Bond University Research Repository

The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis

George, Elena S; Marshall, Skye; Mayr, Hannah; Trakman, Gina; Tatucu-Babet, Oana A; Lassemillante, Annie-Claude; Bramley, Andrea; Reddy, Anjana J.; Forsyth, Adrienne; Tierney, Audrey C; Thomas, Colleen J; Itsiopoulos, Catherine; Marx, Wolfgang

Published in:

Critical Reviews in Food Science and Nutrition

DOI.

10.1080/10408398.2018.1470491

Licence: Other

Link to output in Bond University research repository.

Recommended citation(APA):

George, E. S., Marshall, S., Mayr, H., Trakman, G., Tatucu-Babet, O. A., Lassemillante, A-C., Bramley, A., Reddy, A. J., Forsyth, A., Tierney, A. C., Thomas, C. J., Itsiopoulos, C., & Marx, W. (2019). The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis. *Critical Reviews in Food Science and Nutrition*, *59*(17), 2772-2795. https://doi.org/10.1080/10408398.2018.1470491

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.

Download date: 27 Aug 2022

Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20

The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis

Elena S George, Skye Marshall, Hannah L Mayr, Gina L Trakman, Oana A Tatucu-Babet, Annie-Claude M Lassemillante, Andrea Bramley, Anjana J Reddy, Adrienne Forsyth, Audrey C Tierney, Colleen J Thomas, Catherine Itsiopoulos & Wolfgang Marx

To cite this article: Elena S George, Skye Marshall, Hannah L Mayr, Gina L Trakman, Oana A Tatucu-Babet, Annie-Claude M Lassemillante, Andrea Bramley, Anjana J Reddy, Adrienne Forsyth, Audrey C Tierney, Colleen J Thomas, Catherine Itsiopoulos & Wolfgang Marx (2018): The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2018.1470491

To link to this article: https://doi.org/10.1080/10408398.2018.1470491

Publisher: Taylor & Francis

Journal: Critical Reviews in Food Science and Nutrition

DOI: https://doi.org/10.1080/10408398.2018.1470491

The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: a systematic review and meta-analysis

Elena S George^{1,2}, Skye Marshall³, Hannah L Mayr¹, Gina L Trakman¹, Oana A *Ta*tucu-Babet¹, Annie-Claude M Lassemillante⁴, Andrea Bramley¹, Anjana J Reddy¹, Adrienne Forsyth¹, Audrey C Tierney^{1,5}, Colleen J Thomas⁶, Catherine Itsiopoulos¹, Wolfgang Marx^{1,7*}

- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Victoria, Australia
- 2. School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- 3. Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.
- 4. Department of Health and Medical Science and Department of Health Professions, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, Victoria, Australia.
- 5. School of Allied Health, University of Limerick, Ireland
- 6. Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, Victoria Australia.
- 7. School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
- 8. Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia

*Corresponding author: wolf.marx@deakin.edu.au

Abstract

The polyphenol fraction of extra-virgin olive oil may be partly responsible for its cardioprotective effects. The aim of this systematic review and meta-analysis was to evaluate the effect of high versus low polyphenol olive oil on cardiovascular disease (CVD) risk factors in clinical trials. In accordance with PRISMA guidelines, CINAHL, PubMed, Embase and Cochrane databases were systematically searched for relevant studies. Randomized controlled trials that investigated markers of CVD risk (e.g. outcomes related to cholestero), inflammation, oxidative stress) were included. Risk of bias was assessed using the Jadad scale. A meta-analysis was conducted using clinical trial data with available CVD risk outcomes. Twenty-six studies were included. Compared to low polyphenol olive oil, high polyphenol olive oil significantly improved measures of malondialdehyde (MD: -0.07μmol/L [95%CI: -0.12, -0.02 μ mol/L], l^2 : 88%; p=0.004), oxidized LDL (SMD: -0.44 [95%CI: -0.78, -0.10 μ mol/L]; l^2 : 41%; P=0.01), total cholesterol (MD 4.5mg/dL [95%CI: -6.54, -2.39mg/dL]; p<0.0001) and HDL cholesterol (MD 2.37mg/dL [95%CI: 0.41, 5.04mg/dL]; p=0.02). Subgroup analyses and individual studies reported additional improvements in inflammatory markers and blood pressure. Most studies were rated as having low-to-moderate risk of bias. High polyphenol oils confer some CVD-risk reduction benefits; however, further studies with longer duration and in non-Mediterranean populations are required.

Keywords: olive oil; polyphenol; review; cardiovascular; oxidative stress; Mediterranean diet

Introduction

Numerous epidemiological studies and landmark clinical trials suggest that the traditional Mediterranean diet is cardioprotective (de Lorgeril et al. 1999, Estruch et al. 2006, Itsiopoulos et al. 2011, Itsiopoulos et al. 2011). There are many components of this dietary pattern that provide cardioprotective effects and mediate health benefits including red wine, high vegetable and fish intake, and the high consumption of extra virgin olive oil (EVOO). Clinical and animal studies demonstrate that EVOO can improve cardiovascular disease (CVD) outcomes including blood pressure, inflammation, and cholesterol levels (Perona et al. 2004, Beauchamp et al. 2005, Farras et al. 2015).

EVOO is high in monounsaturated fatty acids (MUFAs) which may mediate the prevention and management of CVD and associated risk factors through various mechanisms including the favorable modulation of cholesterol levels and improvement of insulin sensitivity (Schwingshackl and Hoffmann 2012). In addition to the high MUFA content, the polyphenol content of EVOO may also be cardioprotective (Covas, Konstantinidou and Fito 2009). Studies that have directly compared olive

oil with other high-MUFA oils, including flaxseed and sunflower oil, have shown superior outcomes in low-density lipoprotein (LDL) oxidation, lipoprotein concentration, and LDL particle size with provision of olive oil (Aguilera et al. 2004, Harper, Edwards and Jacobson 2006). A systematic review and meta-analysis demonstrated that compared with seed oils, olive oil significantly improved total, high-density lipoprotein (HDL) (Ghobadi et al. 2018). Emerging preclinical and observational evidence suggests that dietary polyphenol intake may reduce inflammation and is associated with improved all-cause mortality (Tresserra-Rimbau et al. 2014, Joseph, Edirisinghe and Burton-Freeman 2016). EVOO, compared to other dietary fats, (Perez-Jimenez et al. 2010) contains a unique composition of polyphenols. In particular, EVOO contains a high concentration of the polyphenols hydroxytyrosol and oleuropein, which in preclinical studies, have demonstrated cardioprotective properties including the favorable modulation of pathways related to inflammation, oxidative stress, homocysteine, cholesterol levels and cell adhesion (Parkinson and Cicerale 2016, Peyrol, Riva and Amiot 2017).

To determine the relative contribution of olive oil polyphenols to the known beneficial properties of the fatty acid profile present in clive oil, numerous trials have investigated the effect of high polyphenol olive oil (HPOC) versus low polyphenol olive oil (LPOO). The aim of this systematic review and meta-analysis was to examine the evidence for modulation of cardiovascular risk factors in existing clinical trials that have compared the effect of HPOO versus LPOO. We examined whether polyphenols, specifically, elicited superior health outcomes and if the evidence supports recommendations for the preferential use of EVOO over refined olive oil.

Methods

Literature search

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Liberati et al. 2009) and as registered on PROSPERO (42017070060), relevant studies were retrieved from PubMed, Embase, The Cochrane Library, and CiNAHL for articles published since journal inception up to June 2017. Search terms related to polyphenols (e.g. polyphenol, phenol, phytochemical) and olive oil were used.

Studies were required to meet each of the following eligibility criteria to be included in this review: used a randomized or non-randomized, parallel or cross-over trial study design; investigated olive oil as a stand-alone intervention; conducted in adult participants (healthy or otherwise); compared higher polyphenol olive oil to an olive oil with a lower polyphenol content; and included markers of CVD (including lipids, hemodynamic, and inflammatory measures) and/or oxidative stress outcomes.

Data extraction

Screening of the title and abstracts for individual studies was conducted in duplicate by three authors (GLT, AJR or ACL) with disagreements resolved by consensus or fourth reviewer (WM). Articles deemed eligible for full-text review were assessed for eligibility independently by two authors (GLT, ACL) and agreement reached via group consensus (ESG, HM, GLT, WM). The following parameters were extracted from included studies: author/date, study design, sample size, total study period, population characteristics (including age, gender, and co-morbidities), intervention

characteristics (including polyphenol content and duration of exposure), length of follow up and cardiovascular outcomes including lipids, hemodynamic, inflammatory measures, weight measures, endothelial function, and/or oxidative stress outcomes.

If two manuscripts reported on the same outcomes using the same or a sub-sample of a participant cohort, data were only extracted for the manuscript that included the largest sample size. If the larger study reported outcomes with insufficient detail to be included in meta-analyses, outcomes from the smaller study were extracted and both were reported qualitatively. Data for study arms that did not meet the eligibility criteria of this review were not extracted.

Assessment of study risk of bias

Risk of bias was assessed independently by three authors (ESG, AF, ACT) using the Jadad scale (Jadad et al. 1996). The Jadad scale is a five-item scale that assesses risk of bias due to randomization, blinding, and follow up. Studies can receive a score between zero and five, with lower scores indicating a higher risk of bias. Conflicting scores were resolved collaboratively and if disagreements persisted, a fourth author (WM) made the final judgment. If two or more manuscripts reported on the same cohort (or sub-cohort), details regarding blinding and randomization were extracted from all manuscripts to assess bias.

Data analysis

For qualitative analysis, difference in end intervention measures between groups and change between groups were reported, depending on the analysis reported for individual studies. Data were considered statistically significant if the reported p-value was <0.05.

When outcomes of included studies were sufficiently reported, data were pooled using Review Manager (Version 5.3, The Cochrane Collaboration 2014). Only outcomes relating to HPOO and LPOO were considered for comparison. To calculate the overall treatment effect, the difference between the outcomes at follow up of the intervention and comparison groups were considered. Continuous outcome variables were calculated using the inverse variance test as mean differences (MD) for studies which used the same measurement, or standardized mean differences (SMD) for studies which used different measures for the same construct; where SMD effect sizes of <0.4 were considered small, 0.4–0.7 moderate, and >0.7 large (Higgins, Julian and Green 2011). However, where biochemistry variables were reported via different units (e.g. mmol/L versus mg/dL); the measures were converted to the same unit and a MD was calculated. No categorical variables were pooled.

To assist clinical interpretation, SMD effect sizes were transformed into the scale of one the clinical measures and presented as a product of the total baseline standard deviation of a measure (Higgins, Julian and Green 2011). Due to the complex nature of interpreting a single variable upon nutrition-related health measures, a random effects model was used for all meta-analyses. An I² statistic of >50% was considered substantially heterogeneous. Sensitivity analysis was applied with pooled effect sizes with substantial heterogeneity and/or a non-significant trend towards an effect. For outcomes related to lipid profile and hemodynamics, subgroup analyses were undertaken for healthy patients versus those with hyperlipidemia or hypertension, respectively. Meta-analyses with significant results are presented as a figure within the manuscript and meta-analyses with non-significant results are included as supplementary material.

Results

Study selection

The literature search identified 4241 citations after the removal of duplicates (Figure 1). Forty articles were retrieved for full text screening and after a further 14 studies were excluded, 26 articles were included for this review and meta-analysis.

Study Characteristics

The majority of the included manuscripts (15/26) reported on outcomes from two separate cohorts: the Effect of Olive Oil on Oxidative Damage in European Populations study (abbreviated as EUROLIVE; 8/26 studies), and the Virgin Olive Oil and HDL Functionality study (VOHF; 6/26 studies). The EUROLIVE study was a multi-center randomized, double-blind, controlled, cross-over trial in 200 healthy males. Three of the 8 EUROLIVE studies reported on the full cohort while 5 studies reported on a subset. The VOHF study was a double-blind, randomized, controlled, crossover clinical trial of 33 hyper-cholesterolemic adults. Four of the 6 VOHF studies reported on the full cohort, while 2 studies reported on a subset. Perona et al. 2011 reported new outcomes using predominately the same cohort that was reported on in the study by Marrugat et al. 2004. Likewise, the paper by Fito et al.2008 reported outcomes using a sub-set of patients from Fito et al. 2005. The remaining 8 studies reported on separate cohorts (see Table 1).

Overall, the sample size of the included studies was relatively small; most studies included 10 to 49 participants, with the exception of the EUROLIVE cohort, which included 200 participants. Twelve studies recruited healthy adult participants while the remaining studies recruited specific populations (such as smokers (Moschandreas et al. 2002) and post-menopausal women (Salvini et al. 2006)) or participants with dyslipidemia, high blood pressure, fibromyalgia, and peripheral vascular disease (Ramirez-Tortosa et al. 1999, Fito et al. 2005, Visioli et al. 2005, Fito et al. 2008, Moreno-Luna et al. 2012, Rus et al. 2016).

Studies included participants recruited from either a combination of European countries (Spain, Denmark, Finland, Italy, Germany; 8/26 studies) or the following individual countries: Spain (13/26 studies), Italy (2/26 studies), Netherlands (1/26 study), Greece (1/26 study), and Jordan (1/26 study).

Trial intervention duration ranged from 3 weeks to 3 months. A cross-over study design that incorporated two 3-week intervention periods and one 2-week washout period was the most common study design with 21 of 26 studies (EUROLIVE, 8/21 studies; VOHF, 6/21 studies) using this design.

Interventions

There was a wide range in the polyphenol content of both the HPOO (150mg-800mg polyphenols per kg of oil) and LPOO (0-132mg polyphenols per kg of oil) interventions. The LPOO intervention in the VOHF cohort was a virgin olive oil, and the high polyphenol groups were the same oil infused with additional polyphenols. Al-Rewashdeh et al. 2010, as well as 5 studies from the EUROLIVE cohort included an additional intervention phase comprising olive oil with moderate amounts of polyphenols (366-368mg/kg of oil (Al-Rewashdeh 2010)); however, only the LPOO (2.7-132mg/kg) and HPOO (366-753mg/kg) arms were considered in this review.

The most commonly prescribed volume of olive oil was 25ml per day (n = 16), and ranged from 25ml-75ml per day. Additional dietary instructions varied, with most (22/26 studies) requesting participants restrict either high polyphenol, high antioxidant, or high vitamin E foods during the study intervention period.

Study Results

Oxidative stress

Twenty studies reported on measures of oxidative stress (see Table 1). These outcomes included: malondialdehyde and thiobarbituric acid reactive substances (TBARS), measures of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) oxidation, lipid oxidation, glutathione peroxidase, total antioxidant capacity and antioxidant status, isoprostane excretion, protein carbonyl, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, ferric reducing ability of plasma, measures of oxidative DNA damage, paraoxonase-3 (PON-3) protein, lactoriase activity, paraoxonase activity, hydroxy fatty acids, and conjugated dienes.

Meta-analysis of studies with sufficient data demonstrated that HPGO significantly improved malondialdehyde (MD: -0.07μmol/L [95%CI: -0.12, -0.02μmol/L]; † 88%; p=0.004; Figure 2) and oxidized LDL (SMD: -0.44 [95%CI: -0.78, -0.10μmol/L]; † 41%, p=0.01; Figure 3) compared to LPOO. Sensitivity analysis did not improve the substantial heterogeneity in malondialdehyde. Pooling of data did not reveal a significant difference in total antioxidant capacity (SMD: 0.30 [95%CI: -0.26, 0.86]; 1²: 67%; p=0.29) (Fito et al. 2005, Salvini et al. 2006, Rus et al. 2016). A sensitivity analysis that removed the study by Rus et al. 2016 (the only group of participants with fibromyalgia) from analysis improved heterogeneity (1²: 0%); however, there was still no significant effect (MD: -0.00 [95%CI: -0.05, 0.04]; 1²: 0%, p=0.86) (Fito et al. 2005, Salvini et al. 2006). There was also no significant effect in glutathione peroxidase (SMD: -0.04 [95%CI-0.69, 0.61]; 1²: 75%; p=0.91), and the heterogeneity was not improved upon sensitivity analysis.

For results that could not be entered into a meta-analysis, compared to LPOO, HPOO significantly improved conjugated dienes (p=0.011), (Covas et al. 2006) glutathione peroxidase (p=0.033) (Fito et al. 2005), protein carbonyl (p=0.023), (Rus et al. 2016) antioxidant status (p<0.0001) (Visioli et al. 2005), measures of oxidative DNA damage (p=0.019) and PON-3 protein (p<0.05) (Fernandez-Castillejo et al. 2017), lactonase activity (p<0.05), (Fernandez-Castillejo et al. 2017) paraoxonase

activity (p<0.05), (Fernandez-Castillejo et al. 2017) hydroxy fatty acids (p=0.038) (Covas et al. 2006). No other significant results were reported.

Inflammation

Five studies investigated the effect of HPOO on inflammatory markers compared to LPOO; (Fito et al. 2008, Machowetz et al. 2008, Castaner et al. 2012, Moreno-Luna et al. 2012, Martin-Pelaez et al. 2016) however, none were pooled because of heterogeneous measures reported or insufficient outcome and variance data. Three studies measured C-reactive protein (CRP) (Fito et al. 2008, Moreno-Luna et al. 2012, Martin-Pelaez et al. 2016) while interleukin-6 (IL-6), (Fito et al. 2008) soluble intercellular adhesion molecule-1 (sICAM-1),(Fito et al. 2008) soluble vascular adhesion molecule-1 (sVCAM-1), (Fito et al. 2008) monocyte chemotactic protein-1 (MCP-1), (Castaner et al. 2012) fecal tumor necrosis factor (TNF-α), (Martin-Pelaez et al. 2016) fecal calprotectin, (Martin-Pelaez et al. 2016) and resistin (Machowetz et al. 2008) were each measured in one study. Two studies reported a decrease in CRP after HPOO supplementation (p=0.024 (Fito et al. 2008) and p<0.001 (Moreno-Luna et al. 2012)) while one study reported an increase in CRP in the HPOO group (Martin-Pelaez et al. 2016). IL-6 was reduced in one study (p<0.002) (Fito et al. 2008). In one study (p=0.022) (Castaner et al. 2012). No significant differences were reported for all other measures.

Blood pressure

Five studies reported measures of blood pressure; however, participants were predominantly normotensive, excepting Moreno-Luna et al. 2012, in which all 48 female participants had mild hypertension. Meta-analysis indicated that HPOO had no effect on systolic blood pressure compared to LPOO (MD: -2.03mmHg [95%CI: -6.57-2.50]; I²=79%; p=0.38). There was a non-significant trend towards decreased diastolic blood pressure in the HPOO group (MD: -2.70mmHg [95%CI: -5.71-0.31]; I²=78%); p=0.08 [n=1 study was removed, as comparator was not true LPOO to improve

sensitivity (Martin-Pelaez et al. 2016)]); however, the effect size was small and a significant unexplained heterogeneity remained.

Lipid profiles

Twelve studies reported on measures of cholesterol levels and/or function (Ramirez-Tortosa et al. 1999, Vissers et al. 2001, Marrugat et al. 2004, Fito et al. 2005, Visioli et al. 2005, Al-Rewashdeh 2010, Perona et al. 2011, Hernaez et al. 2014, Farras et al. 2015, Hernáez et al. 2015, Fernandez-Castillejo et al. 2016, Martin-Pelaez et al. 2017). These included total, LDL and HDL cholesterol; triglycerides; apolipoprotein B-100 (ApoB), A1 (ApoA1), and A2 (ApoA2); LDL and HDL particle size; HDL cholesterol efflux capacity; HDL fluidity, and cholesterol esters.

