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ABSTRACT

Planetary bodies form by accretion of smaller bodies. It has been suggested that a very efficient way to grow protoplanets is by ac-
creting particles of size �km (e.g., chondrules, boulders, or fragments of larger bodies) as they can be kept dynamically cold. We
investigate the effects of gas drag on the impact radii and the accretion rates of these particles. As simplifying assumptions we restrict
our analysis to 2D settings, a gas drag law linear in velocity, and a laminar disk characterized by a smooth (global) pressure gradient
that causes particles to drift in radially. These approximations, however, enable us to cover an arbitrary large parameter space. The
framework of the circularly restricted three body problem is used to numerically integrate particle trajectories and to derive their
impact parameters. Three accretion modes can be distinguished: hyperbolic encounters, where the 2-body gravitational focusing en-
hances the impact parameter; three-body encounters, where gas drag enhances the capture probability; and settling encounters, where
particles settle towards the protoplanet. An analysis of the observed behavior is presented; and we provide a recipe to analytically
calculate the impact radius, which confirms the numerical findings. We apply our results to the sweepup of fragments by a protoplanet
at a distance of 5 AU. Accretion of debris on small protoplanets (<∼50 km) is found to be slow, because the fragments are distributed
over a rather thick layer. However, the newly found settling mechanism, which is characterized by much larger impact radii, becomes
relevant for protoplanets of ∼103 km in size and provides a much faster channel for growth.
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1. Introduction

We consider how gas drag affects the collision rates between a
big body – a planetesimal or protoplanet – and small particles,
e.g., dust, chondrules, or boulders. Although the core accretion
model (Pollack et al. 1996; Hubickyj et al. 2005) in its initial
stages, i.e., before the formation of a ∼10 Earth mass (M⊕) core,
concerns the accumulation of solid bodies, the role of the gas
cannot be overstated. In the early phases of planet formation
– the growth of dust to planetesimals – the gas damps the ve-
locities of small particles. Initially, the (relative) velocities be-
tween particles are tiny and this is the reason why dust grains
can coagulate due to intermolecular forces (Dominik & Tielens
1997; Blum & Wurm 2000) – an effect much harder to envision
in the diffuse interstellar medium or even in molecular clouds.
In this stage mechanisms that induce a relative velocity among
the dust particles include Brownian motion, settling, radial drift,
and turbulent motions. The latter three are all functions of the
particle’s stopping time, a measure of how well particles couple
to the gas. With increasing size (or, more correctly, increasing
mass-to-surface area) particles couple less well to the gas and
relative velocities increase, culminating in the so called meter-
size barrier, which, at our current level of understanding, can
best be overcome by the combined efforts of turbulent concen-
tration and gravitational collapse (Johansen et al. 2007, 2009;
Cuzzi et al. 2010).

Gas drag also affects the collisional behavior at a much
later stage, when protoplanets accrete planetesimals of perhaps
∼1−102 km in size. The collisional cross section between these
big bodies is increased by gravitational focusing, i.e., the body

can accrete particles at a cross section larger than its geometri-
cal cross section due to gravitational deflection (Safronov 1969;
Wetherill & Stewart 1989; Greenzweig & Lissauer 1990, 1992).
This effect, however, is very sensitive to the velocity va at which
the bodies approach: if va is too large, the focusing vanishes. In
planetesimal accretion theory it is expected that a protoplanet
will excite the random motions (eccentricities and inclinations)
of the bodies it is accreting from, leading to a self-regulated ac-
cretion behavior, which slows down the growth (Ida & Makino
1993; Kokubo & Ida 1998; Ormel et al. 2010a). Gas drag can
provide some relief since, by damping the random motions of the
planetesimals, the gravitational focusing is kept large. Moreover,
the capture probability of planetesimals is also significantly
increased when (proto)planets are surrounded by atmospheres
(Inaba & Ikoma 2003; Tanigawa & Ohtsuki 2010) – again, gas
drag is the mechanism that facilitates their accretion. Still, it is
unclear if these effects are sufficient to overcome the timescale
problem, i.e., to grow protoplanets to ∼10 M⊕ within the time
the gas disk dissipates (∼106 yr); see Levison et al. (2010) for a
recent review.

Due to the dynamical heating of planetesimals, planetesimal-
planetesimal collisions may become disruptive, producing
smaller planetesimals or even fragments (Wetherill & Stewart
1993; Leinhardt et al. 2009). These fragments can be kept dy-
namically cold, e.g., by mutual collisions or by gas drag. The ac-
cretion then takes place at low va – the shear-dominated regime
– which is very favorable for growth (Goldreich et al. 2004).
The generation of large amounts of fragments therefore can sig-
nificantly boost accretion. In particular, the accretion rate in the
two dimensional (interactions are confined to a plane), gas-free,
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three-body regime (including the gravity of the central star) is
derived by a number of studies to be(

dM
dt

)
gf

≈ 11α1/2
p RhvhΣ (1)

(e.g., Ida & Nakazawa 1989; Greenberg et al. 1991; Rafikov
2004; Weidenschilling 2005; Ormel et al. 2010b; the numeri-
cal constant is adopted from Inaba et al. 2001), where Σ is the
density in solids, Rh the Hill radius,

Rh = a0

(
Mp

3M�

)1/3

, (2)

vh the Hill velocity, vh = RhΩ, a0 the semi-major axis, Ω the
corresponding orbital frequency, Mp/M� the ratio between the
mass of the protoplanet and the central star, and αp the ratio be-
tween the protoplanet radius and the Hill radius, αp = Rp/Rh.
Equation (1) is often used in statistical models for the accre-
tion rate (e.g., Inaba et al. 2001; Chambers 2006; Brunini &
Benvenuto 2008; Chambers 2008; Kobayashi et al. 2010). It
represents a fast accretion rate. Kenyon & Bromley (2009), ap-
plying such a fragmentation-driven accretion scenario, calculate
that the core formation process can be completed within 106 yr.

How would gas drag affect these conclusions; i.e., does the
rather large accretion rate of Eq. (1) also materialize in the pres-
ence of gas drag? Qualitatively, two directions can be envi-
sioned. On the one hand, the dissipative nature of the drag will
enhance the collision (impact) radius, like in the case of a dense
atmosphere. Conversely, strong particle-gas coupling will sup-
press the accretion efficiency since the gas after all is not ac-
creted but flows past the object (until the point where it has be-
come more massive than 10 M⊕ and gas runaway accretion kicks
in). It is a priori unclear which aspect of the drag – the coupling
or the dissipation – will turn out to be the more important.

To address these questions we include gas drag as an addi-
tional force to the restricted 3-body problem that has been pre-
viously used in calculating accretion rates in gas-free systems
(or in systems where gas can be neglected; Petit & Henon 1986;
Ida & Nakazawa 1989). Using appropriate scaling behavior, we
show, in Sect. 2, that the system of equations containing all the
physics can be restated into two dimensionless parameters: the
dimensionless headwind velocity ζw that the protoplanet experi-
ences and the dimensionless stopping time (Stokes number, St)
of the particle. Our setup is idealized in the sense that we assume
a steady gas flow of constant density (i.e., no pressure fluctua-
tions or atmospheres), a drag law linear in velocity (applicable
to small particles), and only consider drift motions of particles.

After having outlined our setup in Sect. 2, Sect. 3 considers
the geometrical limit, in which the 2 body interaction is absent
or can be ignored. In Sect. 4 we perform an extensive parameter
study to obtain the impact parameters as function of the relevant
dimensionless quantities. Section 5 presents an analytic model
to obtain the impact radii and accretion rates from first princi-
ples, which we compare to our measured values. Section 6 illus-
trates the significance of our result by calculating the protoplanet
growth timescale in which we apply a correction to account for
the scaleheight of the particle layer. We discuss limitations of
our results and summarize in Sect. 7.

2. Sketch of problem and approach

2.1. Definition of impact radius

In this study we will calculate both numerically and analytically
impact radii, bσ. In 3D systems, the collision rate dM/dt is the

product of the velocity at which the bodies approach each other,
the approach velocity, va, the cross section for collisions, σ, and
the volume density in solids ρ that are accreted, dM/dt = ρσva.
In 2D configurations the vertical dimension is lacking and we
define(

dM
dt

)
2D

≡ 2bσvaΣ = PcolΣ, (3)

where Pcol ≡ 2bσva is the specific collision rate (cf. Nakazawa
et al. 1989). In the drag-free regime we indicate the im-
pact radius bσ by bgf. Although we primarily focus on
2D-configurations, Sect. 6 considers a 3D extension in which we
apply the derived bσ also for the vertical dimension.

