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Abstract—A model capturing the effect of general strain on the
electron effective masses and band-edge energies of the lowest
conduction band of silicon is developed. Analytical expressions
for the effective mass change induced by shear strain and valley
shifts/splittings are derived using a degenerate k - p theory at the
zone-boundary X point. Good agreement to numerical band-
structure calculations using the nonlocal empirical pseudopoten-
tial method with spin—orbit interactions is observed. The model is
validated by calculating the bulk electron mobility under general
strain with a Monte Carlo technique using the full-band structure
and the proposed analytical model for the band structure. Finally,
the impact of strain on the inversion-layer mobility of electrons
is discussed.

Index Terms—Band structure, MOS devices, shear strain,
strain/stress, strained-silicon (Si), surface mobility.

I. INTRODUCTION

TARTING with the 90-nm CMOS technology node, strain
S engineering takes a key position among other technological
innovations since it is cost effective and the beneficial effect
of strain on the device performance is comparatively large.
Ever since, increasing emphasis is put on strain technologies to
further enhance chip performance in upcoming CMOS technol-
ogy nodes.

The influence of strain on the mobility of intrinsic silicon (Si)
was first investigated in the early 1950s [1], [2]. While strain
effects were not exploited initially, strained-Si was revived at
Massachusetts Institute of Technology in the early 1990s [3]. In
1992, it was first demonstrated that n-channel MOSFETSs with a
strained-Si channel exhibit a 70% higher effective mobility preg
than those with unstrained Si [4], [5]. Since that time, semi-
conductor industry has adopted several different technologies
to introduce strain in the Si channel of MOSFETs.

The linear piezoresistance coefficients of Si provide a simple
method to estimate the effect of strain on the mobility of
intrinsic Si. However, two problems arise when using models
based on the piezoresistance coefficients of bulk Si: 1) In scaled
devices, the strong quantum confinement has to be taken into
account; thus, the bulk piezoresistance coefficients cannot be
used to calculate the channel mobility. 2) The saturation of
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mobility enhancement at large strain cannot satisfactorily be
modeled using piezoresistance coefficients. A much better
understanding can be obtained when taking into account the
effect of strain on band structure and solving the Boltzmann
transport equation using a Monte Carlo (MC) algorithm [6]-[8].
However, up to now, most theoretical work has been per-
formed for biaxially strained-Si, whereas a thorough theoret-
ical analysis of electron mobility enhancement in arbitrarily
strained-Si is missing. This fact is surprising because in the
state-of-the-art CMOS technologies, strain can be induced in
the transistor channel via various stressors and/or from the vir-
tual substrate, and the resulting strain is neither purely biaxial
nor uniaxial.

In this paper, the effect of a general strain tensor on the
band structure and the bulk and channel mobilities of electrons
is investigated. The band-structure calculation of strained-Si
is described in Section II. Special focus is put on the effect
of shear strain as it induces a large effective mass change for
electrons. In Section III, we describe the effect of strain on the
mobility enhancement in bulk Si and in Si inversion layers with
one and two interfaces.

II. BAND-STRUCTURE MODELING

The empirical pseudopotential method (EPM) [9], including
nonlocal effects and spin—orbit coupling, is frequently used to
calculate the band structure of semiconductors, as this method
is efficient and requires only a small number of parameters.
These parameters are usually calibrated to match energy gaps
and effective masses determined from experiments and are
available for a large set of materials [10]. The method can
be very naturally adapted to incorporate strain effects and has
been used to investigate the band structure of biaxially strained-
Si;_,Ge, grown on Si;_,Ge, for various surface orientations
[6], [11], [12]. Since local process-induced strain in today’s
strain technologies is generally not biaxial, in this paper, we
have shown how general strain conditions can be incorporated
into the band-structure calculation. Special focus is put on the
orthorhombic distortion of the crystal resulting from uniaxial
stress along the [110] direction, since this type of strain is
frequently used to enhance the electron mobility in n-channel
MOSFETs.