Meta-analysis of studies with sufficient data demonstrated that HPOO significantly improved total cholesterol by 4.47mg/dL (95%CI: -6.54, -2.39mg/dL; p<0.0001, Figure 4). In a subgroup analysis, there was no significant difference in total cholesterol between healthy and CVD subgroups (p=0.94). Compared with LPOO, HPOO improved HDL cholesterol by 2.37mg/dL ((95%CI: 0.41, 5.04mg/dL; p=0.02); Figure 5). The substantial heterogeneity in HDL is somewhat explained by subgroup analysis, where participants with CVD had significantly different outcomes than healthy participants (p=0.09). Healthy participants still maintained substantial heterogeneity (I²=79%) but HPOO groups had significantly lower HDL cholesterol compared to LPOO (by 3.95mg/dL [95%CI: 0.89-7.01; p=0.01]; Figure 5). Conversely, the samples with CVD had no heterogeneity (I²=0%) and HPOO had no significant effect on HDL cholesterol in this sub-sample (MD: 0.14 [95%CI: -2.93-3.22] p=0.93).

HPOO also had a non-significant trend to lower LDL cholesterol by 3.73mg/dL (95%CI: -7.60, -0.15mg/dL; I²: 70%; p=0.06; Figure 6) compared to LPOO; however, subgroup analysis found a significant difference between healthy versus CVD samples (p=0.01). Similar to the HDL analysis, the LDL-cholesterol in the healthy samples maintained high heterogeneity (I²=71%) but was significantly lower by 5.31mg/dL (95%CI: -9.83- -0.79; p=0.02; Figure 6) in the HPOO groups compared to the

LPOO groups. However, the samples with CVD showed no heterogeneity (I²=0%) and no effect on LDL cholesterol following intervention with HPOO (MD: 1.12mg/dL [95%CI: -1.30-3.53]; p=0.37). HPOO had no effect on plasma triglycerides compared to LPOO in a mixed sample of healthy and hypercholesterolemia adults (MD 0.34mg/dL (95%CI: -3.24, 3.92mg/dL; I²: 33%; p=0.85). There were also no significant difference between healthy versus CVD subgroups.

For results that could not be entered into a meta-analysis, HPOO significantly improved ApoB (p<0.001, (Fernandez-Castillejo et al. 2016) p<0.05, (Perona et al. 2011) and p<0.03 (Hernáez et al. 2015)), measures of LDL and/or particle size (p<0.05 (Hernáez et al. 2015) and p<0.05 (Fernandez-Castillejo et al. 2016)), HDL cholesterol efflux capacity (p=0.042 (Hernaez et al. 2014)) and LDL cholesterol esters (p<0.05 (Ramirez-Tortosa et al. 1999)).

Other measures

Six studies reported weight or BMI outcomes, with no significant difference between interventions (Ramirez-Tortosa et al. 1999, Vissers et al. 2001, Moschandreas et al. 2002, Machowetz et al. 2008, Martin-Pelaez et al. 2016, Rus et al. 2016). Moreno-Luna et al. 2012 reported that HPOO improved measures of endothelial function (asymmetric dimethylarginine, hyperemic area after ischemia, and total plasma nitrites/nitrates) in a hypertensive cohort. Of the four studies that reported on blood glucose, (Marrugat et al. 2004, Fito et al. 2005, Visioli et al. 2005) one study reported an increase in blood glucose after HPOO consumption compared to LPOO (p=0.015) (Martin-Pelaez et al. 2016). In a proteomic analysis, HPOO up-regulated proteins related to cholesterol homeostasis, antioxidant pathways, and blood coagulation. In contrast, HPOO down-regulated proteins implicated in acute-phase inflammatory response, lipid transport, and immune response (Pedret et al. 2015). Oxidized

LDL autoantibodies (p=0.023) and pro-atherogenic gene expression (p<0.05) were also demonstrated to improve in two separate studies (Castaner et al. 2011, Castaner et al. 2012).

Adverse events

Adverse events were monitored in the VOHF and EUROLIVE study cohorts and two of the twelve individual studies. No adverse events were reported during their trial periods.

Risk of Bias

Using the Jadad Scale, most studies (15/26) received a score between 4 and 5 (out of 5), indicating a low risk of bias (Supplementary Material 2). The most common reason for receiving a lower score was due to inadequate reporting regarding withdrawals and/or dropouts and method of blinding.

Discussion

The results of this review indicate that olive oil polyphenols may provide cardioprotective benefits that are independent of the high MUFA content of olive oil. Specifically, the results of this meta-analysis suggest that high polyphenol olive oil can improve outcomes related to cholesterol (total and HDL cholesterol) and oxidative stress (malondialdehyde and oxidized LDL). Furthermore, for measures that were unable to be included in a meta-analysis, individual studies have generally reported improvements in inflammation, additional measures of oxidative stress, and endothelial function.

A recent systematic review and meta-analysis indicated that olive oil is superior compared to other plant oils in improving HDL cholesterol but not total and LDL cholesterol and triglycerides (Ghobadi et al. 2018). Furthermore, although the effect of polyphenol content was not examined in this

review, sensitivity analyses that examined the effect of virgin olive oil compared to refined olive oil reported mixed outcomes. This study builds on these findings by reporting similar improvements that are attributed to polyphenols.

Sensitivity analyses demonstrated that CVD risk factors such as HDL and LDL cholesterol significantly improved in healthy participants, while no effect was present in participants with existing CVD risk factors. A possible explanation for these results is that participants with CVD risk factors are likely to be undergoing lipid-lowering pharmacotherapy although this was not reported or controlled for in studies. A possible explanation for these results is that participants with CVD risk factors are likely to be undergoing lipid-lowering pharmacotherapy, which would make it difficult achieve additional reductions in CVD risk factors through dietary interventions, particularly within the short intervention periods (≤12 weeks) reported in these trials. Furthermore, the small effect sizes (e.g. HDL and LDL cholesterol) and non-significant differences (e.g. blood pressure) identified in the pooled analysis may be explained by there being little likelihood of large reductions in clinical outcomes for healthy participants with lipid profiles and blood pressure within reference range. Further research in participants with chronic diseases that are either not managed by pharmacotherapy or where the study interventions are for longer durations may report larger effect sizes, Furthermore, a small subset of studies assessed the functionality of cholesterol and reported improvements in measures such as HDL cholesterol efflux capacity. As emerging evidence suggests that traditional measures of HDL cholesterol may not be a reliable marker of cardiovascular health, (Rohatgi et al. 2014, Sacks et al. 2017) further research on functional outcomes of HDL cholesterol, rather than particle count, may be a more clinically relevant marker to evaluate the cardioprotective effects of polyphenols.

As discussed in our previous review, (Marx et al. 2017) clinical trials involving polyphenol interventions should implement measures to control for background polyphenol intake, as this may influence study results. Most studies in our review provided dietary advice to control for this, although there was no discussion regarding adherence to this advice. The common use of a crossover trial design in the included studies may also provide some control for these factors. Adherence to the prescribed olive oil dosage was also not reported, posing an additional limitation to these trials. In addition, although LPOO and HPOO were directly compared in this review, there was considerable variability in the concentration of polyphenols and volume of olive oil prescribed for both groups. Therefore, total absolute daily dose varied considerably. There are also numerous considerations that need to be acknowledged regarding polyphenol concentration. Polyphenol concentrations within olive food products differ based on a variety factors including olive variety, soil, climate, maturation at harvest, and processing (Tripoli et al. 2005). Furthermore, there may be a difference in the class of polyphenols within naturally occurring high polyphenol EVOO compared to olive oil that has been fortified with polyphenols. Globally, the regulatory frameworks for labelling polyphenol concentration in foods and olive oil are lacking. With additional evidence to support the proposed benefits of polyphenols in EVOO, it will become increasingly important that labelling becomes more transparent to highlight the potential benefits to consumers. All of the reviewed studies, in a commonly shared strength of study design, measured and declared polyphenol concentration. This will assist in providing future recommendations on the concentration and volume of olive oil consumption required to achieve clinical benefit.

There is evidence to suggest that the ways in which polyphenols are consumed influence total polyphenol bioavailability and absorption. For example, exposure to prolonged heat may deplete the total polyphenol content (Brenes et al. 2002). None of the studies included in this review reported any information related to cooking and consumption methods used by participants. Further data regarding the consumption of olive oil during a trial may be worthwhile investigating, to ascertain the potential interactions between interventions and cooking methods. This will also inform the

translatability of these interventions into practical applications for prevention and management of CVD.

While the existing research provides promising evidence for the unique benefits of olive oil polyphenols, additional research is warranted. Most studies were relatively short in duration with most intervention phases lasting on average, 3 weeks. Additional studies that evaluate the long-term effects of high polyphenol olive oil are required to demonstrate sustainability of health benefits. Furthermore, while all studies included a control group, it is possible that due to the nature of the intervention (i.e. distinct taste and color difference between high and low polyphenol oils), blinding may not have been completely effective. This is an inherent problem in many dietary intervention studies and future studies should implement measures to assess the adequacy of blinding measures such as participant interview at the end of study.

Finally, most of the research reported herein has come from two major European cohorts (i.e. EUROLIVE and VOHF cohorts) and so additional research is required to replicate these findings. As stated in a previous review, (Hohmann et al. 2015) most studies were conducted in Mediterranean populations, predominantly throughout Spain, Italy, Germany, Berlin, Denmark and Finland. Additional studies with diverse populations and ethnicities are required to confirm the effect of high polyphenol olive oil. This may include investigation in of the feasibility and sustainability of regular EVOO consumption in non-Mediterranean populations that are not accustomed to a high consumption of olive oil and to determine if there are genetic differences that may predispose individuals to the cardiovascular benefits associated with polyphenol consumption.

Conclusion

In summary, the results of our systematic review and meta-analysis suggest that olive oil polyphenols provide unique cardioprotective properties, particularly for cholesterol and oxidative stress-related outcomes. Despite the identified beneficial properties reported in the existing studies, a large proportion of included studies were derived from only two cohorts. Studies were also conducted within a primarily Mediterranean population. Further research is needed to confirm these results in adequately powered, non-Mediterranean cohorts. Longer durations are also required to determine sustainability of health outcomes.

Acknowledgements

None

Funding and sponsorship: No grant or industry funding was provided for this manuscript. Study authors (ESG, HLM, ACT, CJT, CI, WM) have been involved in clinical trials and/or research activities that have received in kind and/or financial support from the olive oil industry.

Declaration of interest: The authors have no relevant interests to declare.

References

Aguilera, C. M., et al. (2004). Sunflower oil does not protect against LDL oxidation as virgin olive oil does in patients with peripheral vascular disease. Clin Nutr 23(4): 673-681.

Al-Rewashdeh, A. Y. (2010). Blood Lipid Profile, Oxidation and Pressure of Men and Women Consumed Olive Oil. Pakistan Journal of Nutrition 9(1): 15-26.

Beauchamp, G. K., et al. (2005). Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437(7055): 45-46.

Brenes, M., et al. (2002). Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric Food Chem 50(21): 5962-5967.

Castaner, O., et al. (2012). Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr 95(5): 1238-1244.

Castaner, O., et al. (2011). The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin Nutr 30(4): 490-493.

Covas, M. I., et al. (2009). Olive oil and cardiovascular health. J Cardiovasc Pharmacol 54(6). 477-482.

Covas, M. I., et al. (2006). The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145(5): 333-341.

de Lorgeril, M., et al. (1999). Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99(6): 779-785.

Estruch, R., et al. (2006). Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145(1): 1-11.

Farras, M., et al. (2015). Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol Nutr Food Res 59(9): 1758-1770.

Fernandez-Castillejo, S., et al. (2017). Phenol-enriched olive oils modify paraoxonase-related variables: A randomized, crossover, controlled trial. Mol Nutr Food Res 61(10).

Fernandez-Castillejo, S., et al. (2016). Polyphenol rich olive oils improve lipoprotein particle atherogenic ratios and subclasses profile: A randomized, crossover, controlled trial. Mol Nutr Food Res 60(7): 1544-1554.

Fito, M., et al. (2005). Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181(1): 149-158.

Fito, M., et al. (2008). Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur J Clin Nutr 62(4): 570-574.

Ghobadi, S., et al. (2018). Comparison of blood lipid-lowering effects of olive oil and other plant oils: a systematic review and meta-analysis of 27 randomized placebo-controlled clinical trials. Crit Rev Food Sci Nutr: 0.

Harper, C. R., et al. (2006). Flaxseed oil supplementation does not affect plasma lipoprotein concentration or particle size in human subjects. J Nutr 136(11): 2844-2848.

Hernaez, A., et al. (2014). Olive oil polyphenols enhance high-density lipoprotein function in humans: a randomized controlled trial. Arterioscler Thromb Vasc Biol 34(9): 2115-2119.

Hernáez, Á., et al. (2015). Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial. J Nutr.

Higgins, et al. (2011). 12.6.4 Re-expresing SMD using a familiar instrument. Cochrane handbook for systematic reviews of interventions.

Higgins, et al. (2011). 17.8.2 Study summaries using more than one patient-reported outcome. Cochrane handbook for systematic reviews of interventions.

Hohmann, C. D., et al. (2015). Effects of high phenolic clive oil on cardiovascular risk factors: A systematic review and meta-analysis. Phytomedicine 22(6): 631-640.

Itsiopoulos, C., et al. (2011). Can the Mediterranean diet lower HbA1c in type 2 diabetes? Results from a randomized cross-over study. Nutr Metab Cardiovasc Dis 21.

Itsiopoulos, C., et al. (2011). Can A Mediterranean dietary pattern ameliorate the pro-oxidant effects of diabetes? Nutr Diet 68 Supplement.

Jadad, A. R., et al. (1996). Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1): 1-12.

Joseph, S. V., et al. (2016). Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit Rev Food Sci Nutr 56(3): 419-444.

Liberati, A., et al. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLOS Medicine 6(7): e1000100.

Machowetz, A., et al. (2008). Effect of olive oil consumption on serum resistin concentrations in healthy men. Horm Metab Res 40(10): 697-701.

Marrugat, J., et al. (2004). Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation--a randomized controlled trial. Eur J Nutr 43(3): 140-147.

Martin-Pelaez, S., et al. (2016). Influence of Phenol-Enriched Olive Oils on Human Intestinal Immune Function. Nutrients 8(4): 213.

Martin-Pelaez, S., et al. (2017). Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota. Eur J Nutr 56(1): 119-131.

Marx, W., et al. (2017). The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients 9(12): 1345.

Moreno-Luna, R., et al. (2012). Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens 25(12): 1299-1304.

Moschandreas, J., et al. (2002). Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study. Eur J Clin Nutr 56(10). 1024-1029.

Parkinson, L. and S. Cicerale (2016). The Health Benefiting Mechanisms of Virgin Olive Oil Phenolic Compounds. Molecules 21(12).

Pedret, A., et al. (2015). Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study). PLOS ONE 10(6): e0129160.

Perez-Jimenez, J., et al. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenoi-Explorer database. Eur J Clin Nutr 64(S3): S112-S120.

Perona, J. S., et al. (2004). Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin Nutr 23(5): 1113-1121.

Perona, J. S., et al. (2011). Olive oil phenols modulate the triacylglycerol molecular species of human very low-density lipoprotein. A randomized, crossover, controlled trial. Metabolism 60(6): 893-899.

Peyrol, J., et al. (2017). Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders. Nutrients 9(3).

Ramirez-Tortosa, M. C., et al. (1999). Extra-virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J Nutr 129(12): 2177-2183.

Rohatgi, A., et al. (2014). HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 371(25): 2383-2393.

Rus, A., et al. (2016). Extra Virgin Olive Oil Improves Oxidative Stress, Functional Capacity, and Health-Related Psychological Status in Patients With Fibromyalgia: A Preliminary Study. Biol Res Nurs.

Sacks, F. M., et al. (2017). Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation.

Salvini, S., et al. (2006). Daily consumption of a high-phenol extra-virgin olive oil reduces exidative DNA damage in postmenopausal women. Br J Nutr 95(4): 742-751.

Schwingshackl, L. and G. Hoffmann (2012). Monounsaturated Fatty Acids and Risk of Cardiovascular Disease: Synopsis of the Evidence Available from Systematic Reviews and Meta-Analyses. Nutrients 4(12): 1989-2007.

Tresserra-Rimbau, A., et al. (2014). Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Medicine 12(1): 77.

Tripoli, E., et al. (2005). The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18(1): 98-112.

Visioli, F., et al. (2005). Virgin Olive Oil Study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur J Nutr 44(2): 121-127.

Vissers, M. N., et al. (2001). Effect of phenol-rich extra virgin olive oil on markers of oxidation in healthy volunteers. Eur J Clin Nutr 55(5): 334-341.

Figure 1. PRISMA Flow Diagram

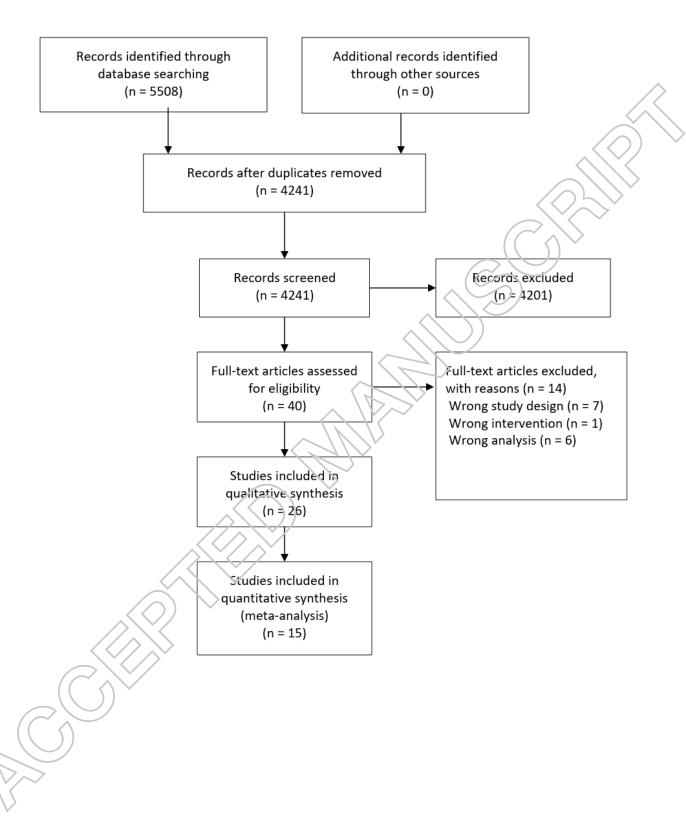


Figure 2. Meta-analysis on the effect of HPOO on plasma malondialdehyde compared to LPOO.