In the gas-free regime particles enter the Hill sphere from
orbits both interior and exterior to that of the planet, see Fig. 1.
Therefore, bgf is associated with the lengthscale over which
particles impact for one of these branches. However, particles
can only enter at specific intervals, 1.7Rh < |b| < 2.5Rh (e.g.,
Greenberg et al. 1991); particles on impact parameters |b| <
1.7Rh move on horseshoe orbits that do not enter the Hill sphere.
The approach velocity va for the 3-body regime is defined as the
average shear velocity (3bΩ/2) over the above interval, i.e.,

va ≡ 1
2.5Rh − 1.7Rh

∫ 2.5Rh

1.7Rh

3Ωb
2

db = 3.2vh. (4)

Using va = 3.2vh and equating Eq. (1) with Eq. (3) gives

bgf = 1.7α1/2
p Rh (5)

as the (effective) impact radius for accretion in the 2D gas-free
regime. Note that since αp � 1, bgf � Rh, which signifies that
not every particle that enters the Hill sphere will collide. For this
reason we distinguish between bapp = 2.5, the impact parameter
at which particles approach (which is related to va), and bσ, the
impact radius that enters in the expression for the collision rate
Pcol. The fact that bσ � bapp is peculiar to the three-body regime,
where the gravity of the central star becomes important.

2.2. The circularly restricted three body problem modified
by gas drag

We briefly review the circularly restricted three body problem
using the framework of Hill’s equations (Hill 1878) and include
a drag term. The restricted three body problem assumes that the
mass of the third body (M3) can be neglected with respect to
the masses of the other two bodies, M1,M2. Furthermore, it is
assumed that the orbits of the bodies are confined to a single
plane and that these are circular for the two massive bodies. In
our case the first body is the central star (M�), the second the
(proto)planet (Mp), and the third the (test) particle m. We then
consider the motion of the test particle in a coordinate system
centered on and rotating with the motion of the planet. The re-
sulting equations of motions for m in such a frame rotating with
angular frequencyΩ0 read

du
dt
= F − 2Ω0 × u + Ω2

0r, (6)

where r = (x, y, z) are the coordinates in the comoving frame,
2Ω0 × u is the Coriolis acceleration and Ω2

0r the centrifugal ac-
celeration. The force per unit mass, F, acting on the third body
consist of the solar gravity, Fsun = Ω

2a, the 2-body force with
the protoplanet, F2b = GMr/r3, and the drag force with the
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Fig. 1. Sketch of particle trajectories in the comoving frame. We con-
sider the motion of the third (test) particle m in the comoving frame
of the second body (Mp, the planet) while including the gravity of the
central star. In the gas-free limit zero-eccentricity particles can enter the
Hill sphere from both the first and the third quadrant (black curves) but
only from specific impact parameters indicated by the hatched regions.
Particles arriving at closer impact parameters move on horseshoe or-
bits. The magnitude and direction of the gas velocity ugas as seen from
the comoving frame is indicated by the dashed arrows. Particle trajec-
tories including gas drag (solid gray arrows) can be anything depending
on the properties of the particle and the gas.

gas Fdrag. Expanding the Fsun term around a0 enables us to lin-
earize Eq. (6) to obtain

du
dt
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2Ω0vy + 3Ω2

0x
−2Ω0vx
−Ω2

0z

⎞⎟⎟⎟⎟⎟⎟⎟⎠ − GM
r3

⎛⎜⎜⎜⎜⎜⎜⎝ x
y
z

⎞⎟⎟⎟⎟⎟⎟⎠ + Fdrag. (7)

Next, we rewrite Eq. (7) in dimensionless form by normalizing
lengths to Hill radii Rh (see Eq. (2)) and times to Ω−1

0 . The unit
of velocity is then the Hill velocity, vh = RhΩ0. It can be shown
that in Hill units GM = 3Ω2

0R3
h = 3. Dropping the z-term as we

will treat planar configurations only, Eq. (7), in Hill units, reads

du′

dt′
=

(
2v′y + 3x′
−2v′x

)
−

(
3x′/r′3
3y′/r′3

)
+ F′drag, (8)

where F′drag is related to Fdrag as F′drag = Fdrag/R2
hΩ0.

2.3. The gas drag force

The drag force, Fdrag, can be expressed in terms of a stopping
time ts,

Fdrag = −Δuts = −
(u − ugas)

ts
, (9)

where ugas is the velocity of the gas in the comoving frame and
Δu the velocity difference between that of the particle and the
gas, see Fig. 1. Due to pressure support, the gas rotates slower

than Keplerian by a magnitude vhw = ηvK, where vK is the
Keplerian velocity at disk radius a and η a dimensionless quan-
tity that gives the fractional deviation from the Keplerian motion
(Nakagawa et al. 1986):

η =
dP/da

2aΩ2ρg
∼

(
cg

vK

)2

, (10)

with cg the sound speed. In the comoving frame the headwind is
directed towards negative y. However, we should correct for the
Keplerian shear; thus,

ugas =

(
−vhw − 3

2
Ωx

)
ey, (11)

where ey is the unit vector in the y direction.
For the drag force we consider several regimes. The stop-

ping time for solid spheres of internal density ρs for particles of
increasing size s reads (Weidenschilling 1977a):

ts =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρss
ρgcg

(Epstein drag)

4ρss2

9ρgcg�mfp
(Stokes drag)

6ρss
ρg|u − ugas| (Quadratic drag)

(12)

where ρg is the density of the gas, and �mfp the mean free path
of the gas. For small particles the Epstein regime holds. The
Stokes regime supersedes the Epstein regime for particle sizes
s > 9�mfp/4. In both the Epstein and the Stokes regime the gas
drag is linear with velocity and the stopping time reflects a par-
ticle property. These are the regimes for which our study is ap-
plicable. In the quadratic regime the stopping time becomes a
function of the particle velocity since here Fdrag ∝ |Δu|2. In fact,
there is a transition regime between the Stokes and quadratic
drag regimes where stopping times are proportional to |Δu|0.4,
which we have, for reasons of simplicity, ignored here (follow-
ing Rafikov 2004).

As an (approximate) upper limit for |Δu| we can take the
headwind velocity, vhw. The transition between the Stokes and
the quadratic drag regimes then occurs at a size of

s ≈ smax =
27�mfpcg

2vhw
(13)

= 90 m
( cg

105 cm s−1

) ( ρg

10−10 g cm−3

)−1 (
vhw

30 m s−1

)−1
,

where we used �mfp = 2× 10−9/ρg (in cgs units; Nakagawa et al.
1986). Since we consider a drag law that is linear in velocity, our
results are only applicable for particle sizes less than smax. In the
inner disk (where the gas density is large) the results should be
applicable to the sweepup of chondrule-like particles and m-size
boulders. In the outer disk, ρg is much lower and the particles for
which our results are applicable include (small) planetesimals.

Expressed in dimensionless form the drag law reads

F′drag =
Fdrag

vhΩ0
=

1
St

( −v′x−v′y − ζw − 3x′/2

)
(14)

where we used Eq. (9) for Fdrag and Eq. (11) for ugas, nor-
malized velocities to vh, and have introduced the Stokes
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Table 1. Dimensional and dimensionless parameters.

Description Dimensional Dimensionless
Hill radius Rh 1
Orbital frequency Ω 1
Headwind velocity vhw ζw
Drag constant Kdrag K′drag = 1/St
Radius (proto)planet Rp αp

Stopping time ts St
Collision rate Pcol P
Impact radiia bσ bσ

Notes. (a) For impact radii and velocities we intentionally use the same
symbols, see also footnote 2.

number, St = tsΩ0
1, and the dimensionless headwind veloc-

ity, ζw:

ζw ≡ vhw

ΩRh
≈ 12.5

(
ρs

g cm−3

)−1/3 (
vhw

30 m s−1

)

×
(

Rp

100 km

)−1 ( a
1 AU

)1/2
, (15)

with Rp the radius of the (proto)planet. Note that due to the nor-
malization to vh, ζw is primarily an indicator of the size of the
(proto)planet rather than of the strength of the headwind vhw as
the latter is approximately constant throughout the disk.

2.4. Dimensionless quantities

Table 1 compiles some key quantities in both dimensional and
dimensionless form. These include the dimensionless headwind
velocity ζw (Eq. (15)), the particle Stokes number St, and the
protoplanet radius

αp =
Rp

Rh
= 5.7 × 10−3

(
M�
M


)1/3 (
ρs

3 g cm−3

)−1/3 ( a0

AU

)−1
, (16)

which mainly depends on semi-major axis a0. In Fig. 2 we give
the relation between the dimensionless ζw and St to the physi-
cal protoplanet size Rp and particle size s for two disk radii a.
We have adopted vhw = 30 m s−1 and disk parameters that corre-
spond (approximately) to a typical minimum mass solar nebula
model (Weidenschilling 1977b; Hayashi et al. 1985).

