1 Cluster 2 Cluster 3 

Population under 18 (%) 19.8% 11.4% 21.6% 24.5% 

Population over 65 (%)  13.8% 13.7% 15.9% 11.4% 

Female (%)  52.4% 51.1% 52.4% 53.5% 

Poverty Rate (%) 22.9% 14.4% 17.6% 36.1% 

Per Capital Income ($) 31,436 54,996 27,250 17,265 

Median Household Income ($) 50,391 75,828 50,414 29,695 

Median Home Value ($) 198,396 353,577 177,100 97,600 

Renter Occupied (%) 47.6% 55.7% 37.5% 52.9% 

Vacancy Rate (%) 12.6% 11.9% 9.2% 17.0% 

Median Gross Rent  ($) 1,092 1,448 1,023 885 

Housing Cost Burdened Owners (%) 27.9% 25.1% 27.4% 30.8% 

Housing Cost Burdened Renters (%) 48.9% 38.3% 50.8% 55.4% 

Female Headed Households (%)  18.8% 7.7% 18.5% 28.1% 

Residents Employed in Service Occupations (%)  22.2% 11.8% 23.2% 29.4% 

Residents Employed in Essential Services (%)  46.2% 30.4% 50.4% 54.1% 

Mobility Rate (% moved within last year)  15.9% 24.7% 10.5% 15.1% 

Commute over 60 minutes (%) 14.4% 9.6% 15.1% 17.6% 

Population (Thousands) 1,584 269 602 713 

Proportion of Population (%) 100% 17% 38% 45% 
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Table S4: Composition of zipcode-clusters in Philadelphia by race/ethnicity/nativity 

 
Table S5: Baseline contact matrix by cluster of residence. Each row gives the fraction of all 
within-Philadelphia contacts involving individuals of a particular cluster that are with individuals residing in 
each other cluster. Contacts are estimated from co-location data from mobile devices (see 
Methods/Supplementary Methods). These mixing patterns were calculated for January and February 
2020 and are used as the baseline patterns to which all COVID-19-driven reductions are applied.  
 

 
 
Table S6 : Reduction in contacts by clusters of residence and month. Each row gives the percent 
reduction in contacts between individuals belonging to different clusters as compared to the baseline 
contacts. Reductions are for the months of April (top line in each row) and June (bottom line in each row) 
and are estimated from co-location data from mobile devices (see Methods/Supplementary Methods).  
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 Cluster 1 Cluster 2 Cluster 3 

White (non-Hispanic) 69.8% 51.1% 19.7% 

Black 16.1% 34.1% 65.2% 

Pacific Islander/American Indian/Alaska Native 0.2% 0.3% 0.4% 

Asian 8.8% 7.8% 4.2% 

Non-white 30.2% 48.9% 80.3% 

Latino/Hispanic 6.6% 10.2% 17.7% 

Foreign Born 11.5% 16.7% 10.1% 

 Cluster 1 Cluster 2 Cluster 3 Total 

Cluster 1 49% 17% 34% 100% 

Cluster 2 18% 51% 31% 100% 

Cluster 3 10% 13% 76% 100% 

 Cluster 1 Cluster 2 Cluster 3 Net 

Cluster 1 94% 
85% 

99% 
91% 

99% 
94% 

96% 
89% 

Cluster 2 98% 
88% 

83% 
64% 

90% 
77% 

88% 
73% 

Cluster 3 98% 
92% 

92% 
79% 

91% 
82% 

92% 
83% 
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