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ABSTRACT

The high-tech sector is increasingly concentrated in a small number of expensive cities, with the 

top ten cities in "Computer Science", "Semiconductors" and "Biology and Chemistry", 

accounting for 70%, 79% and 59% of inventors, respectively. Why do inventors tend to locate 

near other inventors in the same field, despite the higher costs? I use longitudinal data on top 

inventors based on the universe of US patents 1971 - 2007 to quantify the productivity 

advantages of Silicon-Valley style clusters and their implications for the overall production of 

patents in the US. I relate the number of patents produced by an inventor in a year to the size of 

the local cluster, defined as a city   research field. I first study the experience of Rochester NY, 

whose high-tech cluster declined due to the demise of its main employer, Kodak. Due to the 

growth of digital photography, Kodak employment collapsed after 1996, resulting in a 49.2% 

decline in the size of the Rochester high-tech cluster. I test whether the change in cluster size 

affected the productivity of inventors outside Kodak and the photography sector. I find that 

between 1996 and 2007 the productivity of non-Kodak inventors in Rochester declined by 20.6% 

relative to inventors in other cities, conditional on inventor fixed effects. In the second part of the 

paper, I turn to estimates based on all the data in the sample. I find that when an inventor moves 
to a larger cluster she experiences significant increases in the number of patents produced and the 
number of citations received. Conditional on inventor and firm effects, the elasticity of number of 
patents produced with respect to cluster size is 0.0662 (0.0138). The productivity increase follows 
the move and there is no evidence of an effect in the years leading up to the move. IV estimates 

based on the geographical structure of firms with laboratories in multiple cities are statistically 

similar to OLS estimates. In the final part of the paper, I use the estimated elasticity of 

productivity with respect to cluster size to quantify the aggregate effects of geographical 

agglomeration on the overall production of patents in the US. I find macroeconomic benefits of 

clustering for the US as a whole. In a counterfactual scenario where the quality of U.S. inventors 

is held constant but their geographical location is changed so that all cities have the same number 

of inventors in each field, inventor productivity would increase in small clusters and decline in 

large clusters. On net, the overall number of patents produced in the US in a year would be 

11.07% smaller.
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We know from ordinary experience that there are group interactions that are central to individual
productivity. We know this kind of external effect is common to all the arts and sciences - the ‘creative
professions’ (Lucas, 1988)

Firms in the innovation sector display a strong tendency to cluster geographically by research field (Carlino et al.,
2012). Prominent examples include the internet and software clusters in Seattle anchored by Amazon and Microsoft,
respectively; the medical research and biotech clusters in Boston; the software and telecommunication clusters in
Austin; the Raleigh-Durham Research Triangle, with its large concentration of pharmaceutical firms; the nascent
autonomous vehicles cluster in Pittsburgh; and the biotech cluster and medical devices clusters in San Diego. The
San Francisco-Silicon Valley region has the largest agglomeration of innovative firms in the US, with important clusters
in most research fields.

The geographic concentration of high-tech sectors is not just a curiosity—it has important implications for cities and
states. The presence of a high-tech sector has been shown to be a key driver of local economic growth as innovation-
oriented industries have taken on larger roles (Glaeser-Saiz, 2004; Buera-Kaboski, 2012). In the period 1980 to 2010,
mean wages and mean income in cities with large high-tech clusters have increased significantly more than in cities
without high-tech clusters (Moretti, 2012). Thus, it is probably not surprising that competition has emerged among
localities to attract high-tech employers, with states and counties offering increasingly generous subsidies designed
to spur high-tech clusters in their jurisdiction. The prospect of winning Amazon’s second headquarters recently
generated intense competition among US cities, with some of finalist cities offering incentives as high as $5 billion.
Tesla received incentives worth $1.3 billion from Nevada in 2014 to locate its new Gigafactory in Reno, while Foxxcom
received $3 billion fromWisconsin to locate its electronic components factory in the state. In biotech, 11 states provide
incentives to relocating firms and the average subsidy has grown four-fold since 1990 (Moretti and Wilson, 2013). It
is rare for high-tech firms to open large new facilities in the United States today without receiving some type of local
subsidy, with areas with limited high-tech presence typically offering the most aggressive subsidies.

Quantitatively, the amount of spatial concentration observed in high tech by research field is remarkable. (In this
paper, I will use the term ”high tech” broadly, to include any firm that produces innovation.) In my patent data,
the 10 cities with largest number of inventors in ”Computer Science” account for 69.3% of all inventors in 2007. In
”Semiconductors” and ”Biology and Chemistry”, the corresponding shares are 77.0% and 59.2%, respectively. These
shares are not declining over time. Indeed, they are larger in 2007 than in 1971, suggesting that despite the diffusion
of Internet, Skype and other forms of cheap communication, high-tech inventors are more geographically concentrated
today than they were in the past. A similar amount of concentration is observed in other countries (Duranton et
al, 2010; Kerr, 2018). Agglomeration in manufacturing, meanwhile, is much lower on average (Ellison and Glaeser,
1997).

The agglomeration of innovative activity by research field raises important questions about the economic geography
of the high-tech sector, especially since high-tech clusters tend to be located in cities with high labor and real estate
costs—cities like San Francisco, Boston or Seattle—rather than in cities where costs are low. Why do high-tech
inventors tend to locate near other inventors in the same field, despite the higher costs? What are the effects on
innovation? One view of Silicon Valley-style clusters—which can be traced to Marshall (1890)—is that agglomeration
economies make workers inside large clusters more productive. To use Marshall’s words, in industrial clusters ”the
mysteries of the trade become no mysteries.” In his seminal paper on economic growth quoted above, Lucas (1988)
explicitly posits a productivity effect of agglomeration and argues that it is particularly important in the innovation
sector and ”creative professions.” This productivity effect could reflect localized knowledge spillovers or the fact that
the quality of worker-firm matches may be better in larger clusters due to labor pooling.

Empirically determining the productivity advantage of Silicon Valley-style clusters is difficult. First, location is
endogenous, since workers and firms decide where to locate based on a number of observed and unobserved factors.
Comparing the productivity of inventors in large clusters to the productivity of inventors in small clusters may yield
biased estimates of agglomeration effects if particularly productive inventors select into large clusters. Second, direct
worker-level measures of productivity are rare. Most existing papers on the effect of agglomeration on innovation
rely either on wages—under the assumption that they reflect the marginal product of labor—or on analyses of patent
citations (Jaffe, Trajtenberg, and Henderson 1993).1

1Greenstone, Hornbeck and Moretti (2010) and Moretti (2004) study productivity spillovers on firm-level TFP.
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In this paper I use longitudinal data on top inventors based on the universe of patents filed in the US between 1971
to 2007 to investigate two related questions: (1) Are there productivity benefits for inventors who locate in Silicon
Valley-style clusters? (2) What are the aggregate effects of geographical agglomeration on overall innovation in the
US? In my analysis, I define a cluster as city × research field. I estimate how inventors’ productivity varies with
the size of the relevant cluster, measured by the number of other inventors in the same city and field, excluding the
focal inventor. As measures of worker-specific productivity, I use the number of patents produced in a year and the
number of subsequent citations these patents receive. The latter is a measure of the quality of the patents produced.
While these measures have some limitations, they are arguably a more direct measure of inventor productivity than
wages. I focus on top inventors—defined as those above the 90th percentile in the total number of patents over the
sample period—since the panel is longer for this group.

The analysis proceeds in three parts. I first study the experience of inventors in Rochester NY, where the high-tech
cluster declined due to the demise of its main employer, Kodak. Kodak was the market leader in films for cameras
and the fifth most prolific patenter in the US. At its peak in 1996, Kodak employed more than half of all the inventors
in Rochester. But due to the diffusion of digital photography and the decline of physical film, Kodak stock price
and employment collapsed after 1996. Essentially, demand for Kodak’s main product evaporated due to a global
technology shock. By 2007, the number of Kodak inventors in Rochester had declined by 84%.