The full set of equations of motions in dimensionless form,
dropping the primes, reads

d
dt

(
vx
vy

)
=

(
2vy + 3x − 3x/r3

−2vx − 3y/r3

)
− 1

St

(
vx

vy + ζw + 3x/2

)
. (17)

The drag-free equations of motions are retrieved when St →
∞, which signifies that particles are not coupled to the gas.
However, for Stokes number St <∼ 1 particles are coupled to
the gas and the importance of the drag terms becomes relevant
or even dominant. Petit & Henon (1986) and Ida & Nakazawa
(1989), working in the gas-free regime, only had to care about
the first terms on the RHS of Eq. (17) and the equations of mo-
tions did not include any parameter. The addition of gas drag

1 Note that the Stokes number in this study simply indicates the di-
mensionless friction time; it is not necessarily the same as the Stokes
number used in turbulent studies, St = ts/tL where tL is the turn-over
timescale of the largest eddies. For tL = Ω

−1 the definitions agree
(Youdin & Lithwick 2007).

introduces two parameters: the velocity of the gas flow ζw and
the coupling parameter St. Together with the size of the planet,
αp, these fully specify the problem; i.e., impact parameters bσ
depend on these three dimensionless quantities only. Although
not as clean as the drag-free equations, Eq. (17) still represent
a significant reduction of the parameters involved (semi-major
axis, particle size s, protoplanet size Rp, headwind velocity, gas
density, etc.). In our parameter study we only have to care about
these three parameters.

We do not include the eccentricity in our prescription (and
also not the inclination since the interaction is assumed to be
2D). Rather, the initial velocity of the approaching particle is
given by the radial drift equations for individual particles, ne-
glecting the 2-body interaction term. These we will now review.

3. The geometrical limit2

Ignoring the 2-body interaction force, we will analytically solve
for the particle’s trajectory in the comoving frame. As we will
soon see, impact parameters along a particle trajectory are gen-
erally not conserved. We provide a general relation between the
impact parameter at the interaction point (bσ) and its projected
value on the x and y axes at any arbitrary point (Eq. (21)). This
relation will be used later in Sect. 4 to obtain the impact radii bσ.

3.1. Steady-state velocities

Without the two-body interaction term, the motion of the particle
fulfills the well-known drift equations (Weidenschilling 1977a;
Nakagawa et al. 1986; Brauer et al. 2007):

vr = − 2vhwSt

1 + St2
; (18a)

vφ = − vhw

1 + St2
, (18b)

where vr is the radial velocity and vφ the azimuthal velocity with
respect to the local Keplerian rotation. Thus, in the context of a
fixed-rotating orbital frame we have vx = vr and vy = vφ − 3

2Ω0x,
or in dimensionless units (divide by vh)

vx = − 2ζwSt

1 + St2
(19a)

vy = − ζw

1 + St2
− 3

2
x (19b)

and it can be verified that with these expressions the RHS of
Eq. (17) vanishes when the two body interaction terms (−3x/r3

and −3y/r3) are omitted.

3.2. The parabola solution

Since

dy
dx
=
vy

vx
=

1
2St
+

3(1 + St2)
4Stζw

x (20)

we immediately recognize that the particle’s trajectory in the
rotating frame obeys a parabola, y(x) = Ax2 + Bx + C
with A = 3(1 + St2)/8Stζw, B = 1/2St, and C the integration

2 In this and the next two sections lengths (x, y, bσ, etc.) and
velocities (u) are expressed in dimensionless (Hill) units, unless
otherwise specified.
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Fig. 2. Relation between dimensionless and physical quantities. The
Stokes number (St, solid lines) and the dimensionless headwind veloc-
ity ζw (dashed lines) are plotted on the y-axis as function of the radius s
of the particle and the radius Rp of the protoplanet. Note the different
units of s and Rp on the x-axis. The black dot denotes smax (Eq. (13)).
Lines are shown for: (i) cg = 105 cm s−1 and ρg = 10−9 g cm−3 at a
disk radius of 1 AU (black lines) and (ii) cg = 6 × 104 cm s−1 and
ρg = 10−11 g cm−3 at a position of 10 AU (gray lines). The internal
density of solids is fixed at ρs = 3 g cm−3, the nebula headwind is
vhw = 30 m s−1, and the mass of the central object is solar.

constant, which is determined by the starting point S of the parti-
cle. We refer to the function that intersects the origin (C = 0) as
y0(x). The starting point (x0S , yS) is defined to lie on this curve,
yS = y0(x0S ), see Fig. 3, where y0(x) is plotted by the upper
parabola. Another parabola with the same A and B (i.e., for the
same particle properties St and ζw) but with non-zero C is drawn
in such a way that it just hits the “target” at the origin. Its “launch
point” at y = yS is shifted over a length ΔxS. The vertical differ-
ence between the curves, −C = ΔyS, is preserved.

If the particle trajectories were straight, impact parameters
would be the same everywhere in the (x, y)-plane. However, due
to the x2-term this statement no longer holds for the general case
of nonzero A. See Fig. 3: the impact parameter near the origin
or at the interaction region, bσ, differs from that at S. Impact
parameters are no longer conserved due to the change in dy/dx.
The changing slope of the curve is indicated in Fig. 3 by the
angle θ, where θ is related to Eq. (20) as θ = arctan(dy/dx).

Using the properties of the parabola solution we can relate
the quantities at I to those at S. At the interaction point I the
impact parameter is bσ (=αp in the geometrical case) and the
associated vertical width is ΔyI = bσ/ cos θI with θI the angle
the parabola makes at this point. Similarly, ΔyS = bS/ cos θS
and due to the invariance of Δy we therefore have that bσ =
bS cos θI/ cos θS.

The associated change in x at the starting point is ΔxS =
ΔyS/ tan θS. This can be expressed in terms of the impact param-
eter at the interaction point bσ, i.e.,

ΔxS =
ΔyS

tan θS
=

bσ
cos θI tan θS

= bσ

√
1 + (dy/dx)2

I

(dy/dx)2
S

, (21)

where we used that 1/ cos θ = 1/ cos[arctan(dy/dx)] =√
1 + (dy/dx)2. Of course, in the non-gravity limit we know al-

ready that the impact parameter is just the planet radius, bσ = αp.
However, Eq. (21) is essential to interpret the numerical result of

Fig. 3. Without the two body force, particle trajectories as witnessed
from the comoving frame obey parabolas. Two trajectories are shown:
one that passes through the origin (y0(x)) and one that just hits the target.
The corresponding impact parameter b is denoted by arrows. For curved
trajectories b is not conserved due to the changing slope of the curves,
here indicated by the angle θ. At S we have that ΔxS = bS/sin θS and
ΔyS = bS/cos θS. ΔyS is a conserved quantity.

Sect. 4. That is, in our numerical integration (that includes the
2-body force) we will scan the x-axis for trajectories that lead
to a collision and obtain a length scale ΔxS over which particles
hit the target. Using the above equation we can then relate the
obtained range of projected impact parameters at S, ΔxS, to the
impact parameter at the interaction point, bσ.

3.3. Collision rates

The collision rate P in the 2D configuration is the product of
the collision cross section, 2bσ, and the approach velocity, va =√
v2x + v

2
y. At S we have that bSvS = ΔySvx = ΔxSvy. At I the

collision rate equals bσva = αpva. Now, using Eq. (21) we have
that bσvI = bσvx/ cos θI = vx tan θSΔxS = vxΔyS and we see that
the rates at I and S are equal and independent of the choice for
the starting point yS. This result just reflects mass conservation.
Thus, we obtain the collision rate:

Pgeo = 4αp
ζwSt

(1 + St2)

√
1 +

(3αp(1 + St2) + 4ζw)2

64St2ζ2
w

, (22)

where (dy/dx) has been evaluated at x = αp. The complexity
of Eq. (22) may seem surprising for something as straightfor-
ward as a geometrical sweepup. However, this is entirely due
to the fact that Eq. (22) covers several (velocity) regimes. In
Appendix A we consider the asymptotic limits of Eq. (22) and
show that these correspond to the expected sweepup rates (cross
section × approach velocity) and to the findings of Kary et al.
(1993).
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Fig. 4. The minimum distance in units of Hill radii to the origin (center
of the protoplanet), rmin, as function of the x-coordinate of the starting
point, xS (yS is fixed at 40 Hill radii). Plotted is rmin for a gas-free sys-
tem (left) and a system that is characterized by the parameters St = 10
and ζw = 1 (right). Several bands are labeled. The inclusion of gas
drag shifts the bands to larger xS while merging several chaotic features
within the chaotic c-band.

4. Full 3-body integrations including gas drag
and gravity

4.1. Description of the adopted algorithm

We perform a parameter study of Eq. (17), varying ζw and St.
For the dimensionless headwind velocity runs were performed
at ζw = 0.01, 0.03, 0.1, . . .104 and for the Stokes number values
of St = 10−4, 3 × 10−4 . . . 104 were sampled. Thus, we obtain a
grid of 17 × 13 = 221 different combination of ζw and St. Not
every combination is equally likely. Indeed, the parameter space
samples areas where our key approximations (linear drag law,
constant gas density) lose validity, but we intentionally sample
a broad range of values to verify the validity of our analytical
expressions (see Sect. 5).