For band-structure calculations, we followed the work of
Rieger and Vogl [12]. In Table I, the parameters employed
in the EPM calculations are listed. They consist of the three
local form factors V. /3> V /& and V. /T the two parameters
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TABLE 1
PARAMETERS EMPLOYED IN THE BAND-STRUCTURE CALCULATION OF Si

EPM parameters Si value Mat. parameters  Si value
V3 Ry) —0.2241 ap (A) 5.43
Vg Ry) 0.052 c11 (GPa) 167.5
Vit Ry) 0.0724 c12 (GPa) 65.0
Ao (Ry) 0.03 cqq (GPa) 79.6
Ro (A) 1.06 13 0.53

© (Ry) 0.00023

¢CAY 7.5589

Ag and Rg to model the nonlocal correction, and the two
parameters ;. and ¢ entering the spin—orbit interaction term. The
parameters are essentially equal with the parameter set provided
in [12], with the exception of p and (, which have been
adjusted to yield the desired split-off energy of 44 meV in the
unstrained lattice.

A. EPM Including General Strain Tensor

To handle arbitrary strain conditions, four modifications in
the band-structure calculation are implied.

1) The direct lattice vectors a’ of the strained crystal have
to be calculated by deforming the vectors a; of the
unstrained crystal, i.e.,

af =al +) ejal (1)
J

where ¢;; represents the strain tensor. From the strained
lattice basis vectors, the strained reciprocal lattice vectors
can be obtained, which are used for the diagonalization
of the Hamiltonian matrix and the calculation of the
normalizing volume of the strained unit cell, i.e.,

6 :QO(1+5mx+5yy+5zz)~ ()

2) Since the local pseudopotential form factors enter the
calculation at the strained reciprocal lattice vectors, an
interpolation of the pseudopotential is required. Several
expressions have been proposed [12], [13]. We follow
[12] using kFp = 1.66 (27 /ag) for the Fermi wave vector.
Generally, the macroscopic strain is not sufficient to
determine the absolute positions of the two atoms in the
bulk primitive unit cell. An additional displacement has to
be accounted for, which is frequently quantified using the
internal strain parameter £. In the case of general strain,
the displacement of the central atom with respect to the
four vertex atoms that span the unit tetrahedron in the
diamond structure is calculated in the following manner:
First, the positions of the vertex atoms and the central
atom are derived from the macroscopic strain. Afterward,
the center of the four vertex atoms is determined, which
does not necessarily coincide with the position of the
central atom. As a consequence, the central atom moves
toward the center of the four vertex atoms to minimize the
nearest neighbor central force energy of the system. How-

3)
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ever, opposing this reduction of energy is the increase
of the nearest neighbor noncentral force energy and the
far-neighbor energy [14]. The actual displacement of the
central atom is thus frequently modeled in terms of an
internal displacement factor €. For & = 0, the central atom
retains its position determined from the macroscopic
strain only; for £ = 1, the central atom moves to the
center of the four vertex atoms, so all four bonds are of
the same length. We used a value of ¢ = 0.53, which has
been obtained theoretically [15].

Strain-induced symmetry breaking increases the size
of the irreducible wedge, which is required for band-
structure calculations [16].

4)

B. Shear Strain Effects

The degeneracy of the two lowest conduction bands A; and
Ao/ at the zone-boundary X points is a result of the crystal
symmetry of Si and can be lifted by reducing the symmetry
by applying strain. Whenever the strain tensor in the principal
crystal system contains nonvanishing shear elements (e.g., as
a result of stress along (110)), the strained lattice belongs to
an orthorhombic crystal system, and the degeneracy is lifted.
From the k - p theory including terms of third order, Bir and
Pikus found that by lifting the degeneracy at a zone-boundary
X point, a comparatively large change in the energy dispersion
of the conduction-band minimum located close to this X point
is induced [17]. This effect was verified experimentally by
Hensel et al. [18], who measured the change in effective mass
in Si stressed along (110).

In unstrained Si, the constant energy surfaces of the six
conduction-band valleys (Ag valleys) have a prolate ellipsoidal
shape, where the semiaxes are characterized by m; and m,,
denoting the longitudinal and transverse electron masses, re-
spectively. The minima of the three valley pairs are located
along the three equivalent (100) directions and have the same
band-edge energies. A nonvanishing shear component &4, in
the strain tensor affects the energy dispersion of the lowest
conduction band in three ways.

