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An experimental investigation of flow over an axisymmetric cavity shows that 
self-sustained, periodic oscillations of the cavity shear layer are associated with low 
cavity drag. In  this low-drag mode the flow regulates itself to fix the mean-shear-layer 
stagnation point at the downstream corner. Above a critical value of the cavity 
width-to-depth ratio there is an abrupt and large increase of drag due to the onset 
of the ‘wake mode’ of instability. It is also shown by measurement of the momentum 
balance how the drag of the cavity is related to the state of the shear layer, as defined 
by the mean momentum transport pa17 and the Reynolds stress p7, and how these 

are related to the amplifying oscillations in the shear layer. The cavity shear layer 
is found to be different, in several respects, from a free shear layer. 

1. Introduction 

The flow over a ‘cavity’ or cutout in a flat surface has attracted the attention of 

many investigators, largely no doubt because of its geometrical simplicity but also 
because of its relevance to many practical flow problems. As in many other flows (e.g. 
the flow past a circular cylinder), geometrical simplicity does not necessarily ensure 
flow simplicity and, indeed, the cavity flows have provided an assortment of 

interesting theoretical questions and experimental observations. The latter include 
the phenomenon of ‘ cavity-oscillation ’. Other, possibly related, aspects of the flow 
include the mechanics of the separated shear layer ; the internal recirculating flow, 
sometimes called the ‘cavity-vortex’; the changes of flow regime with changing 
geometry; and, not least, the ‘drag’ of the cavity. These various aspects have been 
addressed by many investigators. 

It was our objective in the experiments described here to see how the drag is related 

to the properties of the separated shear layer and how these are influenced by the 
well defined, laminar, periodic oscillations that are known to exist at particular 

combinations of geometry and Reynolds number. 
A simple example of cavity flow is given along with its physically significant 

parameters in figure 1. It is known (Karamcheti 1956; Sarohia 1975) that for 
initiation of self-sustained oscillation of the cavity shear layer a minimum cavity 
width (bmin) is required. Determination of bmin will depend on the flow parameters 
U,, 8, and v where U, is the mean velocity outside the cavity and 8, is the momentum 
thickness of the boundary layer at the upstream corner and v is the kinematic 
viscosity of the fluid. 

Sarohia (1975), in his study of the frequency selection process, following earlier 
work of Woolley & Karamcheti (1973), concluded that the frequency of cavity-flow 
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Boundary layer - 

FIGURE 1 .  Schematics of the cavity model and the flow. 

oscillation which is selected is such that (i) certain phase criteria are satisfied; and 
(ii) maximum integrated amplification along the cavity shear layer occurs. 

The final amplitude growth at the selected frequency results in the roll-up of the 
shear layer and appearance of large vortical structures similar to those in the free 
shear layers observed by Freymuth (1966). Rockwell & Naudascher (1978) suggest 
that impingement of the large vortical structures on the downstream corner 
influences the sensitive region of the shear layer close to the upstream corner through 
the BiokSavart induction law. The reception and conversion of this upstream 
influence into velocity fluctuations which is followed, with further amplification and 
growth, by development of vortex structures, completes the cycle of events necessary 

for the self-sustainment of the oscillations. The frequency of oscillation decreases as 
the cavity width b increases (Sarohia 1975), then jumps to a higher frequency andstarts 
another similar reduction of frequency in the new, higher mode. Eventually, after 
the cavity width exceeds a certain value of b,  for given depth, the flow loses the ability 
to oscillate spontaneously in a cavity mode and develops fluctuations on a larger 
scale, related to the depth of the cavity rather than the thickness of the shear layer. 
It was this that motivated the present investigation into the role of instabilities in 
establishing the pressure field and drag of the cavities. It was felt that an under- 
standing of the mechanism for the transfer of momentum into and out of the cavity 
is necessary to explain some of the phenomena that occur in this type of flow. The 
magnitude and distribution of the mean momentum transfer (UV) and the Reynolds 
stress (u'vl) along the cavity shear layer play a central role in the determination of 
the drag of the system. The main objectives were to understand the effect of 
instability growth in the layer on these two terms and then to relate them to the drag 
of the cavity. 

2. Experimental details 

The experiments were performed in a newly constructed free-surface recirculating 
water tunnel (Gharib 1983), which is located at the Jet  Propulsion Laboratory, 
California Institute of Technology. This tunnel is specially designed to attain a low 
turbulence level for the purpose of carrying out sensitive, flow-instability-type 
experiments. The test section is 45.7 cm (18 in.) wide by 45.7 cm (18 in.) deep. The 
wetted depth can be increased up to 56 cm (22 in.). The test section is enclosed by 
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glass windows on sides, bottom and top to permit visual and optical study of the flow 
throughout its 1.83 m (6 ft) length. It is possible to achieve a maximum velocity of 

1 m/s in the test section. The free-stream wide-band turbulence level at 25 cm/s on 
the centreline is near 0.05 %. 

In  this study, the cavity was an annular gap downstream of the 4 in. half-ellipsoidal 
nose of a 4 in. diameter axisymmetric body which was aligned parallel to the flow 
in the water channel. The cylindrical geometry avoids the often troublesome problem 
of end effects in the two-dimensional separated flows. The nose of the model was 

connected to the rear portion by a sting as shown schematically in figure 1. The rear 
portion is a hollow cylinder 4 in. in diameter and 36 in. in length; it was connected 
by a strut to a traversing mechanism installed above the test section. 

