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a b s t r a c t

Amicromechanical method is employed for the prediction of unidirectional composites in which the fiber

orientation can possess various statistical misalignment distributions. The method relies on the probabil-

ity-weighted averaging of the appropriate concentration tensors, which are established by the microme-

chanical procedure. This approach provides access to the local field quantities throughout the

constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical

macromechanical procedure can determine the effective composite elastic properties in the presence

of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is

presented as a special case using the proposed micromechanical method. Results are given that illustrate

the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and

out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation

envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix com-

posites with given normal distributions of misalignment angles, as well as fully random fiber orientation.

Published by Elsevier Ltd.

1. Introduction

It is well-known that a micromechanical analysis can provide

the effective properties of composite materials from the knowl-

edge of the constituent properties, their geometric arrangement,

and their detailed interactions. However, the impact of fiber mis-

alignment on the composite response, which often can occur in

modern composites [7], is typically not accounted for in design

and analysis. A notable exception is the effect of longitudinal fiber

misalignment on the compressive failure response of composites,

which has been studied extensively in the literature (c.f.,

[10,34,37,11,33,35,22,8,31,40,6]). Such misalignment can occur

due to manufacturing deficiency and defects, curved surfaces,

and fiber waviness, which was investigated by Kugler and Moon

[18]. A standard approach to incorporating the effect of fiber mis-

alignment in a unidirectional composite is to consider the aniso-

tropic ply properties and perform a standard transformation to a

desired fiber orientation (for instance, an in-plane rotation, c.f.,

Jones [17] and Herakovich [14]). While such a macromechanical

approach will provide the effective properties of the ply, the

associated local field distributions within the constituent materials

are not available (as is always the case with the macromechanical

approach). It is precisely these local fields that dictate and drive the

damage initiation and progression, yielding, failure, and other non-

linearities, which impact the macroscopic composite response and

the performance of structures composed of composite materials.

Alternatively, if one utilizes an appropriate micromechanical anal-

ysis, the local field variations within the composite constituents

can be predicted based on the knowledge of the strain (or stress)

concentration tensors, which are naturally given by the microme-

chanics theory. Consequently, the effect of fiber misalignment on

the local fields in the composite can be captured through the use

of these concentration tensors.

In the present investigation, the micromechanical analysis

known as the High-Fidelity Generalized Method of Cells (HFGMC)

[2] is enhanced to capture the effects of possible fiber misalign-

ment in unidirectional composites. In the latter reference, HFGMC

has been shown to provide a reliable and robust micromechanical

method for predicting the properties and nonlinear response of a

wide array of composites. Further, it was shown that the strain

(or stress) concentration tensors are fundamental to predicting

both the local and global composite response and thus they are

used herein to predict the effect of fiber misalignment on the com-

posite behavior. In particular, the concentration tensors are

employed in an averaging procedure to determine the effect of a

http://dx.doi.org/10.1016/j.compositesb.2014.04.014

1359-8368/Published by Elsevier Ltd.

⇑ Corresponding author. Tel.: +1 (216) 433 2012; fax: +1 (216) 433 8300.

E-mail address: Brett.A.Bednarcyk@nasa.gov (B.A. Bednarcyk).

Composites: Part B 66 (2014) 97–108

Contents lists available at ScienceDirect

Composites: Part B

journal homepage: www.elsevier .com/locate /composi tesb

    This article is a U.S. government work, and is not subject to copyright in the United States.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2014.04.014&domain=pdf
http://dx.doi.org/10.1016/j.compositesb.2014.04.014
mailto:Brett.A.Bednarcyk@nasa.gov
http://dx.doi.org/10.1016/j.compositesb.2014.04.014
http://www.sciencedirect.com/science/journal/13598368
http://www.elsevier.com/locate/compositesb


known distribution of misalignment angles (i.e., orientation distri-

bution function), or completely randomly fiber orientation, on the

local fields in the composite. Consequently, the initial yield and

damage surfaces, field distributions in the constituents, as well as

the standard effective properties, can be predicted for the

composite.

Averaging based on orientation has been employed extensively

within the microsphere model [26], which was originally devel-

oped for analyzing rubber [27,13]. Since then, the microsphere

model has been used extensively in the analysis of biological mate-

rials. Menzel and Waffenschmidt [25] used the model, with an

evolving orientation distribution function, to simulate remodeling

in soft tissues. Murtada et al. [30] used the microsphere approach

to analyze smooth muscles, wherein a specialized distribution of

the muscle contractile fiber orientation, as a function of stretch,

was employed. Alastrué et al. [3] first used a p-periodic von Mises

orientation distribution function, and then a Bingham orientation

distribution function [4] in applying the microsphere model to

blood vessels. Waffenschmidt et al. [36] used the microsphere

approach, with evolving orientation density functions, to model

bone remodeling. Li et al. [21] have recently applied the

microsphere approach to structural composite materials, wherein

a von Mises fiber orientation distribution has been employed.

Orientational averaging was also recently employed by Modniks

and Andersons [28] to model the nonlinear mechanical response

of short-flax-fiber-reinforced composites using an analytical

approach. While the approach and equations were general in terms

of fiber misalignment distribution, results focused on a uniform

distribution.