1) The band-edge energy of the valley pair (A5 valleys) ori-
ented along the [001] direction moves down with respect
to the four A4 valleys oriented along [100] and [010].
The effective mass of the A, valleys changes; at small
shear strain, the constant energy surfaces take the form
of scalene ellipsoids characterized by three masses, i.e.,
™y, [001]> T, [110]> and My 110]-

The position of the Ay valley minima moves toward the
zone-boundary X points, kx = 27 /ao(0,0,+1).

2)

3)

Using a degenerate k - p theory at the zone-boundary X point,
neglecting spin—orbit and nonlocal effects, analytical expres-
sions characterizing the shape of the strained conduction-band
minima at kg = 27/ag(0, 0, 0.85) can be derived [17], [18].
From these formulas, we derived the energy shift between the
As valleys with respect to the Ay valleys, i.e.,

—eiyA/4f-@2,
—(2leay /K| = 1)A/4,

eyl <®
lezy] > K

A-Eshear = { (3)
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Fig. 1. EPM calculations of the two lowest conduction bands of Si near the

zone-boundary X point, k= (27/ap)(0, 0, 1), in the absence of shear strain
(solid curves) and with e, applied (dotted, dashed, and dash-dotted curves).

Here, a dimensionless parameter ~ has been introduced. It
is given by k = A/(4Z,,), where A is the band separation
between the two lowest conduction bands at the conduction-
band edge of the unstrained lattice, and =,,s is the deformation
potential responsible for the band splitting of the two lowest
conduction bands at the zone boundary [18], i.e.,

(Ea, — Enay)| =45 Eyy. )

X001

For arbitrary strain conditions, the energy shift from axial
strain AE ., has to be added to the energy shift induced by
shear strain to calculate the total energy shift of the Ay valley
pair along [001], i.e.,

AE’axial = Ed(saca: + Eyy + €zz) + Eu52z (5)
AE‘tot = A-Eaxial + A-Esheam~ (6)

The energy shift from axial strain is determined by the two
deformation potentials =, and =4 [19], [20].

The effective masses of the valley pair along the [001]
direction are given by

(1—e2 /K27 eyl < ®
mn(em={ (TN SE o
o (1 — ngmy/ﬁ)ila |5ary| <K
mmaCafme = { (2l e S @
] e /R) e <
My, T10) (Eay) /e = {(1 T T T W P

Here, sgn denotes the signum function. It should be noted that
a unique expression for the parameter 7 can be derived using
the k - p theory [21].

C. EPM Results

The strain-induced lifting of the degeneracy of the A; and
Ay conduction bands is shown in Fig. 1. The three effects
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TABLE II
RESULTS FROM Si EPM CALCULATIONS

parameter  EPM result  parameter EPM result
Zyq (V) 9.29 my (mg) 0.916
Ed (eV) 1.1 my (11’10) 0.194
Ey (V) 7.0 K 0.0189
A (eV) 0.53 n —0.809
1.5 T
1+ 176 MPa along [110]
Iy 0.5
E ol
5
-0.5}F o
® oO©O o 4
J1E O cyclotron resonance measurements | _]
s —— simulation
-1.5 . =
[110] [010] [110]

in-plane directions

Fig.2. Calculated anisotropy of the cyclotron resonance effective mass m* =
vmymy of the (001) ellipsoid for 176-MPa tensile stress along [110] as
compared to measurements [18]. The effective mass change in the (001) plane
is consistent with experimental data.

induced by shear strain €, on the A; band minima along [001]
can be clearly observed: 1) the change of the band-edge energy;
2) the change of the effective masses; and 3) the change of
the position of the band minimum. Calculations indicate that
€4y does not change the conduction-band valleys along [100]
and [010], which is consistent with theoretical arguments from
symmetry considerations.

The parameters required in the analytical expressions (3)—(9)
were extracted from EPM calculations and are summarized in
Table II. In agreement with [12], a value of 9.29 eV was ex-
tracted for =,,. The dilatation deformation potential =4, which
cannot directly be determined from EPM calculations, was set
to 1.1 eV [6]. The value for the shear deformation potential
Zw = 7.0 eV lies between the experimental value of 5.7 eV
[18] and the theoretical value of 7.8 eV [22]. The band sepa-
ration A at the conduction-band edge is found to be 0.53 eV,
yielding a value of 0.0189 for the parameter x entering the
analytical expressions (3) and (7)—(9).