The model was equipped with two dye-injection ports 2.54 cm (1 in.) from the 

stagnation point of the model nose. To visualize the flow either food-colouring dye 
or fluorescein dye was gravity fed to the injection tubes and thus discharged into the 

boundary layer over the cavity. 
When using blue dye, a uniform background illumination was used for photo- 

graphic purposes. The fluorescein, however, was illuminated and excited by a sheet 
of laser light less than 1 mm thick obtained from a 2 Watt argon-ion laser. This 
technique was used first by Dewey (1976) and more recently by Dimotakis, Miake-Lye 
& Papantoniou ( 1983). 

The solid inner faces of the cavity were equipped with pressure taps, 1 mm in 
diameter, 14 on the downstream face and 8 on the upstream face. 

2.1. Instrumentation 

The low velocities in the range of interest introduced the well-known difficulty of 
measuring low differential pressures under high head. A free-stream velocity of 
25 cm/s generates a dynamic head of only 0.38 cm (0.15 in.) of water, while a typical 
hydro-static head at the pressure transducer location is 63.5 cm (25 in.) of water. 
Further, since differential static pressures inside the cavity are even smaller than the 
free-stream dynamic head, the demand on the pressure measuring system for high 
resolution and repeatability is very severe. A pressure transducer (Validyne type 
Wet-Wet DP-103-12) which was able to measure differential pressures in the range 
of 0 to 0.762 cm (0.3 in.) of water with a resolution of 1 yo of the total range was used 

in conjunction with a 24 port fast-switch (Scanivalve type W24-60). 
For the purpose of spectral analysis and phase measurement, velocity fluctuation 

measurements were made with a TSI hot-film probe (1277-108) and a TSI 1050C 
anemometer in conjunction with a TSI true r.m.s. meter (1076). The output of the 
hot-film anemometer was fed to a digital power spectrum analyser (Schulemberg 
SL20). A bandwidth of 0.1 Hz was used for locating and distinguishing frequency 
content of the velocity signals. 

For phase-angle and cross-correlation measurements a second hot-film probe was 
mounted on a traversing mechanism which was able to traverse the entire width of 
the cavity. Throughout this experiment the first probe was used as a reference probe. 

It was placed above the upstream corner at x = b and yo.95, the latter being the 
y-location of a / U e  = 0.95. Phase measurements were made by moving the second 
probe relative to the reference probe along the edge of the shear layer where 
Z/Ue = 0.95 (y = yo.g5). The signals from the reference and the second probe were fed 
to a digital probability and correlation analyser (SAICOR 43A). Throughout the 
phase-angle or cross-correlation measurements a sampling rate of 200 per second, 
limited by 400 samples and a corresponding Nyquist frequency of about 30, was used. 
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FIQURE 2. Schematics of the laser-Doppler velocimeter set-up. 

The velocity field of the cavity flow was measured by a two-component, two-colour, 
frequency-shifted laser-Doppler velocimeter (TSI 91 00-7 system). A dual-beam 
forward-scatter configuration was used, with the transmitting and receiving optics 

located at the bottom and top side of the facility as shown in figure 2. The physical 
arrangement of the LDV optics relative to the facility and information regarding focal 
volume are given in figure 2. A velocity-bias technique (Bragg shifting) was used to 
resolve the ambiguity problem in regions of velocity reversal. Two counter processors, 
one for each velocity component, were operated in the single-burst mode, for which 
only one particle is present in the focal volume when the measurement is made. In 
addition, the system was operated in coincident mode, in which the output of the 
processors is tested for coincidence in time so that the two components of the velocity 
vector, as determined by the optical set-up, are measured on the same particle. A 
coincidence window of 50ps was used in all velocity measurements. An LDV 

processor was operated in conjunction with a minicomputer system (PDP-11 ), which 
was also used for processing the results. The amplitude threshold level of the 
processors and the gain of the receiving amplifiers were adjusted to maintain the data 
rate between 60 and 200 particles/s, which corresponds to a minimum Nyquist 
frequency of 10. The size of the data buffer combined with the data rate gave a total 
sampling time between 15 and 60 s. This sampling time was considered adequate to 
properly characterize the mean turbulent quantities. At every measurement point, 
a frequency histogram was constructed for each channel. This histogram provided 
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information about the proper operation of the system, i.e. filter setting, and the 

electronic noise. 
From the data mean values, second moments and cross-correlation coefficients of 

the two velocity components were evaluated and from them the mean momentum 
transfer (E) and Reynolds stress (m) were obtained. 

2.2. Operational conditions and reference dejnitions 

Measurements were made at  speeds covering the range 16-27cm/s. The corre- 

sponding Reynolds number, Re, based on the model diameter, d = 10.16 cm (4 in.) 
and at U, = 23 cm/s, at which most of the tests were performed, is 2.4 x lo4. 

The origin of the reference coordinate system is located at the upstream corner of 
the cavity. The z-axis is in the direction of flow and the y-axis is in the radial direction 
(figure 2). The components of velocity vector in the direction of the x- and y-axes 

are denoted by u and v. 
The cavity width, b, is normalized with respect to 8,, the momentum thickness of 

the upstream boundary layer at the point of separation. The momentum thickness 

for the shear layer is defined as 

--co - 

e = J,, (1 -;j dy, 

where the limits correspond to dE/dy = 0 and U, is the velocity on the outside edge 
of the boundary layer at the point of separation. Using U, instead of a reference 
velocity upstream of the model eliminates the need for blockage correction. 