For each combination of ζw and St we numerically deter-
mine the function rmin(xS). Particles are launched from a start-
ing point (xS, yS) where yS is fixed and xS is varied, see Fig. 3.
The initial velocities are given by Eq. (19). Depending on the
sign of vy(xS) the initial y-position (+ or −) is determined, such
that the initial motion in y is always directed towards the planet.
Here, we fix |yS| at 40 (Ida & Nakazawa 1989). Particles that
leave the computational domain (when |y| > 40 or x < −40) are
no longer followed. For a certain xS we numerically integrate
Eq. (17) adopting a relative error of at most 10−8. As our inte-
grator we use a fifth-order Runge-Kutta scheme with timestep
control (Fehlberg 1969; Shampine et al. 1979). After the calcu-
lation has terminated we determine (and store) the minimum dis-
tance, rmin. In this way rmin(xS) is obtained, see Fig. 4. Projected
impact parameters ΔxS are then obtained from the rmin(xS) curve
by summation over the intervals where rmin < αp, i.e.,

ΔxS =

∫
dxSH(αp − rmin[xS]), (23)

where H(t) is the Heaviside step function,

H(t) =

{
1 t ≥ 0;
0 t < 0. (24)

(Simply put: we only include the orbits that hit the target.)

As rmin is occasionally found to vary steeply with xS, fine
sampling of the x-axis is required. Therefore, we sample our
parameters space (xS) adaptively. We start out with intervals
of 1 Hill radii, e.g., {xS} = 0, 1, 2, 3, . . .. In the next level the
interval spacing is reduced by a factor 10, δ = 0.1. However,
we only treat the points that fulfill the condition rmin(xS) < Fδ,
where F is empirically fixed at 103 (see below). For example,
if rmin(0) = 300 this point will be skipped in the next iteration
of the algorithm. If xS fulfills the condition, however, then both
sides will be scanned; e.g., if rmin(2) = 15 < 0.1F then, we will
additionally perform calculations for xS = 1.1, 1.2, . . .1.9 and
xS = 2.1, 2.2, . . .2.9. In this way we reduce the number of calcu-
lations but are still able to obtain a good assessment of ΔxS for
low αp.

Despite this optimization, we were forced to perform a rela-
tively large number of integrations, i.e., a large F. The reason is
the presence of very narrow, chaotic bands. In Fig. 4 band b near
xS = 2.0 is a regular band since rmin varies smoothly with xS.
A low F value suffices to pick up this feature. However, bands
a and d are very narrow and show (if one would zoom in) addi-
tional substructure. These chaotic bands are not resolved when
choosing a low F. In fact, there is no guarantee that our algo-
rithm will pick up every band since they can be very narrow.
However, with F = 103 we do obtain a good correspondence to
previous works (Petit & Henon 1986; Ida & Nakazawa 1989),
also matching the substructure within the narrow bands shown
in Fig. 4.

Following the discussion in Sect. 3 we emphasize again that
the starting points (xS values) are not fundamental, but depend
on the choice of the starting point yS. Taking a different value of
yS, e.g., yS = 80, will shift the features of Fig. 4b towards higher
xS values. In addition, the spacing (width of the features) will
be different. The only conserved (physical) quantity is the mass
flux, i.e., the integral of

∫
vy(xS)dxS over the width of the feature

– independent of the choice of yS.

4.2. Orbits including gas drag

Figure 5 provides several examples of particle trajectories that
experience gas drag. Figure 5a shows the trajectories for ζw = 1
and St = 10 with different starting points xS (Fig. 4 contains the
same parameters). For a “standard” nebula setting, these param-
eters correspond to ∼m-size particles accreting onto a ≈103 km
planet, see Fig. 2. Due to the large Stokes number, the influence
of the gas is relatively weak and the orbits bear a close resem-
blance to the gas-free, three body regime. The xS = 3.8 trajectory
enters the Hill sphere, where it experiences a close encounter, at
rmin = 2.8 × 10−2, before leaving the Hill sphere. It then re-
emerges later at negative x due to the combined effects of in-
wards radial drift and Keplerian shear. However, the particle that
started out at xS = 3.9 is captured within the Hill sphere and
experiences strong orbital decay due to gas drag.

Figure 5b shows orbits for smaller particles of Stokes num-
ber 0.01. Four orbits are shown of which two lead to accretion.
Clearly, there is a contest between the gravitational pull of the
planet and the aerodynamic pull of the gas flow. Once close
enough, gravity always wins. All orbits with 0.38 ≤ xS ≤ 0.74
are accreted; there are no close encounters. Accretion is inde-
pendent of the physical proportion or internal density of the pro-
toplanet; once a particle’s angular velocity about the planet is
damped by drag, it settles radially at its terminal velocity. The
only relevant physical quantity is the mass. This mode of accre-
tion reflects the capture mechanism of Fig. 5a. We will refer to
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Fig. 5. Examples of planet-particle interactions for different values of the dimensionless headwind velocity ζw and coupling parameter St. For
typical nebula parameters particles of St = 10 correspond to loosely coupled m-size particles, whereas St = 0.01 are more strongly coupled
cm-size particles, see Fig. 2. Likewise, ζw = 1 corresponds to protoplanets of Rp ∼ 103 km in radius, while ζw = 100 corresponds to Rp ∼ 10 km
planetesimals. (A) Two particles of St = 10 experience a close encounter within the Hill sphere (dotted circle). The xS = 3.9 particle is captures
and settles to the planet, whereas the other particle is ejected from the Hill sphere (The Keplerian shear eventually causes it to resurface at the
other side of the Hill sphere). (B) Strong gas coupling, St = 0.01. There is a competition between the gravitational pull of the planet and the drag
force directed towards negative y. (C) Close encounters at large ζw without settling (see inset). (D, E) Examples of particle trajectories originating
from interior orbits. (F) Radially approaching orbits. (This figure is available in color in electronic form.)

orbits like the xS = 3.9 curve in Fig. 5a as gas drag induced or-
bital decay, whereas the accretion mode in Fig. 5b is referred to
as settling and draw the dividing line at St = 1.

On the other hand Fig. 5c, which features a larger dimension-
less headwind (meaning: a smaller protoplanet) of ζw = 100,
does not display the settling behavior. Here, particles can only
be accreted due to the finite size of the target. The xS = 0.796
trajectory has a minimum distance of rmin = 5.0 × 10−4; the
xS = 0.8 trajectory rmin = 4.5 × 10−3. Clearly, for a planet size
αp � 1 the impact parameter in Fig. 5c is much less than for
the settling orbits of Fig. 5b. Since the Stokes numbers are the
same, the reason must be due to the larger headwind velocity ζw.
This is understandable since particles of St � 1 approach at the
headwind velocity (va ≈ ζw) and a large va is not conducive for
accretion.

In the lower panels of Fig. 5 we vary either the Stokes num-
ber (particle size) or ζw (protoplanet size) with respect to the
panel above. For a Stokes number of 103, see Fig. 5d, the ef-
fects of gas-drag are even less pronounced and it becomes more
difficult to capture these (big) particles within the Hill sphere.
Moreover, if such a particle would be captured, it takes longer to
finally accrete this particle due to orbital decay. Another differ-
ence with Fig. 5a is that the St = 103 particles can now also enter

the Hill sphere from interior orbits (negative xS). In Fig. 5a the
strong radial drift still prevents particles from entering the Hill
sphere from the negative y-direction; however, for St = 103 the
radial drift is sufficiently reduced to render the situation more
akin to the symmetric gas-free limit.

The ζw = 0.1 orbits in Fig. 5e also feature accretion from
particles approaching the planet from interior orbits, which the
ζw = 1.0 orbits of Fig. 5b were not capable of. The dimen-
sionless headwind parameter of ζw = 0.1 corresponds to a
very big planet (in the canonical model) for which, as we will
discuss below, the constant gas density background is unreal-
istic. Alternatively, it can represent a smaller protoplanet in a
nebula where the dimensional headwind is, for some reason,
strongly reduced. In any case, we see that low ξw tends to make
the interactions more symmetric. This can be seen from the
Eq. (19b): low ζw or large St reduce the contribution from the
non-symmetric headwind term, ζw/(1 + St2).

Figure 5f shows, however, that for St = 10 and ζw = 100
the picture is anything but symmetric. The particles approach
the planet from a very radial direction (x-direction) – at least, as
seen from the perspective of the planet. The point is here that
both St and ζw are large. Thus, both planet and particle move
at a Keplerian velocity (in the azimuthal direction) but, due to
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Fig. 6. Contour plot of collision rates obtained from the numerical inte-
grations for αp = 10−3. Contours of log10 P are shown as function of the
Stokes number and the headwind velocity. Contour levels are indicated
except for log10 P = 0 (thick solid), −0.25 (dotted) and −0.75 (dashed).
The accretion rate in the gas-free regime is log10 Pgf ≈ −0.46. (This
figure is available in color in electronic form.)

the large ζw, the particle still suffers a significant radial drift,
which outweighs the effects of the Keplerian shear. As a result,
the situation is similar to Fig. 5c: accretion does only proceed
through close encounters.

