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Abstract 

Training a machine learning algorithm on a class-imbalanced dataset can be a diffi-
cult task, a process that could prove even more challenging under conditions of high 
dimensionality. Feature extraction and data sampling are among the most popular 
preprocessing techniques. Feature extraction is used to derive a richer set of reduced 
dataset features, while data sampling is used to mitigate class imbalance. In this paper, 
we investigate these two preprocessing techniques, using a credit card fraud dataset 
and four ensemble classifiers (Random Forest, CatBoost, LightGBM, and XGBoost). 
Within the context of feature extraction, the Principal Component Analysis (PCA) and 
Convolutional Autoencoder (CAE) methods are evaluated. With regard to data sampling, 
the Random Undersampling (RUS), Synthetic Minority Oversampling Technique (SMOTE), 
and SMOTE Tomek methods are evaluated. The F1 score and Area Under the Receiver 
Operating Characteristic Curve (AUC) metrics serve as measures of classification perfor-
mance. Our results show that the implementation of the RUS method followed by the 
CAE method leads to the best performance for credit card fraud detection.

Keywords:  Credit Card Fraud, Random Undersampling, SMOTE, SMOTE Tomek, PCA, 
Convolutonal Autoencoder, Feature Extraction

Introduction
An unequal distribution of classes in a dataset is known as class imbalance. Under this 
condition, the majority class can overburden machine learning algorithms, thus mak-
ing recognition of the minority class more challenging. As a result, classification perfor-
mance scores for the impacted algorithms can become biased in favor of the dominant 
class. Random Undersampling (RUS) [1], Synthetic Minority Oversampling Technique 
(SMOTE) [2], and SMOTE Tomek [3] are examples of data-level approaches for deal-
ing with class imbalance. Algorithm-level approaches that address this imbalance typi-
cally involve various cost-sensitive strategies [4]. In this study, the focus is on data-level 
approaches that mitigate class imbalance.

The data sampling technique of RUS discards members of the majority class until the 
ratio of instances of majority and minority class members reaches a predetermined level. 
SMOTE is a data augmentation technique that is used to increase the representation of 
the minority class in datasets. This technique synthesizes components of the minority 
class based on those that already exist and are proximate to each other. SMOTE Tomek 
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combines the ability of SMOTE, which boosts instances of the minority class, and 
Tomek links [5], which removes instances of the majority class that have been identified 
as Tomek connections. Tomek links is further described in  the “Background informa-
tion” section, as this technique is not as well-known as SMOTE and RUS.

Feature extraction begins with a dataset that contains the original features and uses 
them to generate derived features which are designed to be informative and non-
redundant. This process facilitates generalization and may improve interpretation and 
classification performance scores. Feature extraction generally leads to dimensionality 
reduction. As depicted in Figure 1, the original features of a dataset are transformed into 
a reduced set of features. Before training classifiers on largescale imbalanced datasets, 
feature extraction or dimensionality reduction is often performed. Feature extraction is 
carried out with various algorithms, such as Principal Component Analysis (PCA) [6] 
and Convolutional Autoencoders (CAEs) [7]. PCA is based on linear transformations, 
while autoencoders use non-linear complex functions. The feature extraction techniques 
used in this study are further described in the “Background information” section.

Our motivation for this work comes from the fact that there are yearly increases in the 
number of credit card fraud incidents [9] and that machine learning techniques have 
been successfully used to detect fraudulent activity. Our paper examines the use of fea-
ture extraction and data sampling on a class-imbalanced dataset. To be more specific, 
our research involves the evaluation of PCA and CAE techniques for feature extraction, 
with RUS, SMOTE, and SMOTE Tomek used as the data sampling techniques. To the 
best of our knowledge, this is the first study that investigates the use of PCA, CAE, RUS, 
SMOTE, and SMOTE Tomek on classimbalanced data. Our research uses a credit card 
fraud detection dataset from the Kaggle [10] community, aptly named the Credit Card 
Fraud Detection Dataset. Given the solid performance of ensemble classifiers in many 
studies [11–13], we use four ensemble learners based on the Decision Tree [14] classi-
fier: Random Forest [15], XGBoost [16], LightGBM [17], and CatBoost [18]. Classifica-
tion performance is measured with the F1 score and Area Under the Receiver Operating 
Characteristic Curve (AUC) metric.