A t  U, = 23 cm/s the boundary layer upstream of the cavity was laminar and had 
a shape factor H = &,/8, = 2.5 where 6, = 1.00 mm (displacement thickness), 

8, = 0.41 mm and Re, = 95. For the shear layer, the transverse distance y is 
non-dimensionalized as (y- yo.5)/B, where yOe5 is the location at which the mean 
velocity, 8, has a value of 0.5 U,. The radius of the axisymmetric cavity, which is 
5.08 cm (2 in.), is used to normalize the radial distance of pressure taps ( r )  on the 
inner surfaces of the cavity. 

3. Characteristics of the cavity shear layer 

The purpose of the measurements presented in this section was to characterize the 
cavity free shear layer as completely as possible and to provide solid reference 
conditions for the cavity-drag measurements to be presented in $4. 

3.1. Self-sustained oscillations 

For small cavity gaps, i.e. b/8,  < b/Bomin, the shear layer smoothly bridges over the 
cavity with no distinct oscillation in it. Intermittent bursts of periodic oscillation 
may occur as the cavity width approaches the required minimum value for the onset 
of the oscillation. A self-sustained oscillation appears in the cavity shear layer when 
b/8 ,  reaches b/Oomin. The oscillation is always associated with the presence of a 
distinct fundamental frequency in the power spectrum of the velocity fluctuations 
(figure 3). The fundamental frequency was identified as the one that has the highest 
peak in the power spectrum. The variation of fundamental frequency with b /8 ,  at 
a fixed edge velocity (U,  = 23 cm/s) is shown in figure 4. Oscillation starts at 
b/B, x 81, which was the minimum cavity width, b/Oomin for these experimental 
conditions. For reasons explained below, we identify this as a mode I1 oscillation. 
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FIGURE 3. Velocity fluctuation spectra for increasing cavity width from mode I1 to mode 111, 
obtained at Yo,85. ( a )  b/Oo = 84 mode 11; ( b )  b/O, = 122 transition; (c) b/Oo = 134 mode 111. 

The fundamental frequency of oscillation decreases as b/B,  increases. This course 
of frequency variation is interrupted by a sudden jump of frequency from 4.6 to  
6.2 Hz.-The latter is in mode 111. As b/O, further increases, the frequency decreases 
from its new value. A region of hysteresis, approximately as shown in figure 4, is 
associated with the transition region. The oscillations in the hysteresis region often 
show intermittent switching between the two modes. 

Figure 5 depicts the variation of overall phase difference 4 between the two corners 
of the cavity. This was measured between two probes located near the outside edge 
of the shear layer (locus of U / u e  = 0.95) following Ziada & Rockwell (1981). By 
tracking one of the probes along the shear layer, keeping the other one fixed at x = b ,  
i t  was possible to determine the wavelength A and thus the phase velocity U,. These 

quantities satisfy the relation 

where N is the number of wavelengths of fundamental frequency contained by the 
cavity width in the Nth mode of oscillation, A is the wavelength of the fundamental 
frequency and U, is the phase velocity of the fundamental frequency. A significant 
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FIGURE 4. Frequency variation of cavity shear layer with varying cavity width, 
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FIQURE 5. Overall phase difference between two corners of the cavity for mode I1 and I11 
of the cavity-flow oscillations. 

deviation from q5 = 2xN occurs near the jump between modes. The relation (3.1) is 
only valid for the limit of the incompressible flow. 

The flow visualization of the cavity shear layer (figure 6) confirms that in mode I1 
of the oscillation there are two wavelengths (or vortical structures) contained in the 
cavity, while in mode I11 there are three waves (or vortical structures). 

In the present study, the cavity always started the oscillation in mode11 and 
finished in mode 111, omitting the first mode $ 1 2 ~  = b/h = f b / U c  = 1. Sarohia 
(1975) observed similar omissions of the first mode for some free-stream velocities. 
The last mode of oscillation (mode 111) shows strong intermittency as the cavity 
width is increased; its end at b/B,  w 155 is marked by the disappearance of the 
fundamental frequency. Flow visualization studies (figure 7) indicate that the 
axisymmetric cavity shear layer of the self-sustained oscillation regime becomes 
highly asymmetric and no longer reattaches onto the downstream corner. The cavity 

17 FLM 177 
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FIGURE 6. Flow visualization of the cavity shear layer; flow is frozen at & s. (a) Mode I1 
blh = Fb/Uc = 2. (b )  Mode I11 b l A  = Fbb/Uc = 3. 

flow becomes unstable on a large scale, comparable to the diameter of the model. 
A flow visualization of this case (figure 7) shows that the flow reattaches below the 
downstream corner. The flow field in this regime begins to show some resemblance 
to a three-dimensional bluff-body wake (Werle 1974), but of course with the rear body 
strongly interacting with and influencing the wake of the front body. A similar 
behaviour for the wakes of disks positioned in front of a circular cylinder in tandem, 
with sufficiently high values of b / d ,  was described by Koenig & Roshko (1985). In 
the present study, this stage of the cavity flow field will be called the ‘wake mode’. 