4.3. Collision rates

We obtain the (dimensionless) collision rate from the encounters
that hit the protoplanet, i.e.,

P(αp, St, ζw) = 2
∫

dxS|vy(xS)|H(αp − rmin[xS]), (25)

with vy(x) given by Eq. (19b) and H(t) the Heaviside step func-
tion. Figure 6 plots contours of P(ζw, St) for a planet size of
αp = 10−3, which corresponds to an heliocentric distance of
≈5 AU. The reader must realize that P is expressed in dimen-
sionless units; the large rates that can be seen at large ζw (and
St < 1) are less impressive upon multiplication by Rhvh ∝ ζ−2

w
(see Eq. (15)). In fact, these high P values are consistent with the
geometrical sweepup rates of Eq. (22). However, the expression
in terms of dimensionless units is useful since we can directly
compare it to the gas-free limit for which Pgf ≈ 11α1/2

p = 0.35,
see Sect. 2.1. For large St and small ζw, P converges to Pgf, the
expected behavior. However, for the remainder P deviates sig-
nificantly from Pgf. We sum up the main features:

1. Particles of St ∼ 1 accrete very well when the headwind ve-
locity is low. There is a distinct peak at (St, ζw) = (0, 0); the
accretion rate is here 20 times larger than Eq. (1). However,
there is a very sharp transition between 1 <∼ ζw <∼ 10.

2. For large ζw, P = Pgeo is larger than Pgf although no gravita-
tional focusing takes place. The sweepup is so effective due
to the strong headwind.

3. For St > 1, the band St ∼ ζw features a maximum in P.
4. For St � 1 and low ζw (large planets), collision rates are

lower than Pgf. Tiny dust particles stay “glued” to the gas
due to their strong coupling, preventing accretion.
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Fig. 7. Illustration of the three accretion regimes. In the hyperbolic
regime interactions are 2-body encounters and the standard formula
for gravitational focusing applies. In the settling regime, accretion pro-
ceeds through settling, which enhances the impact parameter bσ. Else,
for St > max(ζw, 1) the solar gravity affects the encounter and bσ is
increased with respect to the gas-free limit (bgf , Eq. (5)) due to parti-
cle capture within the Hill sphere. The gray band approximately indi-
cates the zone where the settling solutions permeate into the hyperbolic
regime. The letters a–f correspond to the parameters in the panels of
Fig. 5.

5. A simple model for gravo-gas interactions

5.1. Model outline

We present a simple model for the impact parameter bσ. The
model is summarized in Fig. 7, where the three relevant regimes
for the impact parameter are shown. In the hyperbolic regime
encounters follow the two-body approximation. The usual grav-
itational focusing formula applies. Keplerian shear is unimpor-
tant. In the settling regime particles settle to the target and the
impact parameter is independent of the planet size, αp. For this
reason, impact parameters can become rather large. Finally, in
the three-body regime, the encounter proceeds along the lines
of the drag-free three body encounters at low energy. However,
the presence of the gas now causes some particles to be captured
within the Hill sphere; these orbits decay and this enhances the
accretion rate.

5.1.1. Importance of three body encounters

It is clear that for St � 1 the encounter cannot be described
by a 2-body interaction, but should include the solar gravity.
But what is the transition between the 2-body and the 3-body
regime in the presence of gas drag? A passage through the Hill
sphere typically takes a time of the order of the orbital period.
Thus, at first sight, we can draw the boundary at St = 1 since
particles of lower stopping time will be strongly affected by the
gas. However, a large headwind velocity ζw has the same effect.
Particles that experience a drag force ζw/St > 1 are blown out of
the Hill sphere. Thus, 3-body effects are reduced to the region of
parameter space where St > 1 and St > ζw, see Fig. 7.
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5.1.2. Two body regime: settling- and hyperbolic interactions

We consider an interaction at impact parameter b = bσ at an
approach velocity va. The strength of the gravitational force is
fg = 3/b2 and the interaction timescale, ta � b/va. The lat-
ter quantity can be compared to the particle’s response time
St. When ta < St gas drag can be neglected during the en-
counter; the induced velocity change is Δv = fgta = 3b/va.
However, if ta > St the particle’s velocity equilibrates towards
Δv = Δvset = fgSt = 3St/b2.

For St < 1 the approach velocity can be approximately writ-
ten as va = 3b/2+ζw. For low ζw we therefore can expect settling
since encounter timescales ta are long. However, for large ζw set-
tling will be prohibited: either the induced change Δv is too little
(at large b) or the interaction timescale too short for the particle
to obtain its settling velocity (at low b).

To see this quantitatively, the minimum impact parameter for
settling is b∗ = ζwSt and the corresponding velocity change is
Δv∗ = 3/ζ2

wSt. In order for the particle to settle to the central ob-
ject, the direction of the particle has to change over a large angle,
i.e., Δv ∼ va. In fact, we obtain a better correspondence with our
numerical result if we set the required velocity change to va/4.
Analytically, it can be shown that this is the required change for
St � 1, see Appendix B. Thus, accretion through settling takes
place when va/4 ≤ Δvset ≤ Δv∗ and disappears when va/4 > Δv∗.
At the boundary between the settling and hyperbolic regime it
is allowed to take va = ζw (as can be verified a posteriori). We
then have that for ζ3

wSt > 12 settling is no longer possible, cor-
responding to a critical Stokes number

St∗ =
12

ζ3
w
, (26)

above which accretion through settling will no longer occur.

5.1.3. The settling regime

Assuming the settling regime, particles at impact parameter b
experience a velocity impulse of Δvset = 3St/b2, which should
equal va/4 for accretion. Since va ≈ 3b/2+ζw in this regime (note
that we do not neglect the shear term since it becomes important
at low ζw) the condition Δvset = va/4 requires us to solve the
cubic equation

b3 +
2ζw
3

b2 − 8St = 0. (27)

The (real, positive) solution to this equation is denoted bset.

5.1.4. Hyperbolic regime

At large ζw the encounter is fast and the presence of gas drag can
be ignored during the encounter. For accretion we now require
(by conservation of angular momentum) that Δv = 3b/va ≥ vesc
which is much larger than in the settling regime. For the im-
pact radius we can just take the standard expression of the
gravitationally-enhanced cross section,

bhyp = αp

√
1 +

(
vesc

va

)2

= αp

√
1 +

6

αpv
2
a
, (28)

where vesc =
√

6/αp in Hill units. For the approach velocity va
we now also include the horizontal velocity components (i.e.,
vx) since for St > 1 vx becomes dominant. However, it is fine to

neglect the shear term in Eq. (19a) since bhyp � 1. Thus, for the
approach velocity in the hyperbolic regime we can write

va,hyp = ζw

√
1 + 4St2

1 + St2
· (29)

5.1.5. The three body regime

Without gas drag the effective impact parameter for collisions
is Eq. (5), bgf = 1.7α1/2

p , in dimensionless units (see Sect. 2.1).
Gas drag adds another component to the impact parameter on top
of Eq. (5). Figure 4 neatly illustrates this behavior. The chaotic
band c in the gas-drag simulation has collapsed. Particles en-
tering at the corresponding xS-values are captured and decay to
the central object on a timescale ∼St. If the gas inside the Hill
sphere is removed within this timescale, these particles will be-
come satellites; however, here we will simply assume that all
captured particles contribute to the collision rate.

Because the accretion in the dissipative 3-body regime is
determined by the behavior of the chaotic zones, it is difficult
to provide an analytic model for the enhanced bσ. The chaotic
zones are especially susceptible to collapse, because these par-
ticle trajectories are characterized by many revolutions, trough
which a lot of energy can be dissipated. In the gas-free situation
one requires a positive energy J to enter the Hill sphere,

J =
1
2
v2 − 3

r
− 3

2
x2 +

9
2

; (30)

and once J becomes negative in the Hill sphere, e.g., by inelastic
collisions, the body becomes trapped (Ohtsuki 1993). Here, we
face a similar situation where the gas drag is responsible for the
energy removal. Unfortunately, in our case an analysis in terms
of the Jacobian is not so meaningful as the gas flow can also add
energy; i.e., J is not conserved and bodies with J < 0 can still be
“blown out” of the Hill sphere. However, the picture – that gas
drag can trap particles – is still the key.

Empirically, we find that the impact radius is increased by
a term 1/St, which corresponds to the dissipated energy over a
revolution. For these reasons, we add a term proportional to 1/St
to Eq. (5),

b3b = bgf +
1.0
St
= 1.7α1/2

p +
1.0
St
, (31)

where the 1.0 constant is obtained empirically. As we will see in
the next section Eq. (31) fits the general trend well, but it cannot
reproduce the impact radius at every Stokes value.