The contribution of our research is highlighted as follows:

•	 Examines effect of PCA and CAE on ensemble classifiers
•	 Examines effect of RUS, SMOTE, and SMOTE Tomek on ensemble classifiers
•	 Examines effect of the order of preprocessing tasks on ensemble classifiers

Fig. 1  Feature extraction process [8]
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The remainder of this paper is organized as follows: the “Background information” sec-
tion provides background information on the Tomek links, PCA, and CAE algorithms; 
the “Related work” section reviews relevant Bot-IoT literature; the “Methodology” sec-
tion covers data preprocessing and classification tasks; the “Results and discussion” sec-
tion provides and analyzes our findings; and the “Conclusion” section summarizes the 
key points of this paper, as well as providing suggestions for future work.

Background information
The Tomek links algorithm acts as a label noise filter and is denoted by pairs of instances. 
A Tomek link is a pair of data points x and y from different classes, such that, if d stands 
for the distance metric, there exists no example z such that d(x,z) is lower than d(x,y), 
or d(y,z) is lower than d(x,y). Hence, where the two examples x and y form a Tomek 
link, either one is noise or both are borderline. These two examples are thus eliminated 
from the training data. To elaborate further, in a binary classification environment with 
classes 0 and 1, a Tomek link pair would have an instance of each class and would be 
nearest neighbors across the dataset [19]. These cross-class pairs are valuable in defin-
ing the class boundary [20]. Figure 2 shows an alignment of Tomek link pairs at the class 
boundary. It is important to note that the use of Tomek links for label noise detection 
does not involve the calculation of reconstruction error.

The PCA algorithm is a feature extraction technique with a variety of applications in 
exploratory data analysis, visualization, and dimensionality reduction [21]. It is an unsu-
pervised algorithm that generates a linear mixture of original features and new features 
which are not correlated with the original features. Furthermore, generated features are 
ranked according to the amount of variance that can be explained by them. As a result, 
Principal Component 1 represents the first principal that explains the greatest amount 
of variance in the dataset, Principal Component 2 represents the second principal that 
explains the second greatest amount of variance in the dataset, and so on. It is therefore 
possible to minimize the dimensionality of data with principal components.

An autoencoder is a neural network architecture that tries to learn a compact or latent 
representation of an input. This latent representation contains the extracted features. 

Fig. 2  Tomek link pairs [8]
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The autoencoder is frequently part of a larger model that tries to recreate the input. 
Despite the fact that an autoencoder is an unsupervised learning method, it is techni-
cally trained via supervised learning and hence can be considered a type of semi-super-
vised learning.

Figure  3 illustrates the structure of a typical autoencoder, which is a feed-forward 
neural network containing an encoder, one or more hidden layers, and a decoder. The 
encoder feeds information from the input into the hidden layer, and the decoder feeds 
information from the hidden layer into the output layer. It is assumed that an autoen-
coder model will reconstruct the identical inputs that flowed through the input layer 
during the training process. Consequently, the decoder acts as a mirror image of the 
encoder, with a matching number of neurons to the encoder in both directions. For 
feature extraction and dimensionality reduction, the smallest hidden layer in the archi-
tecture (also referred to as the bottleneck) is used to compress the input to the lowest 
level of space (also known as latent space) in order to achieve the desired dimensionality 
reduction [22]. During the training phase, the decoder is used to calculate the error rate 
of the model, but it is not utilized to recover the original input dimension of the data. 
Several distinct types of autoencoders are available, and their uses range widely.

The CAE has a similar architecture to the Convolutional Neural Network (CNN) 
[7]. Both algorithms use some of the same fundamental components, including con-
volutional filters and pooling layers [24]. The encoder performs feature extraction and 
dimensionality reduction by using the convolution filters and pooling layers of the CNN. 
The decoder performs the reverse operation. Figure 4 shows the structure of a typical 
CAE.