Kodak’s decline had a profound effect on the broader Rochester high-tech cluster. Measured by the number of
inventors in all fields, its size declined by 49.2% relative to other cities, dragged down by Kodak’s downsizing. The
shock was large and arguably exogenous, as it was caused by the advent of digital photography and not factors
specific to Rochester’s local economy. The experience of Rochester therefore offers an interesting case study for
testing the hypothesis that high-tech clusters’ size affects inventors’ productivity. In particular, examining how the
sudden collapse of Rochester high tech cluster affected inventors outside Kodak offers a direct test of the effects of
cluster size on productivity. I focus on non-Kodak inventors outside the photography sector, since the photography
sector may have been exposed to the same negative demand shock as Kodak. Finding that their productivity did
not change following the demise of the local high-tech cluster would cast doubt on the hypothesis that productivity
depends on cluster size.

I compare productivity changes in Rochester with changes in other cities between 1996—the year when Kodak stock
price peaked—and 2007. Specifically, I compare the within-inventor change in productivity between 1996 to 2007
for non-Kodak inventors who were in Rochester in 1996 (irrespective of their 2007 location) to the within-inventor
change for non-Kodak inventors who were in other cities in 1996. I find that the log productivity of non-Kodak
inventors in Rochester declined by 0.206 (0.077) relative to other cities. This estimate is not driven by changes in
unobserved quality of inventors, since I am following the same inventor over time. Thus, following the decline in
the Rochester high-tech cluster, non-Kodak inventors in Rochester experienced large productivity losses relative to
non-Kodak inventors in other cities. This is consistent with the existence of important productivity spillovers in the
high tech sector stemming from geographical agglomeration.

In the second part of the paper, I present estimates based on all the data in the sample. The sample includes
109,846 inventors observed between 1971 and 2007, located in 895 clusters (179 cities × 5 research fields). I regress
inventor’s log productivity on log cluster size, conditioning on inventor, firm, city × year effects, as well as other
controls.

I find that when an inventor moves to a larger cluster, she experiences significant increases in the number of patents
produced in a year and their quality. Models that include five leads and lags allow me to estimate the dynamic
response to a change in cluster size and reveal that the productivity increase follows the move, and does not precede
it. There is no evidence that future values of treatment affect current productivity. I propose an instrumental variable
based on the geographical structure of firms with laboratories in multiple cities. The instrument uses the expansion
of local firms outside the cluster to predict changes in local cluster size. 2SLS models confirm that increases in cluster
size cause increases in productivity.

I also find that inventors who move to larger clusters tend to cite more patents per patent created than otherwise
similar inventors in smaller clusters, and this is particularly true of local patents. Since citations made by an inventor
are arguably a sign that the inventor knows about a specific innovation, this finding suggests that moving to a large
clusters results in more knowledge of existing innovations, especially the local ones. This is consistent with the notion
that larger clusters allow for knowledge and ideas to spread more efficiently, as documented by Saxenian (1994), who
describes how in Silicon Valley ideas flow very fluidly between innovators and this fosters their creativity.
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The elasticity of number of patents in a year with respect to cluster size is 0.0676 (0.0139). The estimated elasticity
implies that a computer scientist moving from the median cluster in computer science (Gainesville, FL) to the cluster
at the 75th percentile of size (Richmond, VA) would experience a 12.0% increase in productivity, holding constant the
inventor and the firm. In biology and chemistry, a move from the median cluster—Boise, ID—to the 75th percentile
cluster—State College, PA—is associated with a productivity gain of 8.4%, holding constant the inventor and the
firm.

My estimates can be used to quantify the spillover effects that a specific firm generates within a cluster. The size
of such externality varies enormously across firms. The externality generated by the average firm in the average city
is 0.3% and 0.24% in computer science and biology and chemistry, respectively. But it is much larger for firms that
account for a large number of inventors in the local cluster. For example, the productivity of non-Microsoft computer
scientist in Seattle is estimated to be 8.06% higher because of the presence of Microsoft in the local computer science
cluster. This large external effect reflects Microsoft remarkable size in this field in Seattle. Having estimates of the
productivity spillover that a specific firm generates in a specific cluster may prove useful to local and state governments
that offer subsidies to attract high-tech firms to their jurisdiction.

In the final part of the paper, I seek to quantify the macro-economic benefits of agglomeration for the US as a whole.
I use the estimated elasticity of productivity with respect to cluster size to ask how much geographical clustering
contributes to the overall production of patents in the US. In particular: Is the total number of patents produced
each year in the country made larger by the fact that inventors in each field concentrate in a handful of locations,
compared to the case where inventors are spread more equally across locations?

I compare the observed total number of patents produced annually in each field in the US to the number of
patents that would be produced if inventor quality and firm quality did not change but some inventors were spatially
reallocated from large clusters to small clusters up to the point where clusters size within each field is equalized
across cities. Because of the effect of agglomeration on productivity, such spatial redistribution would increase the
productivity of inventors in clusters smaller than average and lower the productivity of inventors in clusters larger
than average. My estimate of the elasticity of productivity with respect to cluster size implies that the average
productivity of computer scientists in the San Francisco-Silicon Valley region, for example, would be 22.76% lower
than the observed productivity in 2007 because the size of the San Francisco-Silicon Valley Computer Science would
be made significantly smaller. The corresponding losses for New York, Seattle, Austin, and Boston would be -17.81%,
-16.52%, -14,76%, and -13.45%, respectively. On the other hand, the average productivity of computer scientists
in Kansas City would be 2.66% higher than the observed productivity in 2007, because the Kansas City Compute
Science cluster is smaller than average. The corresponding gains for Omaha, Portland ME, and Memphis would be
13.42%, 17.76%, and 23.36%, respectively.

On net, the magnitude of the aggregate effect for the country as a whole of such spatial redistribution depends on the
relative magnitude of the gains in small clusters compared to the losses in large clusters. Empirically, I find significant
aggregate efficiency gains from clustering. The total number of patents created in the US in Computer Science would
be 13.34% lower in 2007 if computer scientists were uniformly distributed across cities. The corresponding losses in
biology and chemistry, semiconductors, other engineering, and other sciences would be -10.06%, -14.83%, -7.71%, and
-9.75%, respectively. The change in the total number of patents in the US would be -11.20%.

Thus while the spatial clustering of high-tech industries may exacerbate earning inequality across US communities,
it is also important for overall production of innovation in the US. The unequal distribution of earnings growth across
cities is a source of policy concern and has spurred a wealth of policy proposals to help struggling cities and regions,
especially those in the Rust Belt (Gruber and Johnson, 2019). Policies that seek to attract high-tech investment
to communities that do not have any—like the incentives offered by some local and state governments—might help
reduce earning differences but are costly in the aggregate, creating a classic case of an equity-efficiency trade-off.

This study relates to an extensive literature on the link between agglomeration and innovation (Audretsch and
Feldman, 1996). The local nature of knowledge flows and productivity spillovers is frequently noted in the literature.
For example, Kantor and Whalley (2014 and forthcoming) find significant spillovers from academic R&D on local
firms. Helmers and Overman (2017) find that the establishment of the Diamond Light Source synchrotron in the UK
induced a clustering of related research in its geographic proximity and raised research output within a 25 kilometer
radius. Bloom, Schankerman, and Van Reenen (2013) find evidence of large spillovers from R&D. See Carlino and
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Kerr (2015) for a comprehensive survey of this literature.2 Not all papers in this literature find evidence of positive
spillovers. See, for example, Waldinger (2012); Moser et al. (2014); and Azoulay et al. (2010). This paper is also
part of a much larger literature on agglomeration economies in the broader economy (not just the high tech sector),
where most of the focus has been on measures of size at the city level, rather than cluster level.3

The remainder of the paper is organized as follows. Section I describes the data. Section II reports the estimates
based on the Rochester case study. Section III and IV report the estimates based on the full sample. Section V
discusses the aggregate implications. Section VI concludes.