3.2. Mean velocity distributions in  the cavity shear layer 

For three values of cavity width b/B, = 85, b/B, = 103 and b/B, = 130, mean 
velocity profiles were obtained a t  a number of streamwise stations. With edge 
velocity U ,  fixed at 23 cm/s, the cavity width b/B, = 85 marks the beginning of 
mode I1 (Fb/Uc = 2); for b/B, = 130 (Fb/Uc = 3) the cavity shear layer was 
oscillating in mode 111. Figure 8 presents mean-velocity profiles, U / U e ,  at selected 
downstream stations for these three cases. As shown in figure 8, in the early stages 
of the shear-layer growth, the velocity profile changes from a boundary-layer profile 
to a shear-layer profile. For four values of cavity width, b /8 ,  = 85 (mode 11), 
b/B, = 103 (mode 11), b/B, = 119 (mode 11) and b/B, = 135 (mode 111), the growth 
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FIGURE 7. (a) Flow visualization of the cavity flow; b/O, = 170 wake mode; 
(a) Close-up of the same condition. 

of the momentum thickness 8 of the shear layer, is given in figure 9. As in the studies 
of Sarohia (1975) and Rockwell & Knisely (1979), 8 is found to grow linearly with 
x/8, .  For all cases with b/B,  2 103, the growth rate is fairly constant at  
d8ldx = 0.031 and does not experience a sudden change in the mode-switching 
region. It should be noted that the cavity-shear-layer growth rate is comparable to 

17-2 
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FIGURE 8. Non-dimensional mean streamwise velocity profiles. (a) b/B, = 85, F = 5.9 Hz, mode 11; 
( b )  b/Oo = 103, F = 5.1 Hz, mode 11; (c) a/@,, = 130, F = 6 Hz, mode 111. 

that of turbulent mixing layers. For U J U ,  = 0, the high-Reynolds-number shear 
layer measured by Liepmann & Laufer (1947) had a momentum-thickness growth 

rate of 0.035. 
Figure 10 presents typical profiles of the mean transverse component of the 

velocity, Flu,, in the shear layer for b/B, = 109. Figure 11 presents the locus of yo.s 
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F = 5.1 Hz. mode 11. 

values as a function of x l b .  As in previous studies of Browand (1966), Sarohia (1975), 
and Knisely (1980), the yo.5 values were found to lie above the level of the separation 
edge. Depending on the stage of the cavity flow, the locus of yOes approaches the 
(y = 0)-line as the profile develops. The shear layer shows a stronger deflection into 

the cavity for b/O0 = 103 than for b/8 ,  = 85. 
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FIGURE 11. Locus of points (yo.5) where U / U ,  = 0.5; m, 6 / B o  = 85; 0, 610, = 103. 

3.3. Shear-stress development in  the cavity shear layer 

Figure 12 depicts the streamwise evolution of the transverse profile of the shear stress 

for b/B, = 85 (mode I),  b/B, = 103 (mode 11), and b/B, = 130 (mode 111). For large 
" / d o ,  the shear-stress profiles tend to develop a second peak in the lower portion of 
the shear layer. A similar second peak for -u'v' distribution has been observed by 
Oster & Wygnanski (1980) for forced turbulent shear layers. The existence of a second 
peak in the distribution of Z/U,  across the shear layers has been observed by 
Freymuth (1966) for free shear layers, and by Knisely (1980) for cavity shear layers. 
Ziada & Rockwell (1981) showed that it can be predicted by Stuart's (1967) 

theoretical vortex model of a mixing layer. 
Streamwise growth of the maximum shear stress for several cavity widths is shown 

in figure 13. Short-cavity cases, b/B, = 85 (mode 11) and b/B, = 103 (mode 11), show 
a region of exponential growth of the maximum shear stress. It should be noted that 
this is a broadband measurement and cannot be compared wth narrowband 
measurements such as those made by Freymuth (1966) in a forced mixing layer or 
the theoretical results of Michalke (1965). For long cavities b/B, > 103, the region 
of exponential growth is followed by a saturation region. I n  mode I1 the maximum 
shear stress attained is 0.0086, lower than the maximum value in mode 111, which 
is 0.013. The value of maximum shear stress for a self-similar, two-dimensional 

turbulent mixing layer as determined by integrating the velocity profiles presented 
in Liepmann & Laufer (1947) is 0.0125 while the velocity profiles measured by 
Wygnanski & Fiedler (1970) give 7m,,/pUE = 0.015. Kistler & Tan (1967) reported 
a maximum value of 0.012 for two-dimensional cavity shear layers. It is noteworthy 
that even though the thickness 0 increases linearly with x (figure 9) the maxima of 
the shear stress profiles do not have a constant value as they would in a self-similar 
free turbulent shear layer. 
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F = 5.1 Hz, mode 11; (c) b/Bo = 130, F = 6 Hz, mode 111. 
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FIGURE 14. Schematics of the cavity and the control surface. 

4. The drag coefficient of the cavity 

4.1. Momentum balance of the cavity 

Throughout this paper the term 'drag of the cavity' is used for the net force in the 
flow direction experienced by the walls of the cavity. Possible overall changes in the 
net drag of the body which might result from the cavity presence, e.g. by modification 
of the skin friction upstream and downstream of the cavity, are not considered. The 
momentum balance on the control volume shown by broken lines in figure 14 gives 
the relation between the drag force on the cavity walls and the momentum flux across 
the cavity mouth, namely 

i.e. the drag D may be expressed in terms of the direct forces on the cavity walls or 

in terms of momentum flux out of the cavity. The first two integrals give the pressure 
force D, resulting from the difference of the pressures on the downstream [2] and 
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FIGURE 15. Variation of the axisymmetric cavity drag coefficient with non-dimensional 
cavity width, bl0,. 

upstream [4] walls, while the third one gives the force D, on the sting due to the shear 
7s on the sting area A, (or floor area in two-dimensional flow). 