The effective masses were extracted from EPM calcula-
tions by computing the curvature of the minima of the first
conduction band. In unstrained Si, the obtained values, i.e.,
my = 0.916 mg and m; = 0.194 my, are in close agreement to
experimental data. The calculated change of the effective mass
induced by shear strain has been compared to values extracted
from cyclotron resonance measurements. Good agreement is
achieved, as can be seen in Fig. 2. Finally, we evaluated the
parameter 7 = —0.809 from band-structure calculations.

The splitting between the Ay and A4 conduction-band val-
leys induced by shear strain €., is shown in Fig. 3, where
results from EPM calculations are compared to the analytical
expression (3). Note that for both positive and negative shear
strain, the A, valley pair moves down in energy with respect to
the A4 valleys.
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Fig. 3. Shift of the minima of the Afjgg] and A[g;0) valleys with respect
to the A[ggy valleys induced by shear strain €5,. Comparison with analytical
result from (3).
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Fig. 4. Comparison of EPM calculations for the effective masses along the

directions [001], [110], and [110] with analytical expressions (7)—(9).

In Fig. 4, the effective mass dependence on shear strain €,
extracted directly from EPM calculations is compared to the
analytical expressions. Good agreement can be observed for
Eay < 1.5 %; for larger values of shear strain, the change of the
effective masses as obtained from the k - p theory is smaller
than that from EPM calculations.

Furthermore, it was found that uniaxial tensile stress along
(100) does not significantly change the transverse masses in
any of the six conduction-band valleys, which is consistent
with the theoretical calculations of Rieger and Vogl [12] and
Uchida et al. [23].

III. SIMULATION OF ELECTRON MOBILITY

Electron mobility was calculated numerically by solving
the semiclassical Boltzmann equation using an MC method.
For this purpose, the simulator Vienna Monte Carlo (VMC)
[24] was developed, offering simulation algorithms for both
bulk semiconductors and 1-D devices with models based either
on both analytical bands (ABMC) or the full-band structure
(FBMC). VMC provides a comprehensive set of scattering
models, including phonon scattering, ionized impurity scat-
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TABLE III
MODES, COUPLING CONSTANTS, PHONON ENERGIES, AND
SELECTION RULE OF INELASTIC PHONON SCATTERING

Mode A [MeV/cm] hw [meV]  selection rule
Transversal Acoustic 47.2 12.1 f
Longitudinal Acoustic 75.5 18.5 f
Longitudinal Optical 1042.0 62.0 f
Transversal Acoustic 34.8 19.0 g
Longitudinal Acoustic 232.0 47.4 g

Transversal Optical 232.0 58.6 g

tering, alloy scattering, and impact ionization. Additionally,
the effective mobility in Si inversion layers can be calculated
using ellipsoidal nonparabolic subbands. For the calculation of
the 2-D subband energies and envelope wave functions, the
Schrodinger and Poisson equations are solved self-consistently
using VSP [25].

For the subband transport calculations, the Si conduction
band was approximated by three nonparabolic ellipsoidal valley
pairs using the masses that were extracted from the EPM
calculations and a nonparabolicity coefficient « of 0.5 eV 1.
The strain effects are modeled using the analytical expressions
(3) and (7)—(9); thus, both the effective mass change in the A,
valley and the additional valley shift are taken into account.

A. Bulk Scattering Models

A phonon scattering model that is based on the well-accepted
bulk phonon spectrum of Jacoboni and Reggiani [26] was
used. The model takes into account long-wavelength acoustic
phonons causing intravalley transitions and three f-type and
g-type phonons for intervalley transitions. Intravalley scattering
from acoustic phonons is treated as an elastic process using
the value of 9.0 eV for the acoustic deformation potential. For
intervalley phonon scattering, we adjusted the original values
for the coupling constants given in [26], as discussed in [27], to
achieve a bulk mobility enhancement factor of 70% in biaxially
strained-Si layers.

For full-band simulations, phonon scattering models with
constant matrix elements are used [28]. In this formulation,
the scattering rates are proportional to the density of states
calculated from the band structure. The coupling constants for
acoustic and optical intervalley phonons, as well as the phonon
energies, are given in Table III.