The remainder of this paper is organized as follows. A brief

description of the HFGMC methodology is provided, followed by

details on the incorporation of the statistical fiber misalignment

distributions. Results are then given exhibiting the impact of fiber

misalignment on the properties, damage initiation envelopes, and

critical values of the local field variables. Two classes of composite

materials are examined: a polymer matrix composite (PMC) sys-

tem, namely, graphite/epoxy, and a ceramic matrix composite

(CMC) system. While the PMC system exhibits extreme mismatch

in properties between the constituents, the CMC system has low

mismatch between the fiber and matrix, but includes a very com-

pliant fiber interfacial layer.

2. High-Fidelity Generalized Method of Cells micromechanical

model

The HFGMC micromechanical model is employed herein to pre-

dict the effective behavior of unidirectional composites with

known fiber misalignment. This theory has been fully described

by Aboudi et al. [2]. The continuously reinforced (i.e., doubly peri-

odic) version of HFGMC is briefly outlined in the following. The

doubly periodic microstructure considered is shown in Fig. 1(a)

in terms of the global coordinates (x2, x3). The repeating unit cell,

Fig. 1(b), defined with respect to local coordinates (y2, y3), of such

a composite is divided into Nb and Nc subcells in the y2 and y3
directions, respectively. Each subcell is labeled by the indices

(bc) with b = 1,. . .,Nb and c = 1,. . .,Nc, and may contain a distinct

homogeneous material. The dimensions of subcell (bc) in the y2
and y3 directions are denoted by hb and lc, respectively. A local

coordinate system (�yðbÞ2 , �yðcÞ3 ) is introduced in each subcell whose

origin is located at its center. The local (subcell) constitutive equa-

tion of the elastic, anisotropic material is given by,

rðbcÞ
ij ¼ C

ðbcÞ
ijkl e

ðbcÞ
kl ð1Þ

where rðbcÞ
ij , eðbcÞkl , and C

ðbcÞ
ijkl are the components of the stress, strain,

elastic stiffness tensors, respectively.

The basic assumption in HFGMC is that the displacement vector

u
ðbcÞ
i in each subcell is expanded into quadratic forms in terms of its

local coordinates (�yðbÞ2 , �yðcÞ3 ), as follows,

u
ðbcÞ
i ¼ �eijxj þW

ðbcÞ
ið00Þ þ �y

ðbÞ
2 W

ðbcÞ
ið10Þ þ �y

ðcÞ
3 W

ðbcÞ
ið01Þ

þ 1

2
3�yðbÞ22 �

h
2
b

4

 !

W
ðbcÞ
ið20Þ þ

1

2
3�yðcÞ23 �

l
2
c

4

 !

W
ðbcÞ
ið02Þ ð2Þ

where �eij is the applied (external) average strains, and the unknown

termsW ðbcÞ
iðlmÞ must be determined from the fulfillment of the equilib-

rium conditions, the periodic boundary conditions, and the interfa-

cial continuity conditions of displacements and tractions between

subcells. The periodic boundary conditions ensure that the displace-

ments and tractions at opposite surfaces of the repeating unit cell

are identical. A principal ingredient in the HFGMC micromechanical

analysis is that all these conditions are imposed in the average

(integral) sense.

As a result of the imposition of these conditions, a linear system

of algebraic equations is obtained, which can be represented in the

following form:

KU ¼ f ð3Þ

where the matrix K contains information on the geometry and

properties of the materials within the individual subcells (bc), and
the displacement vector U contains the unknown displacement

coefficients W
ðbcÞ
iðlmÞ, which appear on the right-hand side of Eq. (2).

The vector f contains information on the applied average strains
�eij. The solution of Eq. (3) enables the establishment of the following

localization relation which expresses the average strains �eðbcÞij in the

subcell (bc) to the externally applied average strains �eij in the form,

�eðbcÞij ¼ A
ðbcÞ
ijkl

�ekl ð4Þ

where A
ðbcÞ
ijkl are the strain concentration tensor components, of the

subcell (bc). The final form of the effective constitutive law of the

multi-phase thermo-inelastic composite, which relates the average

stresses �rij and strains �ekl, is established as follows:

�rij ¼ C�
ijkl
�ekl ð5Þ

In this equation C�
ijkl are components of the effective stiffness tensor,

which are given by,

C�
ijkl ¼

1

HL

X

Nb

b¼1

X

Nc

c¼1

hblcC
ðbcÞ
ijpq A

ðbcÞ
pqkl ð6Þ

Next, the components of stress concentration tensor, BðbcÞ
ijkl

, which

relate the average stresses in the subcell, �rðbcÞ
ij , to the average (glo-

bal) stresses, �rij, are determined. By combining Eqs. (1) and (4), the

subcell stresses are given by,

�rðbcÞ
ij ¼ C

ðbcÞ
ijpq A

ðbcÞ
pqkl

�ekl ð7Þ

Then, using Eq. (5), one obtains,

�rðbcÞ
ij ¼ B

ðbcÞ
ijkl

�rkl ð8Þ

where

B
ðbcÞ
ijkl ¼ C

ðbcÞ
ijpqA

ðbcÞ
pqrsS

�
rskl ð9Þ

and S�rskl are components of the effective compliance tensor.