5.2. Comparison to numerical results and fine tuning
of the recipe

Figure 8 compares the impact radii obtained from the numerical
integrations (symbols) with the analytical prescriptions (curves)
for a headwind velocity of ζw = 10 and for a planet size of
αp = 10−3 and 10−5. We have used Eq. (21) to convert the pro-
jected impact parameters ΔxS to true impact parameters at the
interaction point (bσ). To do so we used the parabola solution,
Eq. (20), to evaluate the gradients (dy/dx) at the starting point
(xS) and at the interaction point xI . We determine the maximum
value of xS that resulted in a collision with the planet at the spec-
ified αp and took this value to compute (dy/dx)S. To compute
(dy/dx)I we evaluated Eq. (20) at the approach radius bapp. Here,
for bapp we took the impact radius obtained from our analyti-
cal model described above, except for interactions in the 3-body
regime where we always use bapp = 2.5.
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At low St the interactions take place in the settling regime.
Impact radii are rather large, particularly near the St∗ = 12/ζ3

w
transition line, and independent of αp (the cross and circle sym-
bols overlap), implying that the physical impact parameter is
larger at larger disk radii. For intermediate Stokes numbers the
hyperbolic regime is valid and impact radii are much smaller.
However, for St > ζw impact radii once again increase. The
behavior is rather erratic, though, with peaks at St = 10 and
300 and a depression at 102, valid for both αp. We found that
this complex behavior can be attributed to the trajectories that
originate from the third quadrant. Initially, for low Stokes num-
bers, these are absent due to the strong radial drift. However, at
a critical Stokes number the contribution of particles approach-
ing from interior orbits (negative yS) becomes important. We do
not have a full understanding how these outliers can be modeled
analytically.

The analytic fits to the various regimes are given by the
dashed curve (for settling), solid gray curve (hyperbolic) and
solid black curve (three-body). From Fig. 8 it is obvious that the
transition between the settling and the hyperbolic regime is not
so sharp. Even particles that have St > St∗ display settling be-
havior. For these reasons, we have extended the validity of the
settling regime beyond St∗ by adding an exponential term, i.e.,

b̃set = bset exp[−(St/St∗)γ], (32)

where bset is the solution of Eq. (27) and γ a constant that we
empirically fix at γ = 0.65. The impact parameter in the hyper-
bolic regime, St∗ < St < ζw, is then given by the maximum of
b̃set and bhyp. The little depression that can be seen at St = 1 is
caused by the fact that the approach velocity Eq. (29) has a maxi-
mum here. For larger St the approach velocity strongly decreases
and the gravitational focusing strongly increases. Nevertheless,
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Fig. 9. Contours of log P according to the analytic prescription. Curves
are the same as in Fig. 6. (This figure is available in color in electronic
form.)

impact parameters at St = ζw are even larger than bhyp and are
better fitted by b3b. Initially, gas drag very effectively captures
bodies within the Hill sphere and impact radii are rather large.
However, the capture probability decreases as 1/St and for large
St we retrieve the gas-free limit, Eq. (5).

5.3. Collision rates

In Fig. 9 we plot contours of the collision rate, that is, we plot
P = 2bσva as function of St and ζw using the prescription out-
lined in Table 2. This figure should be compared with Fig. 6.

The curves in Fig. 9 are much smoother due to the much
finer grid that the analytic formulation permits. The transition
lines, St = St∗ and St = ζw are clearly identified. Our analytic
formalism fails to reproduce the log P = −0.5 band towards the
upper-right of Fig. 6. However, the overall match is satisfactory;
for 90% of the 221 grid points the analytic and numerical results
lie within 30% of each other.

5.4. Summary of impact parameter recipe

Table 2 provides an executive summary of how the collisional
parameters can be obtained using the analytic prescription.
First, one converts the physical parameters (headwind velocity,
disk radius, friction time, etc.) into the dimensionless quanti-
ties ζw, αp and St. The corresponding impact radii for the three
regimes are calculated in the second step. Then, in step 3, the
appropriate collision regime is determined by comparing the
Stokes number with St∗ (Eq. (26)) and ζw (Eq. (15)), see also
Fig. 7. Dependent on the applicable regime, the final impact pa-
rameter is obtained by taking the maximum of two impact radii
(step 4). Other quantities (va and bapp) also depend on the colli-
sion regime.

Then, these results can be converted back to physical units
by multiplication of Rh and vh = RhΩ (Eq. (2)) for, respectively,
lengths and velocities. The 2D-collision rate is then obtained
from Eq. (3). The 3D-collision rate may be estimated by mul-
tiplication by a factor max(1,Hp/bσ) (see Sect. 6), where Hp is
scaleheight of the particles.
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Table 2. Summary of the analytic recipe to obtain the impact radii bσ and approach velocities va.

1. Calculate dimensionless parameters: ζw (headwind velocity) Eq. (15)
αp (planet size) Eq. (16)
St = tsΩ (Stokes number) Eq. (12)

2. Calculate impact radii: b̃set Eq. (27), Eq. (32)
bhyp Eq. (28)
b3b Eq. (31)

3. Determine regime: St < min(1, 12/ζ3
w) St > max(ζw, 1)

Settling Hyperbolic Three body

4. Results
Impact radius (accretion), bσ: max(b̃set, bgeo) max(b̃set, bhyp) max(b3b, bgeo)
Approach velocity va: 3bσ/2 + ζw Eq. (29) 3.2
Approach radius bapp: bσ bσ 2.5

Notes. Description of impact radii: bgeo, geometrical impact radius (= αp); bset impact radius in settling regime; b̃set, modified bset (to cover the
transition regime); bhyp impact radius in the hyperbolic regime; b3b drag-enhanced impact radius for the 3-body regimes; bapp, approach distance.

6. Significance to the growth of pre-planetary
bodies

In the previous sections we have outlined a general approach to
analytically derive impact radii and collision rates in Hill coor-
dinates. But what does all of this imply for the growth of pre-
planetary bodies? Perhaps the best way to illustrate this point is
to calculate the accretion timescale

T 2D
ac =

M
dM/dt

=
4πρsR3

p/3

PcolΣ
=

4πρsRpα
2
p

3ΣP
Ω−1, (33)

where Pcol is the dimensional accretion rate and P = Pcol/Rhvh
the dimensionless, the quantity plotted in Figs. 6 and 9. From
Eq. (33) we see that the accretion timescale is inversely propor-
tional to P but also scales with Rp. We further write Eq. (33) in
terms of semi-major axis a0 by substitution of Eq. (16) for αp
and Ω(a) for a solar-mass star

T 2D
ac =

6.7
P

(
ρs

3 g cm−3

)−1/3 (
Σ

1 g cm−2

)−1

×
(

Rp

100 km

) ( a
AU

)−1/2
yr. (34)

The inverse dependence on disk radius may seem surprising but
one has to realize that P via αp and ζw implicitly depends on
a. Nevertheless, Eq. (34) shows that 2D accretion may be espe-
cially advantageous in the outer disks.

The 2D regime, however, may not be applicable to small par-
ticles since any breath of turbulence will stir them up. The height
of the particle layer may be obtained by equating particle diffu-
sion and settling timescale; i.e.,

Hp

Hg
≈ min

(
1,

√
αt

St

)
, (35)

(Dubrulle et al. 1995; Carballido et al. 2006; Youdin & Lithwick
2007) where αt is the Shakura & Sunyaev (1973) viscosity pa-
rameter for turbulent diffusion. In a 3D setting, the particle scale-
height can exceed the impact parameter bσ; then, only a fraction,
bσ/Hp, of the particles take part in the interaction and the accre-
tion timescale is correspondingly longer,

T 3D
ac ≈ T 2D

ac ×max

(
1,

Hp

bσ

)
(36)

(with bσ in physical units). The 3D correction factor signifi-
cantly increases collision timescales for small particles (Hp is
large) and the hyperbolic regime (bσ is small).

In Fig. 10a we have plotted contours of the 3D growth
timescales for a disk radius a0 = 5.2 AU, ρs = 3 g cm−3 (making
αp = 10−3), Σ = 2 g cm−2, Hg = 0.25 AU, Δvhw = 30 m s−1,
and αt = 10−4. The calculated accretion timescales assume that
all the solid density is in particles of a single size. Due the inclu-
sion of the Hp/bσ factor the structure is quite different from that
of Fig. 9. However, the contrast between the hyperbolic and set-
tling regimes is still clearly visible and has in fact even increased
due to the correction factor for the vertical structure. Note that
for the bigger bodies, which settle into a thin plane, Fig. 10 still
assumes that their eccentricities and inclinations are absent (low
velocity regime).