Related work
The reduction of high-dimensional data, such as genomic information, images, videos, 
and text, is seen as an important and necessary data preprocessing step that generates 
high-level representations. One reason for reducing dimensionality is to provide deeper 
insight into the inherent structure of data. Various feature extraction techniques have 

Fig. 3  Autoencoder architecture [23]
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been explored. The early approaches are based on projection and involve mapping input 
features in the original high-dimensional space to a new low-dimensional space while 
minimizing information loss [26]. PCA and Linear Discriminant Analysis (LDA) [27] 
are two of the most well-known projection techniques. The former is an unsupervised 
method that maximizes variance to project original data into its principal directions. 
The latter is a supervised approach for locating a linear subspace by optimizing distin-
guishing data between classes. The main disadvantage of these approaches is that they 
conduct linear projection. Subsequent research overcame this problem by utilizing non-
linear methods. Another drawback of the early approaches is that the majority of these 
works tend to map data from high-dimensional to low-dimensional space by extracting 
features once, rather than stacking them to build deeper levels of representation pro-
gressively [22]. Autoencoders compress dimensionality by minimizing reconstruction 
loss using artificial neural networks. As a result, it is simple to stack autoencoders by 
adding hidden layers. This gives the autoencoder and its variants, such as the CAE, the 
ability to extract meaningful features.

Compared to the plain autoencoder, the CAE has the ability to extract smooth fea-
tures by use of its pooling layers, which is advantageous for classification. Polic et al. 
[28] employ a CAE to reduce the optical-based output for a tactile sensor image. The 
authors validate their method with a set of benchmarking cases. Shallow neural net-
works and other machine learning models are used to estimate contact object shape, 
edge position, orientation, and indentation depth. A contact force estimator [29] is 
also trained, resulting in the confirmation that the extracted features contain suffi-
cient information on both the spatial and mechanical properties of the object.

Meng et al. [22] note that the plain autoencoder fails to take into account relation-
ships between data features. These relationships may impact results if original and/
or novel features are used. For feature extraction, Meng et  al. propose a relational 
autoencoder model that factors in both data features and their relationships. The 
authors also make their model compatible with other autoencoder variants, such as 
a sparse autoencoder [30], denoising autoencoder [31], and variational autoencoder 
[32]. Upon testing the proposed model on a set of benchmark datasets, results show 
that the incorporation of data relationships generates more robust features with lower 
reconstruction error loss, when compared to the other autoencoder variants.

In another related work, Lee et al. [33] use a CAE to perform feature extraction and 
dimensionality reduction for radar data analysis. The aim of their study is to obtain a 

Fig. 4  Convolutional autoencoder architecture [25]
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fast, accurate, and human-like image-processing algorithm. Finally, Maggipinto et al. 
[7] use a CAE to extract features in data-driven applications for virtual metrology. 
Values for optical emission spectrometry serve as the input data.

Finally, we investigated autoencoder studies performed on the Credit Card Fraud 
Detection Dataset published by Kaggle. The relevant works are described in the follow-
ing two paragraphs.

Using both a plain autoencoder algorithm and a Logistic Regression algorithm, Al-
Shabi [34] evaluated balanced and imbalanced data to detect credit card fraud in the 
dataset. Results show that the autoencoder outperformed Logistic Regression. However, 
we note that the F1 score for the autoencoder is only 0.04, due to the low value for the 
Precision metric.

Within the framework of one-class classification, Chen et al. [35] combined a sparse 
autoencoder with a Generative Adversarial Network to detect credit card fraud in the 
dataset. Other one-class classification algorithms were evaluated, namely OneClass 
Gaussian Process [36] and Support Vector Data Description [37]. Based on the results, 
the authors’ proposed model, with a top F1 score of 0.8736, performed the best. The 
reproducibility of their work is questionable, since the hyperparameters used for the 
One-Class Gaussian Process and Support Vector Data Description algorithms have not 
been provided.

With regard to the final two related works, we point out that their best values for F1 
score are noticeably lower than our best value obtained in this study. Further, we note 
that none of the related works discussed in this section use data sampling in conjunction 
with feature extraction.