Consequently, with the present information provided by the

HFGMC, the local elastic fields throughout the composite constitu-

ents are known, as are the composite effective (homogenized)

properties.
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3. Incorporation of fiber misalignment distribution

3.1. Transformation to misalignment angles

Suppose that the fibers of the unidirectional composite are ori-

ented in the x1-direction. In order to express a rotation of the fiber

direction by angle w in the x1–x2 plane about the x3-axis (see

Fig. 2), the following transformation matrix must be employed,

W ¼
cosw � sinw 0

sinw cosw 0

0 0 1

2

6

4

3

7

5
ð10Þ

Subsequently, a rotation about the new x2-axis, namely x=2, by an

angle / is performed (see Fig. 2) which can be expressed by the fol-

lowing transformation matrix,

U ¼
cos/ 0 sin/

0 1 0

� sin/ 0 cos/

2

6

4

3

7

5
ð11Þ

The full transformation is then given by,

x=1

x=2

x=3

2

6

6

4

3

7

7

5

¼ T

x1

x2

x3

2

6

4

3

7

5
ð12Þ

where T =WU.

Consequently, the standard approach for transforming the

fourth-order effective stiffness tensor C�
ijkl, given the misalignment

angles w and /, is as follows,

C�=
ijkl ¼ T ipT jqTkrT lsC

�
pqrs ð13Þ

Referring to Eq. (6), it can be observed that, in the framework of

micromechanics analysis, transforming the effective stiffness tensor

C�
ijkl implies the transformation of,

Z
ðbcÞ
ijkl ¼ C

ðbcÞ
ijpqA

ðbcÞ
pqkl ð14Þ

where ZðbcÞ ¼ ½ZðbcÞ
ijkl � can be referred to as a mixed concentration ten-

sor, as it relates the subcell stresses to the global strains, see Eq. (7).

Because this is a fourth-order tensor, its transformation is also given

in the form of Eq. (13).

Eqs. (13) and (6) provide,

C
�=
ijkl ¼

1

HL

X

Nb

b¼1

X

Nc

c¼1

hblcT ipT jqTkrT lsZ
ðbcÞ
pqrs ¼

1

HL

X

Nb

b¼1

X

Nc

c¼1

hblcZ
ðbcÞ=
ijkl ð15Þ

In order to determine the local stresses in the subcells in the

global coordinates including the effects of fiber misalignment,

through the use of Eq. (7), one obtains,

�rðbcÞ
ij ¼ Z

ðbcÞ=
ijkl

�ekl ð16Þ

The global stress–strain relations for the composite, including a

fiber misalignment, can be expressed as,

�eij ¼ S�=ijkl �rkl ð17Þ

where S⁄/ = [C⁄/]�1. Substituting (17) into (16) leads to the final form

of the local stresses in the subcells in the global coordinates, includ-

ing the effects of fiber misalignment.

�rðbcÞ
ij ¼ Z

ðbcÞ=
ijpq S�=pqkl�rkl ¼ B

ðbcÞ=
ijkl

�rkl ð18Þ

Fig. 1. (a) A multiphase composite with doubly-periodic microstructures defined with respect to global coordinates (x2, x3). (b) The repeating unit cell is represented with

respect to local coordinates (y2, y3). It is divided into Nb and Nc subcells, in the y2 and y3 directions, respectively. (c) A characteristic subcell (bc) with local coordinates ð�yðbÞ2 ,
�y
ðcÞ
3 Þ whose origin is located at its center.

Fig. 2. Transformation from the original (un-prime) to rotated (prime) coordinate

system through the rotation angles w and /. xint1 is an intermediate x1 coordinate

direction.
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3.2. Probability-weighted averaging

Now consider a known statistical distribution of fiber misalign-

ment, for instance, over a composite part, coupon, or structure.

Herein a normal fiber misalignment distribution has been adopted

with probability density function given by,

pðxÞ ¼ 1

s
ffiffiffiffiffiffiffi

2p
p exp �1

2

x� l
s

� �2
� �

ð19Þ

where x is the random variable and l and s are the mean and stan-

dard deviation, respectively. Yurgartis [39] and Jelf and Fleck [16]

have shown that local fiber misalignment angles in composites

can be reasonably approximated by a normal distribution. Fig. 3

shows an example of a normal distribution probability density

function vs. x/s for the case where l = 0.

In order to account for the known fiber misalignment variability

with respect to anglesw and /, see Eqs. (10) and (11), the following

operation has been employed,

hZðbcÞ
ijkl i ¼

Z p

�p

Z p

�p
Z
ðbcÞ=
ijkl ðw;/ÞpðwÞpð/Þdwd/ ð20Þ

providing the probability-weighted average of the mixed concen-

tration tensor. It should be noted that, in Eq. (20), the transformed

mixed concentration tensor is a function of both transformation

angles, w and /. Therefore, Eq. (20) is valid for any choice of prob-

ability density functions for either angle.

Observing Eq. (15), it is clear that the probability-weighted

average of the effective stiffness tensor of the composite is given

by,

hC�
ijkli ¼

1

HL

X

Nb

b¼1

X

Nc

c¼1

hblchZðbcÞ
ijkl i ð21Þ

Finally, from Eq. (16), the subcell stresses in the presence of proba-

bility-weighted averaging, are given by,

�rðbcÞ
ij ¼ hZðbcÞ

ijkl i�ekl ð22Þ

The global stress–strain relations for the composite, including

probability-weighted averaging, can be expressed using Eq. (17) as,

�eij ¼ hS�ijkli�rkl ð23Þ

where hS⁄i = hC⁄i�1. Substituting Eq. (23) into Eq. (22) gives the final

form of the subcell stresses, as follows,

�rðbcÞ
ij ¼ hZðbcÞ

ijpq ihS
�
pqkli�rkl ¼ hBðbcÞ

ijkl i�rkl ð24Þ

3.3. Fully random averaging

In the case where the fibers within the composite are fully ran-

domly oriented, the overall behavior of the composite is isotropic.