The integral on the right-hand side, D,, expresses the drag force in terms of the 
momentum flux across the area A,. This includes the flux connected with the mean 
flow (E + 0 on y = 0), the correlated fluctuating part, - p m ,  i.e. the Reynolds stress, 
and also the viscous stress p(&/ay). The latter is negligible except in steady, laminar 
flow. Equation (4.1) may be represented simply by 

(4.2) 

The force D, on the sting is negligible because the dynamic pressure in the 
recirculating cavity flow is low (Roshko 1955) and because the sting area is small. 
In  what follows, then, we shall use the relations 

D = D,+D, = D,. 

D = D , = D , .  (4.3) 

In  non-dimensionless form, with t p P e  for the reference dynamic pressure and i z d 2 ,  
the cross-sectional area of the body, for the reference area, the drag coefficients may 
be expressed as 

Alternatively, using for reference the area of the mouth of the cavity, zdb,  i.e. the 
missing surface area introduced by the cavity cutout, the force may be interpreted 
in terms of an equivalent average friction coefficient 

Both coefficients give the same value of drag, but it seems natural to associate the 
coefficient CD with the forces on the walls of the cavity and CF with the momentum 
flux into the cavity. In  what follows the drag is evaluated in both ways, i.e. from 
measurements of forces on the walls and from measurements of momentum flux into 
the cavity. 
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4.2. Cavity drag coeflcient from pressure measurement 

The drag coefficient of the cavity CDp was determined by measuring the integral of 
the pressure distribution over the solid walls of the cavity. Figure 15 shows the 
variation of CDp with b/O, in the three distinct regimes of the cavity flow as defined 
previously. A prominent feature is that the average level of the drag coefficient is very 
low when the flow is in either the non-oscillating mode or the self-sustained oscillating 
mode but, upon the loss of self-sustained oscillation and appearance of the wake 
mode, it jumps to a value which is an order of magnitude higher. With further increase 
of the gap the drag coefficient increases monotonically and reaches a value of 0.39 

at b/O, = 250. 
In figure 16 we replot the data of figure 15, omitting the wake mode in order to 

show the low drag modes on a more suitable log-linear scale, and now using C ,  instead 
of C ,  (see equations (4.4) and (4.5)). The two coefficients are related by 

The equivalent average friction coefficient C ,  in the non-oscillating mode has a 
typical value of 1.0 x at b/O, = 77. At the beginning of the oscillating modes 
(mode I1 in this study), its value is 6.6 x lo-* at b/O,  = 85. With further increases 
of gap width, C ,  increases exponentially and reaches a peak value of 0.012 at 

b/O, = 108, but toward the end of mode I1 it  decreases and reaches a low value of 
0.002 a t  b/O,  = 120. In  mode I11 there is another course of exponential growth of 
C ,  for increasing b with a final value of 0.097 reached at b/O, = 155, where transition 
to the wake mode occurs. If the cavity were replaced by a solid surface, the average 
friction coefficient of this solid surface, based on the upstream boundary-layer-shape 
factor, is estimated to be 0.007. The dotted line on figure 16 shows this estimate. It 



Effect of flow oscillations on cavity drag 517 

(4 
O.l [ ,  b ; ; = k  ~ , ~ -, 

cp 0 

-0.1 

1 b/B, = 108 
(4 

0.2 - 

0.1 

CP 

0:'""""""""' 

-0.1 - 

! 1 - L L L - J  

r / R  
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seems remarkable that the measured equivalent friction drag of the open cavity can 
be considerably smaller than this estimate. However, one should not conclude that 
the addition of the cavity results in an overall reduction of drag, compared to that 
with a, continuous surface. For example, as noted in $2, the shape factor of the 
boundary layer changes from 2.5 upstream to 1.5 downstream of the cavity, 
suggesting that the skin friction coefficient downstream of the cavity will be at a level 
corresponding to a turbulent boundary layer. 

4.3. Cavity pressure distribution 

Some insight into the drag-generation mechanism can be obtained from pressure 
distributions along the solid surfaces of the cavity. 

Figure 17 presents the plot of the pressure coefficient Cp = (P-Pe)/+pu2,, along a 
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body radius at  the upstream and downstream faces of the cavity, for several selected 
values of b/B,. In the non-oscillating regime, the cavity pressure coefficient is slightly 

negative, C, < 0, and nearly uniform; i.e. no significant differences are observed 
between the upstream- and downstream-face pressure distributions, which corre- 
spond to closed and open symbols, respectively. 

Figure 17 (b, c)  shows typical cavity-pressure-coefficient distributions for modes I1 
and I11 of oscillation. Again the pressure coefficients are negative and nearly equal 
on upstream and downstream walls but now there is a positive pressure peak near 
the downstream corner, with the maximum value (CPmax) just at the corner. Thus 

the contribution to the total drag from the deeper portions of the cavity walls cancel 
each other, leaving only the portion near the edge of the downstream face, with 
C, > 0, as the main contributor to the cavity drag. 

For the wake mode a typical pressure coefficient distribution is shown in figure 
17 (d). Two main features distinguish the wake mode from the oscillating mode. First, 
the entire downstream face of the cavity experiences positive pressure, i.e. C, > 0. 
Also, the level of maximum pressure is higher compared to that of the oscillating 

mode. Secondly, the average upstream face pressure is 40% lower than in the 
oscillating case. Thus the large drag in this mode is due to the large difference in 
pressures on the downstream and upstream faces and to the broader distribution of 
the pressure difference. 