Methodology
The Credit Card Fraud Detection Dataset [10] was published by Worldline and the 
Universit´e Libre de Bruxelles (ULB). There are 284,807 instances and 30 independent 
variables in the raw dataset, which shows credit card purchases by Europeans in Sep-
tember 2013. The label (dependent variable) of this binary dataset is 1 for a fraudulent 
transaction and 0 for a non-fraudulent transaction. Fraudulent transactions constitute 
492 instances, or 0.172%, thus rendering the dataset highly imbalanced with regard to 
the majority and minority classes.

In this study, we evaluate three data sampling techniques (RUS, SMOTE, and SMOTE 
Tomek) and two feature extraction techniques (PCA and CAE). The impact on classifier 
performance is evaluated with various scenarios, as depicted in Table 1.

The RUS technique is used to obtain five different ratios (1:1, 1:5, 1:10, 1:20 and 1:50), 
as shown in Tables 2, 3, 4, 5, 6. These ratios represent the minority to majority instances 
for each dataset obtained by down-sampling the original dataset. The use of this range 
of ratios strengthens the validity of our study. The SMOTE and SMOTE Tomek data 
sampling techniques are associated with Tables 7 and 8, respectively. Table 9 shows the 
results where no preprocessing was performed, i.e., no data sampling and no feature 
extraction.

The SMOTE, SMOTE Tomek, and RUS algorithms are included in the imbalanc-
edlearn [38] Python library. For SMOTE and SMOTE Tomek, we set the k neighbors 
parameter to 5. After the implementation of the PCA algorithm with ScikitLearn [39], 
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Table 1  Preprocessing scenarios

Step 1 Step 2

Sampling (RUS, SMOTE, or SMOTE Tomek) None

Sampling (RUS, SMOTE, or SMOTE Tomek) PCA

Sampling (RUS, SMOTE, or SMOTE Tomek) CAE

PCA None

PCA Sampling 
(RUS, SMOTE, 
or SMOTE 
Tomek)

CAE None

CAE Sampling 
(RUS, SMOTE, 
or SMOTE 
Tomek)

None None

Table 2  Performance scores for baseline

Learner Step 1 Step 2 F1 AUC​

Random Forest None None 0.846 0.886

XGBoost None None 0.840 0.883

LightGBM None None 0.249 0.687

CatBoost None None 0.853 0.891

Table 3  Performance scores for RUS (1:1 ratio)

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA RUS 0.138 0.950

XGBoost PCA RUS 0.128 0.949

LightGBM PCA RUS 0.155 0.948

CatBoost PCA RUS 0.158 0.948

Random Forest RUS PCA 0.238 0.976

XGBoost RUS PCA 0.145 0.976

LightGBM RUS PCA 0.189 0.976

CatBoost RUS PCA 0.280 0.981

Random Forest RUS CAE 0.215 0.963

XGBoost RUS CAE 0.127 0.953

LightGBM RUS CAE 0.151 0.957

CatBoost RUS CAE 0.229 0.958

Random Forest CAE RUS 0.122 0.934

XGBoost CAE RUS 0.098 0.934

LightGBM CAE RUS 0.113 0.940

CatBoost CAE RUS 0.118 0.944

Random Forest RUS None 0.273 0.967

XGBoost RUS None 0.151 0.965

LightGBM RUS None 0.192 0.967

CatBoost RUS None 0.283 0.970
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the number of principal components obtained was 15, which is half the the num-
ber of original dataset features. To recreate the original transactions from the PCA 
components, the inverse transform function from Scikit-Learn is used. The CAE is 

Table 4  Performance scores for RUS (1:5 ratio)

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA RUS 0.331 0.942

XGBoost PCA RUS 0.260 0.940

LightGBM PCA RUS 0.341 0.942

CatBoost PCA RUS 0.334 0.945

Random Forest RUS PCA 0.486 0.979

XGBoost RUS PCA 0.403 0.979

LightGBM RUS PCA 0.516 0.980

CatBoost RUS PCA 0.473 0.968

Random Forest RUS CAE 0.602 0.965

XGBoost RUS CAE 0.312 0.974

LightGBM RUS CAE 0.412 0.968

CatBoost RUS CAE 0.466 0.961

Random Forest CAE RUS 0.573 0.928

XGBoost CAE RUS 0.245 0.925

LightGBM CAE RUS 0.232 0.932

CatBoost CAE RUS 0.366 0.934

Random Forest RUS None 0.537 0.983

XGBoost RUS None 0.371 0.986

LightGBM RUS None 0.444 0.983

CatBoost RUS None 0.505 0.983

Table 5  Performance scores for RUS (1:10 ratio)