Al-Fewashdeh 2010		Н	P00		L	P00			Mean Difference	Mean Difference
Al-Fewashdeh 2010 0.74 0.03 13 0.87 0.01 13 31.1% -0.13 [-0.15, -0.11] Moschandreas 2002 0.6 0.16 25 0.63 0.16 25 16.1% -0.03 [-0.12, 0.06] Vissers 2001 0.69 0.13 46 0.68 0.15 46 22.7% 0.01 [-0.05, 0.07] Total (95% CI) 96 96 100.0% -0.07 [-0.12, -0.02] Heterogeneity: Tau² = 0.00; Chi² = 25.79, df = 3 (P < 0.0001); I² = 88%	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Moschandreas 2002	Al-Fewashdeh 2010	0.76	0.03	12	0.86	0.03	12	30.1%	-0.10 [-0.12, -0.08]	+ /
Vissers 2001 0.69 0.13 46 0.68 0.15 46 22.7% 0.01 [-0.05, 0.07] Total (95% CI) 96 96 100.0% -0.07 [-0.12, -0.02] Heterogeneity: Tau² = 0.00; Chi² = 25.79, df = 3 (P < 0.0001); I² = 88% -0.2 -0.1 0 0.1 0.2	Al-Fewashdeh 2010	0.74	0.03	13	0.87	0.01	13	31.1%	-0.13 [-0.15, -0.11]	* /_
Total (95% CI) 96 96 100.0% -0.07 [-0.12, -0.02] Heterogeneity: Tau² = 0.00; Chi² = 25.79, df = 3 (P < 0.0001); l² = 88% -0.2 -0.1 0 0.1 0.2	Moschandreas 2002	0.6	0.16	25	0.63	0.16	25	16.1%	-0.03 [-0.12, 0.06]	
Heterogeneity: Tau² = 0.00; Chi² = 25.79, df = 3 (P < 0.0001); l² = 88% -0.2 -0.1 0 0.1 0.2	Vissers 2001	0.69	0.13	46	0.68	0.15	46	22.7%	0.01 [-0.05, 0.07]	
					:3(P <	0.000			-0.07 [-0.12, -0.02]	•
	Tool or or or all one of	Z = 2.86 (P = 0.1	004)						

Figure 3. Meta-analysis on the effect of HPOO on oxidized LDL compared to LPOO

Study or Subgroup de la Torre-Carbot 2010 Fito 2005 Marrugat 2004 Martin-Palez 2016 Moreno-Luna 2012 Total (95% CI) Heterogeneity: Tau² = 0.07 Test for overall effect: Z = 2	Mean 39 54 28.3 40.3 124.8 2; Chi ² =	3 19.9 20.1 6.4 51 7.80, c	36 40 33 10 24 143 #f = 4 (F	42 58.7 30.3 43.1 146.1	3 23.1 18 8.7 22.2	36 40 33 10 24	Weight 22.4%	Std. Mean Difference IV, Random, 95% CI -0.99 [-1.48, -0.50] -0.22 [-0.66, 0.22] -0.10 [-0.59, 0.38] -0.35 [-1.24, 0.53] -0.53 [-1.11, 0.04] -0.44 [-0.78, -0.10]	Std. Mean Difference IV, Random, 95% CI Favours HPOO Favours LPOO

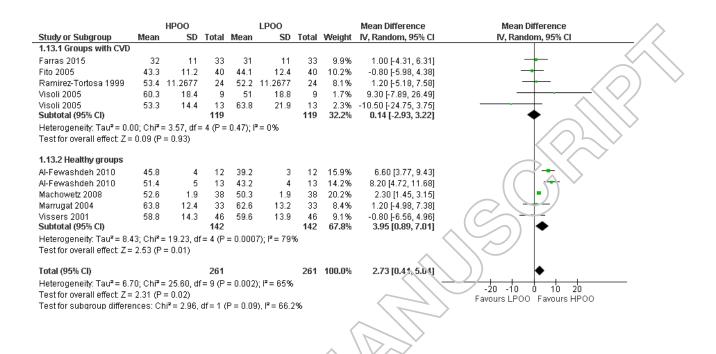
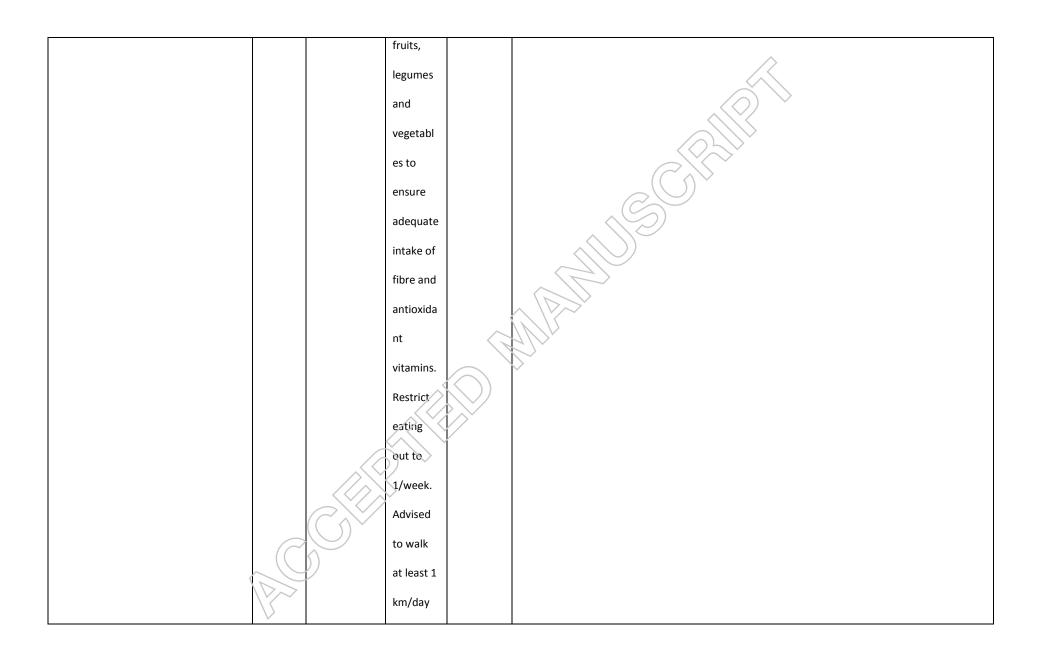
Figure 4. Meta-analysis on the effect of HPOO on total cholesterol compared to LPOO.

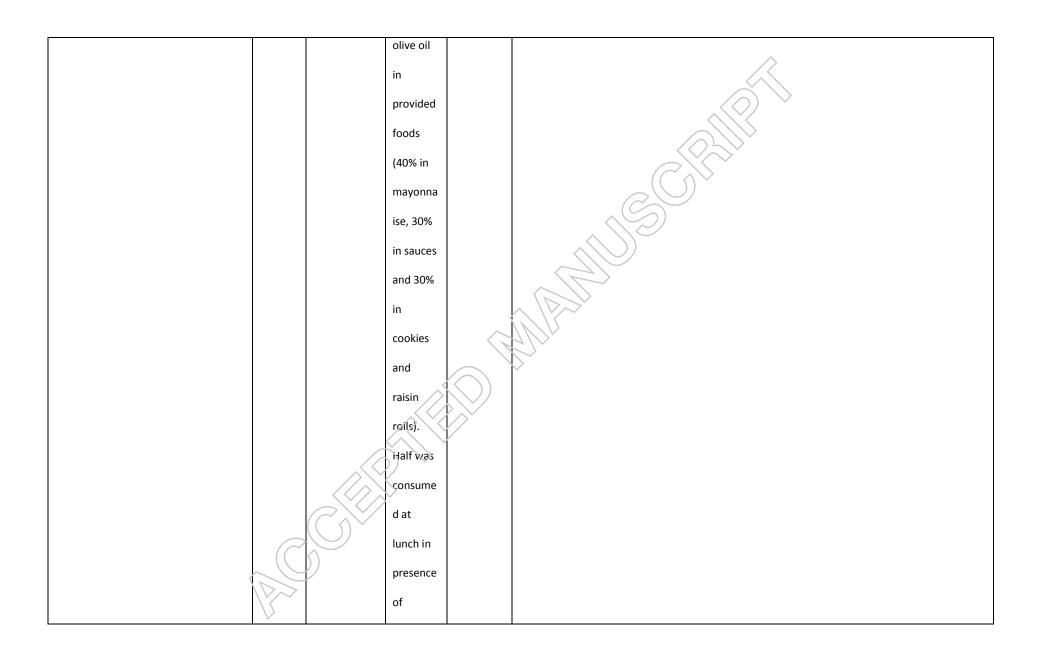
		HP00			LP00			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Al-Fewashdeh 2010	166	9	12	170	6	12	11.5%	-4.00 [-10.12, 2.12]	
Al-Fewashdeh 2010	167	8	13	165	9	13	10.1%	2.00 [-4.55, 8.55]	+ / /
Fito 2005	196.8	32.9	40	194.1	38.3	40	1.8%	2.70 [-12.95, 18.35]	
Machowetz 2008	184.8	5	38	190.3	5.8	38	72.9%	-5.50 [-7.93, -3.07]	
Martin-Palez 2016	211.2	23.3	10	207.7	28.8	10	0.8%	3.50 [-19.46, 26.46]	
Perona 2011	550	80	33	560	90	33	0.3%	-10.00 [-51.08, 31.08]	
Ramirez-Tortosa 1999	239	41.6413	24	247.5	41.6413	24	0.8%	-8.50 [-32.06, 15.06]	
Visoli 2005	247.9	28.6	13	261.6	23.3	13	1.1%	-13.70 [-33.75, 6.35]	
Visoli 2005	253.6	37.9	9	256.3	44.9	9	0.3%	-2.70 [-41.09, 35.69]	
Vissers 2001	371.1	67.3	46	376.4	73.5	46	0.5%	-5.30 [-34.10, 23.50]	
Total (95% CI)			238			238	100.0%	-4.47 [-6.54, -2.39]	
Heterogeneity: Tau ² = 0.	00: Chi² :	= 6.74, df=	9 (P =	0.66); [²= 0%				
Test for overall effect: Z:				,,					-50 -25 0 25 50 Favours HPOO Favours LPOO
	`	ŕ							ravouis neod ravouis tedo

Figure 5. Meta-analysis on the effect of HPOO on LDL cholesterol compared to LPOO.

		HP00			LP00			Mean Difference	Meza Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	I\/, Fandom, 95 % Cl
1.14.1 Healthy groups									
Al-Fewashdeh 2010	91	8	13	97	4	13	16.8%	-6.00 [-10.86, -1.14]	
Al-Fewashdeh 2010	96.6	6	12	107	4	12	18.4%	-10.40 [-14.48, -6.32]	
Machowetz 2008	53	5.4	38	54.5	6.6	38	20.9%	-1.50 [-4.21, 1.21]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Marrugat 2004	131.5	27.1	33	139.2	34.8	33	4.9%	-7.70 [-22.75, 7.35]	
Vissers 2001	87.4	22.8	46	88.6	25.1	46	9.0%	-1.20 [-11.00, 8.60]	
Subtotal (95% CI)			142			142	69.9%	-5.31 [-9.83, -0.79]	♦
Heterogeneity: Tau ² = 15	5.96; Chi	² = 13.71, i	df = 4 (F	o.00 = °	8); I ² = 719	%			\
Test for overall effect: Z =	= 2.30 (P	= 0.02)							
1.14.2 Groups with CVD)							1	
Fito 2005	128.8	5	40	127.6	6.2	40	21.3%	1.20 [-1.27, 3.67]	†
Martin-Palez 2016	134.7	20.18	10	132.9	24.3	10	3.1%	1.89 [-17.78, 21.38]	
Ramirez-Tortosa 1999	239	41.6413	24	248	41.6413	24	2.3%	-9.89 [-32.56, 14.56]	
Visoli 2005	160.4	42.1	9	170.4	49.3	9	0.8%	-10.00 [-62.35, 32.35]	
Visoli 2005	175.7	28.8		170.3	28.1	13	2.6%	5.46 [-16.47, 27.27]	
Subtotal (95% CI)			96			96	30.1%	1. 2 [-1.30, 3.53]	•
Heterogeneity: $Tau^2 = 0$.	00; Chi²:	= 1.13, df=	= 4 (P =	0.89);1	²=0%		_		
Test for overall effect: Z =	= 0.91 (P	= 0.37)			1	/ /	-4/	~	
Total (95% CI)			238			238	100.0%	-3.54 [-7.27, 0.19]	•
Heterogeneity: Tau ² = 15	5.43; Chi	² = 27.04, (df = 9 (F	P = 0.00	1); $ ^2 = 679$	%			-50 -25 0 25 50
Test for overall effect: Z =	= 1.86 (P	= 0.06)				\			Favours HPOO Favours LPOC
Test for subgroup differe	ences: C	$hi^2 = 6.05$,	df = 1 ($P \le 0.00$	(), $I^2 = 8B.6$	5 %			. 4,54,5 00 1 4,6415 E1 00

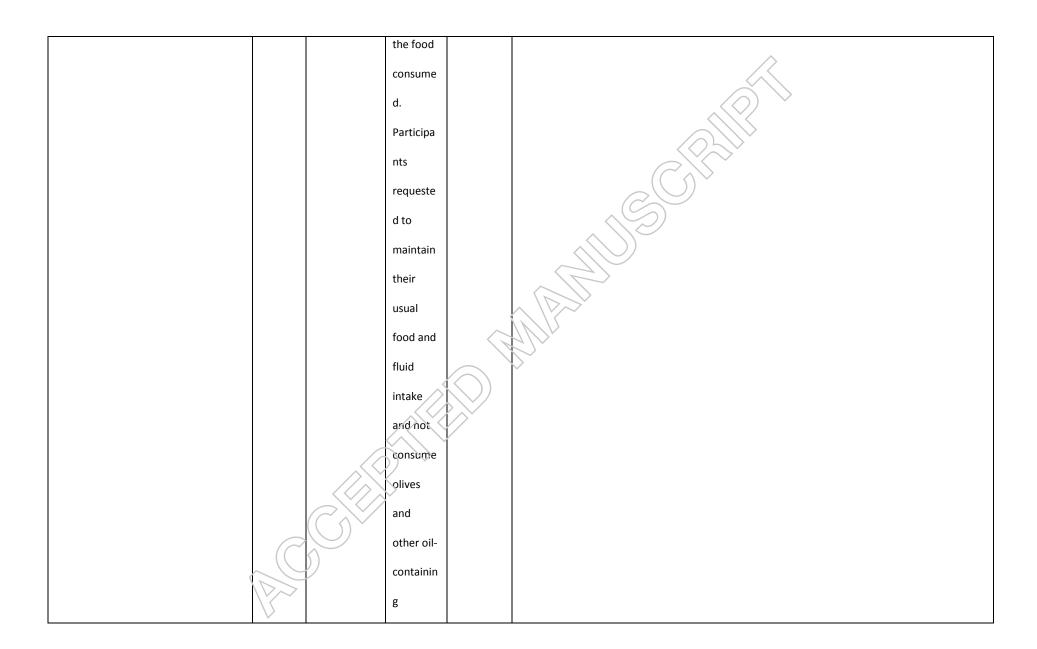
Figure 6. Meta-analysis on the effect of HPOO on HDL cholesterol compared to LPOO.

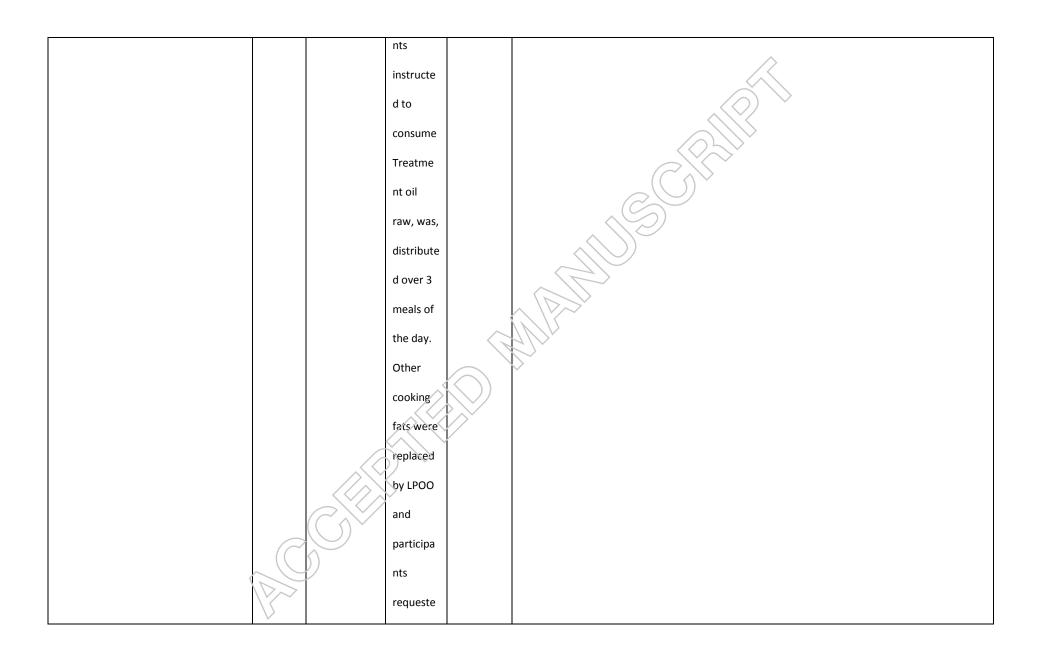

Table 1. Summary Table of Included Studies (n=26)

Author, year, country, study period	Study	Population,	Olive oil	Duration	Results, differences between high polyphenol compared to low polyphenol olive oils* ⁶
	Design	Attrition	arms	and	
		rate		structure	
Independent studies					
Ramirez-Tortosa et al. 1999, Spain.	Rando	n=24 free-	Dose:	3-month	Difference in end intervention measures between groups
Study period: not reported	mized	living men	Not	interventi	Classic CVD markers
	Control	with	specified	ons, 3-	
	led,	peripheral	Arms:	month	↔Weight/BMI
	Cross-	vascular	1. HFOO;	wash-out	↔HDL-C
	over	disease,	800mg/k	period	↔LDL-C
	Trial	without	g	between	↑ Triglycerides
		diabetes,	polyphen	interventi	
		hypothyroidi	ols	ons (usual	Lipoprotein composition of:
		sm, obesity,	2. LPOO;	diets)	Triglycerides (↔VLDL,↑ LDL, ↔HDL)
		cardiac	60mg/kg		Phospholipids (\leftrightarrow VLDL, \leftrightarrow LDL, \leftrightarrow HDL)

	episodes	polyphen	Total-C (\leftrightarrow VLDL, \uparrow LDL, \leftrightarrow HDL)
	Age	ols	Cholesterol Esters (\leftrightarrow VLDL, \downarrow LDL, \leftrightarrow HDL)
	(mean±std):	Method:	Free cholesterol (↑VLDL, ↑LDL, ↓HDL)
	70±2 years	Instructio	
	Attrition: not	n to	Oxidative Stress / Antioxidant Status
	reported	replace	↓ Copper- mediated LDL-oxidation
		usual	↓ Macrophage uptake of oxidized LDL
		saturated	
		fat intake	
		(butter,	
		margarin	
		e, lard	
		and	
		visible fat	
		on meat)	
		with the	
		olive oil.	
		Recomm	
		ended to	
		increase	