The transformation of the mixed concentration tensor, Z(bc), can be

carried out using the three Eulerian angles, wE, /E, and hE, Aboudi

et al. [2]. A fourth-order tensor transformation is applied to relate

the original and transformed systems. In tensorial notation, this

transformation is given by [5],

Z
ðbcÞ
i0j0k0‘0

¼ ai0 iaj0 jak0ka‘0‘Z
ðbcÞ
ijk‘ ð25Þ

where ai0i are given by

a101 ¼ coswE cos hE cos/E � sinwE sin/E

a102 ¼ � coswE sin/E � sinwE cos hE cos/E

a103 ¼ sin hE cos/E

a201 ¼ coswE cos hE sin/E þ sinwE cos/E

a202 ¼ � sinwE cos hE sin/E þ coswE cos/E

a203 ¼ sin hE sin/E

a301 ¼ � coswE sin hE

a302 ¼ sinwE sin hE

a303 ¼ cos hE

ð26Þ

The mean value of ZðbcÞ
i0 j0k0‘0

for random orientation is given by,

hZðbcÞ
i0 j0k0‘0

i ¼ 1

8p2

Z 2p

0

dw

Z 2p

0

d/

Z p

0

ai0 iaj0 jak0ka‘0‘Z
ðbcÞ
ijk‘ sin hdh ð27Þ

Therefore, the effective isotropic stiffness tensor of the composite

with fully random fiber orientations is given by Eq. (21), and the

subcell stresses are given by Eq. (24). Note that Christensen and

Waals [12] used a fully random averaging approach, along with

the concentric cylinder model, to predict the elastic properties of

composites with random oriented fibers. Also, Luo and Daniel [23]

used a fully random averaging approach in conjunction with the

Mori and Tanaka [29] micromechanical method to predict the effec-

tive properties of nanocomposites.

4. Practical application

The equations presented above are useful for assessing the

impact of fiber misalign on, not only the effective properties, but

also the local fields within composite materials. Given the local

stress and strain fields, initiation of damage or other detrimental

nonlinear mechanisms can be predicted for use as estimates of

the composite allowables. This section provides a brief step-by-

step example of how the presented methodology can be applied,

prior to the results, which are presented in the next section.

Given a composite material with known fiber volume fraction

and constituent material properties, the first step in applying the

presented methodology is to discretize the composite repeating

unit cell into a number of subcells. For example, consider a unidi-

rectional graphite/epoxy composite with a fiber volume fraction of

0.6. The transversely isotropic graphite fiber properties are as fol-

lows: axial Young’s modulus = 276 GPa, transverse Young’s modu-

lus = 15 GPa, axial shear modulus = 15 GPa, axial Poisson’s

ratio = 0.2, and transverse Poisson’s ratio = 0.2. The isotropic epoxy

matrix properties are: Young’s modulus = 3.42 GPa and Poisson’s

ratio = 0.34. A 40 by 40 subcell discretization of the repeating unit

cell can be considered, as shown in Fig. 4.

Next, the fiber misalignment present in the composite must be

specified. Fully random fiber alignment is a special case, as

described in Section 3.3. Otherwise, the methodology presented

above considers a normal distribution of fiber misalignment, see

Eq. (19). The mean, l, and standard deviation, s, of the in plane
Fig. 3. Normal distribution probability density function, where the random variable

has been normalized by the standard deviation and with the mean equal to zero.
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(w) and out-of-plane (/) fiber angles within the composite fully

characterizes the fiber misalignment. For example, with the mean

fiber angles representing perfectly aligned fibers, lw = l/ = 0, the

standard deviations might be sw = 3� and s/ = 2�. Then, based on

Eq. (21), the effective elastic properties of the this misaligned com-

posite can be predicted, as can the effective stresses throughout

the composite, based on Eq. (24), given specified global composite

level stresses. The results for the specified example are that the

predicted effective axial Young’s modulus of the composite is

reduced from 164.7 GPa (in the perfectly aligned case) to

163.2 GPa (reduction of 0.9%), whereas, in response to a global uni-

axial applied stress of 1 MPa in the 0� fiber direction, the maximum

von Mises stress in the matrix increases from 21.3 Pa to 23.3 Pa

(increase of 9.4%). Hence, a slight reduction in axial modulus and

a moderate reduction in the axial stress allowable might be war-

ranted for use in design of such a composite with this fiber mis-

alignment distribution.

5. Results and discussion

Results are shown for a polymer matrix composite (PMC) and a

ceramic matrix composite (CMC) that exhibit the effects of fiber

misalignment on the composite effective properties, local field dis-

tributions within the constituents, and the initial damage surfaces

(envelopes). Both probability-weighted averaging of the misalign-

ment and the fully random fiber orientation case are presented.