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA RUS 0.624 0.929

XGBoost PCA RUS 0.397 0.928

LightGBM PCA RUS 0.503 0.943

CatBoost PCA RUS 0.590 0.944

Random Forest RUS PCA 0.644 0.965

XGBoost RUS PCA 0.600 0.965

LightGBM RUS PCA 0.565 0.965

CatBoost RUS PCA 0.619 0.954

Random Forest RUS CAE 0.638 0.954

XGBoost RUS CAE 0.487 0.961

LightGBM RUS CAE 0.498 0.965

CatBoost RUS CAE 0.556 0.957

Random Forest CAE RUS 0.509 0.920

XGBoost CAE RUS 0.437 0.923

LightGBM CAE RUS 0.562 0.920

CatBoost CAE RUS 0.563 0.928

Random Forest RUS None 0.783 0.966

XGBoost RUS None 0.639 0.973

LightGBM RUS None 0.733 0.965

CatBoost RUS None 0.756 0.962
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Table 6  Performance scores for RUS (1:20 ratio)

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA RUS 0.709 0.929

XGBoost PCA RUS 0.642 0.929

LightGBM PCA RUS 0.624 0.933

CatBoost PCA RUS 0.743 0.926

Random Forest RUS PCA 0.879 0.977

XGBoost RUS PCA 0.766 0.977

LightGBM RUS PCA 0.790 0.977

CatBoost RUS PCA 0.748 0.966

Random Forest RUS CAE 0.827 0.973

XGBoost RUS CAE 0.778 0.977

LightGBM RUS CAE 0.853 0.977

CatBoost RUS CAE 0.788 0.966

Random Forest CAE RUS 0.697 0.917

XGBoost CAE RUS 0.668 0.921

LightGBM CAE RUS 0.688 0.928

CatBoost CAE RUS 0.712 0.921

Random Forest RUS None 0.848 0.981

XGBoost RUS None 0.816 0.981

LightGBM RUS None 0.840 0.981

CatBoost RUS None 0.859 0.981

Table 7  Performance scores for RUS (1:50 ratio)

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA RUS 0.775 0.918

XGBoost PCA RUS 0.767 0.918

LightGBM PCA RUS 0.771 0.915

CatBoost PCA RUS 0.799 0.911

Random Forest RUS PCA 0.890 0.984

XGBoost RUS PCA 0.853 0.988

LightGBM RUS PCA 0.882 0.988

CatBoost RUS PCA 0.847 0.966

Random Forest RUS CAE 0.902 0.984

XGBoost RUS CAE 0.849 0.984

LightGBM RUS CAE 0.840 0.981

CatBoost RUS CAE 0.852 0.973

Random Forest CAE RUS 0.802 0.902

XGBoost CAE RUS 0.733 0.910

LightGBM CAE RUS 0.745 0.910

CatBoost CAE RUS 0.814 0.917

Random Forest RUS None 0.860 0.984

XGBoost RUS None 0.856 0.988

LightGBM RUS None 0.909 0.988

CatBoost RUS None 0.882 0.988
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Table 8  Performance scores for SMOTE