Figure 18 shows how the maximum pressure (CPmax) varies with b/8, .  In the regime 
of self-sustained oscillation it occurs a t  the downstream corner, as indicated by the 
overlap of the symbols. The appearance of the wake mode is marked by a sudden 
increase in the value of CPmax from +0.17 to + 0.43 at b/B, x 162 at the downstream 
corner. These changes correspond to those in the drag coefficient in figure 15. In the 
wake mode the pressure at the corner decreases strongly with increasing b, as the 
position of Cpmax moves inward on the rear face. Cpmax itself decreases only slightly. 
This is consistent with a picture in which the front body is trying to form a closing 
wake which the rear body intercepts further and further downstream. 
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FIQURE 19. Distribution of the Reynolds stress (u"/v",) along (y = 0)-line. (a) Mode 11, b/&, = 83; 
(a) mode 11, b/Oo = 112.5; (c) mode 11; b/O0 = 126. (d) mode 111, b/Bo = 146. 

It is noteworthy that in the self-sustained modes the location of C,,,,,, is fixed in 
the vicinity of the upstream corner. Displacement of this point toward the interior 
of the cavity begins only when the cavity loses the self-sustained oscillation to the 
wake mode. In the self-sustained oscillating mode the shear layer locks on to  the 
downstream corner. This point is discussed more fully in $5.  
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4.4. Cavity drag coeficient from momentum balance 

CFu can be obtained by integrating the turbulent shear stress and mean momentum 

flux over the mouth of the cavity (equation (4.1)). Both turbulent and mean 
momentum-transfer terms contribute to the net cavity drag but the viscous term is 
neglected. We were interested to determine the relative importance of these terms 

in different stages of the oscillations. LDV technique was used to measure the 2- and 
y-components of the velocity vector, and to determine the momentum flux terms UV 

and m. For each case, from 20 to  30 measurement points were selected along the 
(y = 0)-line. Smaller spacing was used close to the downstream corner. It was difficult 
and time consuming to  obtain reliable measurements in the wake mode due to the 

flow-field asymmetry of that  mode. Thus, our evaluation of theiifi/U2, and U'D'/U2, 
terms in the momentum integral is given only for the self-sustained oscillating modes 

of the cavity flow. 
The variation of CFw with b/B,, determined by integration of UfilUZ,  and u"/UE 

along the (y = 0)-line, is plotted in figure 19 where i t  may be compared with the values 
CFp determined from pressure measurements. This independent determination 

confirms the exponential growth of C, in the oscillating modes; in fact, the absolute 
values from both methods agree fairly well, except for b/Bo = 121, which is in the 
transition region between modes I1 and 111, and b/8, = 107, which is near the point 
of maximum amplitude in mode 11. It seems clear from the trend of the data that 

C,, are the more accurate values. In  fact, C,, is the more difficult measurement 
because it involves the contribution of iiv, whose integral value over the line (y = 0) 
is a relatively small difference of two large contributions, as may be seen in figure 20. 

4.5. Distribution of w and iifi along the (y = 0)-line 

Figure 19(a-c) shows the distribution of Reynolds stress, u"/UE for mode 11. It 
increases along the line (y = 0 ) ,  reaches a peak and goes to  zero steeply as the flow 
approaches the downstream corner. The largest value of this peak in mode 11, occurs 
for the cavity with b/8, = 112.5, which corresponds to  the maximum drag case. In  
the transition region (b/Bo = 126) the peak value of the shear stress decreases to 

0.003. 
Figure 19 ( d )  shows an example of the distribution of Reynolds stress in mode 111, 

for b/O0 = 146. The broad peak is typical for this mode. 
The UV/UZ, term was evaluated along the (y = 0)-line, using the independent 

measurements of u / U e  and V/Ue;  the results are shown in figure 20(a-d). A typical 
distribution of iiv/ UZ, shows a wide region of positive values for afi/ UZ,, followed by 
a negative peak close to  the downstream corner. The integrated value 

is always negative, i.e. it makes a positive contribution to the drag of the cavity. 

~ f i  term to the equivalent average friction coefficient is 
For convenience, the following conventions are introduced. The contribution of the 

The contribution of the m term to the equivalent average friction coefficient is 
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FIGURE 20. Distribution of the mean momentum transfer (%@/Q) along (y = 0)-line. (a) Mode 11, 
b = 0, = 83; ( b )  mode 11, b = 8, = 112.5; (c) mode 11, b = 8, = 126; (d )  mode 111, b = 8, = 146. 

The net equivalent friction coefficient is 

cF = CFao + CFpjj,. 

A comparison of these contributions to the equivalent friction coefficient is given in 
figure 21. 

This figure shows that in mode 11, especially in the beginning stages, C,,, 
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contributes up to 80 yo of the total drag coefficient. As b/Bo increases, the contribution 
of CFE becomes more important but it never exceeds that of C-;. Mode I11 shows 
a dominant role for CFu7; immediately after transition, C,,, constitutes 60 % of C, 
and increases to 70 % at the critical gap (b/B0 = 146). The message of figure 21 is clear; 
assuming the Reynolds stress u"/q to be the only means of momentum transfer 
across the surface y = 0 may result in a 30-80 % underestimation of the cavity drag, 
depending on cavity mode and length. For example, Kistler & Tan (1967) used a 

combined approach similar to ours to determine the drag of a cavity (with turbulent 
upstream boundary layer). His estimate of the drag based on the distribution of &7 
along the cavity mouth, from hot-wire measurements, was 60 % lower than the value 
obtained from his measurement of the pressure distribution. The measurements did 

not include a@. (Of course, the measurement of V in these flows is difficult if not 
impossible by conventional hot-wire techniques.) 