In order to generate the initial damage surfaces, two criteria

were used, given the externally applied stresses, �rij, or strains, �eij,
on the composite. The first is the traditional von Mises criteria,

given by,

�rðbcÞ
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
r̂ðbcÞ

ij r̂ðbcÞ
ij

r

¼ Y ð28Þ

where r̂ðbcÞ
ij ¼ �rðbcÞ

ij � �rðbcÞ
kk

dij=3 are the subcell deviatoric stresses, dij
is the Kronecker delta, and Y is the yield stress in simple tension.

The second damage initiation criterion, suggested by Lemaitre and

Chaboche [20], is used to express the critical strain energy release

rate associated with loss of stiffness in brittle materials, which are

typically highly dependent on the state of triaxial stress, rh = rkk/

3. The average triaxiality function [19] in subcell (bc) is given by,

�RðbcÞ
v

¼ 2

3
ð1þ mðbcÞÞ þ 3ð1� 2mðbcÞÞ

�rðbcÞ
h

�rðbcÞ
eq

 !2

ð29Þ

where m(bc) is the Poisson’s ratio of the isotropic subcell and �rðbcÞ
h is

the subcell average hydrostatic pressure. The damage initiation cri-

terion is then given by,

�rðbcÞ
eq

�R
ðbcÞ1

2
v ¼ rcr ð30Þ

Fig. 4. Graphite/epoxy repeating unit cell divided into 40 by 40 subcells. The fiber

volume fraction shown is 0.6.

Fig. 5. Normal probability density functions vs. a misalignment angle are shown for

various values of the standard deviation, s, where the mean is taken to be zero.

Fig. 6. Comparison of the present fully random averaging approach within HFGMC with the Christensen and Waals (C&W) [12] Eqs. (32) and (33) using various

micromechanics theories for the predicted normalized fully random isotropic graphite/epoxy composite properties as a function for fiber volume fraction. (a) Effective

Young’s modulus, E3-D. (b) Effective Poisson’s ratio, m3-D.
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where rcr is a material parameter that specifies the stress at which

damage initiates for a uniaxial state test. Thus, if the triaxiality

function is 1 and rcr = Y, this damage initiation criterion is equiva-

lent to the von Mises criterion, Eq. (28).

Fig. 7. Initial damage surfaces for the graphite/epoxy composite. (a) von Mises criterion, Eq. (28), in the r11–r22 plane, where an in-plane fiber misalignment angle, w, has

been considered. (b) Damage-based criterion, Eq. (30), in the r11–r22 plane, where an in-plane fiber misalignment angle, w, has been considered. (c) von Mises criterion, Eq.

(28), in the r11–r22 plane, where both an in-plane fiber misalignment angle,w, and an out-of-plane misalignment angle, /, have been considered. (d) Damage-based criterion,

Eq. (30), in the r11–r22 plane, where both an in-plane fiber misalignment angle, w, and an out-of-plane misalignment angle, /, have been considered.

Fig. 8. Initial damage surfaces for the graphite/epoxy composite. (a) Damage-based criterion, Eq. (30), in the r11–r12 plane, where an in-plane fiber misalignment angle, w,

has been considered. (b) Damage-based criterion, Eq. (30), in the r11–r12 plane, where both an in-plane fiber misalignment angle,w, and an out-of-plane misalignment angle,

/, have been considered.
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To generate a damage initiation surface in a given global stress

plane, �rij � �rkl (e.g., �r11–�r22), the stress components are expressed

as,

�rij ¼ R cosa �rkl ¼ R sina ð31Þ

where R is the radial distance from the origin at a point located on

the initial damage surface in the �rij–�rkl stress plane and a is the cor-

responding polar angle. For a given a, the local (subcell) stress com-

ponents are readily determined (in terms of R) by substituting Eqs.

(31) into Eq. (8). These expression for the local stresses can then be

substituted into either initiation criterion, Eq. (28) or Eq. (30). This

provides the value of R/Y or R/rcr corresponding to damage initia-

tion at the specified polar angle a.
As stated earlier, normal distributions for the fiber misalign-

ment angles has been presently adopted, see Eq. (19). In order to

perform the integration including the normal distribution in Eq.

(20), finite limits of integration must be determined. Assuming that

the average fiber misalignment angle (for both w and /) is l = 0,

Fig. 5 shows the probability density functions for various value of

the standard deviation, s. It is clear that it is sufficient to utilize

4s as the limits of the infinite integrations in Eq. (20) since wider

limits will have negligible contributions (see Fig. 3).

5.1. Polymer matrix composite

The first application considers the 0.6 unidirectional graphite/

epoxy composite described previously in Section 4. The same con-

stituent properties and same 40 by 40 subcell discretization of the

repeating unit cell, as shown in Fig. 4, have been considered.

The HFGMC theory has been extensively validated vs. experi-

ment data, and extensively verified vs. detailed finite element

models, in both the linear and nonlinear regimes for polymer,

metal, and ceramic matrix composites (c.f., [2,9,32,24]. In order

to verify the fully random fiber orientation averaging procedure,

described in Section 3.3, comparison has been made to results for

Fig. 9. Effect of in-plane fiber misalignment on the graphite/epoxy composite

effective axial shear modulus G�
12 , transverse Young’s modulus E�

2 , axial Young’s

modulus E�
1 , area of the von Mises criterion damage initiation envelope Avm, area of

the damage-based criterion damage initiation envelope AD, and strength, all

normalized with respect to their pristine values.