B. Inversion-Layer Scattering Models

In the Si inversion layer, phonon scattering and surface
roughness scattering as the dominant sources of scattering at
large inversion-layer concentrations are accounted for, whereas
impurity scattering producing deviations from the universal
mobility at low inversion-layer concentrations is neglected. De-
generacy effects are included, as the 2-D electron gas (2DEG)
is highly degenerate at high inversion-layer concentrations [29].

The bulk phonon scattering model has been adapted for the
2DEG following the treatment of Price [30]. In the 2DEG,
scattering with long-wavelength acoustic phonons causes
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Simulated bulk mobility of intrinsic Si as a function of strain for stress direction (a) [100] and (b) [110]. Mobility is plotted along the stress direction and

along two orthogonal directions from (solid lines) FBMC and (dotted lines) ABMC. Symbols indicate the change of mobility calculated using the piezoresistance

coefficients [2].

intrasubband and intersubband transitions within the same sub-
band ladder. The three f-type and g-type phonons can addition-
ally cause transitions to different subband ladders [31]. The
value of the acoustic deformation potential was adjusted to
14.8 eV. The surface roughness scattering rate was modeled
according to Esseni [32], who adapted the original approach of
Ando et al. [33] for scattering at two interfaces. The step height
A and the correlation length L characterizing the interface
roughness were chosen to be 0.4 and 1.3 nm, respectively.
Screening was accounted for using a numerically calculated
expression of the 2-D static dielectric function [31].

C. Bulk Mobility Results

Comparing the simulation results from ABMC with FBMC
allows the following: 1) a direct interpretation of the FBMC
results and 2) the extraction of the limits of validity of the
analytical band model. In Fig. 5, we compare the simulation
results for the electron mobility of strained-Si obtained with
FBMC and ABMC for the stress directions [100] and [110].
Mobility is plotted in three orthogonal directions, one being
parallel and two being perpendicular to stress.

In Fig. 5(a), the simulation results from ABMC and FBMC
for stress along [100] are compared, and good agreement can
be observed. The resulting mobility is anisotropic in the (001)
plane ([100) 7 H[o10]) and can solely be explained as a result
of strain-induced X -valley shifts. Mobility saturates at approx-
imately 1% strain regardless of the sign of strain. The saturated
mobility values are larger for compressive strain since for this
type of strain, four X-valleys are being depopulated, whereas
for tensile strain, only two valleys are being depopulated.
Thus, the larger amount of intervalley scattering and the larger
transport mass of the two populated valley pairs reduce the
mobility enhancement for tensile stress.

In Fig. 5(b), the simulation results are shown for stress along
[110]. At compressive stress (negative e, ), four valleys move
down in energy, yielding a decreased mobility in the (001)
plane and mobility enhancement along [001]. However, if
tensile stress is applied along [110], the strain-induced mobility
enhancement is remarkably different from the other cases:

Mobilities along the three directions, i.e., [110], [110], and
[001], are different from each other, with the largest mobility
enhancement in the [110] direction. Furthermore, no clear
in-plane mobility saturation is observed as €, increases. The
reason for the unsimilar mobility enhancement at the [110]
tensile stress is that, for this stress, the valley pair along [001]
is primarily populated. As shown in Section II-B, this valley
pair experiences a pronounced deformation as a function of
shear strain e,,,.

In our ABMC simulation, this deformation was accounted
for by using expressions (3) and (7)—(9) to model the changing
shape of the conduction-band valley as a function of shear
strain. It can be seen that the simulation results from ABMC
qualitatively agree with those from FBMC up to 0.5% shear
strain. At larger strain levels, the band deformation is very
pronounced that an energy-band description in terms of an
effective mass is no longer accurate, and FBMC has to be used
to calculate the low-field mobility. It should be noted that an
even better agreement between ABMC and FBMC could be
obtained if the strain effect on the nonparabolicity coefficient
« was included in the analytical band model.