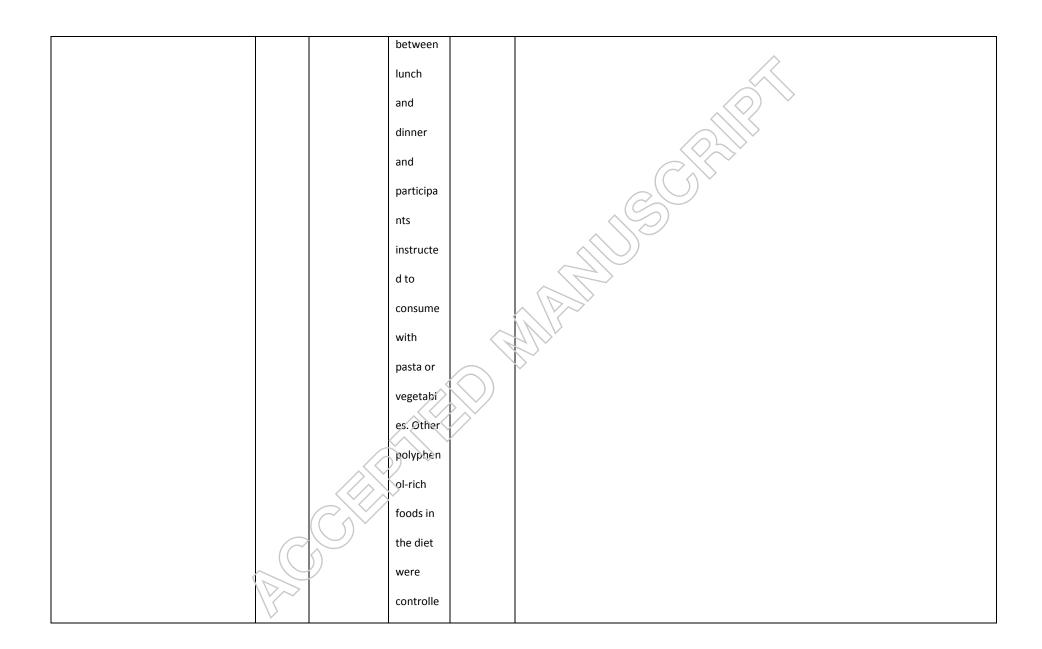


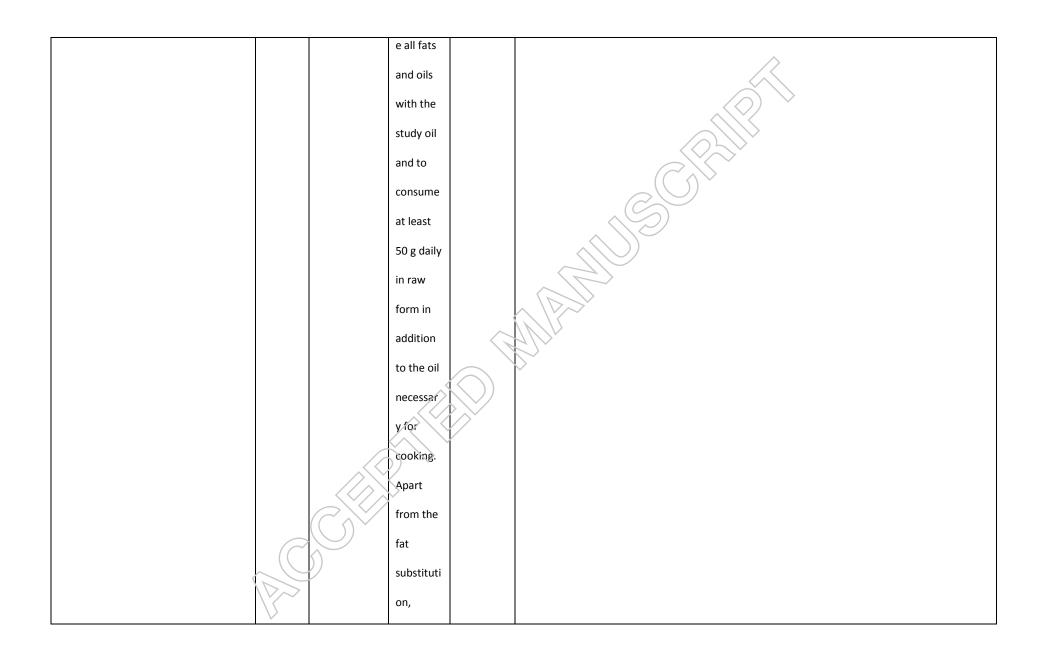
			and stop		
			smoking.		
Vissers et al. 2001, Netherlands.	Rando	n=49 healthy	Dose:	3-week	Difference in end intervention measures between groups
Study period: not reported	mized	adults (32	based on	interventi	
	Control	women, 17	energy	ons, 2-	Classic CVD markers
	led,	men),	needs,	week	
	Cross-	Age (range):	mean	wash-out	↔Weight
	over	18-58 years,	69g/day	periods	↔Total-C
	Trial	Attrition:	Arms:	before	↔HDL-C
	Blindin	n=6	1. HPOO;	each	⇔LDL-C
	g of	withdrew	308mg/k	interventi	↔Triglycerides
	particip		g	on (diets	
	ants to		polyphen	without	Oxidative Stress / Antioxidant Status
	olive oil		ols	ofives,	LDL oxidizability (↓lag time, ↔max rate)
	sequen		2. LPOO;	olive oil	HDL oxidizability (↔lag time, ↔max rate)
	ce		43mg/kg	and olive	↔Malondialdehyde
			polyphen	oil	← Lipid hydroperoxides
			ols	products)	↔ Protein carbonyls
			Method:		
			daily		



research		
ers and		
remainde		
rat		
home.		
Usual		
diet		
maintain		
ed,		
except		
followed		
instructio		
ns for		
low		
vitamin		
Ę.		
Dose: 70	3-week	Difference in change between groups
g/day	interventi	
Arms:	on, 2-	Classic CVD markers
1. HPOO;	week	↔Weight
	ers and remainde r at home. Usual diet maintain ed, except followed instructio ons for ow vitamin E. Dose: 70 g/day Arms:	remainde r at home. Usual diet maintain ed, except followed instructio ons for ow vitamin E. Dose: 70 3-week g/day interventi Arms: on, 2-

Т				
cr	rossov Age	308mg/k	washout	_
er	r trial, (mean±std)	g	periods	Oxidative Stress / Antioxidant Status
Pa	articip 30±9 years	polyphen	before	Total plasma resistance to oxidation (↔lag time) ↔max rate)
ar	nts Attrition:	ols	each	↔Protein carbonyl
w	rere n=3 dropou	2. LPOO;	interventi	↔Malondialdehyde
bl	linded	43mg/kg	on (diet	⇔Lipid hydroperoxides
to	the	polyphen	without	↔Ferric reducing ability of plasma
ty	rpe of	ols	olives or	
oi	il they	Method:	olive oil	
re	eceive	Oil was	products)	
d		subdivide		
		d over		
		two meals		
		and		
		participa		
		nts		
		instructe		
1		d to pour		
	<i></i>	it over		


			products		^
Marrugat et al. 2004,	Placebo	n=33 healthy	Dose: 25	3-week	Difference in change between baseline and treatment values (change between groups not
Same cohort as Perona et al. 2011,	-	men	mL/day	interventi	reported)
Spain.	controll	Age	Arms:	on, 2-	
Study period: not reported	ed,	(mean±std):	1. HPOO:	week	Classic CVD markers
	double-	НРОО-	150mg/k	washout	↔Total-C
	blind,	MPOO-	g of	periods	↑HDL-C ^{HPOO}
	random	LPOO: 55±21	phenols	before	↔LDL-C
	ized,	years	2.	each	→Triglycerides
	crossov	МРОО-	MPOO:	interventi	⇔Glucose
	er trial	LPOO-HPOO:	68mg/kg	on (LPGO	
		61±19 years	of	used for	Oxidative Stress / Antioxidant Status
		LPOO-HPOO-	phenols	raw and	↓Oxidized LDL ^{HPOO}
		мроо:	3. LPOO:	cooking	Resistance of LDL to oxidation (↑lag time HPOO,MPOO, ←) rate, ←) max amount of dienes,
		57±19 years	Undetect	purposes)	→antibodies against oxidized LDL
		Attrition: 3	ed		Percentage of change (baseline to end of intervention) between groups
		withdrawals	polyphen		
			ols		↓Oxidized LDL ^{a,c}
			Method:		Resistance of LDL to oxidation (↑lag time) ^{a,b}
			Participa		


			d to		
			avoid a		
			high		
			intake of		
			foods		
			listed as		
			containin		
			g		
			phenolic		
			compoun		
			ds		
Fito et al. 2005,	Placebo	n=40 men	Dose:	3-week	Difference in change between groups
Spain.	controll	with stable	50mL/da	interventi	
Study period: not reported	ed,	CHD	y	on period,	Classic CVD markers
	crossov	Age	Arms:	2-week	↔Total-C
	er,	(mean±std):	1. HPOO;	washout	↔LDL-C
	double-	67±9 years	161mg/k	periods	↔HDL-C
	blind	Attrition:	g	before	←→Triglycerides
	random	n=3 dropped	polyphen	each	⇔Lipoprotein (a)
	ized	out, n=3	ols	interventi	⇔Glucose
	Ÿ				. , 5.00000

l t	trial	excluded	2. LPOO;	on (LPOO	↓SBP
		due to lack	14.7mg/k	as source	⇔DBP
		of	g	of crude	
		compliance	polyphen	fat)	Oxidative Stress / Antioxidant Status
			ols		↓Oxidized LDL-C
			Method:		← Antibodies against oxidized
			administ		↓Lipoperoxides
			ered raw		↑Glutathione peroxidase
			over 3		↔Total antioxidant status
			meals,		
			other		
			cooking		
			fats		
			replaced		
			with the		
			LPO0		
			during		
			both		
(7			intervent		
	1		ions		

Visioli et al. 2005, Italy.	Rando	n=22 mildly	Dose: 40	7-week	Difference in change between groups
Study period: not reported	mized,	dyslipidaemi	mL/ day	interventi	
	single-	c adults (12	Arms:	on, 3-	Classic CVD markers
	blind,	men, 10	1. HPOO;	week	↔Total-C
	crossov	females)	total	washout	↔HDL-C
	er trial.	Age (range):	hydroxyt	period	↔LDL-C
	Laborat	18 to 65	yrosol	prior to	↔Triglycerides
	ory	years	content	commenc	↔ BMI
	person	Attrition: not	166 mg/L	ement, 4-	← Mean blood pressure
	nel	reported	2. LPOO;	week	⇔ Gluçose
	were		total	washout	
	blinded		hydroxyt	period	Oxidative Stress / Antioxidant Status
	to		yrosol	between	↑Antioxidant capacity
	treatm		content 2	interventi	↓Thromboxane B ₂ (TXB ₂)
	ents		mg/L	ons (40	← Isoprostane excretion (8-iso-PGF2α)
			Method:	mL/day of	Consume exercisor (on so not za)
			Raw olive	LPOO)	
			oil was		
,			subdivide		
			d		

			d for		
					<i>→</i>
Salvini et al. 2006, Italy.	Rando	n=10 healthy	Dose: 50	8-week	Difference in change between groups
Study period: September–November	mized,	postmenopa	g/day	interventi	
2002 to January – March 2003	double-	usal women	Arms:	on, 8-	Oxidative Stress / Antioxidant Status
	blind,	Age (range):	1. HPOO:	week	Oxidative DNA damage (↓oxidized DNA bases, ↔basal DNA breaks)
	crossov	47 to 67	592	washout	←>Total Antioxidant Status
	er trial	years	mg/kg	period	↔DNA breakage induced by H ₂ O ₂ (in vitro)
		Attrition:	polyphen	(habitual	
		n=2 dropout	ols	fats and	
			2. LPOO:	oils)	
			147		
			mg/kg		
			polyphen		
			ols		
			Method:		
			Participa		
			nts		
			instructe		
			d to		
			substitut		

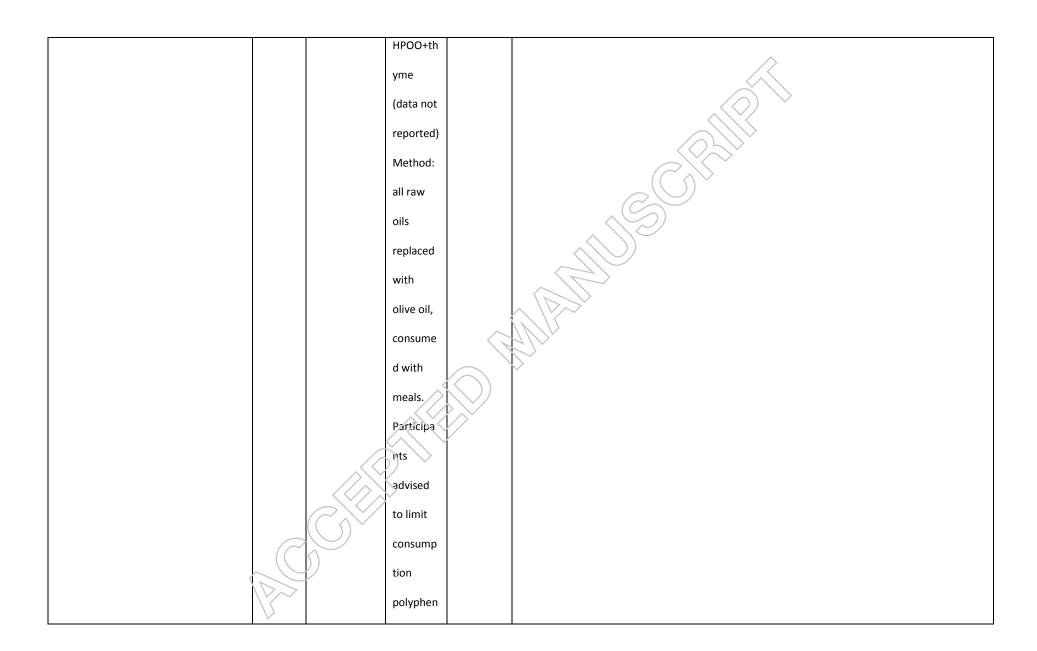
			participa		
			nts		
			instructe		\bigcirc
			d to stay		
			on their		
			habitual		
			diet		
Fito et al. 2008,	Placebo	n=28 men	Dose:	3-week	Difference in change between groups
Subset of Fito et al. 2005,	controll	with stable	50mL/da	interventi	
Spain.	ed,	CHD	у	on period,	Inflammatory markers
Study period: not reported	crossov	Age	Arms:	2-week	VCR0
	er,	(mean±std):	1. HPOO;	washout	↓ IL-6
	double-	68±7 years	161mg/k	periods	⇔sICAM-1
	blind	Attrition: not	g	before	↔sVCAM-1
	random	reported	polyphen	each	
	ised		ols	interventi	
	trial		2. LPOO;	on (LPOO	
			14.7mg/k	as source	
,			g	of crude	
			polyphen	fat)	

			ols		
			Method:		
			administ		
			ered raw		
			over 3		
			meals,		
			other		
			cooking		
			fats		
			replaced	(
			with the		
			LPOO		
			during		
			both	/ ·	
			intervent		
			ions		
Al-Rewashdeh, 2010, Jordan.	Control	n=25 healthy	Dose:	4-week	Difference in change between groups
Study period: October 2008 to March	led,	aduits (12	Not	interventi	
2009	Cross-	men, 13	prescribe	ons, 4-	Classic CVD markers
	over	women)	d,	week	AUDI C
	V				↑HDL-C

Trial	Age(rango):	consume	wash out	↓LDL-C ^{abc}
ITIA	Age(range):	Consume	wasii uul	\Diamond
	37 to 50	d about	periods	↓Total /HDL-C ^{abc}
	years (men),	70g per	before	↓LDL /HDL-C ^{abc}
	33 to 44	day	each	↔Triglycerides
	years	Arms:	interventi	↔Phospholipids
	(women)	1. HPOO;	on	↔Total-C
	Attrition: not	753mg/k	(habitual	↔Free cholesterol
	reported	g	diet with	<>Cholesterol Ester
		polyphen	use of	↓SBP ^{ab} (men only)
		ols	usual fats	L DBPate
		2.	hydrogen	
		мроо;	ated,	Oxidative Stress / Antioxidant Status
		368mg/k	refined oil	↓Malondialdehyde ^{abc}
		g	and blend	
		polyphen	of seed	
		ols	oils)	
		3. LPOO;		
		132mg/k		
		g		
		polyphen		

			ols		
			Method:		
			Habitual		
			diets plus		
			intervent		
			ion to		
			replace		
			usual fat		
			intake in		
			cooking,		
			salad		
			dressing,		
			and on		
			bread		
Perona et al. 2011.	Placebo	n=33 healthy	Dose. 25	3-week	Difference in change between groups
Same cohort as Marrugat et al. 2004,	-	men	mL/day	interventi	
Spain.	controll	Age(range):	1. HPOO:	on, 2-	Classic CVD markers
Study period: not reported	ed,	23 to 91	825	week	
	double-	years	mmol	washout	Serum lipid concentrations
	blind,	Attrition: 3	caffeic	periods	↔Total-C
	\vee				↔Triglycerides

	and the land of th	1-1	I C	LWDI shelpered setson ^C
random	withdrawals	acid	before	↓VLDL-cholesteryl esters ^c
ized,		equivale	each	↓VLDL-Triglycerides ^{a,c}
crossov		nts/kg	interventi	↓VLDL-C _{a,c}
er trial		2.	on (LPOO	↓VLDL-Phospholipids ^{a,c}
		MPOO:	used for	↓VLDL-Apolioprotein B ^{a,b}
		370	raw and	↑VLDL Triglyceride/Apoliprotein B ratio ^{a,b}
		mmol	cooking	
		caffeic	purposes)	
		acid		
		equivale	*	
		nts/kg		
		3. LPOO:		>
		0 mmol		
		caffeic		
		acid		
		equivale		
		nts/kg		
		Method:		
		Participa		
1		nts		


			high		
			intake of		
			foods		
			listed as		
			containin		
			g		
			phenolic		
			compoun		
			ds		
Moreno-Luna et al. 2012,	Rando	n=24 women	Dose: 60	2-month	Difference in change between baseline and treatment values (change between groups not
Spain.	mized,	with high-	mL/day	interventi	reported)
Study period: not reported	single-	normal BP or	1. HPOO:	on, 4-	
	blind,	stage 1	564mg/k	month	Classic CVD markers
	crossov	essential	g	washout	√SBP ^{HPOO}
	er trial	hypertension	2. LPOC:	period	
		Age (Range):	0mg/kg	prior to	↓DBP ^{HPOO}
		24 to 27	Method:	commenc	
		years	Mediterr	ement, 4	Oxidative Stress / Antioxidant Status
		Attrition:	anean-	week	↓Oxidized LDL ^{HPOO}
		n=10		washout	
		11-10	style diet	wasiiuut	Inflammatory markers

	dropout	in	period	↓hs-CRP ^{HPOO}
	игоройс			→
		addition	between	
		to the	interventi	Additional outcomes
		treatmen	ons	Endothelial function measures
		t oil were	(provided	(↓Asymmetric dimethylarginine ^{HPOO}
		prescribe	a set	↑Hyperemic area after ischemia HPOD
		d.	menu	↑Total plasma nitrites/nitrates HPOO)
		Participa	plan	
		nts	[Mediterr	
		instructe	anean-	
		d to	style diet]	
		avoid	containin	
		foods	gthe	
		classified	same	
		as highly	calories as	
		rich in	their	
		polyphen	habitual	
6		ols	diets and	
	<u></u>		sunflower	
			or corn oil	

				was	
				permitted	\nearrow
				,	
)	
Rus et al. 2017,	Rando	n=23 women	Dose: 50	3-week	Difference in change between groups
Spain.	mized,	with	mL/day	interventi	
Study period: not reported	controll	fibromyalgia	Arms:	on, 2-	Classic CVD markers
	ed,	Age	1. HPOO	week	↔BMI
	double-	(mean±std):	(n=11);	washout	⇔SBP
	blind,	HPOO; 54±6	polyphen	period	↔DBF
	parallel	years, LPOO;	ol	prior to	⇔Cardiac frequency(bpm)
	trial	48±8 years	content	commenc	
		Attrition: not	not	ement (50	Oxidative status
		reported	reported	mì/day	↓Thiobarbituric acid reactive substances (TBARS)
			2. LPO0	LP00)	↓Protein carbonyl content
			(n=12);		⇔8-hydroxy-2'-deoxyguanosine
			polyphen		Antioxidant status
		(())	ol		↔Total antioxidant capacity
			content		⇔Superoxide dismutase (SOD)
			not		↔Glutathione peroxidase (GPx)
	\\		reported		←Catalase