I. Data

I use data on the universe of U.S. patents filed between 1971 and 2007 and ultimately granted. Unsuccessful
applications are not included. The source of the data is the COMETS patent database (Zucker, Darby, 2014). It is
the same data used in a recent paper by Moretti and Wilson (2017).

A. Patents, Inventors, and Their Location

The data include 4,229,809 patents. 90.9% of patents in the sample are filed by inventors employed in private
firms, 4.1% by inventors employed by universities, with the remainder are filed by inventors working in national labs,
government, nonprofit institutions, or for themselves. Appendix Table 1 shows the names of the 25 patent assignees—
private or public—with the largest number of patents in my sample period. IBM is by far the most prolific patenter,
with 155,790 patents filed between 1971 and 2007, followed by General Electric, Microsoft, Intel and Kodak with
69,051, 43,556, 42,085 and 41,538 patents filed respectively. The U.S. Navy and the University of California are the
only non-corporate organizations in the Table.4

The geographical units of analysis I employ are the Bureau of Economic Analysis’s (BEA) ”Economic Areas.” There
are 179 Economic Areas in the US and they cover the entire country. In most cases, “Economic Areas” are similar
to an MSA. For large areas like the San Francisco Bay Area, Boston or New York, they tend to be larger than the
corresponding MSAs, since they include the entire economic region. For example, the Economic Area for the San
Francisco Bay Area includes the entire area between Santa Rosa to the North and San Jose to the South (Johnson,
2004). In the rest of the paper, I will refer to Economic Areas as ”cities”.
Each patent is assigned to an Economic Area based on the inventor’s residential address. Patenters must report

their home address on their patent application and have no economic incentive to misreport it. There is no legal
link between where a patent’s inventor lives and the taxation of any income generated by the patent for the patent
assignee/owner. In many cases both the inventor’s residential address and the assignee address (typically the company
that first owned the patent) are available. I do not use the latter because it may not reflect the location where the
research was conducted, as in many cases it is the address of the corporate headquarters and not the R&D facility.5

In the COMETS data, patents are assigned to one of five main ”research fields” and 579 ”technology classes.”
The five research fields are: Semiconductors, Integrated Circuits and Superconductors (which accounts for 3.8% of
all patents—for brevity, in the rest of the paper, I will refer to this field as ”semiconductors”); Computing and
Information Technology (12.6%—for brevity: ”computer science”); Biology, Chemistry and Medicine (22.3%—for
brevity: ”biology and chemistry”); ”Other Engineering” (52.7%); and ”Other Science” (8.4%). Technology classes
are more detailed. Examples include ”hybrid electric vehicles”, ”nanotechnology”, ”X-ray or gamma ray systems or
devices”, ”exercise devices”, and ”electrical computers and digital processing systems: memory.”
I aggregate the patent-level data to the inventor-year level data by counting the number of patents created by an

inventor in a year and the number of subsequent citations received by those patents, where year is defined as year of

2Guzman (2019) finds that startups that move to Silicon Valley patent more and introduce more products. Additional examples include, but are
not limited to, Duranton and Overman (2005); Lychagin, Pinkse, Slade, and Van Reenen (2016); Bosquet and Combes (2017); and Acemoglu, Akcigit,
and Kerr (2016); Akcigit et al (2018); Zacchia (2018).

3For surveys, see Behrens and Robert-Nicoud, 2015; and Combes and Gobillon, 2015; Rosenthal and Strange (2004, 2006 and 2008); and Duranton
and Kerr (2018).

4In the COMETS data, patent assignees (organizations) are identified by a unique code. Different recorded names that standardize to the same
name have been assigned the same code. For example: IBM, IBM Corp., IBM Corporation have the same code FI2651. Moreover, organization names
were hand cleaned to determine the variant names that a certain organization uses. For example: International Business Machines Corporation has
been assigned the code FI2651 as well. Likewise, UCLA, University of California Los Angeles, Univ Calif Los Angeles have all been assigned the same
code.

5It is possible in principle that an inventor’s home lies outside a cluster while his professional work takes place inside a cluster. However, given the
large size of BEA Economic Areas, this is unlikely to be a common problem.
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the patent application, not the year when the patent is granted. For citations, year is defined as the year of the cited
patent’s application, not the year of the citing patent’s application. If a patent has multiple inventors, I assign equally
weighted fractions of the patent and citations to each of its inventors. For example, if a patent has four inventors,
each inventor is credited with one-quarter of a patent and a quarter of the subsequent citations. If an inventor has
multiple patents with multiple addresses in a single year, I use the modal city for that inventor-year pair. If an
inventor has patents in more than one research field or technology class in an year, I use the modal research field or
technology class for that inventor-year pair. In case of ties (for example, if there are two cities or research fields or
technology classes with the same frequency in a given inventor-year pair), I pick randomly.

In the main analysis of the paper, I focus on the productivity of star inventors, defined as those who are at or above
the ninetieth percentile in the total number of patents over the sample period. The main motivation for focusing on
stars is the length of the panel that they provide: They are in the sample for an average 7.01 years. The ninetieth
cutoff is arbitrary, but I also show results for top 0.5%, 1%, 5%, 25% and the full sample.

The sample of star inventors includes 109,846 inventors and 932,059 inventors x years observations with non missing
information on field, class, and city. Of these, 823,375 also have non-missing employer (patent assignee) identifier.
The mean number of patents per year in the sample is 1.08 patents. The tenth, twenty-fifth percentile, median,
seventy-fifth and ninetieth percentiles are .25, .5, 1, 1.2 and 2 respectively.

B. Clusters

Clusters are defined as the combination of city × research field. Recall that there are 179 cities and 5 research
fields, observed over 36 years. Cluster size in a given year is defined as number of inventors of any productivity level
(not just stars) in a cityxfield pair, excluding the focal inventor, as a share of all inventors in that field and year.

For example, the top panel in Table 1 shows the largest clusters in the computer science in 2007. The San Jose-San
Francisco-Oakland region is by far the largest cluster in this field, accounting for 26.1% of all inventors in the field.
Second on the list is the New York region, which accounts for 9.2% of all the inventors in the field. Seattle, Austin,
and Boston follow, with cluster sizes equal to 8.2%, 6.0%, and 4.7%, respectively. The geographical concentration
of inventors in computer science is very pronounced. The top ten cities account for 69.3% of all inventors in the
field in 2007. The ratio between the the size of the largest cluster—San Jose-San Francisco-Oakland—and median
cluster—Gainesville, FL—is 866.8, indicating that the Bay Area had 866.8 times the number of inventors in computer
science than Gainesville did in 2007. The ratios between the 99th and median and 95th percentiles and median are
equal to 306.5 and 79.5, respectively.

The middle panel is for biology and chemistry. The top five clusters are New York (11.3%), San Jose-San Francisco-
Oakland (11.1%), Boston (6.9%), Philadelphia (6.4%) and Los Angeles (5.9%). With the total share of top ten cities
equal to 59.2%, the overall concentration in this research field is lower than in computer science, but it remains quite
pronounced. The max / median and the 99th percentile / median ratios are 126.2 and 124.4, respectively.