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA SMOTE 0.815 0.915

XGBoost PCA SMOTE 0.664 0.925

LightGBM PCA SMOTE 0.358 0.927

CatBoost PCA SMOTE 0.620 0.929

Random Forest SMOTE PCA 0.787 0.907

XGBoost SMOTE PCA 0.731 0.929

LightGBM SMOTE PCA 0.509 0.936

CatBoost SMOTE PCA 0.725 0.937

Random Forest SMOTE CAE 0.900 0.930

XGBoost SMOTE CAE 0.872 0.928

LightGBM SMOTE CAE 0.522 0.926

CatBoost SMOTE CAE 0.650 0.922

Random Forest CAE SMOTE 0.850 0.926

XGBoost CAE SMOTE 0.757 0.930

LightGBM CAE SMOTE 0.502 0.925

CatBoost CAE SMOTE 0.639 0.940

Random Forest SMOTE None 0.856 0.937

XGBoost SMOTE None 0.815 0.937

LightGBM SMOTE None 0.714 0.940

CatBoost SMOTE None 0.733 0.940

Table 9  Performance scores for SMOTE Tomek

Learner Step 1 Step 2 F1 AUC​

Random Forest PCA SmoteTomek 0.818 0.913

XGBoost PCA SmoteTomek 0.729 0.933

LightGBM PCA SmoteTomek 0.445 0.937

CatBoost PCA SmoteTomek 0.700 0.928

Random Forest SmoteTomek PCA 0.807 0.918

XGBoost SmoteTomek PCA 0.609 0.938

LightGBM SmoteTomek PCA 0.368 0.931

CatBoost SmoteTomek PCA 0.593 0.927

Random Forest SmoteTomek CAE 0.899 0.970

XGBoost SmoteTomek CAE 0.852 0.970

LightGBM SmoteTomek CAE 0.478 0.967

CatBoost SmoteTomek CAE 0.741 0.940

Random Forest CAE SmoteTomek 0.855 0.922

XGBoost CAE SmoteTomek 0.702 0.929

LightGBM CAE SmoteTomek 0.509 0.925

CatBoost CAE SmoteTomek 0.606 0.947

Random Forest SmoteTomek None 0.872 0.918

XGBoost SmoteTomek None 0.813 0.923

LightGBM SmoteTomek None 0.693 0.938

CatBoost SmoteTomek None 0.746 0.928
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implemented with Keras and TensorFlow, with optimum parameters selected during 
preliminary experimentation [40].

The learners used in this study are Random Forest, XGBoost, LightGBM, and Cat-
Boost. Random Forest, which is an ensemble of Decision Trees, uses the bagging [41] 
technique. XGBoost, LightGBM, and CatBoost are Gradient-Boosted Decision Trees 
(GBDTs) [42], which are ensembles of Decision Trees that are trained sequentially with 
the boosting [43] technique. XGBoost is based on a weighted quantile sketch and a spar-
sity-aware function. A weighted quantile sketch uses approximate tree learning [44] for 
merging and pruning operations, while sparsity is concerned with zero or missing val-
ues. LightGBM is defined by Exclusive Feature Bundling and Gradient-based One-Side 
Sampling. Exclusive Feature Bundling reduces the count of variables through the cat-
egorization of mutually exclusive features, while One-Side Sampling excludes a chunk of 
instances associated with small gradients. CatBoost is designed around Ordered Boost-
ing, an algorithm that orders instances used by Decision Trees.

Training and testing are performed with k-fold cross-validation, where the model is 
trained on k-1 folds each time and tested on the remaining fold. This ensures that as 
much data as possible is used during the classification phase. Our crossvalidation pro-
cess is stratified, which seeks to ensure that each class is proportionally represented 
across the folds. In this experiment, a value of five was assigned to k: four folds used in 
training and one fold used in testing. The process was repeated five times.

The AUC metric is used to measure classifier performance. AUC refers to the area 
under the Receiver Operating Characteristic (ROC) curve, which plots True Positive Rate 
(TPR) against False Positive Rate (FPR). AUC summarizes overall model performance 
and is reflective of all classification thresholds along the curve [45]. The F1 score metric 
is the harmonic mean of precision and recall. Like AUC, the F1 score is well-suited for 
datasets with a high class imbalance [46]. For the F1 score, the default threshold of 0.5 
was used.

Results and discussion
Tables  8, 9 show performance scores obtained for the F1 Score and AUC metrics. In 
each table, each row provides results for a particular combination of data sampling and 
feature extraction technique.

Table 9 reflects the baseline scores, where no preprocessing activity (no data sampling 
and no feature extraction) was implemented. The highest values of 0.853 and 0.891 are 
for the F1 score and AUC, respectively. These two scores were obtained with CatBoost.