Method:	↔ Antioxidant compounds (copper, zinc, ceruloplasmin, iron, ferritin, transferrin, uric acid,
Treatme	albumin, bilirubin)
nt olive	
oil was	
consume	
d raw but	
LPOO	
was used	
for	
cooking.	
Intake of	
antioxida	
nts was	
normaliz	
ed and	
participa	
nts	
recomme	
nded to	
avoid an	

			excess of		
			CACCOS OF		\wedge
			calories		
			and/or		\bigcirc
			aa, o.		
			lipids		
VOHF Cohort	<u>'</u>				
Farras et al. 2015,	Double-	n=33	Dose: 25	3-week	Difference in end intervention measures between groups (controlled for baseline values)
Spain.	blind,	hypercholest	mL/day	interventi	
Study period: April 2012 to September	random	erolemic	Arms:	on period,	Classic CVD markers
2012	ized,	adults (19	1. HPOO;	2-week	← HDL composition (total-C, triglycerides, Apo-A1, Apo-AII, free cholesterol, esterified-
	controll	men, 14	enriched	washout	
	1		tal.		cholesterol, phospholipids, free cholesterol/total-C, esterified cholesterol/total-C,
	ed,	women)	with	periods	phospholipids/free cholesterol, esterified cholesterol/free cholesterol)
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	
	clinical	years	polyphen	interventi	
	trial	Attrition:	ols,	on	
		n=3	2. LPOO;	("commo	
		discontinued	80 mg/kg	n" olive	
		trial	polyphen	oil)	
			ols,		
			3.		

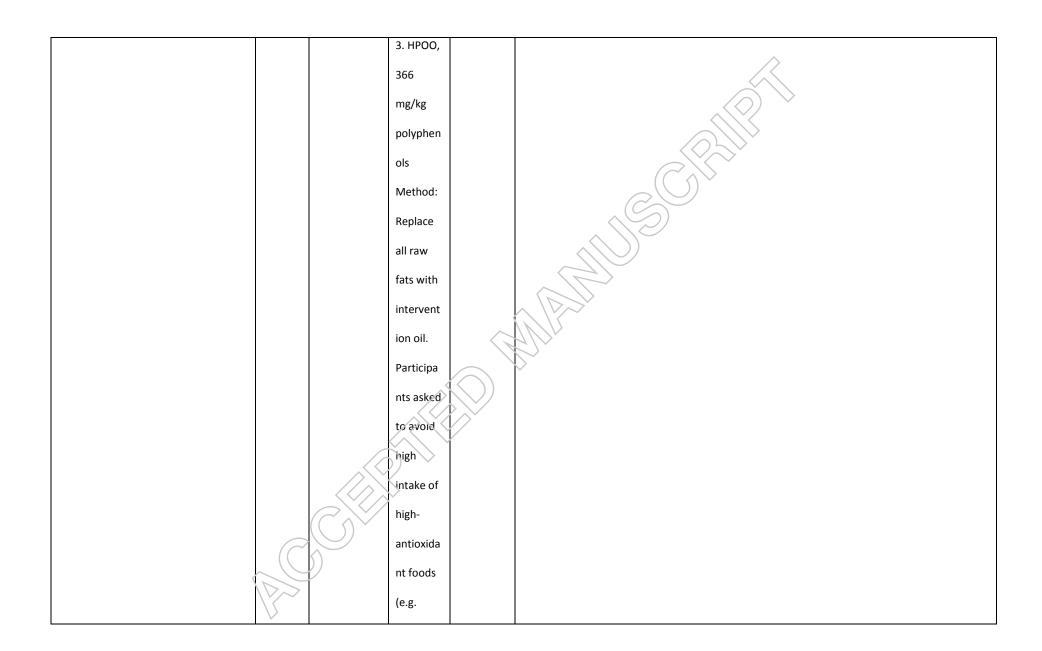
			ol-rich		
			food.		
Pedret et al. 2015, Spain.	Double-	n=33	Dose: 25	3-week	Additional outcomes
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	All interventions upregulated proteins related to cholesterol homeostasis, protection against
2012	random	erolemic	Arms:	on period,	oxidation and blood coagulation, while down-regulating proteins related to in acute-phase
	ized,	adults (19	1. HPOO;	2-week	response, lipid transport, and immune response.
	controll	men, 14	enriched	washout	HPOO had a stronger effect on the following proteins: PON-3 and PPBP which were up-
	ed,	women),	with	periods	regulated.
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	
	clinical	years	polyphen	interventi	
	trial	Attrition:	ols,	Offi	
		n=3	2. LPOO;	("commo	
		discontinued	80 mg/kg	ກ" olive	
		trial	polyphen	oil)	
			ols,		
			3.		
			HPOO+th		
,			yme		
			(data not		

		1	reported)		
					\nearrow
			Method:		
			all raw		$\langle \Diamond \rangle $
			oils		
			replaced		
			with		
			olive oil,		
			consume		
			d with		
			meals.		
			Participa		
			nts		\triangleright
			advised		
			to limit		
			consump		
			tion		
			polyphen		
			ol-rich		
			food.		
Fernandez-Castillejo et al. 2016, Spain.	Double-	n=33	Dose: 25	3-week	Difference in change between groups
				1	

Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
2012	random	erolemic	Arms:	on period,	Classic CVD markers
	ized,	adults (19	1. HPOO;	2-week	↓LDL-C
	controll	men, 14	enriched	washout	→ApoB100
	ed,	women)	with	periods	NMR LDL particle concentration (↓total, ↓IDL, ↔large, ↔small)
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	↔HDL-C
	clinical	years	polyphen	interventi	↔ApoA1
	trial	Attrition:	ols,	on	NMR HDL particle concentration (↓total, ↑large, ↔medium, ↓small) and ↑size
		n=3	2. LPOO;	("commo	
		discontinued	80 mg/kg	n" olive	⇔Triglycerides
		trial	polyphen	oil)	↔ VLDL Triglycerides
			ols,		NMR VLDL particle concentration (\leftrightarrow total, \leftrightarrow large, \downarrow medium, \leftrightarrow small) and \downarrow size
			HPOO+≵h		↓ApoB100 containing lipoproteins
			yme		
			(data not		↓LDL particles /HDL particles
			reported)		↓HDL-C/HDL particles
1	B		Method:		↓small HDL/ large HDL
	1		all raw		↓Lipoprotein insulin resistance index

			oils		_
			replaced		
			with		
			olive oil,		
			consume		
			d with		
			meals.		
			Participa		
			nts		
			advised		
			to limit		
			consump		
			tion		
			polyphen	<u>/</u> `	
			ol rich		
			food.		
Martin-Pelaez et al. 2016, Spain.	Double-	n=10	Dose: 25	3-week	Difference in change between groups
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
2012	random	erolemic	Arms:	on period,	Classic CVD markers
	ized,	adults (5	1. HPOO;	2-week	↔Weight/BMI

	_			
controll	men, 5	enriched	washout	→Waist circumference
ed,	women)	with	periods	↑Glucose
crossov	Age (range):	500mg/k	before	↔SBP
er	35 to 80	g	each	↔DBP
clinical	years	polyphen	interventi	
trial	Attrition: not	ols,	on	Oxidative status
	reported	2. LPOO;	("commo	↔ Oxidized LDL-€
		80 mg/kg	n" olive	
		polyphen	oil)	Inflammatory-markers
		ols,	•	↑ CRP
		3.		←>Fecal TNF-α
		HPOO+th		←>Fecal calprotectin
		yme		
		(data not		Additional markers
		reported)		↑Total fecal bacteria
		Method:		→Ratio Firmicutes/Bacteroidetes
		all raw		←>Fecal IgA coated bacteria
		oils		←>Fecal IgA
		replaced		
		with		

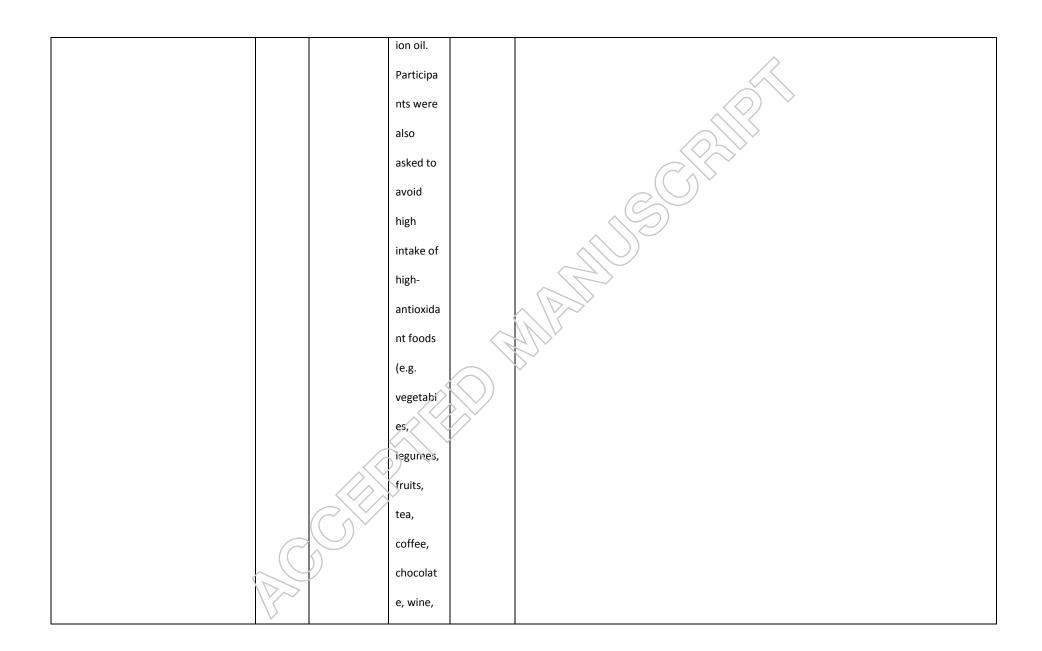

			olive oil,		
			consume		
			d with		
			meals.		
			Participa		
			nts		
			advised		
			to limit		
			consump		
			tion	,	
			polyphen	(
			ol-rich		
			food.		
Fernandez-Castillejo et al. 2017, Spain.	Double-	n=33	Dose: 25	3-week	Difference in change between groups
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
2012	random	erolemic	Arms:	on period,	Oxidative status
	ized,	adults (19	1. HPOO;	2-week	↑ PON-3 protein
	controll	men, 14	enriched	washout	↔PON-1 protein
	ed,	women)	with	periods	Lactonase activity (\downarrow raw, \leftrightarrow specific)
	crossov	Age (range):	500mg/k	before	Paraoxonase activity (less ↑ raw, ↔ specific)

er	35 to 80	g	each
clinic	l years	polyphen	interventi
trial	Attrition: not	ols,	on
	reported	2. LPOO;	("commo
		80 mg/kg	n" olive
		polyphen	
		ols,	
		3.	
		HPOO+th	
		yme	
		(data not	
		reported)	
		Method:	
		all raw	
		oils	
		replaced	
		with	
		olive oil,	
		consume	
		d with	

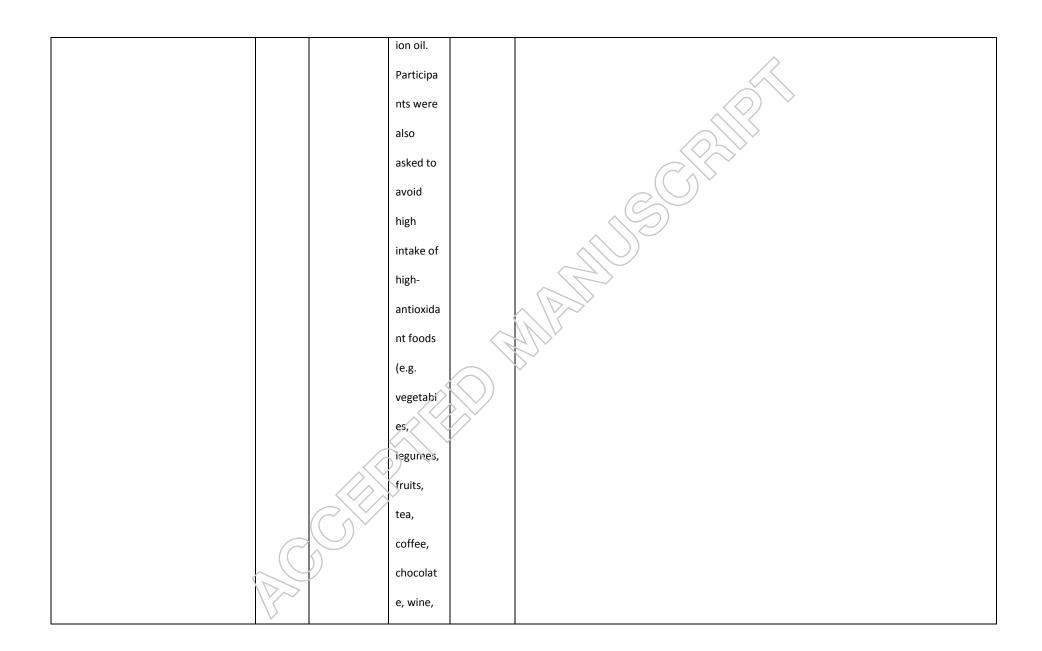
			meals.		
			Participa		
			nts		
			advised		
			to limit		
			consump		
			tion		
			polyphen		
			ol-rich		
			food.		
		_			
Martin-Pelaez et al. 2017,	Double-	n=12	Dose: 25	3-week	Difference in change between groups
Spain.	blind,	hypercholest	mL/day	interventi	
Study period: April 2012 to September	random	erolemic	Arms:	on period,	Classic CVD markers
2012	ized,	adults (7	1. HPOO;	2-week	↔Total-C
	controll	men, 5	enriched	washout	Total-C
	ed,	women)	with	periods	
	crossov	Age (range):	500mg/k	before	Oxidative status
	er 🥏	46 to 67	g	each	→ Oxidized LDL-C
	clinical	years	polyphen	interventi	
					Additional markers
	trial	Attrition: not	ols,	on	→ Bacterial Enumerations

reported	2. LPOO;	("commo	← Short chain fatty acids
	80 mg/kg	n" olive	→ Neutral sterols
	polyphen	oil)	⇔Bile acids
	ols,		
	3.		
	HPOO+th		
	yme		
	(data not		
	reported)		
	Method:	(
	all raw		
	oils		
	replaced		
	with		
	olive oi),		
	consume		
	d with		
	meals.		
7	Advised		
	to limit		

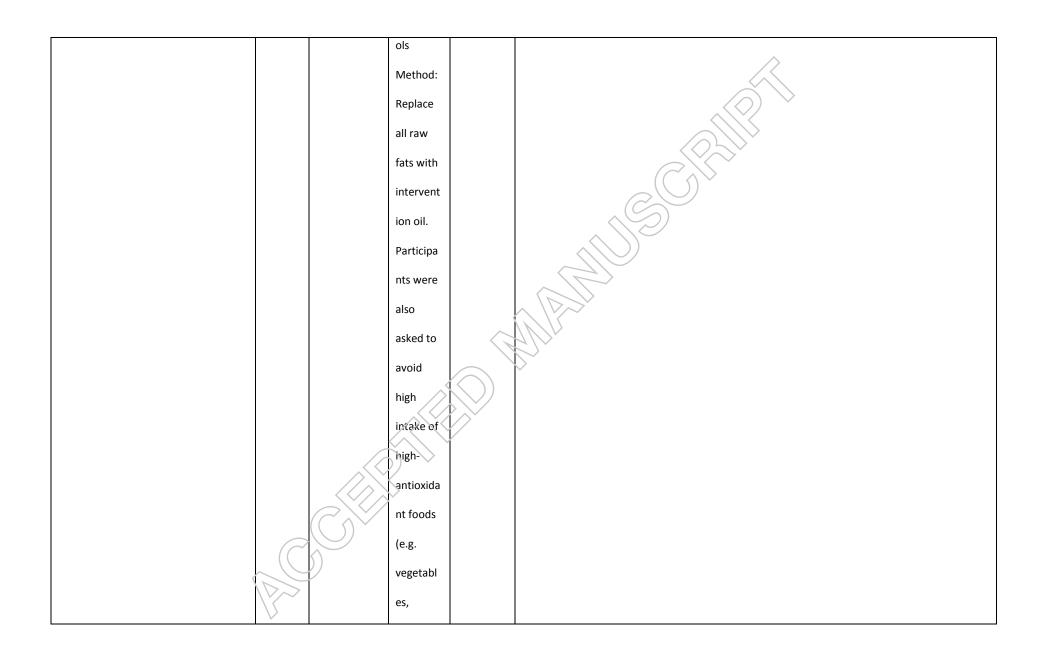
		1	I	ı	,
			consump		
					\nearrow
			tion		
			polyphen		\Diamond
			polyplicit		
			ol-rich		
			food.		
EUROLIVE Cohort					
Covas et al. 2006.	Multice	n=200	Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre,	healthy men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age (range):	Arms:	ons, 2-	Oxidative status
bermark, rimana, italy, dermany,	double	Age (range).	Aiiii3.	0113, 2	Oxidative status
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	↓Conjugated dienes ^{b,c}
2003	random	years	2.7	washout	VHydroxy fatty acids ^c
			/1		
	ized,	Attrition:	mg/kg	periods	↓ Oxidized LDL-C ^c
	crossov	n=18	polyphen	before	\leftrightarrow F _{2α} -isoprostanes
	CIOSSOV	11-10	polyphich	Belove	C71 _{2α} isoprostantes
	er,	dropout	ols	each	
				ľ	
	controll		2.	interventi	
			/	,	
	ed trial		мроо;	on (avoid	
			164	olive and	
		(())	104	Silve alla	
			mg/kg	olive oil	
	(()			
		u	polyphen	consumpt	
				. ,	
	1		ols	ion)	
	w	1	1	İ	



			vegetabl es, legumes, fruits, tea,		
			coffee, chocolat e, wine,		
Machowetz et al. 2007.	Multico	n=200	and beer).	2 week	Difference in change between groups
	Multice			3-week	Difference in change between groups
5 European Countries (Spain, Denmark, Finland, Italy, Germany)	ntre, double-	healthy men Age(range):	mL Arms:	interventi ons, 2-	Oxidative status
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	↔ Markers of DNA /RNA oxidative damage (urinary excretion rates of guanine, guanosine, and
2003	random	years	2.7	washout	deoxyguanosine and their corresponding oxidation products)
	ized,	Attrition:	mg/kg	periods	
	crossov	n=18	polyphen	before	
	er,	dropout	ols	each	
	controll		2.	interventi	
	ed trial		мроо;	on (avoid	