The bottom panel shows the largest clusters in the semiconductors field. The top five clusters are San Jose-San
Francisco-Oakland (25.2%), New York (15.2%), Los Angeles (6.2%), Dallas (5.0%) and Phoenix (4.8%). The overall
concentration in this research field is even higher than in computer science, with the share of top ten cities equal to
77.0%. Both the max / median ratio and the 99th percentile / median ratio are undefined since the median city had
no inventors in this field in 2007. The tenth, twenty-fifth percentile, median, seventy-fifth and ninetieth percentiles
across all fields and years are 0.00356, 0.01106, 0.02951, 0.06332, 0.10786, respectively.

Remarkably, the amount of spatial agglomeration in these fields has not been declining overtime. Figure 1 shows
how the share of inventors in top ten cities has changed over time in computer science (top), biology and chemistry
(center), and semiconductors (bottom). The share in computer science has increased monotonically. The share
in semiconductors and biology and chemistry has also tended to increase, but not monotonically. Overall, the
geographical concentration of inventors at any moment in time is very high and it has been generally increasing over
time since the 1970’s.6

6Alternative definitions of cluster size are possible. One could measure size of a cluster not based on the number of inventors in a city-field, but
based on the number of firms (patent assignees). Based on this measure, the picture that emerges is also one of significantly concentrated patenting
activity. Results available on request.
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C. Data Limitations

(A) Patent count is an imperfect measure of the amount of innovation created by an inventor. While some patents
represent important innovations in a field, others represent trivial innovation. In the extreme, some patents do not
represent any innovation and are filed for defensive purposes only. To account for these limitations, I use subsequent
citations to measure patent quality.7

Not all innovation is patented and the fraction of innovation that is patented varies across fields and technology
classes. Cohen et al. (2000) report that firms in the chemicals, drugs, mineral products, and medical equipment
industries applied for patents for more than two-thirds of their innovations. In contrast, firms in the food, textiles,
glass, and steel and other metals industries applied for patents on fewer than 15 percent of their product innovations.
Moreover, the forms of technologies that are patented change over time. For example, the rate of innovation in
software appears to accelerate in the 1990’s, but this reflects at least in part changes in the legal practice of patenting
software (Carlino and Kerr, 2015). Lerner and Seru (2017) highlight the importance of controlling for the sectoral
composition of inventive activity. For this reason, my models include research field × year and technology class ×

year effects. The assumption is that the fraction of innovation that is patented does not vary across cities within a
field × year pair and technology class × year pair.

A concern is the possibility that the propensity to patent a given innovation may vary geographically as a function
of cluster size, even within a field × year pair and technology class × year pair. This could be the case, for example,
if firms located in larger clusters are more likely to patent a given innovation than firms in the same field and class
located in smaller clusters, possibly due to a higher concern of being scooped by competitors. However, this possibility
would imply that marginal innovations patented in large clusters are less valuable than the ones patented in small
clusters, everything else equal. As I discuss below, this is inconsistent with the evidence on patent citations. Models
based on number of citations per patent show a positive association between patent quality and cluster size.

(B) A second limitation of the data stems from the fact that not every inventor applies for a patent every year,
so I don’t observe the productivity and location of every inventor in every year. This generates sample selection,
as inventors are in the sample only when they patent. This selection problem is conceptually similar to the sample
selection that exists in wage data due to the fact that wages are observed only in years when a worker is employed.
To minimize this problem I focus my analysis on the population of star inventors. Star inventors are by construction
prolific patenters and the typical individual is observed patenting in most years (over the period in which they patent
at all).

Since I do not observe inventors in years when their number of patents is 0’s, a regression of number of patents
on cluster size quantifies the effect of cluster size on inventor productivity given a patent (intensive margin), but it
misses the effect of cluster size on probability of patenting (extensive margin). If the intensive and extensive margin
effects go in the same direction, my estimates should be interpreted as a lower bound of total effect of cluster size on
patenting.

To empirically probe the direction and magnitude of the bias, I provide two pieces of evidence in Section IV.C below.
First, I add some of the missing zeros by interpolating the data when one missing year is immediately preceded and
followed by non-missing years. That is, if an inventor is observed in years t− 1 and t+ 1, but is missing in year t, I
assign her 0 patents in t and I assign her to the cluster in which she was located at t − 1. Estimates in the sample
that includes these interpolated zeros are larger than the baseline estimates that do not include interpolation, because
they include (part of) the extensive margin. If I interpolate data when two missing years are immediately preceded
and followed by non-missing years, estimates are even larger.

Second, I test whether my estimates are sensitive to different definition of the temporal unit of analysis. Specifically,
I re-estimate my models using samples where inventor productivity is measured over 1 month, 2 month, 3 month, 6
month, 1 year (the baseline), 2 year, and 3 year periods. When the temporal unit of analysis is short (1 or 2 months),
the problem of missing zeros and the resulting downward bias should be particularly pronounced. In the extreme, if
one could measure patent creation second by second, virtually all of the inventor-second pairs would be missing. By
contrast, when the temporal unit of analysis is long (2 or 3 years), the problem of the missing zeros and the downward
bias should be less pronounced. In the extreme, if I were to use a temporal unit that includes all the years in the

7On the other hand, Williams (2013) is an example of a paper that measures scientific research and product development directly rather than via
patent activity.



VOL. VOLUME NO. ISSUE THE EFFECT OF HIGH-TECH CLUSTERS ON THE PRODUCTIVITY OF TOP INVENTORS 7

sample, there would be no selection and both the intensive margin and extensive margin would be reflected in my
estimates. Empirically, I find that my estimates are increasing with the length of the unit of analysis. Overall, the
evidence indicates that my baseline estimates should be interpreted as a lower bound of the total effect of cluster size
on patenting.

II. The Effect of the Demise of Kodak on Inventors in the Rochester High-Tech Cluster

One way to credibly quantify the productivity advantages of large Silicon-Valley style clusters relative to small
clusters is to isolate shocks to high-tech clusters that are exogenous to the local economy. The ideal shock is one
that significantly affects the size of a local high tech cluster —either positively or negatively—and at the same time
is initially uncorrelated with the determinants of productivity of local inventors. The change caused by the shock in
the productivity of inventors located in the affected cluster is potentially informative of the importance of localized
agglomeration economies in the high tech sector.
The rise and fall of some US tech clusters offer interesting case studies. In this Section, I focus on the experience

of Rochester, NY over the past 25 years. It represents a useful case study because of the large, arguably exogenous
change in the size of its high-tech cluster due to the demise of its main high-tech employer, Kodak. Rochester is not
an isolated case. In the history of the US innovation sector, there are several examples of high tech clusters that
are born or die due to idiosyncratic, firm specific shocks. The rise of the software cluster in Seattle is a prominent
example. The initial seed for the Seattle software cluster was Microsoft’s relocation from Albuquerque, NM, where
it was founded, to Seattle in 1979. At the time, Seattle had a very limited software sector and the move can be
considered largely exogenous, since it was motivated by personal reasons on the part of the company co-founders
rather than business reasons or the conditions of the local economy.8 Since Microsoft relocation, Seattle has become
one of the largest software clusters in the US. The Seattle experience exemplifies a common way in which US high
tech clusters tend to emerge, namely through the growth of a local firm that becomes the seed around which a cluster
agglomerates (Kerr, 2010; Moretti, 2012).9 In a similar way, the birth of the biotech sector in San Diego can be
traced to the serendipitous presence of star biologists at UCSD in the mid-1970’s who founded some of the early
local biotech firms (Zucker and Darby, 1996). Austin had very little high tech in the early 1980s’ when Michael Dell
started Dell Computers in his dorm at University of Texas. The company is often credited to be the initial seed for
the emergence of the Austin tech cluster. Relative to Seattle, San Diego and Austin, the Rochester case study has
the advantage that the effect of the shock on the local economy was particularly sudden.
In the 1980s and the 1990s, Kodak was the leading producer of films for cameras. The firm was one of the most