The highest values among the tabulated results obtained through the RUS sampling 
technique are in Table  6, which is associated with a minority-to-majority class ratio 
of 1:50. For the F1 score and AUC, the highest values in this table are 0.909 and 0.988, 
respectively. The score of 0.909 was obtained by LightGBM, while the score of 0.988 was 
obtained by XGBoost, LightGBM, and CatBoost, all GBDTs. Interestingly, the highest F1 
score for the baseline (Table 9) is greater than any of the F1 scores for the RUS ratios of 
1:1, 1:5, and 1:10 (Tables 2, 3, and 4, respectively).

Table 7 was obtained with the SMOTE sampling technique. The highest values in this 
table for the F1 score and AUC are 0.872 and 0.940, respectively. The score of 0.872 was 
obtained by XGBoost, while the score of 0.940 was obtained by LightGBM and CatBoost. 
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In Table 8, which was obtained with the SMOTE Tomek sampling technique, the high-
est values of 0.899 and 0.970 are associated with the F1 score and AUC, respectively. The 
score of 0.899 was obtained by Random Forest, while the score of 0.970 was obtained by 
Random Forest and XGBoost.

To determine the statistical significance of the performance scores, we perform three-
way ANalysis Of VAriance (ANOVA) tests. ANOVA reveals whether there is a signifi-
cant difference between the group means [47]. A 95% (α = 0.05) confidence level is used 
for our ANOVA tests. The results are shown in Tables 10 and 11 for the F1 score and 
AUC, respectively.

In these tables, Df is the degrees of freedom, Sum Sq is the sum of squares, Mean Sq 
is the mean sum of squares, F value is the F-statistic, and Pr(>F) is the p-value. Note 
that for the Sampling Technique factor, only the 1:50 minority-to-majority class ratio is 
considered for the RUS technique, since this ratio yields the highest performance scores 
among all the RUS ratios obtained. As shown in Tables 10 and 11, the p-value for each 
factor is practically 0, well below the level of α. Hence, we infer that all factors have a sig-
nificant impact on performance in terms of AUC. Since this is the case, Tukey’s Honestly 
Significant Difference (HSD) tests [48] are carried out to find out which groups are sig-
nificantly different from each other. For a particular experiment, letter groups assigned 
through the Tukey method indicate similarity or significant differences in performance 
results within a factor.

The Tukey method is first applied within the scope of the F1 score metric. With regard 
to the Scenario factor (Table 12), data sampling alone is ranked in group ‘a’, the best-per-
forming group. Data sampling followed by CAE is ranked in group ‘b’, the second-best 
performing group. The bottom group ‘f ’ consists of PCA followed by data sampling. In 

Table 10  Three-factor ANOVA for F1 score

Df Sum Sq Mean Sq F Value Pr(> F)

Scenario 7 4.72 0.675 740.4  < 2.00E-16

Classifier 3 44.8 14.934 16,383.78  < 2.00E-16

Sampling Technique 2 3.45 1.727 1894.47  < 2.00E-16

Scenario:Algorithm 21 17.97 0.856 938.76  < 2.00E-16

Scenario:Sampling 14 2.92 0.208 228.49  < 2.00E-16

Algorithm:Sampling 6 3.46 0.576 632  < 2.00E-16

Residuals 2304 2.1 0.001

Table 11  Three-factor ANOVA for AUC​

Df Sum Sq Mean Sq F Value Pr(> F)

Scenario 7 4.749 0.6785 1215.93  < 2.00E-16

Classifier 3 1.016 0.3387 606.99  < 2.00E-16

Sampling Technique 2 0.078 0.0388 69.59  < 2.00E-16

Scenario:Algorithm 21 2.396 0.1141 204.44  < 2.00E-16

Scenario:Sampling 14 0.473 0.0338 60.6  < 2.00E-16

Algorithm:Sampling 6 0.053 0.0088 15.79  < 2.00E-16

Residuals 2304 1.286 0.0006
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terms of the Classifier factor (Table 13), Random Forest, the top performer, is in group 
‘a’, XGBoost is in group ‘b’, and at the bottom is LightGBM in group ‘d’. For the Sampling 
factor (Table 14), RUS, the best performer, is in group ‘a’, SMOTE Tomek is in group ‘b’, 
and SMOTE is in group ‘c’.