It should be noted in passing that an alternative method for evaluating the drag 
would be to locate the zero or 'dividing' streamline between the upstream and 
downstream corners. This line will be curved, in general. There will still be an 

x-component of a (different) Reynolds stress along this surface but the mean 
momentum flux across it will, of course, be zero. But now there will be a streamwise 
component of the pressure force acting on the control surface. Clearly this would be 
a more difficult determination than the one used here. (Within linearized theory the 
shape of the zero streamline can be determined from 

4.6. Distributions of U and V along y = 0 

A typical distribution of U / U e  (figure 22) shows an increase from zero at x = 0 to a 

peak value, followed by a rapid decrease to zero at x = b. 
In  figure 23(a-d), a sequence of V / U ,  distributions for several selected values of 

b/B0 in mode I1 is given. Each figure is accompanied by its corresponding drag 
coefficient. A common feature of all V / U e  distributions is the existence of a narrow 
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region of inflow to the cavity (5 < 0 )  close to the downstream corner. The negative 
Z region is balanced, upstream, by a broader region of outflow (V > 0). The peak value 
of --2, increases as b/8,  incrertses and has a maximum for the cavity for which 
b/8 ,  = 112.5; this is the case for which C ,  has its maximum value in mode 11. This 
peak eventually decrectses toward the end of mode 11. In mode I11 the negative L.1 

region becomes slightly broader (figure 23d).  
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FIGURE 23. Distribution of the mean transverse velocity (T/U,) along (y = 0)-line. (a) b / e ,  = 83, 
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The recirculating (vortex) flow inside the cavity is related to the distribution of 
v along y = 0, which can (approximately) be interpreted as a distribution of sinks 
and sources for the interior flow. Thus, increasing amplitude of the v(x, 0) distribution 
results in increasing strength of the cavity vortex. For example, the strength of the 
vortex increases during mode I1 as b/B, increases, thus the strongest vortex appears 

- 
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at the drag-maximum case, i.e. at b/B,  = 112.5, F = 5 Hz. The cavity vortex becomes 
weaker during transition and recovers its strength during mode 111. These trends 
were observed with dye flow visualization and with direct measurements, not shown 
here, of mean flow velocities in the cavity (Gharib 1983). 

5. Discussion of flow characteristics 

The cavity shear layer in self-sustained oscillation is different from a free shear 
layer, either one that is fully turbulent or even one that is in its initial stages of 
instability. A principal difference, of course, is the strong phase coherence of the 
oscillations in the cavity shear layer as compared to a lack of coherence in free, 
unforced shear layers. For cavity oscillations the spectrum has a sharp peak a t  the 

particular mode frequency while in a free, unforced shear layer even the Kelvin- 
Helmholtz instability has a broadband spectrum (Browand 1966) around the 
‘natural ’ frequency. The linear growth of the momentum thickness in the cavity shear 

layer (figure 9) would seem to suggest that the development is self similar, like that 
in a turbulent free shear layer, but self-similarity is not consistent with the 
non-constant value of the maximum shear stress. In fact, the latter increases 
exponentially, in concert with the amplifying oscillation. 

It is also of interest to compare the stability ‘windows’ for the cavity oscillation 
with those of a free shear layer. From the work of Michalke (1965) and Freymuth 
(1966) the theoretical window for free shear layers is 12.6 < A/B, < 00, with 

maximum amplification a t  A/B,  = 30.4. In  practice, Freymuth could excite distur- 
bances only in the interval 18 < A/B, < 00. In the cavity flow (figure 4) the mode I1 
oscillations ( A  = 3) occur for 42 < A/B,  < 65; mode I11 ( A  = 9) also begins at  
A/B,  = 42 but, in our experiment, its range was not completed before it was 

supplanted by the wake mode. Thus, for wavelengths to which the free shear layer 
is most receptive, the cavity shear layer does not respond at  all. The cavity shear 
layer response begins at  relatively long wavelengths and increases with increasing 
wavelength (due to the increasingly amplified feedback) until supplanted by the next 
higher mode. 

From the comparisons in the preceding paragraphs, it is clear that the oscillating 
shear layer in the cavity is fundamentally different from a free shear layer. This 

difference, of course, is attributable to coupling between the upstream and down- 
stream edges of the cavity. It also raises the question as to whether a truly ‘free’ shear 
layer (oscillating or turbulent) exists, since there will always be an influence at the 

separation point from the downstream large structure (waves or vortices) and 
eventually the latter will be interacting with some geometrical constraint (Dimotakis 
& Brown 1976). For example, for a reattaching shear layer the wall is a constraint. 
The constraint is usually not so strong as that at the downstream corner in the cavity 
but will nevertheless have some influence on developments upstream and thus may 
have a roll in the overall flow dynamics. Whether in such circumstances the shear 
layer is ‘free’ or is part of a system in which upstream coupling plays a role may 
depend on a threshold value for the amplitude of the fluctuation at  the downgtream 
edge. 

The flows studied here oscillated in pure modes up to the values of gap width, 
b / r  = 1.3, at which the wake mode began. The corresponding maximum value of b/B,  
was 160. It is of interest to ask what would happen if the wake mode were delayed 
by keeping b/r  < 1.3, but increasing b/O, indefinitely by reducing Bo, say by 
increasing U or reducing v (thus UB,/v would increase). The cavity mode number 
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would, potentially, increase but at the same time the tendency toward ‘turbulent ’ 
flow would aso increase. For example, a free shear layer is ‘fully turbulent’ by 
x/Bo x lo3 (Bradshaw 1966). We surmise that for Bo + b such that N % 1 the 
instability waves in the initial part of the shear layer would become uncoupled from 

the downstream corner and the cavity would continue to select a low-mode 
oscillation. The development of the initial portion would be similar to that of a, free 
shear layer but modulated by a low-mode cavity wave and possibly exhibiting the 
‘collective interactions’ and enhanced growth rate described by Ho & Huang (1982) 

and Oster & Wygnanski (1982). This conjecture is supported by the observations of 
Sarohia & Massier (1977), who found low-mode cavity oscillations in an axisymmetric 
configuration similar to  ours but a t  much higher Reynolds number and with the 
boundary layer turbulent upstream of the cavity. 