prolific patenters in the US. Indeed, as we saw in Table 1, Kodak had the 5th largest number of patents filed between
1971 and 2007. Kodak patents are not concentrated in one research field, but span all five fields. Kodak was
headquartered in Rochester and it was the largest patenter in the city by a vast margin. At its peak in 1996, Kodak
accounted for 49% of all the inventors in Rochester. But after 1996, Kodak entered a period of dramatic decline
caused by the diffusion of digital photography and the collapse in the demand for physical film (Dickinson, 2017). In
essence, Kodak experienced a large negative shock caused by a technological innovation that made its main product
obsolete.
Kodak demise can be seen in the top panel in Figure 2, which shows the firm’s stock price since 199010. The price

grew in the first half of the 1990s, reached a peak in 1996 and then began declining, as digital photography spread and
the market for physical films shrank. Between 1996 and 2007, Kodak stock price declined by 82%. Shrinking product
demand led to less investment in R&D. The bottom panel in Figure 2 shows that the number of Kodak inventors
in Rochester reached a peak in 1997, with 1254 inventors, and then began a steep decline. By 2007 there were only
204 Kodak inventors in Rochester. The size of the overall Rochester high-tech cluster measured by the number of
inventors in all fields, declined by 50.5% in this period, dragged down by the collapse of Kodak.
The experience of inventors in Rochester can be used to test the hypothesis that the size of a high-tech cluster affects

inventor productivity. Specifically, I test whether the change in the size of the Rochester high-tech cluster caused by

8The key motivation for the move was the desire of Bill Gates and Paul Allen to be close to their families. At the time, the Albuquerque software
sector was significantly more developed than the Seattle one. Indeed, Microsoft was founded in Albuquerque because its main clients were there. For
a software start-up, there was no obvious business reason to choose Seattle over Albuquerque in 1979 (Moretti, 2012).

9Kerr (2010) finds that patenting growth is significantly higher in cities where breakthrough inventions are located. Consistent with this notion,
Duranton (2007) proposes a model of industry migration in which centers of innovation are dictated by where frontier inventions occur.

10Price data are from 1stock1.com (2017)
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Kodak’s demise affected the productivity of inventors outside Kodak. The shock was large and arguably exogenous,
as it had little to do with what was happening to the Rochester local economy. Finding that the productivity of
inventors outside Kodak did not change following the large negative shock to Rochester high-tech cluster would cast
doubt on importance of productivity benefits stemming from cluster size.

Baseline Estimates. Figure 3 shows visually what happened to the mean productivity of non-Kodak patenters in
Rochester in the period 1990-2007. Specifically, it plots the mean log productivity of inventors who do not work for
Kodak, after controlling only for research field dummies.11 The vertical red line marks 1996, which was the peak of
Kodak’s stock price. While log mean productivity appears generally flat before 1996, it declines after 1996. Excluding
Kodak, the main patent producing firms in Rochester in 1996 were Coring (99 patents), Bausch Lomb (42), General
Motors (41), Tenneco Chemical (38), Mobil Oil (33), Johnson and Johnson (28), Osram Sylvania (24), PSC (20), and
IBM (16).
Table 2 presents corresponding differences-in-differences estimates comparing the 1996-2007 change experienced by

non-Kodak inventors in Rochester to the change experienced by non-Kodak inventors in other cities. The two panels
in the Table differ because Panel A is based on a cross-sectional comparison, while Panel B uses the longitudinal
nature of the data and focuses on within-inventor productivity change for a fixed set of inventors. (Since in 1996
Kodak had a presence in all five main research fields, no field can be considered unaffected by its demise. In the next
section, where I use all cities and years, I will be able to identify field-specific changes in cluster size.) In both panels,
the sample includes years 1996 and 2007. I use 1996 as the initial year because it is the year when Kodak stock prices
peaked. I use 2007 as the final year because it is the last year available in the data.
The level of observation in the regressions is inventor-year. I drop all Kodak inventors from the analysis, whether

in Rochester or in other cities. I also drop inventors in the photography sector, identified as those with patents in
at least one of the following technology classes: ”396, Photography”; or ”399, Electrophotography”, irrespective of
their location. They are dropped because although they do not work for Kodak, they may be directly affected by the
same negative shock. Thus, they may experience a productivity loss not due to agglomeration economies, but due to
a decline in product demand for traditional photographic film.
In column 1 of Panel A inventor log productivity is regressed on a 2007 dummy, a Rochester dummy and the

interaction. In this table, standard errors are clustered by city. The coefficient on the Rochester dummy indicates
that in 1996, the mean productivity of non-Kodak inventors in Rochester was not statistically different from the
productivity in other cities. The coefficient of interest is the one on the interaction, which indicates that the mean
number of patents filed in a year by non-Kodak inventors in Rochester declined by 6.41% between 1996 and 2007
relative to other cities. In columns 2 to 4, I add field, field × year and field × city effects as controls. The coefficient
on the interaction becomes more negative and suggests a productivity loss in Rochester between 6.73% and 9.16%
relative to other cities, depending on the controls. For robustness, I estimated an additional model where I drop
Xerox inventors, both in Rochester and other cities and find a similar estimate.12

The estimates in columns 1 to 4 compare productivity changes of inventors in Rochester to productivity changes of
inventors in all other US cities. One reasonable concern is that not all other US cities offer a compelling counterfactual,
since not all cities are similar to Rochester before the shock. For example, before 1996, Rochester had a larger
population than the median city, a higher median family income, a slightly higher mean inventor productivity. The
main research field (outside Kodak) in 1996 was “Other Engineering”, which accounted for 67% of all inventors, a
much larger share than the typical city. In column 5, I report weighted estimates, with weights reflecting how close the
focal inventor city is to Rochester based on a vector of observable city characteristics measured before the Rochester
shock: 1990 city population, 1990 mean household income, 1996 mean inventor productivity, 1996 share of patents
in each research fields, 1990 share of non-white residents, 1990 city total employment, and 1990 city industry mix
defined as share of employment in manufacturing, trade, construction and agriculture.13 The entry in column 5 puts
more weight on inventors in cities that were more similar to Rochester and is similar to the entry in column 4.14

11In practice, I plot the mean residual from a regression of log productivity on research field dummies.
12Xerox had an important presence in Rochester and experienced negative shocks in this period. It is not clear whether one should consider the

Xerox shock in Rochester as exogenous or as an endogenous effect of Kodak’s decline.
13The weight for inventors who are not in Rochester is 1/(1-p), where p is estimated using a logit. Data are from Moretti (2021).
14A more extreme option is to include in the sample only cities with characteristics similar to Rochester. This is equivalent to putting 0 weight on

some cities. I re-estimated the models in columns 1 to 4 including a subset of cities that are more similar to Rochester than the full sample of cities
based on city population in 1990, mean household income in 1990, mean inventor productivity in 1996 (excluding Kodak) and share of patents in
Rochester’s main research field in 1996 (excluding Kodak). I dropped cities with below median population in 1990, below median household income in
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Within-Inventor Estimates. Since the estimates in Panel (A) are based on cross-sectional comparisons, one
obvious concern is the possibility of unobserved quality changes due to inventor selection. In particular, it is possible
that the quality of non-Kodak inventors in Rochester in 1996 is not the same as the quality in 2007, although the
direction of the bias is a priori unclear. On the one hand, it is possible that the decline in the local high-tech cluster
induced some of the best non-Kodak inventors to leave Rochester. On the other, it is also possible that Kodak’s
downsizing allowed other firms in Rochester to hire good inventors laid off by the firm. If former Kodak inventors
hired by non-Kodak employers are on average better than incumbent inventors, the average unobserved ability of
inventors working outside Kodak may increase.