The Tukey method is next applied within the scope of the AUC metric. With regard 
to the Scenario factor (Table 15), data sampling followed by CAE is ranked in group ‘a’, 
the best-performing group. Data sampling alone is ranked in group ‘b’, the second-best 

Table 12  Tukey’s HSD Results for F1 Score: Scenario Factor

First Step Second Step F1-Score Order

Sampling None 0.807 a

Sampling CAE 0.788 b

Sampling PCA 0.730 c

CAE None 0.717 d

CAE Sampling 0.713 d

PCA None 0.691 e

None None 0.688 e

PCA Sampling 0.676 f

Table 13  Tukey’s HSD Results for F1 Score: Classifier Factor

Classifier F1-Score Order

Random Forest 0.837 a

XGBoost 0.805 b

CatBoost 0.771 c

LightGBM 0.493 d

Table 14  Tukey’s HSD results for F1 score: sampling factor

Sampling Technique F1-Score Order

RUS 0.800 a

SMOTE Tomek 0.703 b

SMOTE 0.696 c

Table 15  Tukey’s HSD results for AUC: scenario factor

First step Second Step F1-Score Order

Sampling CAE 0.954 a

Sampling None 0.946 b

Sampling PCA 0.939 c

CAE Sampling 0.929 d

PCA Sampling 0.922 e

CAE None 0.862 f

PCA None 0.852 g

None None 0.833 h
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performing group. The bottom group ‘h’ is associated with no preprocessing activity. 
In terms of the Classifier factor (Table 16), CatBoost, the top performer, is in group ‘a’, 
XGBoost is in group ‘b’, and at the bottom is LightGBM in group ‘d’. For the Sampling 
factor (Table 17), RUS, the best performer, is in group ‘a’, SMOTE Tomek is in group ‘b’, 
and SMOTE is in group ‘c’.

Based on the Tukey’s HSD results for the F1 score and AUC metrics, the RUS tech-
nique is the clear-cut top choice for the Sampling factor. However, the choice of best 
classifier could not be established from the rankings. This is because the HSD results 
for the F1 score metric (Table 13) show Random Forest as the best classifier, while the 
HSD results for the AUC metric (Table 16) show CatBoost as the best classifier. The Sce-
nario factor shows data sampling followed by CAE as the second-best choice for the F1 
score metric (Table 12) and the best choice for the AUC metric (Table 15). Conversely, 
data sampling alone is the top choice for the F1 score metric and the second-best choice 
for the AUC metric. We recommend the use of data sampling followed by CAE for the 
Scenario factor. This is because the implementation of CAE, which is a feature extrac-
tion technique, tends to reduce computational burden and decrease the training time of 
machine learning algorithms. As stated earlier, feature extraction may also improve gen-
eralization and the interpretation of results. With regard to the Scenario factor for the F1 
score and AUC, the following was observed: Sampling + CAE is better than Sampling + 
PCA; CAE + Sampling is better than PCA + Sampling; and CAE + None is better than 
PCA + None. We believe that CAE has an advantage over PCA because the autoencoder 
can model non-linear functions.

Conclusion
In this research, we use a credit fraud dataset to investigate the effect of data sampling 
and feature extraction on four ensemble classifiers. Three data sampling techniques, 
RUS, SMOTE, and SMOTE Tomek are evaluated, and two feature extraction techniques, 
PCA and CAE, are evaluated. The results indicate that the use of the RUS data sampling 
technique followed by the use of the CAE feature extraction technique yields the best 
results.

Table 16  Tukey’s HSD results for AUC: classifier factor

Classifier AUC​ Order

CatBoost 0.921 a

XGBoost 0.917 b

Random Forest 0.911 c

LightGBM 0.870 d

Table 17  Tukey’s HSD results for AUC: sampling factor

Sampling technique F1-Score Order

RUS 0.911 a

SMOTE Tomek 0.905 b

SMOTE 0.897 c
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Future work will involve additional classifiers and datasets, with a focus on incorporat-
ing data that contains audio and images. In addition, further work will consider other 
data sampling and feature extraction algorithms.
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