	I -	
	164	olive and
	mg/kg	olive oil
	polyphen	consumpt
	ols	ion)
	3. HPOO,	
	366	
	mg/kg	
	polyphen	
	ols	
	Method:	
	Replace	
	all raw	
	fats with	
	intervent	
	ion oil.	
	Participa	
	nts were	
	also	
	asked to	
	avoid	
V		

			high		<u></u>
			intake of		
			high-		
			antioxida		
			nt foods		
			(e.g.		
			vegetabl		
			es,		
			legumes,		
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,	<i></i>	
			and		
			beer).		
Machowetz et al. 2008.	Single	n=38 healthy	Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	centre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age(mean±st	Arms:	ons, 2-	Classic CVD markers
Study period: September 2002 to June	blind,	d): 36±2	1. LPOO;	week	Z-SDMI
	V				↔BMI

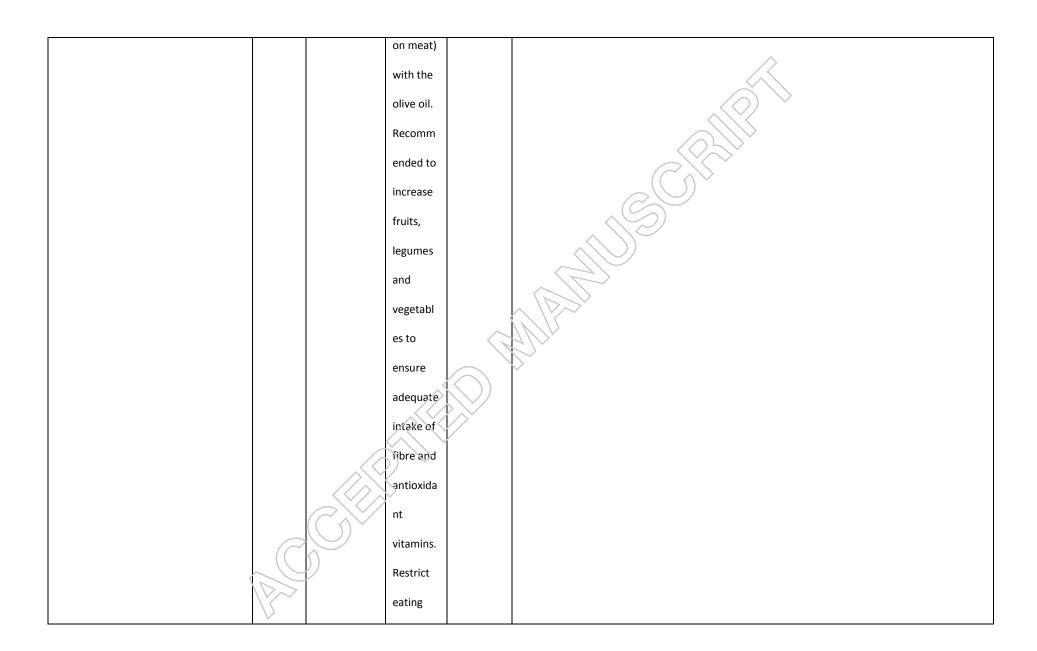

2003	random	years	2.7	washout	
	ized,	Attrition: not	mg/kg	periods	Inflammatory markers
	crossov	reported	polyphen	before	↓resistin ^{LPOO}
	er,		ols	each	
	controll		2.	interventi	
	ed trial		мроо;	on (avoid	
			164	olive and	
			mg/kg	olive oil	
			polyphen	consumpt	
			ols	ion)	
			3. HPOO,		
			366		
			mg/kg		
			polyphen		
			ols		
			Method:		
			Replace		
			all raw		
(fats with		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		intervent		


			and		
			beer).		
de la Torre-Carbot et al. 2010.	Multice	n=36	Dose: 25	3-week	Difference in change between baseline and treatment values (change between groups not
5 European Countries (Spain,	nter,	nonsmoking	mL	interventi	reported)
Denmark, Finland, Italy, Germany)	double-	males	Arms:	ons, 2-	
Study period: September 2002 to June	blind,	Age (range):	1. LPOO;	week	Oxidative status
2003	random	20 to 60	2.7	washout	↓plasma oxLDL
	ized,	years	mg/kg	periods	
	crossov	Attrition: not	polyphen	before	
	er,	reported	ols	each	
	controll		2. HPOO,	interventi	
	ed trial		366	on (avoid	
			mg/kg	olive and	
			polyphen	ofive oil	
			ols	consumpt	
			Method:	ion)	
			Replace		
			all raw		
			fats with		
			intervent		


			and		
			beer).		
Castaner et al. 2011.	Multice	n=200	Dose: 25	3-week	Difference changes between each arm of the study (dose dependent increase related to
5 European Countries (Spain,	ntre,	healthy men	mL	interventi	polyphenol content of olive oil):
Denmark, Finland, Italy, Germany)	double-	Age(range):	Arms:	ons, 2-	
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	Oxidative status
2003	random	years	2.7	washout	↑ OLAB
	ized,	Attrition:	mg/kg	periods	
	crossov	n=18	polyphen	before	
	er,	dropout	ols	each	
	controll		2.	interventi	
	ed trial		MPOO;	cn (avoid	
			164	olive and	
			mg/kg	c⁄live oil	
			polyphen	consumpt	
			ols	ion)	
			3. HPOO,		
			366		
			mg/kg		
			polyphen		

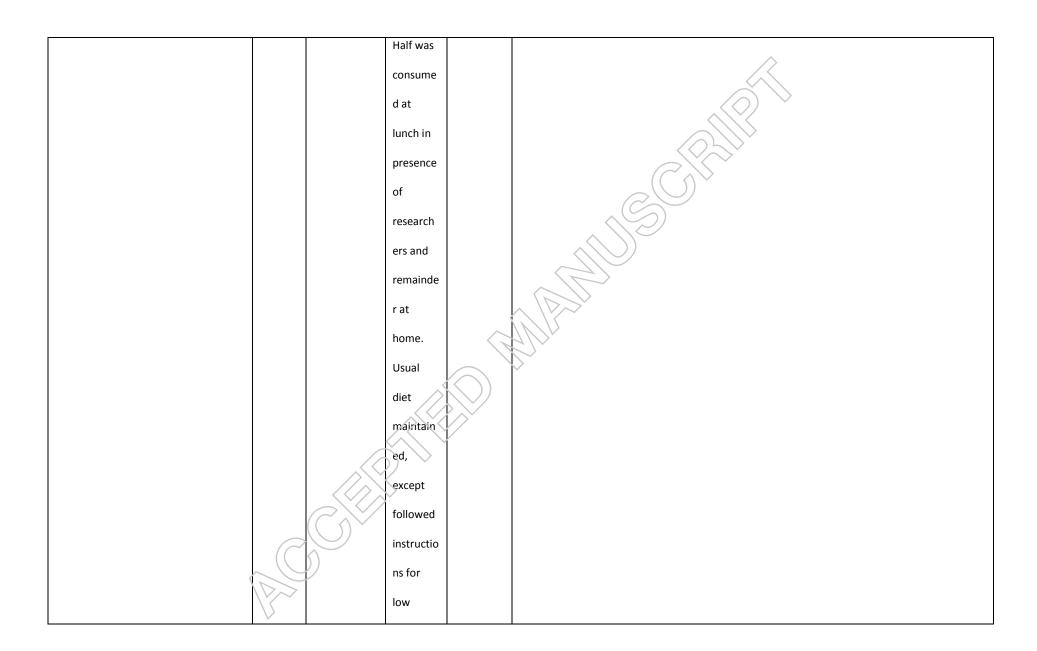
			legumes,		
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,		
			and		
			beer).		
Castaner et al. 2012.	Multice	n=18 healthy	Dose: 25	3-week	Difference in change between groups
					Billetines in change between groups
5 European Countries (Spain,	ntre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age(mean±st	Arms:	ons, 2-	Inflammatory markers
Study period: September 2002 to June	blind,	d): 38±12	1. LPOO;	week	↓MCP1
2003	random	Attrition: not	2.7	washout	
	ized,	reported	mg/kg	periods	Difference changes between baseline and treatment values:
	crossov		polyphen	before	
	er,		ols	each	Additional markers
	controll		2. HPOO,	interventi	↓Atherosclerosis-related gene expression (CD40L, IL23A, IL7R, IL8RA, and OLR1 genes)
	ed trial		366	on (avoid	
4			mg/kg	olive and	
			polyphen	olive oil	

Hernaez et al. 2014.	Multice	n=47 healthy	legumes, fruits, tea, coffee, chocolat e, wine, and beer). Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age	Arms:	ons, 2-	Classic CVD markers
Study period: September 2002 to June	blind,	(mean±std):	1. LPOO;	week	←→Phospholipids
2003	random	30±9 years	2.7	washout	⇔Apolipoprotein A1 and A2
	ized,	Attrition: not	mg/kg	periods	
	crossov	reported	polyphen	before	↑ HDL cholesterol efflux capacity
	er,		ols	each	↑large HDL ₂ particles
	controll		2. HPOO,	interventi	→HDL particle count
	ed trial		366	on (avoid	· →Triglycerides in HDL core
			mg/kg	olive and	↔ HDL fluidity
			polyphen	olive oil	

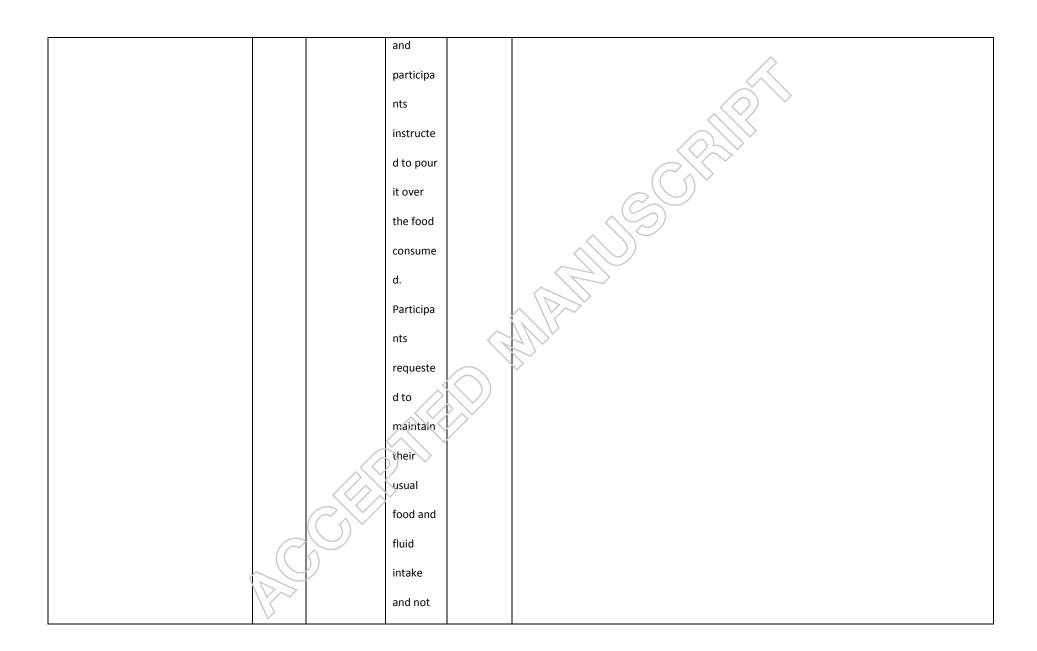

			legumes, fruits, tea, coffee, chocolat e, wine, and beer).		
Hernaez et al. 2015. 3 Cities (Potsdam, Germany; Kupio Finland, Barcelona, Spain)	Multice ntre, double- blind,	n=25 Healthy men (lipid- related outcomes)	Dose: 25 mL Arms:	3-week interventi ons, 2-	Difference in change between groups Classic CVD markers
	random ized, crossov er, controll	Age (mean±std): 32±11 years n=18 Healthy men (gene	2.7 mg/kg polyphen	washout periods before each interventi	↓Apolipoprotein B-100 ↓Total LDL particles ↓Small LDL particles ←>Large LDL particles ←>Lipoprotein Lipase gene expression
	ed trial	expression outcomes) Age	366 mg/kg polyphen	on (avoid olive and olive oil	Oxidative status ←>LDL oxidation lag time ←>LDL oxidation rate

(mean±std):	ols	consumpt	
37±12 years	Method:	ion)	
Attrition: not	Replace		\sim
reported	all raw		
Теропец			
	fats with		
	intervent		
	ion oil.		
	Participa		
	nts were		
	also		
	asked to		
	avoid		
	high		
	intake of		
	high-		
	antioxida		
	nt foods		
	(e.g.		
	vegetabl		
	es,		

legumes,	_
fruits,	
tea,	
coffee,	
chocolat	
e, wine,	
and	
beer).	


Author, year, country, study period	Study Design	Population, Attrition rate	Olive oil	Duration and structure	Results, differences between high polyphenol compared to low polyphenol olive oils* ⁸
Independent studies					
Ramirez-Tortosa et al. 1999, Spain.	Rando	n=24 free-	Dose:	3-month	Difference in end intervention measures between groups
Study period: not reported	mized	living men	Not	interventi	Classic CVD markers
	Control	with	specified	ons, 3-	
	led,	peripheral	Arms:	month	↔Weight/BMI
	Cross-	vascular	1. HPOO;	wash-out	↔HDL-C

	1	1	1	
ove	disease,	800mg/k	period	↔LDL-C
Tria	without	g	between	↑ Triglycerides
	diabetes,	polyphen	interventi	
	hypothyroidi	ols	ons (usual	Lipoprotein composition of:
	sm, obesity,	2. LPOO;	diets)	Triglycerides (↔VLDL,↑ LDL, ↔HDL)
	cardiac	60mg/kg		Phospholipids (↔VLDL, ↔ LDL, ↔ HDL)
	episodes	polyphen		Total-C (\leftrightarrow VLDL, \uparrow LDL, \leftrightarrow HDL)
	Age	ols		Cholesterol Esters (\leftrightarrow VLDL, \downarrow LDL, \leftrightarrow HDL)
	(mean±std):	Method:		Free cholestero! (↑VLDL, ↑LDL, ↓HDL)
	70±2 years	Instructio		
	Attrition: not	n to		Oxidotive Stress / Antioxidant Status
	reported	replace		Copper- mediated LDL oxidation
		usual saturated		↓ Macrophage uptake of oxidized LDL
		fat intake		
		(butter,		
		margarin		
		e, lard		
		and		
V	~	visible fat		



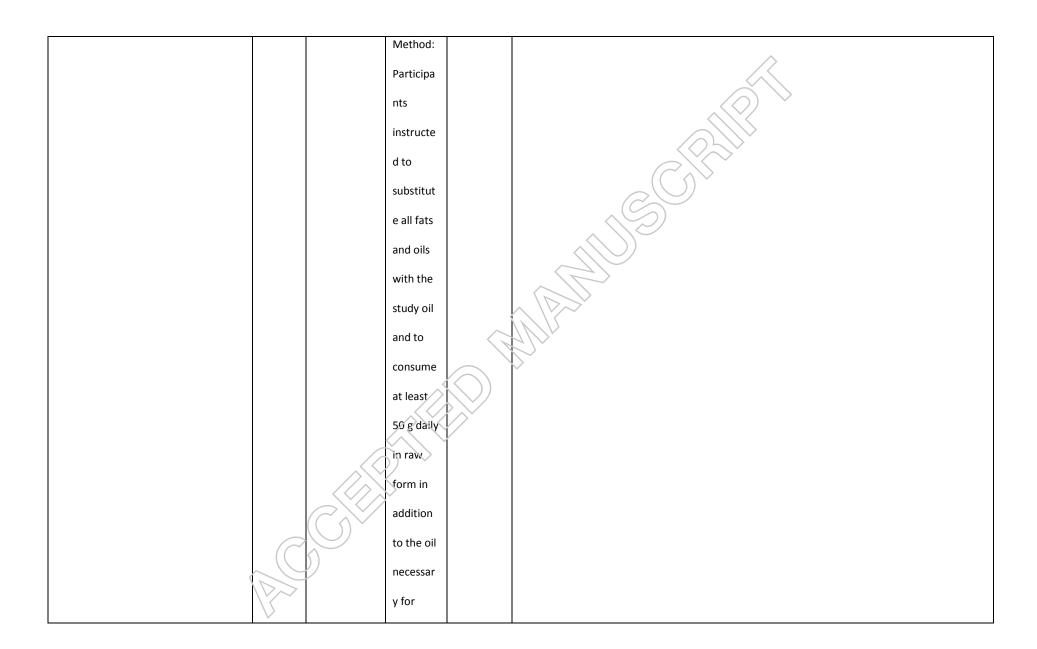
	1	ı	1	ı	
			out to		
			1/week.		
			Advised		
			to walk		
			at least 1		
			km/day		
			and stop		
			smoking.		
Vissers et al. 2001, Netherlands.	Rando	n=49 healthy	Dose:	3-week	Difference in end intervention measures between groups
Study period: not reported	mized	adults (32	based on	interventi	
	Control	women, 17	energy	ons, 2-	Classic CVD markers
	led,	men),	needs,	week	
	Cross-	Age (range):	mean	wash-out	↔Weight
	over	18-58 years,	69g/day	periods	↔Total-C
	Trial	Attrition:	Arms:	before	↔HDL-C
	Blindin	n=6	1. HPOO;	each	↔LDL-C
	g of	withdrew	308mg/k	interventi	→Triglycerides
	particip		g	on (diets	
4	ants to		polyphen	without	Oxidative Stress / Antioxidant Status
	olive oil		ols	olives,	LDL oxidizability (↓lag time, ↔max rate)

sequ	ien	2. LPOO;	olive oil	HDL oxidizability (↔lag time, ↔max rate)
ce		43mg/kg	and olive	↔Malondialdehyde
		polyphen	oil	⇔Lipid hydroperoxides
		ols	products)	←→Protein carbonyls
		Method:		
		daily		
		olive oil		
		in		
		provided		
		foods		
		(40% in		
		mayonna		
		ise, 30%		
		in sauces		
		and 30%		
		in		
		cookies		
(and		
		raisin		
		rolls).		