Fig. 10. Surface plots as a function of the standard deviations sw and s/. (a) The area, AD, of the damage initiation envelopes predicted using the damage-based criterion in the

r11–r22 plane. (b) The area, Avm, of the damage initiation envelopes predicted using the von Mises criterion in the r11–r22 plane. (c) The strength of the composite loaded

axially, as dictate by the maximum von Mises stress, �rðbcÞ
eq . (d) The effective axial Young’s modulus, E�

1 .
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the effective Young’s modulus and effective Poisson’s ratio based

on the equations presented by Christensen and Waals [12]. These

equations are as follows,

E3�D ¼
½E�

11þð4m�212þ8m�12þ4ÞK�
23�½E

�
11þð4m�212�4m�12þ1ÞK�

23þ6ðG�
12þG�

23Þ�
3½2E�

11þð8m�212þ12m�12þ7ÞK�
23þ2ðG�

12þG�
23Þ�

ð32Þ

m3�D ¼ E�
11 þ ð4m�212 þ 16m�12 þ 6ÞK�

23 � 4ðG�
12 þ G�

23Þ
4E�

11 þ ð16m�212 þ 24m�12 þ 14ÞK�
23 þ 4ðG�

12 þ G�
23Þ

ð33Þ

where E�
11, m

�
12, K

�
23, G

�
12, and G�

23 are the effective composite axial

Young’s modulus, axial Poisson’s ratio, transverse plane strain bulk

modulus, axial shear modulus, and transverse shear modulus,

respectively. Note that these equations assume transverse isotropy,

with five independent material constants. Christensen and Waals

[12] used the concentric cylinder assemblage (CCA) model to pre-

dict the effective composite properties for use in Eqs. (32) and

(33). Fig. 6 compares the predicted fully random (isotropic) effective

graphite/epoxy composite properties predicted by the present fully

random averaging approach implemented within HFGMC with the

Christensen and Waals (C&W) [12] Eqs. (32) and (33), as a function

of fiber volume fraction, normalized by the isotropic matrix proper-

ties. In addition to the CCA model, predictions are shown for the

Self-Consistent Scheme [15], the Mori and Tanaka [29] Method,

the Method of Cells (MOC) [1], and HFGMC, wherein the C&W aver-

aging equations have been used. Note that, in the case of the CCA

model, as done by Christensen and Waals [12], the lower bound

estimates were used for the composite transverse properties. As

shown, the present averaging approach matches closely with these

other predictions. It should be noted, however, that these other,

simpler micromechanics theories cannot provide a reliable estimate

of the local field distributions, and they all lack shear coupling (see

[2]. Slight (<1%) differences exist between the present fully random

averaging approach and the C&W averaging equations when using

HFGMC with the square fiber packing arrangement represented

by the employed repeating unit cell (see Fig. 4) because, as is

well-known, such a packing arrangement leads to six rather than

five independent material constants associated with transverse

isotropy. As mentioned previously, the C&W averaging equations

assume transverse isotropy, whereas the present averaging

approach includes no such assumption. While the present averaging

Fig. 11. von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the graphite/epoxy composite. (a) Pristine composite subjected to axial

stress �r11 . (b) Pristine composite subjected to transverse stress �r22 . (c) Fully random fiber distribution subjected to either axial or transverse stress.

Fig. 12. SiC/SiC CMC repeating unit cell divided into 28 by 28 subcells. The fiber

volume fraction is 0.26 and the interfacial layer volume fraction is 0.1.
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approach, involving concentration tensors, produces accurate com-

posite effective properties, the strength of the method involves its

ability to predict local fields.

The remainder of the PMC results focus on the 0.6 volume frac-

tion composite shown in Fig. 4. Fig. 7 exhibits the predicted initial

damage surfaces for the von Mises criterion, Eq. (28), and the dam-

age-based criterion, Eq. (30), for various values of the standard

deviation of the misalignment angles, sw and s/ under normal load-

ing in the fiber (x1) and transverse (x2) directions. Also shown in

the figure are the envelopes for the fully random case. In the

absence of misalignment (s = 0), the envelopes exhibit the

expected shape in that the strength in the fiber direction (x1) is

more than 40 times that in the transverse (x2) direction. As can

be seen in Fig. 7a and b, the effect of an in-plane misalignment

angle,w, distribution, rotates the initial damage envelope such that

the composite becomes weaker in the axial direction and stronger

in the transverse direction. The fully random envelope, which rep-

resents an isotropic material, is nearly elliptical. The effect of the

hydrostatic stress, which is included in the damage-based criterion

through the triaxiality function, Rv, can be clearly observed by

comparing Fig. 7a and b.

Fig. 7c and d shows the initial damage surfaces in the presence

of equal in-plane, w, and out-of-plane, /, misalignment angle dis-

tributions. It can be seen that the effect of incorporating misalign-

ment out of the x1–x2 plane is to reduce the size of the failure

envelopes significantly as the reinforcing influence of the fiber is

lost for both the axial and transverse directions.