In Panel (B), I present estimates that use the longitudinal structure of the data. I use a balanced panel made up of
the inventors who are observed both in 1996 and in 2007 and I add inventor fixed effects to my models. Thus, Panel B
reports estimates where I compare within-inventor productivity changes in Rochester to within-inventor productivity
changes in other cities for a fixed set of inventors. The sample includes 8215 inventors observed twice, for a total
sample size of 16,430, as shown in the bottom row.

I assign Rochester status to an inventor based on her 1996 location. For a given inventor, the Rochester dummy
is set equal to 1 if the inventor is in Rochester in 1996. That is, I compare within-inventor productivity changes of
inventors who in 1996 were located in Rochester to within-inventor productivity changes of inventors who in 1996 were
located in other cities, irrespective of their 2007 location. This specification is preferred to one where the Rochester
dummy is set equal to 1 if the inventor is in Rochester both in 1996 and in 2007, because 2007 location is potentially
endogenous. It estimates the effect of the shock to the Rochester high-tech cluster on inventors who were there at
the beginning of the shock, allowing inventors to optimally choose their 2007 location.

In column 1 the only set of controls used is inventor fixed effects. The difference in difference estimate in the first
row suggests that inventors who were in Rochester in 1996 experienced a change in productivity that was 20.6% more
negative than inventors who were not in Rochester in 1996, after controlling for inventor fixed effects. When I add field,
field × year, and field × city effects as controls in columns 2, 3 and 4, the coefficient on the interaction become more
negative and suggests a productivity loss in Rochester between 22.2% and 30.9% relative to other cities. Weighted
estimates in column 5 are even more negative. A comparison with the corresponding cross-sectional estimates in
Panel A indicates that within-inventor estimates are more negative than cross-sectional estimates, suggesting that
unobserved quality of non-Kodak inventors biases cross-sectional estimates toward zero. This is consistent with the
possibility that some of the best Kodak inventors laid off by Kodak are hired by other Rochester employers.15

Kodak Suppliers. Product demand faced by Kodak’s suppliers likely declined following Kodak demise. If the
decline in product demand resulted in lower inventor productivity at Rochester suppliers, it could in principle explain
part of the decline in inventor productivity in Rochester after Kodak decline. In this case, one would want to
exclude the effect on supplier productivity from the estimate of the productivity losses in Rochester, since it reflects a
product demand shock, not productivity spillovers. On the other hand, it is also possible that the decline in supplier
productivity—if it took place—was the endogenous effect of the demise of Kodak. Geographical agglomeration of
specialized suppliers is one of the mechanisms that the literature on agglomeration effects has identified as possible
explanations of productivity spillovers. In this case, one would want to include the effect on supplier productivity in
the estimate of the productivity losses in Rochester.

It should be noted that suppliers with patents in the “Photography” and ”Electrophotography” classes—probably
a sizable share of Kodak suppliers who engage in patenting—are already excluded from the sample used to estimate
Table 2. In order to assess how robust my estimates are to excluding remaining Kodak’s suppliers, I use input-
output tables (BEA, 2012) to identify likely Kodak suppliers outside “Photography” and ”Electrophotography”. In
particular, I use input-output tables at the 6 digit level to identify how much each 6 digit industry sells to NAICS
333316 (Photographic and photocopying equipment manufacturing), which is the one that Kodak likely belongs to.
I then re-estimate Table 2 excluding inventors in technology classes that have a positive amount of expected sales to
NAICS 333316.16 Estimates corresponding to column 4 of Table 2 are -.0633 (.0139) and -.459 (.1210), respectively.

1990, 1996 mean inventor productivity that was 10 percent larger or 10 percent smaller than 1996 mean inventor productivity in Rochester (excluding
Kodak) and with a presence in “Other Engineering” research field below 40%. Results are generally similar to the ones presented in the table (available
on request).

15In addition, estimates in Panel B are based on inventors who are in the sample both in 1996 and 2007. Estimates are larger for inventors who are
in the sample for long periods of time, as I discussed in Section I.C above.

16To link patents to industries, I used the crosswalk by Lybbert and Zolas (2014) and Zolas (2016): for each parent class, the crosswalk lists multiple
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I conclude that good flows are unlikely to be the main driver of the findings.

Overall, I conclude that following the decline in the Rochester high-tech cluster, non-Kodak inventors in Rochester
experienced large productivity losses relative to non-Kodak inventors in other cities. While this is by no means
direct proof of productivity spillovers, this finding is consistent with the hypothesis that cluster size affects inventor
productivity.

III. Inventor Productivity and Cluster Size

The Rochester analysis focuses on a specific shock to one city. It has the advantage that the source of variation in
cluster size is clear. It has the disadvantage that it is a case study based on the experience of only one community.
I now turn to estimates of the relationship between inventor productivity and cluster size based on all cities, fields,
and years in my sample. I assume that the log of productivity of an inventor in a cluster depends upon her skills,
location fundamentals, agglomeration effects, and an idiosyncratic component:

(1) ln yijfkct = α lnS−ifct + dcf + dck + dft + dkt + dct + di + dj + uijfkct

where yijfct is the number of patents produced (or citations received) in year t by inventor i working in firm j in
research field f , technology class k and located in city c; S−ifct is the size of the cluster in the relevant field, city
and year, excluding inventor i; dcf and dck are city × field and city × class effects included in order to absorb time
invariant factors that may make specific fields or specific technology classes particularly productive in some locations;
dft and dkt are field × year and technology class × year effects and are included to absorb nationwide time-varying
technological and sectoral changes; dct represent city × year effects and are included to absorb city-wide changes in
the determinants of productivity shared by all fields in a location; and di and dj are inventor and firm effects. To
account for possible serial correlations in the residual, I report standard errors clustered by city × research field.

If cluster size raises inventor productivity due to productivity spillovers, α should be greater than zero. In the
absence of spillovers α should be zero. α is identified by inventors who move across cities or across fields and by
changes over time in clusters size in a given city and field pair. For OLS to identify α, the unobserved determinants
of productivity uijfkct need to be orthogonal to S−ifct. There are two identification concerns: sorting (or endogenous
quality of labor); and simultaneity (or endogenous quantity of labor).

The first concern stems from the fact that inventors choose their cluster. An inventor’s choice of location likely
depends on a number of factors, including earnings, cost of living, local amenities and idiosyncratic preferences for
specific locations. Some forms of sorting do not violate the orthogonality condition. For example, it is possible
that highly productive scientists tend to locate in large clusters. Sorting based on the permanent component of
productivity does not introduce bias in OLS estimates, since equation 1 conditions on the inventor fixed effects. The
equation also controls for firm effects, and thus is identified by within firm differences in cluster size across inventors.

Sorting driven by local amenities also does not violate the orthogonality condition. Dummies for the interaction
of city × year—dct—absorb all characteristics of a city that may affect its attractiveness, both permanent and time-
varying, including cultural amenities, restaurants, entertainment, school quality, crime, congestion, costs of living,
and local taxes. Endogenous changes in local amenities of the type discussed by Diamond (2016) are also absorbed
by dct. City-wide productive amenities—i.e., factors that affect the the productivity of all inventors, irrespective of
field, such as local infrastructure, productive public goods and regulations—are also absorbed. Identification relies
on the fact that there are multiple fields within each city.

Sorting due to time invariant factors that shift the productivity of scientists in specific fields and locations is also
accounted for. As an example, consider cases where particularly productive computer scientists are attracted to
the San-Francisco Silicon Valley area by the proximity to top engineering departments in Stanford or Berkeley, or,
alternatively, where the engineering departments of Stanford and Berkeley produce top computer scientists who after
graduation tend to stay in the area. City × field effects control for this type of productivity differences, to the extent
that they are time-invariant.