		1	r	1	
			vitamin		
			F		\nearrow
			E.		
Moschandreas et al. 2002,	Rando	n=25 Adult	Dose: 70	3-week	Difference in change between groups
Greece.	mized,	smokers (11	g/day	interventi	
Study period: not reported	single-	men, 14	Arms:	on, 2-	Classic CVD markers
	blind,	females)	1. HPOO;	week	↔Weight
	crossov	Age	308mg/k	washout	
	er trial,	(mean±std):	g	periods	Oxidative Stress / Antioxidant Status
	Particip	30±9 years	polyphen	before	Total plasma resistance to oxidation (↔lag time, ↔max rate)
	ants	Attrition:	ols	each	→Protein carbonyl
	were	n=3 dropout	2. LPOO;	interventi	⇔Malondialdehyde
	blinded		43mg/kg	on (diet	← Lipid hydroperoxides
	to the		polyphen	without	↔Ferric reducing ability of plasma
	type of		ols	olives or	
	oil they		i/lethod:	olive oil	
	receive		Oil was	products)	
	d		subdivide		
			d over		
			two		
			meals		

	1	Г	ı	1	
			consume		
			olives		
			and		
			other oil-		
			containin		
			g		
			products		
Marrugat et al. 2004,	Placebo	n=30 healthy	Dose: 25	3-week	Difference in change between baseline and treatment values (change between groups not
Same cohort as Perona et al. 2011,	-	men	mL/day	interventi	reported)
Spain.	controll	Age	Arms:	on, 2-	
Study period: not reported	ed,	(mean±std):	1. HPOO:	week	Classic CVD markers
	double-	HPOO-	150mg/k	washout	↔Total-C
	blind,	МРОО-	g of	periods	↑HDL-C ^{HPOO}
	random	LPOO: 55±21	phenois	before	↔LDL-C
	ized,	years	2.	each	→Triglycerides
	crossov	мроб-	MP00:	interventi	↔Glucose
	er trial	LPOO-HPOO:	68mg/kg	on (LPOO	
		61±19 years	of	used for	Oxidative Stress / Antioxidant Status
		LPOO-HPOO-	phenols	raw and	↓Oxidized LDL ^{HPOO}
		МРОО:	3. LPOO:	cooking	Resistance of LDL to oxidation (↑lag time HPOO,MPOO, ↔rate, ↔max amount of dienes,

Г		I		
	57±19 years	Undetect	purposes)	↔antibodies against oxidized LDL
	Attrition: 3	ed		Percentage of change (baseline to end of intervention) between groups
	withdrawals	polyphen		
		ols		↓Oxidized LDL ^{a,c}
		Method:		Resistance of LDL to oxidation (全) ag time) a,b
		Participa		
		nts		
		instructe		
		d to		
		consume	1	
		Treatme		
		nt oil		
		raw, was.		
		distribute	<i></i>	
		d over 3		
		meals of		
		the day.		
		Other		
	7	cooking		
		fats were		

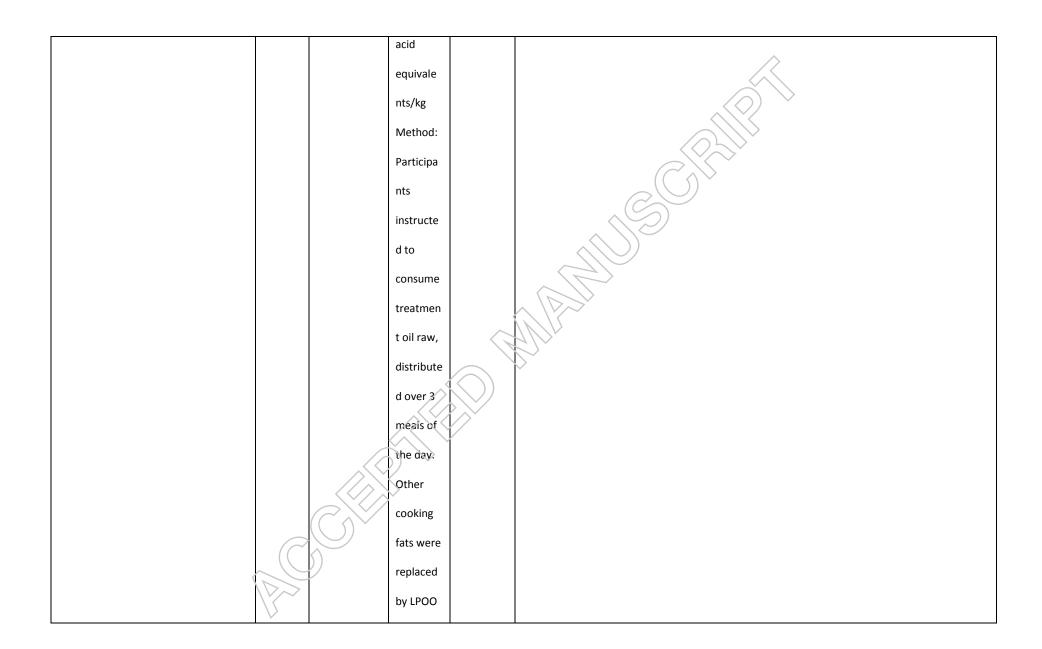

			replaced		
			by LPOO		
			and		
			participa		
			nts		
			requeste		
			d to		
			avoid a		
			high		
			intake of		
			foods		
			listed as		
			containin		
			g	<u>/</u> `	
			phenolic		
			compoun		
			ds		
Fito et al. 2005,	Placebo	n=40 men	Dose:	3-week	Difference in change between groups
Spain.	controll	with stable	50mL/da	interventi	
Study period: not reported	ed,	CHD	у	on period,	Classic CVD markers
	V				

Т		A		2	()T-1-10
	crossov	Age	Arms:	2-week	↔Total-C
	er,	(mean±std):	1. HPOO;	washout	↔LDL-C
	double-	67±9 years	161mg/k	periods	↔HDL-C
	blind	Attrition:	g	before	↔Triglycerides
	random	n=3 dropped	polyphen	each	↔Lipoprotein (a)
i	ized	out, n=3	ols	interventi	⇔Glucose
1	trial	excluded	2. LPOO;	on (LPOO	↓SBP
		due to lack	14.7mg/k	as source	⇔DBP
		of	g	of crude	
		compliance	polyphen	fat)	Oxidative Stress / Antioxidant Status
			ols		↓ Oxidized LDL-C
			Method:		← Antibodies against oxidized
			administ		↓Lipoperoxides
			ered raw		↑Glutathione peroxidase
		^<	over 3		→Total antioxidant status
			meals,		
			other		
			cooking		
			fats		
	\ <u>\</u>		replaced		

			with the		
					\nearrow
			LPOO		
			during		
			both		
			intervent		
			intervent		
			ions		
Visioli et al. 2005, Italy.	Rando	n=22 mildly	Dose: 40	7-week	Difference in change between groups
Study period: not reported	mized,	dyslipidaemi	mL/ day	interventi	
	single-	c adults (12	Arms:	on, 3-	Classic CVD markers
	blind,	men, 10	1. HPOO;	week	⇔Total-C
	crossov	females)	total	washout	↔HDL-C
	er trial.	Age (range):	hydroxyt	period	\(\rightarrow\)
	Laborat	18 to 65	yrosol	prior to	↔LDL-C
					→Triglycerides
	ory	years	content	commenc	↔ BMI
	person	Attrition: not	166 mg/L	ement, 4-	
	nel	reported	2. LPOO;	week	→ Mean blood pressure
					←→ Glucose
	were		total	washout	
	blinded		hydroxyt	period	Ouidative Street / Antiquidant Status
	40))	yrosol	between	Oxidative Stress / Antioxidant Status
	15				↑Antioxidant capacity
	treatm		content 2	interventi	↓Thromboxane B₂ (TXB₂)

(ents		mg/L	ons (40	\leftrightarrow Isoprostane excretion (8-iso-PGF2 α)
			Method:	mL/day of	
			Raw olive	LPOO)	
			oil was		
			subdivide		
			d		
			between		
			lunch		
			and		
			dinner	^	
			and		
			participa		
			nts		
			instructe		
			d to		
			consume		
			with		
			pasta or		
))	vegetabl		
\			es. Other		

			polyphen		
			ol-rich		
			foods in		\bigcirc
			the diet		
			were		
			controlle		
			d for		
Salvini et al. 2006, Italy.	Rando	n=10 healthy	Dose: 50	8-week	Difference in change between groups
Study period: September–November	mized,	postmenopa	g/day	interventi	
2002 to January – March 2003	double-	usal women	Arms:	on, 8-	Oxidative Stress / Antioxidant Status
	blind,	Age (range):	1. HPOO:	week	Oxidative DNA damage (↓oxidized DNA bases, ↔basal DNA breaks)
	crossov	47 to 67	592	washout	← Total Antioxidant Status
	er trial	years	mg/kg	period	↔DNA breakage induced by H ₂ O ₂ (in vitro)
		Attrition:	polyphen	(habitual	
		n=2 dropout	ols	fats and	
			2. LPOO:	oils)	
			147		
			mg/kg		
			polyphen		
			ols		


			cooking.		
			Apart		
			from the		
			fat		
			substituti		
			on,		
			participa		
			nts		
			instructe		
			d to stay		
			on their		
			habitual		
			diet		
Fito et al. 2008,	Placebo	n=28 men	Dose:	3-week	Difference in change between groups
Subset of Fito et al. 2005,	controll	with stable	50mL/da	interventi	
Spain.	ed,	CHD	Sy .	on period,	Inflammatory markers
Study period: not reported	crossov	Age	Arms:	2-week	↓CRP
	er,	(mean±std):	1. HPOO;	washout	↓IL-6
	double-	68±7 years	161mg/k	periods	↔siCAM-1
	blind	Attrition: not	g	before	↔sVCAM-1

	random	reported	polyphen	each
	ised		ols	interventi
	trial		2. LPOO;	on (LPOO
			14.7mg/k	as source
			g	of crude
			polyphen	fat)
			ols	
			Method:	
			administ	
			ered raw	
			over 3	All III
			meals,	
			other	
			cooking	
			fats	
			replaced	
			with the	
			LPOO	
{			during	
			both	

			intervent		
			ions		
Al-Rewashdeh, 2010, Jordan.	Control	n=25 healthy	Dose:	4-week	Difference in change between groups
Study period: October 2008 to March	led,	adults (12	Not	interventi	
2009	Cross-	men, 13	prescribe	ons, 4-	Classic CVD markers
	over	women)	d,	week	↑HDL-C
	Trial	Age(range):	consume	wash out	↓LDL-C ^{abc}
		37 to 50	d about	periods	↓Total /HDL-C ^{abc}
		years (men),	70g per	before	↑rof \HDF C _{apc}
		33 to 44	day	each	⇔Triglycerides
		years	Arms:	interventi	→Phospholipids
		(women)	1. HPOO;	On	↔Total-C
		Attrition: not	753mg/k	(habitual	←→Free cholesterol
		reported	g	diet with	←→Cholesterol Ester
			polyphen	use of	↓SBP ^{ab} (men only)
			ols	usual fats	↓DBP ^{ab}
			2.	hydrogen	
			мроо;	ated,	Oxidative Stress / Antioxidant Status
			368mg/k	refined oil	↓ Malondialdehyde ^{abc}
			g	and blend	<u> </u>

	polyphen	of seed
		\wedge
	ols	oils)
	3. LPOO;	
	132mg/k	
	g	
	polyphen	
	ols	
	Method:	
	Habitual	
	diets plus	
	intervent	(4) Dr
	ion to	
	replace	
	usual fat	
	intake in	
	X/	
	cooking,	
	salad	
	dressing,	
	and on	
	bread	
V		

Perona et al. 2011.	Placebo	n=33 healthy	Dose: 25	3-week	Difference in change between groups
Same cohort as Marrugat et al. 2004,	-	men	mL/day	interventi	
Spain.	controll	Age(range):	1. HPOO:	on, 2-	Classic CVD markers
Study period: not reported	ed,	23 to 91	825	week	Serum lipid concentrations
	double-	years	mmol	washout	↔Total-C
	blind,	Attrition: 3	caffeic	periods	↔Triglycerides
	random	withdrawals	acid	before	↓VLDL-cholesteryl esters ^c
	ized,		equivale	each	↓VLDL-Triglycerides ^{a,c}
	crossov		nts/kg	interventi	↓VLDt-Ca,c
	er trial		2.	on (LPOO	√√VLDL-Phospholipids ^{a,c}
			MPOO:	used for	↓VLDL-Apolioprotein B ^{a,b}
			370	raw and	↑VLDL Triglyceride/Apoliprotein B ratio ^{a,b}
			mmol	cooking	
			caffeic	purposes)	
			acid		
			equivale		
			nts/kg		
			3. LPOO:		
			0 mmol		
	1		caffeic		

			and		
			participa		
			nts		
			requeste		
			d to		
			avoid a		
			high		
			intake of		
			foods		
			listed as	,	
			containin		
			g		
			phenolic		
			сотроип	<u>/</u> ``	
			ds		
Moreno-Luna et al. 2012,	Rando	n=24 women	Dose: 60	2-month	Difference in change between baseline and treatment values (change between groups not
Spain.	mized,	with high-	mL/day	interventi	reported)
Study period: not reported	single-	normal BP or	1. HPOO:	on, 4-	
	blind,	stage 1	564mg/k	month	Classic CVD markers
	crossov	essential	g	washout	↓SBP ^{HPOO}

T	er trial	hypertension	2. LPOO:	period	√DBP ^{HPOO}
	בו נוומו	пурепензіон	2. LPUU:	periou	\ \
		Age (Range):	0mg/kg	prior to	
		24 to 27	Method:	commenc	Oxidative Stress / Antioxidant Status
		years	Mediterr	ement, 4	↓Oxidized LDL ^{HPOO}
		Attrition:	anean-	week	
		n=10	style diet	washout	Inflammatory markers
		dropout	in	period	↓hs-CRP ^{HPOO}
			addition	between	
			to the	interventi	Additional outcomes
			treatmen	ons	Endothelial function measures
			t oil were	(provided	(i) Asymmetric dimethylarginine HPOO
			prescribe	a set	THyperemic area after ischemia HPOO
			d.	menu	↑Total plasma nitrites/ nitrates HPOO)
			Participa	płan	
			nts	[Mediterr	
			instructe	anean-	
			d to	style diet]	
			avoid	containin	
			foods	g the	
	1		classified	same	

			as highly	calories as	
			rich in	their	
			polyphen	habitual	
			ols	diets and	
				sunflower	
				or corn oil	
				was	
				permitted	
)	
Rus et al. 2017,	Rando	n=23 women	Dose: 50	3-week	Difference in change between groups
Spain.	mized,	with	mL/day	interventi	
Study period: not reported	controll	fibromyalgia	Arms:	on, 2-	Classic CVD markers
	ed,	Age	1. HPO0	week	↔BMI
	double-	(mean±std):	(n=11);	washout	↔SBP
	blind,	HPOO; 54±6	polyphen	period	↔DBP
	parallel	years, LPOO;	ol	prior to	↔ Cardiac frequency(bpm)
	trial	48±8 years	content	commenc	Cardiac frequency(opfil)
		Attrition: not	not	ement (50	Oxidative status
		reported	reported	mL/day	
			2. LPOO	LPOO)	↓Thiobarbituric acid reactive substances (TBARS)
					↓Protein carbonyl content

(n=12);	↔8-hydroxy-2'-deoxyguanosine
polyphen	Antioxidant status
ol	→Total antioxidant capacity
content	⇔Superoxide dismutase (SOD)
not	⇔Glutathione peroxidase (GPx)
reported	⇔Catalase
Method:	↔Antioxidant compounds (copper, zinc, ceruloplasmin, iron, ferritin, transferrin, uric acid,
Treatme	albumin, bilirubin)
nt olive	
oil was	
consume	
d raw but	
LPOO	
was used	
for	
cooking.	
Intake of	
antioxida	
nts was	
normaliz	

			ed and		
			participa		
			nts		
			recomme		
			nded to		
			avoid an		
			excess of		
			calories		
			and/or		
			lipids		
			пріцз		
VOHF Cohort					
Farras et al. 2015,	Double-	n=33	Dose: 25	3-week	Difference in end intervention measures between groups (controlled for baseline values)
Spain.	blind,	hypercholest	mL/day	interventi	
Study period: April 2012 to September	random	erolemic	Arms:	on period,	Classic CVD markers
2012	ized,	adults (19	1. HPO0;	2-week	
	controll	men, 14	enriched	washout	→ HDL composition (total-C, triglycerides, Apo-A1, Apo-AII, free cholesterol, esterified-
			<u> </u>		cholesterol, phospholipids, free cholesterol/total-C, esterified cholesterol/total-C,
	ed,	wornen)	with	periods	phospholipids/free cholesterol, esterified cholesterol/free cholesterol)
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	
	clinical	years	polyphen	interventi	

trial	Attrition:	ols,	on
			\wedge
	n=3	2. LPOO;	("commo
	discontinued	80 mg/kg	n" olive
	trial	polyphen	oil)
		ols,	
		3.	
		HPOO+th	
		yme	
		(data not	
		reported)	
		Method:	
		all raw	
		oils	
		replaced	
		with	
		olive oil,	
		consume	
		d with	
		meals.	
	7	Participa	

			nts advised		\nearrow
			to limit		
			consump		
			tion		
			polyphen ol-rich		
			food.		
Pedret et al. 2015, Spain.	Double-	n=33	Dose: 25	3-week	Additional outcomes
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	All interventions upregulated proteins related to cholesterol homeostasis, protection against
2012	random	erolemic	Arms:	on period,	oxidation and blood coagulation, while down-regulating proteins related to in acute-phase
	ized,	adults (19	1. HPOO;	2-week	response, lipid transport, and immune response.
	controll	men, 14	enriched	washout	HPOO had a stronger effect on the following proteins: PON-3 and PPBP which were up-
	ed,	women),	with	periods	regulated.
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	
	clinical	years	polyphen	interventi	
	trial	Attrition:	ols,	on	
		n=3	2. LPOO;	("commo	
	\ <u>\</u>	discontinued	80 mg/kg	n" olive	

	trial	polyphen	oil)
		ols,	
		3.	
		HPOO+th	
		yme	
		(data not	
		reported)	
		Method:	
		all raw	
		oils	
		replaced	
		with	
		olive oil,	
		consume	
		d with	
		meals.	
		Participa	
		nts	
))	advised	
\(\frac{1}{2}\)		to limit	

			consump tion polyphen		
			ol-rich food.		
Fernandez-Castillejo et al. 2016, Spain.	Double-	n=33	Dose: 25	3-week	Difference in change between groups
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
2012	random	erolemic	Arms:	on period,	Classic CVD markers
	ized,	adults (19	1. HPOO;	2-week	↑rbf-€
	controll	men, 14	enriched	washout	←ApoB100
	ed,	women)	with	periods	NMR LDL particle concentration (\downarrow total, \downarrow IDL, \leftrightarrow large, \leftrightarrow small)
	crossov	Age (range):	500mg/k	before	
	er	35 to 80	g	each	↔HDL-C
	clinical	years	polyphen	interventi	↔ApoA1
	trial	Attrition:	ols,	on	NMR HDL particle concentration (↓total, ↑large, ↔medium, ↓small) and ↑size
		n=3	2. LPOO;	("commo	
		discontinued	80 mg/kg	n" olive	→Triglycerides
		trial	polyphen	oil)	↔ VLDL Triglycerides
			ols,		NMR VLDL particle concentration (\leftrightarrow total, \leftrightarrow large, \downarrow medium, \leftrightarrow small) and \downarrow size
			3.		NAME AND PARTICLE CONCENTRATION (TOTAL, CANADA AND MINERAL MANAGEMENT AND MANAGE