Fig. 8 shows the initial damage surfaces for the damage based

criterion in the r11–r12 plane for various values of the standard

deviation of the misalignment angles. Also included is the fully

random case. Note that the surfaces based on the von Mises crite-

rion are not shown as they are quite similar to those shown in

Fig. 8 since the hydrostatic stress effect is relatively small. In fact,

the greatest value of the triaxiality function, Rv (see Eq. (29)),

throughout the matrix material for all points on all damage sur-

faces shown in Fig. 8 is 1.16, whereas, for the damage surfaces

shown in Fig. 7, this value is 5.15. It can be observed in Fig. 8 that

the initial damage envelopes both rotate and reduce size as the

fiber misalignment angle distribution standard deviations are

increased. It should be noted that, contrary to the cases shown in

Fig. 7, where additional fiber misalignment causes only minor

strengthening in the transverse direction, in Fig. 8, it can be

observed that significant longitudinal shear strengthening occurs

with additional in-plane misalignment (as one might expect).

It is of interest to examine the variation of various composite

properties with respect to the in-plane misalignment angle w.

Fig. 9 shows a number of such properties, normalized with respect

to their values in the absence of misalignment. This figure shows

that, while the effective axial Young’s modulus, E�
1, decreases with

additional misalignment, the transverse Young’s modulus, E�
2, and

the axial shear modulus, G�
12, increase. The axial and transverse

Young’s moduli are relatively insensitive to small amounts of mis-

alignment, whereas the axial shear modulus is very sensitive. It is

worth mentioning that, by applying an in-plane transformation,

the initially orthotropic composite material becomes monoclinic

and the effective stiffness tensor component C�=
1212, see Eq. (13), is

greatly influenced by this transformation. As a result of the

employed averaging procedure, see Eq. (20), the additional mono-

clinic terms in the effective stiffness matrix vanish (assuming the

mean misalignment angle, l = 0), but the strong effect remains

on hC�
1212i, which is the effective axial shear modulus, G�

12. Note,

however, that, as mentioned in the Introduction, the dependence

of the effective elastic properties on the misalignment could also

be determined using a macromechanical analysis (provided the

presented probability-weighted averaging procedure were

Fig. 13. Initial damage surfaces for the SiC/SiC CMC composite. Damage-based criterion, Eq. (30), in the r11–r22 plane, where (a) an in-plane fiber misalignment angle, w, has

been considered, and (b) both an in-plane fiber misalignment angle, w, and an out-of-plane misalignment angle, /, have been considered.

Fig. 14. Effect of in-plane fiber misalignment on the SiC/SiC CMC composite

effective axial shear modulus G�
12 , transverse Young’s modulus E�

2 , axial Young’s

modulus E�
1 , area of the von Mises criterion damage initiation envelope Avm, area of

the damage-based criterion damage initiation envelope AD, and strength, all

normalized with respect to their pristine values.
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performed). The influence on damage initiation surfaces, however,

could not be determined.

Also shown in Fig. 9 are the variations of the areas of the dam-

age initiation envelopes predicted using the von Mises, Avm, and

damage-based, AD, criteria in the r11–r22 plane. The decreasing

trends in these values indicate the overall loss of strength of the

material in this plane due to fiber misalignment. However, for very

large standard deviations of the misalignment angle, this trend

appears to reverse.

A final curve plotted in Fig. 9 shows the impact of fiber mis-

alignment on the predicted strength of the composite loaded in

axial tension, as dictate by the maximum von Mises stress, �rðbcÞ
eq ,

see Eq. (28), in the matrix constituent material. That is, this

‘strength’ corresponds to the global uniaxial tensile stress for dam-

age initiation in the matrix, predicted based on the maximum local

von Mises stress throughout the matrix. It can be readily observed

that the impact of fiber misalignment on this axial strength, which

can only be predicted by a micromechanical analysis, is substantial

(for example, at sw = 4�, 16% reduction), and much greater than the

impact on the axial Young’s modulus, E�
1 (for example, at sw = 4�,

only 1.2% reduction). Initially, as small amounts of misalignment

are introduced, this curve decreases rapidly with increasing sw
due to increased stress (particularly shear) in the matrix. At greater

values of sw, the normal distribution flattens (see Fig. 5), and the

strength curve in Fig. 9 levels off, approaching the value for fully

random fiber in the x1–x2 plane (0.124).

In order to further investigate effect of the fiber misalignment

on the composite, Fig. 10 shows surface plots of AD, Avm, the afore-

mentioned von Mises stress based strength, and the effective axial

Young’s modulus (E�
1), all normalized by their pristine values as in

Fig. 9. By adding the effect of out-of-plane misalignment, /, it can

be observed that the effect of the latter misalignment is greater

than that of in-plane misalignment on AD and Avm (Fig. 10a and

b). As for the strength and effective axial Young’s modulus, it

appears that the effects of both in-plane and out-of-plane misa-

lignments are similar. It is also clear that, across all values of both

misalignment angle standard deviations, the effect on the effective

axial Young’s modulus, which could be calculated using the macro-

approach, is significantly less than the other measures of compos-

ite performance. The fall off in the effective Young’s modulus is

also much less steep.

Fig. 11 shows the normalized von Mises equivalent stress distri-

butions in the composite with no fibermisalignment (pristine) sub-

jected to global uniaxial stress loading in the fiber and transverse

directions. Also shown is the corresponding distribution for the case

where the fibers are fully randomly oriented, whose response, as

mentioned previously, is isotropic, which yields identical equiva-

lent stress distributions irrespective of the orientation of the

applied uniaxial loading. Comparing Fig. 11a–c, it is clear that the

stresses in the fiber increase and the stresses in the matrix decrease

by introducing random fiber orientations. The opposite result can

be observed when comparing Fig. 11b and c. Thus the effect of ran-

dom fiber orientation on the composite behavior is significant.