In  the preceding we have introduced the terms ‘ self-sustained oscillation modes ’ 
and ‘wake mode’ as descriptive of the different flow regimes we have studied. The 

appearance of the wake mode is accompanied by a large increase of drag. Such 

dramatic increases of drag and corresponding changes of cavity pressure field had 
previously been observed by Roshko (1955), Fox (1968), Koenig & Roshko (1985), 
but the nature of the corresponding change of flow, especially the role of the 
self-sustained oscillations in the low-drag regime, had not been well understood. I n  
this section we discuss further the flow characteristics of these regimes. 

I n  their study of coaxial flow over a combination of disk and cylinder separated 
by a gap, Koenig & Roshko (1985) defined two ‘optical’ flow regimes based on the 
level of drag of the combination, namely ‘low ’ and ‘medium ’ drag regimes (figure 
24). The medium drag is significantly lower than the drag that exists when the bodies 
are well separated and the downstream body has little influence on the upstream 
body, but in the low-drag regime it  is about an order of magnitude even lower. The 
separated shear layer is relatively thin, though turbulent, and, in ‘optimal’ flows, 
joins smoothly onto the shoulder of the downstream cylinder, while in the medium- 
drag regime the shear layer develops oscillations on a much larger scale. Their study 
suggests that their low-drag flows appear to  be more general examples of the classical 
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cavity flow depicted in figure 1. In fact, it  is now clear that their 'low-drag' regime 
corresponds to the regime for self-sustained cavity flow oscillations while their 
'medium-drag' regime corresponds to what we now call the cavity 'wake mode' 
(figure 24), and the corresponding terms will be used synonymously. The corre- 
spondence in the two experiments is remarkably good, considering the difference in 
the geometries and in Reynolds number (8 x lo5 and 2 x lo4, respectively). 

The flow visualizations and the flow-field measurements presented in the preceding 
sections show that in the low-drag regime the cavity shear layer always stagnates 
at the downstream corner, even with increasing gap width. Only in the wake mode 
does it stagnate fully below the corner, increasingly so with increasing gap width. 
We believe that the tendency for the flow to stagnate at  the downstream corner in 
the self-sustained modes is a result of a regulating mechanism, for which we propose 
the following tentative argument. 

The amplitude of the oscillations as they amplify along the shear layer depends 
on the initial amplitude at the upstream corner, which in turn depends on the strength 
of the feedback from the downstream corner, where the shear layer impinges. This 
equilibrium is stable. If it is disturbed by a shift in the mean-stagnation-point location 
the feedback signal will be reduced. This seems obvious for displacement outward 

from the cavity but it is also true for inward displacement, as demonstrated by 
Rockwell & Knisely (1979) who found that an inward displacement of 60, reduced 
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the transverse fluctuation amplitude by half. Now an inward shift of the stagnation 
point implies an increased inflow into the cavity at the downstream end, expressed by 

J b  Z(x,O)dx, 
X* 

for negative values of V ;  but this must be equalled by an increase in the outflow, 

lX* V(x, 0) dx, 

over the upstream portion of the cavity mouth and implies an increase in the level 

of Reynolds stress (figure 25). This is not consistent with the reduced feedback signal 
and implies that the stagnation point will return to  its ‘lock-on’ position because the 
required outflow-inflow level cannot be sustained. Actually, the level of the feedback 
signal is determined by the position of the shear-layer vortices as they impinge on 
the downstream corner as shown by Rockwell & Knisely (1979); it  seems this level 
is maximum when, in the mean flow, the dividing streamline reattaches on the corner. 

The existence of coupling between outflow from the cavity and the deflection of 
the shear layer near the downstream corner was demonstrated by Sarohia & Massier 
(1976) who found that external mass injection (bleed flow) into the cavity causes an 
outward deflection of the shear layer near the downstream corner, as expected, and 
a reduction in the level of fluctuation. 

To summarize, the mechanism for stable equilibrium of the shear layer with 
‘lock-on’ to  the downstream corner may be explained as follows. An inward 
displacement of the shear layer a t  that  corner results in a lowering of feedback signal 

and thus of Reynolds stress. This decreases the entrainment in the initial portion of 
the shear layer and reduces the positive outflow. Correspondingly the inflow a t  the 
downstream end must be reduced and the shear layer returns to its initial position. 

Although this proposed self-regulating mechanism for the low-drag regime has not 

been demonstrated explicitly, our qualitative observations of the flow in the regime 
of self-sustained oscillation indicate that the flow is very stable and resistant to 
moderate external disturbances until the gap becomes so large that the wake-mode 
instability can take over. That instability can be delayed a little by controlled, 
external reinforcement of the self-sustained oscillations (Gharib 1983, 1987) and the 
range of the low-drag regime correspondingly increased. 

I n  the wake mode there is large-scale motion across the centreline. Therefore this 
mode could be suppressed, in two-dimensional flow, by placing a splitter plate along 
the axis, but in our axially symmetric flow this possibility does not exist (the 

axisymmetric sting, topologically different from the two-dimensional splitter plate, 
does not cut off communication between the two sides of the flow). 
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