Figure 10 tells a few interesting points. First, it can be clearly
seen that growth of∼km-size planetesimals by accretion of small
particles (St < 1) takes a (perhaps prohibitively) long time.
Two mechanisms conspire. First, the small particles couple ef-
fectively to the gas which dilutes their number densities near
the midplane where the planetesimals are residing. Of course,
this statement depends on the strength of the turbulence that
prevents the particles from settling effectively; timescales will
be shorter for lower turbulent strength parameter, αt. However,
even in a completely laminar disk we may expect shear turbu-
lence to develop (Weidenschilling 1980), which strength may be
equivalent to αt-values of ∼10−6 (Johansen et al. 2006; Cuzzi &
Weidenschilling 2006). Second, small particles, being strongly
coupled, move with the gas, at a relative velocity of Δv ≈ vhw �
vesc, where vhw is the velocity of the headwind and vesc the es-
cape velocity of the planetesimal. Therefore, small particles lack
gravitational focusing and it is hard to avoid the conclusion that
sweepup of small particles by ∼km size planetesimals is slow. In
order to grow, planetesimals have to accrete among themselves.

However, the situation completely reverses when protoplan-
ets sizes reach ∼103 km: for these bodies, accretion of cm to
m-size particles becomes very rapid: in only ∼103 yr the proto-
planet can double in size. This is entirely due to the increased
cross section in the settling regime. For “optimal” parameters
(St ∼ 1, ζw <∼ 1) the combined effect of gravitational focusing
and gas damping results in impact parameters of bσ ∼ 0.5Rh
– larger than what hitherto has been thought possible (bgf, see
Eq. (5)). Accreting at impact parameters of the order of the Hill
sphere is fast in any case but since Rh increases with disk radii it
is especially impressive for the outer disk, see Fig. 10b.
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Fig. 10. The 3D growth timescale T 3D
ac as function of Stokes number (or particle size) and size of the protoplanet. Contour lines of log10 T 3D

ac /yr
are shown. All the solid density is assumed to be contained in particles of the indicated size. (A) At 5 AU for a surface density of Σ = 2 g cm−2.
(B) At 35 AU for a surface density of Σ = 0.1 g cm−2. In (A) the wider spacing between the tickmarks of the upper axis indicates particles enter
the Stokes drag regime. (This figure is available in color in electronic form.)

For St ∼ 1 particles, accretion is fast – even though it is
inefficient due to the strong radial drift. We denote the probabil-
ity that radially-inward drifting particles become accreted by the
protoplanet Peff . Since the drift flow is 2πavrΣ (≈0.15 M⊕ yr−1

for St = 1 particles at 5 AU) Peff is given as

Peff =
Pcol

2πavr
×max

(
1,

Hp

bσ

)
· (37)

(where we have again included the scaleheight correction fac-
tor). For a protoplanet of Rp = 103 km we find that St ∼ 1
particles are accreted at an efficiency of only Peff ≈ 10−4. The
efficiency increases away from the St = 1 line (vr is lower) and
towards larger protoplanet size and larger disk radii (larger Rh).
Levison et al. (2010), using N-body techniques, also finds that
accretion of small fragments was very inefficient (and concluded
that it was therefore unlikely) except for a few specific particle
sizes, that may have coincided with the peaks in Fig. 10. To in-
crease the accretion efficiency, smaller particles have to be ac-
creted. Dust fragmentation (Birnstiel et al. 2009) or radial dif-
fusion (Ciesla 2009) may be promising mechanisms to retain
mm-size particles in the (outer) disk, where they are observed on
∼Myr timescales (e.g., Lommen et al. 2009; Ricci et al. 2010).

It is instructive to compare the accretion timescales of
Fig. 10a to detailed hydrodynamical simulations involving St ∼
1 particles (Johansen et al. 2007; Johansen & Lacerda 2010). In
Johansen et al. (2007) a dense particle layer of St ∼ 1 boulders
collapses into a Ceres-mass planet (R ∼ 500 km), that rapidly
accretes the remaining boulders on timescales of perhaps 10 yr.
Although from Fig. 10a a Ceres-mass protoplanet in combina-
tions with St ∼ 1 particles form the optimal growth conditions,
our accretion timescale of 103 yr is still two orders of magnitude
higher than what can be inferred from Johansen et al. (2007).
However, a direct comparison is perhaps not so meaningful since
in the Johansen et al. (2007) simulations the St ∼ 1 particles
are highly clumped and exert a strong feedback effect on the
gas (Johansen & Lacerda 2010 discuss some alternate settings).
Feedback effects are not taken into account in this study.

7. Discussion

We summarize the key assumptions that have been employed in
this study:

– a drag law linear in velocity;
– neglect of resonance trapping of particles;
– a smooth, laminar disk (only drift motions) without local

pressure fluctuations;
– neglect of the gas flow around the protoplanet and of a pos-

sible atmosphere surrounding the proto(planet);
– a dynamically cold protoplanet on a circular, non-migrating,

orbit.

The assumption of a linear drag law implies that this study – and
in particular the analytical prescriptions that have been derived
– apply for particles smaller than ∼smax (see Eq. (13)) only. But
this still covers an appreciable size range, especially for the outer
disk.

The adopted flow pattern in our study is unrealistic since it
does not take account of the presence of the planet. Of course,
streamlines will have to bend around the object and this will
affect the motion of the particle. Tiny dust grains can only collide
with a dust aggregate when the aggregate size is less than the
mean free path of the gas molecules (Wurm et al. 2001; Sekiya
& Takeda 2005). However, this restriction probably applies only
for small particles. If we assume that the flowlines change over
the lengthscale of the protoplanet, it follows that particles of ts <
Rp/vhw are too tightly coupled to the gas to become accreted.
For example, for Rp = 100 km only St < 10−4 particles are
affected and our model overestimates the (already low) accretion
rates. More serious, perhaps, is our neglect of collective effects
due to strong particle volume densities, as this will provide a
feedback effect on the gas, affecting both the flow pattern as well
as the drift rates. This will probably be important for St ∼ 1
particles and could significantly enhance the accretion rate (see
our discussion at the end of Sect. 6).

For simplicity, our analysis only included drift motions. We
have, for example, neglected a systematic accretion (or decre-
tion) flow of the gas. In the turbulent α-model this gas moves
in at a velocity ∼αtcgHg/a. Equating this expression with the
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radial drift velocity (Eq. (19a)) we find that for particles St < αt
the systematic accretion flow will dominate. This will affect the
expressions for the accretion rates. Likewise, turbulent motions
can become more effective to move particles around than drift
motions, which affects the input parameter va in our model de-
scribed in Sect. 5. In the αt-model large eddies transport particles
at velocities ∼α1/2

t cg (Cuzzi & Weidenschilling 2006) and turbu-
lent velocities will dominate the drift motions for αt > η (see
Eq. (10)). The presented model may still be valid though, if the
turbulent motions are included in the definition of the approach
velocity, va.

Mean motion resonances may halt the particle long before
it drifts to the Hill sphere (Weidenschilling & Davis 1985). In
such a situation the inward-directed drag force is balanced by the
outward resonant perturbations. Weidenschilling & Davis (1985)
showed that the strength of the perturbations is proportional to
the planet’s mass and to the resonance number j. Thus, smaller
particles (which experience a stronger drag force) move into a
higher resonance. However, this trend will not pursue indefi-
nitely as at some maximum j resonances will overlap and the
effect is lost. Paardekooper (2007) simulated particle accretion
onto gas giants and showed that ∼m-size particles (St ∼ 1) avoid
resonance trapping for Jupiter-mass (MJ) planet. For a planet of
0.1 MJ the critical Stokes number has risen to St = 10 and for
lower mass planets it will even be larger. Therefore, our results
are not so much affected by resonance trapping when the proto-
planet and core-formation stages are considered.

Our assumptions of a completely “inert” protoplanet is also
peculiar. In the oligarchic growth regime (where most of the
mass resides in leftover planetesimals) dynamical friction will
keep the eccentricities of the most massive bodies small (e.g.,
Kokubo & Ida 2000); however, if most of the mass is trans-
ferred to the protoplanets their motion will become eccentric
(see Kary & Lissauer 1995 for accretion probabilities of pro-
toplanets on eccentric orbits). Likewise, type-I radial migration
(Tanaka et al. 2002) is not incorporated in our framework. These
effects will again become important for already evolved proto-
planets of masses >0.1 M⊕.

The feedback effect of the protoplanet on the structure of
the gas disk is also neglected. The protoplanet’s gravity influ-
ences the gas disk at larger distances, which could invalidate our
approximation of a smooth (global) pressure structure. Indeed,
particles have a tendency to drift to high pressures regions and
the St ∼ 1 particles may be most affected by this process, piling
up at a pressure bump instead of proceeding to the protoplanet.
Paardekooper (2007) finds that this effect (together with the res-
onant trapping of bigger bodies) shuts off all accretion of parti-
cles sizes above ∼10−100 μm! However, this particle trapping
is applicable for evolved planets only. Muto & Inutsuka (2009)
found that the criterion for particle trapping

Mp >∼ η
Hg

a
M� ∼ 10 M⊕ (38)

for solar mass stars (Equation (38) is apparently independent of
particle size or Stokes number).