	HPOO+th	↓ApoB100 containing lipoproteins
	yme	
	(data not	↓LDL particles /HDL particles
	reported)	↓HDL-C/HDL particles
	Method:	↓small HDL/ large HDL
	all raw	↓Lipoprotein insulin resistance index
	oils	
	replaced	
	with	
	olive oil,	
	consume	
	d with	
	meals. Participa	
	nts	
	advised	
	to limit	
	consump	
	tion	
	polyphen	
\downarrow	I Marrarr	

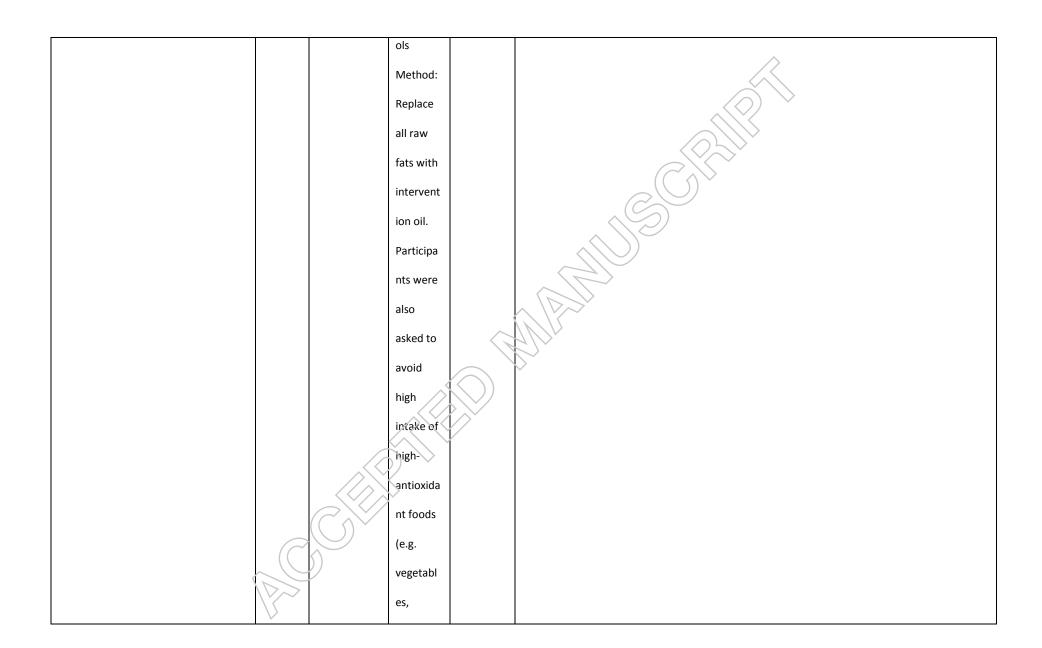
			ol rich		
			food.		
Martin-Pelaez et al. 2016, Spain.	Double-	n=10	Dose: 25	3-week	Difference in change between groups
Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
2012	random	erolemic	Arms:	on period,	Classic CVD markers
	ized,	adults (5	1. HPOO;	2-week	↔Weight/BMI
	controll	men, 5	enriched	washout	↔Waist circumference
	ed,	women)	with	periods	↑Glucose
	crossov	Age (range):	500mg/k	before	↔SBP
	er	35 to 80	g	each	⇔DBP
	clinical	years	polyphen	interventi	
	trial	Attrition: not	ols,	Off	Oxidative status
		reported	2. LPOO;	("commo	⇔ Oxidized LDL-C
			80 mg/kg	n' olive	
			polyphen	oil)	Inflammatory markers
			ols,		↑CRP
			3.		↔Fecal TNF-α
			HPOO+th		↔Fecal calprotectin
	B		yme		
			(data not		Additional markers

Study period: April 2012 to September	blind,	hypercholest	mL/day	interventi	
Study period. April 2012 to September	billiu,	riypercriolest	IIIL/Udy	milervenili	
2012	random	erolemic	Arms:	on period,	Oxidative status
	ized,	adults (19	1. HPOO;	2-week	↑ PON-3 protein
	controll	men, 14	enriched	washout	↔PON-1 protein
	ed,	women)	with	periods	Lactonase activity (↓ raw, ← specific)
	crossov	Age (range):	500mg/k	before	Paraoxonase activity (less ↑ raw, ← specific)
	er	35 to 80	g	each	
	clinical	years	polyphen	interventi	
	trial	Attrition: not	ols,	on	
		reported	2. LPOO;	("commo	
			80 mg/kg	n" oliv€	
			polyphen	oil)	
			ols,		
		.(HPOO+th		
			yme		
			(data not		
			reported)		
			Method:		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		all raw		

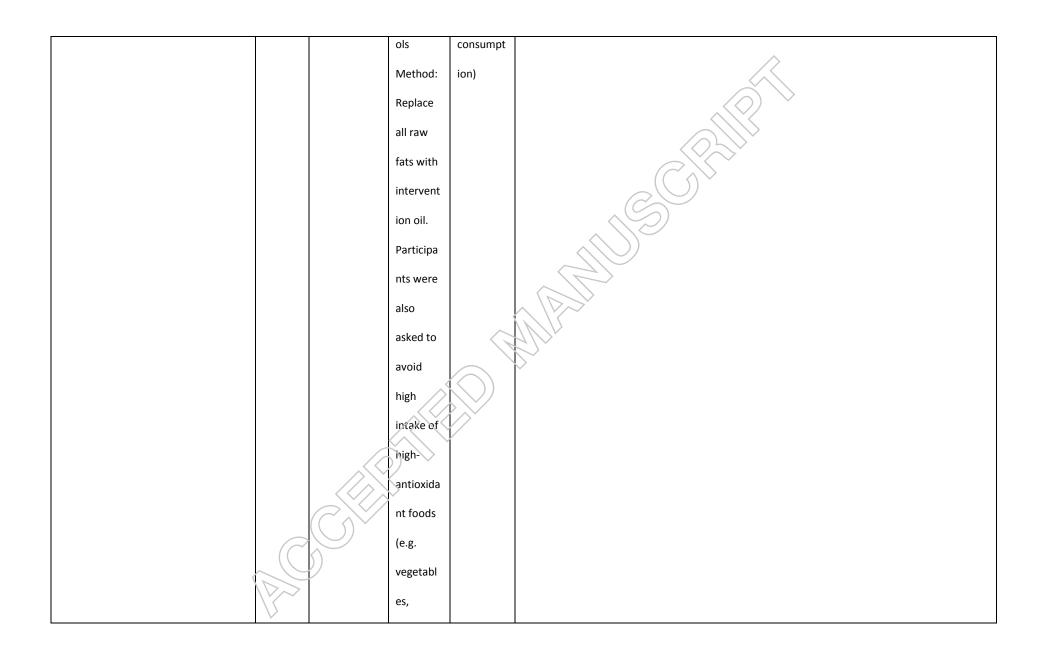
			oils		<u>^</u>
			replaced		
			with		
			olive oil,		
			consume		
			d with		
			meals.		
			Participa		
			nts		
			advised		
			to limit		
			consump		
			tion		
			polyphen		
		1	ol-rich		
			food.		
Martin-Pelaez et al. 2017,	Double-	n=12	Dose: 25	3-week	Difference in change between groups
Spain.	blind,	hypercholest	mL/day	interventi	
Study period: April 2012 to September	random	erolemic	Arms:	on period,	Classic CVD markers
2012	ized,	adults (7	1. HPOO;	2-week	↔Total-C
	V				T71UldI-C

controll	men, 5	enriched	washout	
ed,	women)	with	periods	Oxidative status
crossov	Age (range):	500mg/k	before	⇔ Oxidized LDL-C
er	46 to 67	g	each	
clinical	years	polyphen	interventi	Additional markers
trial	Attrition: not	ols,	on	⇔ Bacterial Enumerations
	reported	2. LPOO;	("commo	⇔ Short chain fatty acids
		80 mg/kg	n" olive	→ Neutral sterols
		polyphen	oil)	⇔Bile acids
		ols,	1	
		3.		
		HPOO+th		
		yme		
		(data not	<i></i>	
	10	reported)		
		Method:		
		all raw		
		oils		
		replaced		
		with		
*				

			olive oil,		
			consume		
			d with		
			meals.		
			Advised		
			to limit		
			consump		
			tion		
			polyphen		
			ol-rich		
			food.		
EUROLIVE Cohort			<		Y
Covas et al. 2006.	Multice	n=200	Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre,	healthy men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age (range).	Arms.	ons, 2-	Oxidative status
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	↓Conjugated dienes ^{b,c}
2003	random	years	2.7	washout	↓Hydroxy fatty acids ^c
	ized,	Attrition:	mg/kg	periods	↓Oxidized LDL-C ^c
	crossov	n=18	polyphen	before	\leftrightarrow F _{2α} -isoprostanes
	er	dropout	ols	each	


controll	2.	interventi
ed trial	MPOO;	on (avoid
eu tilai		× \
	164	olive and
	mg/kg	olive oil
	polyphen	consumpt
	ols	ion)
	3. HPOO,	
	366	
	mg/kg	
	polyphen	
	ols	EMIL .
	Method:	
	Replace	
	al/ raw	
	fats with	
	intervent	
	ion oil.	
	Participa	
	nts asked	
	to avoid	

			high		^
			intake of		
			high-		
			antioxida		
			nt foods		
			(e.g.		
			vegetabl		
			es,		
			legumes,		
			fruits,	•	
			tea,		
			coffee,		
			chocolat		
			e, wine,	\rightarrow`\text{`\text{\rightarrow\text{\rightarr	
			and		
			beer).		
Machowetz et al. 2007.	Multice	n=200	Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre	healthy men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age(range):	Arms:	ons, 2-	Oxidative status
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	↔ Markers of DNA /RNA oxidative damage (urinary excretion rates of guanine, guanosine, and


2003	random	years	2.7	washout	deoxyguanosine and their corresponding oxidation products)
	ized,	Attrition:	mg/kg	periods	
	crossov	n=18	polyphen	before	
	er,	dropout	ols	each	
	controll		2.	interventi	
	ed trial		мроо;	on (avoid	
			164	olive and	
			mg/kg	olive oil	
			polyphen	consumpt	
			ols	ion)	
			3. HPOO,		
			366		\triangleright
			mg/kg		
			polyphen		
			ols		
			Method:		
			Replace		
			all raw		
			fats with		
	1		intervent		

			and		
			diid		\wedge
			beer).		
Machowetz et al. 2008.	Single	n=38 healthy	Dose: 25	3-week	Difference in change between groups
5 European Countries (Spain,	centre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age(mean±st	Arms:	ons, 2-	Classic CVD markers
Study period: September 2002 to June	blind,	d): 36±2	1. LPOO;	week	↔BMI
2003	random	years	2.7	washout	
	ized,	Attrition: not	mg/kg	periods	Inflammatory markers
	crossov	reported	polyphen	before	↓resistin ^{troo}
	er,		ols	each	
	controll		2.	interventi	
	ed trial		MPOO;	on (avoid	
			164	olive and	
			mg/kg	oʻlive oil	
			polyphen	consumpt	
			ols	ion)	
			3. HPOO,		
			366		
			mg/kg		
			polyphen		

			legumes,		^
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,		
			and		
			beer).		
de la Torre-Carbot et al. 2010.	Multice	n=36	Dose: 25	3-week	Difference in change between baseline and treatment values (change between groups not
5 European Countries (Spain,	nter,	nonsmoking	mL	interventi	reported)
Denmark, Finland, Italy, Germany)	double-	males	Arms:	ons, 2-	
Study period: September 2002 to June	blind,	Age (range):	1. LPOO;	week	Oxidative status
2003	random	20 to 60	2.7	washout	↓plasma oxLDL
	ized,	years	mg/kg	periods	
	crossov	Attrition: not	polyphen	before	
	er,	reported	ols	each	
	controll		2. HPOO,	interventi	
	ed trial		366	on (avoid	
			mg/kg	olive and	
			polyphen	olive oil	

			legumes,		
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,		
			and		
			beer).		
Castaner et al. 2011.	Multice	n=200	Dose: 25	3-week	Difference changes between each arm of the study (dose dependent increase related to
	ividitice		D03e. 23		
5 European Countries (Spain,	ntre,	healthy men	mL	interventi	polyphenol content of olive oil):
Denmark, Finland, Italy, Germany)	double-	Age(range):	Arms:	ons, 2-	
Study period: September 2002 to June	blind,	20 to 60	1. LPOO;	week	Oxidative status
2003	random	years	2.7	washout	↑ OLAB
	ized,	Attrition:	mg/kg	periods	
	crossov	n=18	polyphen	before	
	er,	dropout	ols	each	
	controll		2.	interventi	
	ed trial		мроо;	on (avoid	
			164	olive and	
			mg/kg	olive oil	

polyphen	consumpt
polyphen	Consumpt
ols	ion)
3. HPOO,	
3. HPOO,	
366	
mg/kg	
ilig/kg	
polyphen	
ols	
Method:	
Replace	
all masses	
all raw	
fats with	
intervent	
<	
ion oil.	
Participa	
$\langle \wedge \rangle$	
nts were	
also	
asked to	
avoid	
high	
intake of	

			high-		_
			antioxida		
			nt foods		
			(e.g.		
			vegetabl		
			es,		
			legumes,		
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,		
			and		
			beer).		
Castaner et al. 2012.	Multice	n=18 healthy	Dose. 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age(mean±st	Arms:	ons, 2-	Inflammatory markers
Study period: September 2002 to June	blind,	d): 38±12	1. LPOO;	week	↓MCP1
2003	random	Attrition: not	2.7	washout	
	ized,	reported	mg/kg	periods	Difference changes between baseline and treatment values:

cross	w.	polyphen	before	
Cross	,,,	polyphen	Delore	\wedge
er,		ols	each	Additional markers
contr	oll	2. HPOO,	interventi	↓Atherosclerosis-related gene expression (CD40L, IL23A, IL7R, IL8RA, and OLR1 genes)
ed tr	al	366	on (avoid	
		mg/kg	olive and	
		polyphen	olive oil	
		ols	consumpt	
		Method:	ion)	
		Replace		
		all raw	,	
		fats with		
		intervent		
		ion oil.		
		Participa	<u>/</u>	
		nts were		
		also		
		asked to		
		avoid		
		high		
	>	intake of		

			high-		
			antioxida		
			nt foods		
			(e.g.		
			vegetabl		
			es,		
			legumes,		
			fruits,		
			tea,		
			coffee,		
			chocolat		
			e, wine,		
			and		
			beer).	<i>\rightarrow</i> ***	
Hernaez et al. 2014.	Multice	n=47 healthy	Dose. 25	3-week	Difference in change between groups
5 European Countries (Spain,	ntre,	men	mL	interventi	
Denmark, Finland, Italy, Germany)	double-	Age	Arms:	ons, 2-	Classic CVD markers
Study period: September 2002 to June	blind,	(mean±std):	1. LPOO;	week	←→Phospholipids
2003	random	30±9 years	2.7	washout	
	ized,	Attrition: not	mg/kg	periods	↔Apolipoprotein A1 and A2
	V				

	crossov	reported	polyphen	before	↑ HDL cholesterol efflux capacity
	J. 0330 V	. sporteu			\wedge
e	er,		ols	each	↑large HDL₂ particles
С	controll		2. HPOO,	interventi	↔ HDL particle count
e	ed trial		366	on (avoid	↔Triglycerides in HDL core
			mg/kg	olive and	→HDL fluidity
			polyphen	olive oil	
			ols	consumpt	
			Method:	ion)	
			Replace		
			all raw		
			fats with		
			intervent		
			ion oil.		
			Participa		
			nts were		
			also		
			asked to		
			avoid		
1))	high		
\\			intake of		

			high-		
			antioxida		
			nt foods		
			(e.g.		
			vegetabl		
			es,		
			legumes,		
			fruits,		
			tea,		
			coffee,	(
			chocolat		
			e, wine,		\triangleright
			and		
			beer).		
Hernaez et al. 2015.	Multice	n=25 Healthy	Dose. 25	3-week	Difference in change between groups
3 Cities (Potsdam, Germany; Kupio	ntre,	men (lipid-	mL	interventi	
Finland, Barcelona, Spain)	double-	related	Arms:	ons, 2-	Classic CVD markers
	blind,	outcomes)	1. LPOO;	week	↓Apolipoprotein B-100
	random	Age	2.7	washout	↓Total LDL particles
	ized,	(mean±std):	mg/kg	periods	↓Small LDL particles
	V				Wallian For balticles

cros	sov 32±11 years	polyphen	before	↔Large LDL particles
er,	n=18 Healthy	ols	each	↔Lipoprotein Lipase gene expression
cont	roll men (gene	2. HPOO,	interventi	
ed to	ial expression	366	on (avoid	Oxidative status
	outcomes)	mg/kg	olive and	↔LDL oxidation lag time
	Age	polyphen	olive oil	↔LDL oxidation rate
	(mean±std):	ols	consumpt	
	37±12 years	Method:	ion)	
	Attrition: not	Replace		
	reported	all raw		
		fats with		
		intervent		
		ion oil.		
		Participa		
		nts were		
		also		
		asked to		
(avoid		
		high		
		intake of		

high-
antioxida
nt foods
(e.g.
(c.g.
vegetabl
es,
legumes,
fruits,
tea,
coffee,
chocolat
e, wine,
and
beer).

^{*}Results represented by \downarrow = significantly decreased more or lower \uparrow = significantly increased more or higher or \leftrightarrow = no significant difference in change or measures. Where there are more than 2 groups, which groups had the significant differences is indicated by: ^abetween HPOO and LPOO, ^bbetween MPOO and LPOO, and ^cbetween HPOO and MPOO.

^βOutcomes for studies that used subsamples of a larger cohort were not extracted if another paper included a larger sample.

Abbreviations: BMI, Body Mass Index; BP, Blood Pressure; CD40L, CD40 Ligand; CHD, Coronary Heart Disease; CRP, C-reactive Protein; CVD, Cardiovascular Disease; HDL, High Density Lipoprotein; HPOO, High polyphenol Olive Oil; IL23A, Interleukin-23 alpha; IL7R, Interleukin-7 receptor; IL8RA, Interleukin 8 receptor alpha; IgA, Immunoglobulin A; LPOO, Low Polyphenol Olive Oil; LDL, Low Density Lipoprotein; MCP1, Monocyte chemotactic protein 1; MPOO, Medium Polyphenol Olive Oil; NMR, Nuclear magnetic resonance; OLAB, oxidized low density lipoprotein autoantibodies; oxLDL, Oxidized Low Density Lipoprotein; OLR1, Oxidized low-density lipoprotein receptor 1; sICAM-1, PPBP, platelet basic protein; Soluble Intercellular Adhesion Molecule-1; Total-C, Total cholesterol; TNF-α, Tumour Necrosis Factor Alpha