The simulated mobility enhancement for stress along [100]
and [110] was checked with predictions from a model based
on the linear piezoresistance coefficients [2]. Good agreement
is found for both stress directions at small stress (< 200 MPa)
where the model is valid (compare with Fig. 5). Models solely
based on strain-induced intervalley electron transfer [19] fail
to explain the origin of the nonvanishing shear piezoresistance
coefficient w4y = —13.6 - 10! Pa~!; hence, these models are
not capable of reproducing the anisotropy of electron mo-
bility in uniaxially stressed channels with the [110] channel
direction [34], [35].

D. Channel Mobility Results

Depending on the substrate orientation, the Ag valleys split
into up to three different subband ladders. On substrates with
(001) standard orientation two subband ladders arise, a two-
fold degenerate ladder (unprimed ladder) with spherical energy
dispersion, and a four-fold degenerate ladder (primed ladder)
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Fig. 6. Simulated effective mobility for substrate orientation (001) of (solid lines) unstressed and (dashed lines) 1-GPa stressed Si for two body thicknesses. The
mobility components are plotted (closed symbols) parallel and (open symbols) perpendicular to the stress direction (a) [110] and (b) [100]. Closed squares show
experimental data for unstrained silicon-on-insulator with Tg = 22 nm from [38].

with elliptical subbands. Compared to other substrate orien-
tations, the (001) orientation intrinsically yields the largest
effective mobility for electrons, which is isotropic in the plane
of transport [36], [37].

In this paper, the channel mobility enhancement for strained
(001)-oriented substrate is investigated for two cases: stress and
channel both parallel to the [110] direction and to the [100]
direction. Additionally, the impact of the Si body thickness on
the mobility enhancement is highlighted.

In Fig. 6(a), the mobility parallel and perpendicular to the
channel direction [110] under 1-GPa stress along [110] is com-
pared to the unstrained mobility at two Si body thicknesses. At
relatively large body thicknesses (T > 20 nm), tensile stress
along [110] has two beneficial effects on the [110] mobility:
The splitting between the unprimed and primed ladders is
increased, and the transport mass in stress direction is reduced
with respect to the unstrained case. From these two effects, one
can understand the mobility enhancement parallel to the stress
direction at all inversion-layer densities. In [110], perpendicular
to stress, the effective mass is increased, leading to a smaller
mobility enhancement in this direction at small inversion-layer
concentration, which further diminishes at large inversion-layer
concentrations.

For very small body thickness (75 < 5 nm), the energetical
separation between the subband ladders is higher due to strong
quantum confinement. Thus, the stress-induced valley shifts
have a negligible effect on the mobility, and the larger (smaller)
mobility parallel (perpendicular) to stress results from the ef-
fective mass change only and is found to be in good agreement
with experimental data [23], [37].

In Fig. 6(b), the effect of uniaxial stress on the mobility with
channel direction and stress direction parallel to [100] is shown.
Stress along [100] lifts the degeneracy of the fourfold (primed)
ladder; thus, three subband ladders arise. Since no effective
mass change occurs, Apeg occurring at large Tg is a result
of subband ladder repopulation only. As the body thickness is
decreased, the subband separation increases, and thus, the pop-
ulation of the higher subband ladders inevitably decreases, such
that strain cannot further decrease the population. Therefore,
the initial mobility enhancement parallel to stress seen at large
T = 20 nm vanishes at T'g = 2.4 nm.

IV. SUMMARY AND CONCLUSION

The effect of general strain on the band structure of Si was
systematically investigated by means of EPM band-structure
calculations. A pronounced effect of shear strain on the
conduction-band shape has been observed and was quantified
in terms of the following: 1) an effective mass change and
2) a shear-strain-induced valley splitting. Analytical expres-
sions for both effects have been derived using the k - p theory.
The band structure was used in FBMC simulations to analyze
the effect of strain on the electron mobility. MC simulations
using an analytical description of the electron bands were
shown to be valid in a certain range of shear strain (< £0.5%).
At larger shear strain, however, the band deformation is very
pronounced that full-band modeling is required. Using MC
simulations and a rigorous modeling of the strain effect on the
electronic band structure, the limits of the linear piezoresistance
model can be determined to calculate the electron mobility
under general strain. In Si inversion layers on (001)-oriented
substrate with small body thickness, the effective mass change
by shear strain is the only mechanism able to enhance the
electron mobility.
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