Long before this size is reached, protoplanets bind the
nebular gas and form atmospheres that will enhance the cap-
ture radius (Inaba & Ikoma 2003; Tanigawa & Ohtsuki 2010).
According to the results of Inaba & Ikoma (2003) this will
perhaps become important when oligarchs reach 0.1 M⊕3. Our

3 We remark that the atmosphere calculations of Inaba & Ikoma (2003)
do not take into account headwind flow, perhaps important for low Mp,
which would destroy the spherical symmetry of the problem.

expression for the impact radius and collision rates, therefore,
are lower limits when protoplanets are surrounded by a thick
atmosphere.

In summary, most of the mentioned effects become relevant
for evolved (gas) planets only. Most damaging to our analysis
are the pressure fluctuations that could virtually shut off accre-
tion, or make it very difficult to model it analytically. However,
this effect may only become effective for large planet masses
(Eq. (38)). For lower mass planets, the build-up of a dense at-
mospheres will enhance the accretion rates with respect to our
prescription. We believe that for dynamically-cold protoplanets
below 0.1 M⊕ our prescription should be quantitatively correct if
collective effects can be neglected. In future work we intend to
test the validity of our analytic expressions in more convoluted
environments that incorporate some of the above processes.

8. Summary

We have developed a framework for the calculations of particle-
protoplanet interactions in a gaseous environment. This involves
the integration of the equations of motions in the circularly re-
stricted three body problem including drag forces. Using the
above mentioned simplifications – most notably the assumption
of a linear drag force, a smooth background density and head-
wind velocity, and a 2D setting – we were able to reduce the
general problem to a state that includes only two dimensionless
parameters: the dimensionless headwind velocity ζw and the di-
mensionless stopping time (Stokes number, St), see Sect. 2. A
large parameter study of particle trajectories has been conducted,
from which, as function of ζw and St, the impact radii are de-
rived. We find that three accretion modes can be distinguished:

– Settling encounters. Particles settle to the protoplanet and the
impact radius is independent of the size of the latter;

– Hyperbolic encounters. Accretion proceeds like the usual
gravitational focusing with the approach velocity being in-
fluenced by gas drag.

– (Drag enhanced) three body encounters. Interactions take
place on the scale of the Hill radius and gas drag causes a
fraction of the particles to become captured, which settle to
the protoplanet.

We have developed analytic recipes for all three encounters and
found them to match very well to the results of our numerical
study (except perhaps for the three-body regime). The recipe
is summarized in Table 2 and Sect. 5.4. In Sect. 6 we have ex-
tended our approach to the usual 3D-setting and calculated the
accretion times of (proto)planets by sweepup of particles. We
found that small particles are very unlikely candidates to grow to
planetesimals of 10−102 km, since their trajectories are tightly
coupled to the gas. However, if the protoplanet has reached a
size of ∼103 km it can very quickly accrete St ∼ 1 particles
through the settling mechanism. Since these fragments do not
suffer from the protoplanet gravitational scattering (they quickly
circularize), accretion under such conditions represents an av-
enue for quick growth, especially in the outer disk – provided
they are not lost by radial drift.
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Appendix A: Asymptotic limits of Eq. (22)

In this appendix we consider the asymptotic limits of Eq. (22)
and show the correspondence to the findings of Kary et al.
(1993).

Three limits of Eq. (22) can be identified

Pgeo =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2αpζw if St � 1;
4αpζw/St if St � 1 and αpSt/ζw � 1;
3α2

p if αpSt/ζw � 1.
(A.1)

These three regimes correspond to the cases where the square-
root term of Eq. (22) evaluates to 1/2St, 1, and 3αpSt2/4ζw, re-
spectively. In all limits we have assumed that αp � ζw.

Rewritten in physical units Eq. (A.1) reads (i.e., we multiply
by Rhvh)

Pgeo
col =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Rpvhw for St � 1;
4Rpvhw/St for St � 1 and RpSt/vhw � 1;
3R2

pΩ for RpSt/vhw � 1.
(A.2)

The interpretation of the first two limits is straightforward. If
St � 1 particles arrive with the headwind velocity, vhw. In
the 2D-setting the cross section is 2Rp, so the collision rate is
2Rpvhw. Similarly, in the second limit the particles approach from
the x−direction at a speed of 2vhw/St (see Eq. (19a)).

In the third limit the particles approach once again from the
y-direction. However, for these very large particles, the approach
velocity is given by the Keplerian shear (3Ωx/2) instead of the
headwind, see Eq. (19b). The approach velocity at the point of
intersection, i.e., at x = Rp, is then va = 3RpΩ/2. Multiplied
by 2Rp this reduces to the given expression. The dependence on
Rp may seem counter intuitive but is natural in situations that
involve shear.

The study of Kary et al. (1993) concerned massive particles
(i.e., the third limit of Eq. (A.2)). Kary et al. (1993) gave an an-
alytic expression for the impact probability or efficiency Peff of
a particles while crossing the semi-major axis of the protoplanet
due to radial drift4:

Peff =
3R2

pΩ
2

16πKavhw
, (A.3)

where K is the drag constant for a drag law that quadratically
depends on velocity.

In our case Peff can be found by taking the ratio of the colli-
sion rate Pcol to the mass inflow rate |2πavx| of the particles. For
the third limit of Eq. (A.2) we obtain

Pgeo
eff =

Pgeo
col

2πavx
=

3StΩR2
p

4πavhw
, (A.4)

where we used that vx = 2vhw/St in this regime. Equation (A.4)
is different from Kary et al. (1993)’s result for three reasons:

1. Kary et al. (1993) considers a drag force quadratic in velocity
where particles move at a drift velocity vx = −2Kv2hw/Ω (K
has units cm−1). However, we can mimic the linear drift law
by substitution of K = Ω/vhwSt (cf. Eq. (19a)) into Eq. (A.3).

2. In our approach we have not accounted for the variation of
the approach velocity over the impact range. More correctly,
the mean approach velocity is va = 3ΩRp/4.

4 Note that we give the dimensional form. Equation (7) of Kary et al.
(1993) is expressed in dimensionless units (but not in Hill units).

3. Kary et al. (1993) do not take account of the planetesimals
coming from the negative y-direction (the third quadrant), as
they (correctly) argue that any such body should already have
impacted during its approach from the first quadrant. This is
due to the highly symmetrical setting in this limit, which our
naive reasoning above does not account for. Equation (A.4)
is therefore too large by a factor of two.

With these corrections Eqs. (A.3) and (A.4) agree.

Appendix B: The settling path

In the limit of St � 1 we can use the approximation that the
particle is always in the settling regime, i.e., its velocity is given
by u = Fgts (in Hill units):

vx = −3x
r3

St, (B.1a)

vy = −3y
r3

St − ζw. (B.1b)

Thus, the particle path obeys the differential equation

dy
dx
=
vy

vx
=
y

x
+
ζw

3St
(x2 + y2)3/2

x
, (B.2)

which is slightly simplified if expressed in angular coordinates
by the substitution y = x tan θ. Then, dy/dx = tan θ + x(1 +
tan2 θ)dθ/dx and Eq. (B.2) becomes in terms of x and θ

x(1 + tan2 θ)
dθ
dx
=
ζw
3St

(1 + tan2 θ)3/2, (B.3)

which is equivalent to

cos θ
dθ
dx
=
ζw

3St
x. (B.4)

Straightforward integration gives the solution

sin θ =
ζw
6St

x2 + C, (B.5)

with C the integration constant, which we obtain by the require-
ment that at θ = π/2 the particle starts out at x = x0. Thus, the
full solution to the orbit under these conditions is

1 − sin θ =
ζw
6St

(x2
0 − x2). (B.6)

During the encounter θ decrease from π/2 to −π/2 and 1 − sin θ
increases from 0 to 2. The particle’s x coordinate then decreases
by an amount that depends on the numerical value of ζw/6St and
x0. The particle settles to the origin if x = 0 can be reached.
The largest value of x0 for which this is possible is b = x0 =√

12St/ζw. This is the impact parameter bσ.
For example, for St = 10−2 and ζw = 1, we obtain bσ =

0.35, a value that is reasonably close to the numerically derived
xS = 0.38 (see Fig. 5). For lower Stokes number the agreement
becomes better.

In Sect. 5.1.2 we have used the expression Δv = 3St/b2 for
the impulse change in the settling regime. For b =

√
12St/ζw

this corresponds to a velocity change of Δv = ζw/4. We further
argued that for settling encounter the approach velocity va should
be changed by an amount Δv ∼ va. For small Stokes values va =
ζw. Therefore, for St � 1 the criterion for accretion by settling
becomes va ≥ ζw/4. In Sect. 5.1.2 we have applied this criterion
generally.
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