6-digit industries, with assigned probabilities. Based on the probabilities, I computed the expected value of inputs used by Kodak for each technology
class.
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Sorting into large clusters caused by time-varying unobserved productivity shocks, on the other hand, is a potentially
important concern. Consider, for example, the case of inventors in a small cluster whom employers in large clusters
expect to become more productive in the future. These expectations are of course not observed in my data. If
employers in large clusters systematically hire promising inventors from small clusters, equation 1 will overestimate
the effect of cluster size, because it would attribute to cluster size productivity increases that arise because of sorting.
In this case, productivity might be increasing even before the move. To assess the importance of this type of sorting,
I study the timing of productivity changes relative to changes in cluster size. If the model is properly specified, future
values of treatment should not affect current outcomes.
A second identification concern is simultaneity: the existence of unobserved time-varying productivity shocks at

the city-field level that attract more inventors to a city field. In practice, some of the localized shocks that affect firms
productivity are likely to be city-wide—for example: a new airport, or other form of improved infrastructure—and
therefore are controlled for in equation 1. But the city × year effects do not control for time-varying productivity
shocks that are both city and field specific. One example might be changes in local subsidies, to the extent that
they target specific fields. This could be the case if city or county adopts subsidies for, say, biotech firms, causing
an increase in the size of the local biotech cluster. If subsidies directly affect biotech firms productivity, equation 1
will overestimate the effect of cluster size. This could happen if subsidies allow local biotech firms to buy equipment
that they could not afford in the absence of a subsidy. (There is of course no bias if subsidies affect productivity only
indirectly by increasing cluster size—which is the case if subsidies increase the number of local inventor and that in
turns affects inventor productivity.) To assess the importance of this type of bias, I use two alternative instrumental
variables.
In some models of agglomeration economies, productivity spillovers are assumed to depend on density of a cluster,

rather than its absolute size. In interpreting the parameter α, one should keep in mind that it identifies the effect of
cluster size on productivity, holding constant the land mass of the relevant area. Thus, the estimated effect can be
interpreted as the effect of cluster density on productivity. To see this, consider that a log-log model with cityxyear
dummies such as the one in Equation 1 yields an estimate of α that is numerically identical to the one would obtain
if the independent variable is log density defined as number of inventors per-square mile: ln(S−ifct/Ac) , where Ac is
the area of the city.17

A. Baseline Estimates

Figure 4 shows a binned scatter plot of the correlation between log number of patents and log cluster size, con-
ditioning only on year effects, research field effects and city effects. The positive slopes indicate that larger clusters
appear to be associated with a higher number of patents generated per year. The estimated slope is 0.053 (0.002).
Table 3 reports estimates of variants of equation 1. Column 1 reports estimates from a model that includes year,

research field, technology class and city effects. Thus, the controls are the same as those used in Figure 4, with the
addition of technology class effects. The estimated coefficient is similar: 0.0518 (0.0081). In columns 2 and 3, I add
dummies for the interaction of city × field and city × class. While the field and class effects in column 1 absorb
nationwide productivity differences across fields and class, the interactions in columns 2 and 3 absorb features of
an area that may make specific fields or specific technology classes particularly productive. In columns 4 and 5, I
add dummies for the interaction of field × year and class × year in order to control for nationwide technological
shocks. In column 6, I add inventor fixed effects. This specification absorbs time-invariant quality differences between
inventors. The coefficient is 0.0923 (0.00990). A comparison with column 5 indicates that the within-inventor estimate
is significantly larger. This is surprising, because it suggests that conditional on the controls included in the model
in column 5, larger clusters attract inventors with lower mean unobserved quality.18

In column 7, I add dummies for the interaction of city × year in order to absorb city-wide shocks to local productive
amenities and selection driven by shocks to local consumption amenities. The coefficient drops to 0.0545 (0.0116),
significantly lower than the one in column 6. This suggests that during my sample period, large clusters tend

17The same conclusion applies to the case where density is defined as number of inventors divided by the area occupied by a specific field within a
city: ln(S

−ifct/Afc), where Afc is the area of the cluster.
18It is possible that moving lowers the probability of patenting—either because it is distracting and time consuming or because it coincides with a

job spell with a new employer and the inventor may be restricted from using intellectual property created while working for a previous employer. This
could lead me to underestimate productivity following a move, but there is no obvious reason to expect that this effect is different for those moving
from small to large clusters compared to those moving from large to small clusters.
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to experience on average more positive city-wide productivity shocks than small clusters; or that changes in local
amenities in large clusters tend to attract more productive inventors compared to small clusters; or both. Finally,
in the last column I add firm effects. Firm identifiers are not available for all patents, since not all inventors are
employed by firms and as a consequence sample size drops from 932,008 to 823,359. The coefficient is 0.0676 (0.0139).

The elasticity of productivity with respect to cluster size estimated in column 8 indicates that a 10% increase
in cluster size is associated with a 0.67% increase the number of patents produced by a scientist in a year. To
help interpret the magnitude of the estimated effect, consider an inventor in the computer science field who in 2007
moves from the median cluster—Gainesville, FL—to the cluster at the 75th percentile—Richmond, VA. Based on
the coefficient in column 8, such inventor would experience a 12.0% increase in the number of patents produced in a
year, holding constant the inventor and the firm. In biology and chemistry, a move from the median cluster—Boise,
ID—to the 75th percentile cluster—State College, PA—would be associated with a productivity gain of 8.4%, holding
constant the inventor and the firm. The estimated productivity gain is smaller than in computer science because the
difference in cluster size is smaller.19 The magnitude of the implied agglomeration economies is in line with existing
estimates in the literature on agglomeration economies.20

One can use the estimated elasticity to quantify the externality that a given firm generates in a given cluster.
The externality reflects the impact that a specific firm is estimated to have on the productivity of scientists in other
firms in the same cluster in a given year. Appendix Table 3 shows examples of estimated firm-specific productivity
spillovers for selected firms and clusters in 2007. The estimate for a given firm and cluster quantifies the percent gain
in the productivity of local scientists in other firms due to the presence of the firm in the cluster relative to the case
where the firm was not present in the cluster and everything else in the cluster was unchanged.21 The top panel is for
computer science. The entry in the top row indicates that Microsoft productivity spillover on the Seattle computer
science cluster is estimated to be 8.06%. This large external effect reflects Microsoft remarkable size in the Seattle
computer science cluster. With 1389 inventors in computer science in Seattle in 2007, Microsoft was the largest firm
in the cluster by a vast margin. IBM’s spillover effect on Minneapolis is estimated to be very large as well (4.15%).
Although IBM’s headquarter is not in Minneapolis, the firm has a large R&D presence in the city. On the other
hand, Cisco’s spillover effect on the San Francisco-Silicon Valley cluster is only 0.2%. The external effect of Dell in
Austin, Texas Instruments in Dallas, Caterpillar in Peoria, and Motorola in Chicago are, respectively, 0.61%, 1.84%,
10.47%, 0.88%. The estimated external effect of Hewlett-Packard in San Francisco-Silicon Valley is only 0.07%. The
last row in the panel indicates that the spillover effect generated by the average firm in the average city in computer
science was 0.32%. Thus, Microsoft and Caterpillar are outliers and the more typical case is closer to that of Cisco
or Motorola. The bottom panel shows examples for the biology and chemistry field.22

Having estimates of the productivity spillover that a specific firm generates in a specific cluster may prove useful to
local and state governments that offer subsidies to attract high-tech firms to their jurisdiction or to retain incumbent
firms. In theory, one economic rationale for offering subsidies to attract or retain high-tech firms is the existence
of localized productivity spillovers. (See Greenstone, Hornbeck and Moretti, 2010, for a discussion of firm specific
subsidies and productivity spillovers in manufacturing). Local and state governments interested in offering subsidies

19The baseline model in equation 1 assumes that the productivity spillover is the same across fields. This assumption has the advantage of being
parsimonious. In addition, it allows me to use within city-year variation in cluster size, since in each city and year there are five research fields.
Appendix Table 2 shows estimates of the effect by research field. These models do not include cityx year effects to avoid multicollinearity. (The
corresponding elasticity for the full sample is .1081 (.0119).) The elasticity is largest for Semiconductors (0.262), and Computer Science (0.187), and
it is smallest for Other Science (0.076).