5.2. Ceramic matrix composite

A second application considers a 0.26 fiber volume fraction uni-

directional SiC/SiC composite. The isotropic SiC fiber properties are

as follows: Young’s modulus = 400 GPa and Poisson’s ratio = 0.17.

The isotropic SiC matrix properties are: Young’s modu-

lus = 335 GPa and Poisson’s ratio = 0.18. In addition, there is an

BN-based compliant interfacial layer whose volume fraction is

0.1. Its isotopic properties are as follows: Young’s modulus = 5 GPa

and Poisson’s ratio = 0.22. A 28 by 28 subcell discretization of the

Fig. 15. von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the SiC/SiC CMC. (a) Pristine composite subjected to axial stress �r11 . (b)

Pristine composite subjected to transverse stress �r22 . (c) Fully random fiber distribution subjected to either axial or transverse stress.
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repeating unit cell, which now includes an explicit BN interfacial

phase, has been considered, as shown in Fig. 12.

Fig. 13 shows the predicted initial damage surfaces for the CMC

for the damage-based criterion, Eq. (30), for various values of the

standard deviation of the misalignment angles, sw and s/, under

normal loading in the fiber (x1) and transverse (x2) directions. Also

shown in the figure are the envelopes for the fully random case.

The CMC behaves quite differently than the PMC previously con-

sidered. In the longitudinal (fiber) direction, the CMC exhibits

much less mismatch in properties between the fiber and matrix,

and the interfacial compliant layer, which is in parallel with the

fiber and matrix, has only a minor effect. In contrast, in the trans-

verse direction, the interfacial compliant layer (now in series with

the fiber and matrix) introduces a great deal of property mismatch.

This is exactly opposite to the PMC, wherein the longitudinal direc-

tion property mismatch it much larger (80:1) compared to the

transverse mismatch (4:1). As a result, the effect of relatively small

amounts of fiber misalignment on the CMC is considerably less

compared to the PMC. Furthermore, also in contrast to the previ-

ously considered PMC, the addition of out-of-plane fiber misalign-

ment, see Fig. 13b, does not exhibit a significant effect.

Fig. 14 shows the variation of various composite properties with

respect to the in-plane misalignment angle w, normalized with

respect to their values in the absence of misalignment. Note that

the scale of the ordinate axis in Fig. 14 is significantly smaller than

that in Fig. 9 for the PMC. As such, it is clear that the effect of mis-

alignment on the various properties for the CMC is considerably

less pronounced. The strength remains the property most affected

by the fiber misalignment, but the trend reversals in the Avm and

AD, observed in Fig. 9 are now absent.

Finally, the normalized local von Mises equivalent stress distri-

butions in the CMC are shown in Fig. 15. Fig. 15a and b shows the

stress distributions in the pristine composite loaded in the axial

and transverse directions, respectively. The compliant layer can

be clearly observed. The induced stress concentrations are signifi-

cantly higher in the transversely loaded case, Fig. 15b, due to the

compliant layer’s influence, which isolates the fiber. Fig. 15c shows

the fully random CMC case, which, compared to the axially loaded

pristine case, Fig. 15a, exhibits greater stress in the matrix and

lower stress in the fiber.

6. Conclusions

A micromechanical formulation has been presented that is

capable of predicting the effects of statistical distributions of fiber

misalignment on the behavior of composite materials. The key

unique feature is the ability of the method to predict not only

effective composite properties, but also local fields. This is possible

because this approach is based on the establishment of the com-

posite concentration tensors, which include the effects of the fiber

misalignment. It is thus possible (although not done herein) to pre-

dict the complete nonlinear response of the composite, including

interfacial debonding and progressive damage. This approach

was applied to the case of linear elasticity and perfect bonding,

excluding progressive damage. However, in the absence of fiber

misalignment, imperfect debonding and progressive damage have

been addressed by Aboudi et al. [2]. In all cases presented, normal

distributions of in-plane and out-of-plane fiber misalignment

angles have been considered. It has been shown that the effect of

these fiber misalignments are more significant in PMCs as com-

pared to CMCs due to the fact that PMCs have significantly greater

property mismatch. In the case of the PMC, the substantial varia-

tions of the initial damage surfaces with the standard deviation

of the misalignment angles have been illustrated. Fully random

fiber orientation has also been considered and shown to have a

major impact on the initial damage surfaces and local field distri-

butions when compared to the pristine composite.

It should be noted that the presented approach to capturing the

effects of fiber misalignment is applicable to any micromechanical

approach that can accurately predict the strain concentration ten-

sor of a composite, including the finite element method. Due to the

proven ability of the HFGMC model to analyze various nonlinear

effects, the proposed method could also be extended to consider

material nonlinearity such as damage and inelasticity within the

constituents and to consider the thermal–mechanical response of

composites. Additional potential applications include analysis of

composites with given fiber paths, short/nanofiber composites

with known fiber alignment/waviness (c.f., [38]) and multiscale

analysis within laminated plate theories and finite element analy-

ses, which could be used to capture misalignment effects on the

response of woven composites. Application to biological materials,

as has been done with the microsphere model, is also possible.
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