20A meta-analysis of 34 different studies (Melo et al., 2009) indicates that my estimated elasticity is below the middle of the distribution of existing
estimates but within the range of elasticities reported in several recent studies. For example, Henderson (2003) obtains an elasticity of productivity
with respect to density of 0.01-0.08. Estimates for France in Combes et al. (2010) and Combes et al. (2012) imply elasticities of 0.029 and 0.032,
respectively. Kline and Moretti (2014) find an elasticity of 0.2 for US manufacturing. At the other extreme, Greenstone, Hornbeck and Moretti (2010)’s
estimates imply an elasticity in the range 1.25-3.1. Of course, part of the variation in these estimates is due to the fact that the models, data, time
periods and industries used in the studies are vastly different. The elasticity estimated in this paper is also consistent with estimates based on wages
(for example: Ciccone and Hall, 1996; Ciccone and Peri, 2005; Combes et al.; 2008; Rosenthal and Strange; 2008).

21The estimate is a function of the number of inventors that the firm has in the cluster relative to the overall number of inventors in the cluster. For
a given firm j, field f and city c, the estimated spillover is obtained as α̂∆S

−jfct where α̂ = 0.066 is the estimated elasticity and ∆ lnS
−jfct is the

difference in log cluster size with and without a given firm: ∆ lnS
−jfct = [ln(Nfct/Nft) − ln(Njfct/Nft)], where Nfct is the number of scientists in

cluster fct, Nft is number of scientists in field f and year t, Njfct is number of scientists in firm j in cluster fct, and t = 2007.
22Du Pont has a very large presence in Philadelphia, with 986 scientists in 2007. It generates a productivity spillover equal to 1.17%. Two examples

of firms with a dominant position in their local cluster and a very large estimated productivity spillover are Procter and Gamble in Cincinnati, OH,
and 3M in Duluth, MN, with productivity spillovers estimated to be 3.47% and 8.99%, respectively. More typical cases are Bristol-Myers in New York,
Amgen in Los Angeles, Chevron in the Bay Area, and Exxon in Washington DC, with spillovers in the 0.14% - 0.65% range. The spillover for the
average firm in the average city reported in the last row is 0.24%.
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proportional to the spillover effects that a firm may generate in their jurisdiction could use an approach similar to
the one used in Table 3 together with information on the expected number of local inventors in the firm they are
targeting. The estimates in Table 3 reflect productivity gains scaled in terms of number of additional patents. Local
government interested in the corresponding dollar value would need to make an assumption on the expected monetary
value of the marginal patent generated.

B. Dynamic Response

The baseline estimates in Table 3 use all the variation in cluster size observed in the data to estimate the effect on
inventor productivity. As discussed above, one can’t necessarily interpret the baseline estimates as the causal effect
of cluster size on inventor productivity. There are two main identification concerns: sorting and simultaneity. In this
sub-section and the next one, I present estimates that are useful in establishing the validity of the baseline model.

I begin by studying the dynamic response of productivity following a change in cluster size. Sorting into large
clusters of ”rising stars” is a potentially important concern. To assess the importance of this type of sorting, I study
the timing of productivity changes relative to changes in cluster size. If my model is properly specified, cluster size in
the future should have no effect on productivity in the current period, conditional on current cluster size. Finding that
cluster size in the future is correlated with current productivity would indicate that inventors with raising productivity
systematically move to larger clusters, as it would be the case if firms in large clusters can anticipate productivity
growth increases and attract them.

I estimate a version of equation 1 that includes the current cluster size and five leads and five lags:

(2) ln yijfct =
−1∑

s=−5

βs lnS−ifc(t+s) + β0 lnS−ifc(t) +
5∑

s=1

βs lnS−ifc(t+s) + dcf + dck + dft + dkt + dct + di + dj + uijfkct

where the five leads and five lags—S−ifc(t+s) for s = −5, ...,−1, 1, ..., 5—refer to the cluster where the focal inventor
i is at time t+s. Note that this is not a standard event study. The coefficients on the lead terms, β1 through β5, allow
me to determine how an inventor productivity in a given year responds to a future changes in size. The coefficients
on the lag terms, β−5 through β−1, allow me to examine how a change in cluster size propagates over time and in
particular whether the effect is short lived or permanent.

In the top panel of Figure 5, I plot the coefficients β5 through β−5. The left most coefficient, β5 represents the
change in the focal inventor’s productivity in response to a change in cluster size five years into the future. The
rightmost coefficient, β−5 represents the focal inventor’s change in productivity in response to a change in size 5
years in the past. The dotted lines are a 95 percent confidence bands based on standard errors clustered by city ×

field. The sample size is only 21,787 because for a inventor to be in this sample, the five leads and lags need to be
non-missing, which implies that only inventors observed in 11 consecutive years are included. In the bottom panel, I
present the cumulative estimates corresponding to equation 2 (the impulse response function). Specifically, the figure
displays µn = β5 + β4 + ...+ βn for n = −5 through 5, along with an accompanying error band.

To interpret this figure, suppose that a change in cluster size takes place at time t = 0. For example, the change
could be caused by the focal inventor moving from a small cluster to a large cluster at t = 0. The point that is
farthest to the left, µ5, represents the productivity response 5 years prior to the move. The next point moving to the
right, µ4, is the estimated cumulative productivity response up to 4 years before the move (β5 + β4). The point µ−5

is the cumulative productivity response from 5 years before the move through 5 years after the move.
Figure 5 is estimated using all the variation in cluster size in the sample – both variation coming from movers and

stayers. It’s a useful benchmark because my baseline estimates in Table 3 use both sources of variation. In Figure 6 I
replicate the Figure using only variation from inventors who move across cities. This specification has the advantage
of being more easily interpretable. In particular, I use the subset of inventors who change city once to estimate
a variant of equation 2 where t = 0 marks the time of the move and the timing relative to an inventor’s move is
interacted with the corresponding cluster size. As treatment variable, I use average cluster size before the move and
after the move. In other words, cluster size in the years before or after a move is measured as the average cluster size
in the years before or after the move, so that within-city variation in cluster size over time is not used to identify the
parameters. Thus, this specification is an event study, based on a “pure” movers design solely exploiting variation in
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cluster size induced by moves.
Three features of Figure 5 and 6 are worth highlighting. First, the lead terms β1 through β5 test for whether

future values of treatment affect current productivity. If my estimates reflect a true productivity spillover, and not
spurious correlation, then cluster size in the future should have no effect on inventor productivity in the current year,
conditional on current cluster size. Finding positive coefficients on the lead terms would cast doubt on the causal
interpretation of my estimates, because it would suggest that the productivity of inventors today depends on cluster
size they will be exposed to in future years. In practice, there appears to be little evidence in Figures 5 and 6 that
future values of treatment affect current outcomes. In both cases, I cannot reject that any of the coefficients on
the lead terms are equal to zero. This is reassuring, because it is inconsistent with the possibility of selection on
unobservables discussed above, in which promising inventors in small clusters who are experiencing productivity gains
tend to be systematically hired by employers in large clusters.
Second, the estimates reveal that in the year when cluster size changes, there is an immediate rise in the focal

worker’s productivity. The increase in productivity may appear surprisingly fast. Recall, however, that I use the
date of patent filing, not the date when the patent is granted. Griliches (1998) points out that in many fields the
timing of patent application and R&D are close, often measured in months or even weeks. Indeed, industry studies
report average length of R&D projects of less than 12 months for semiconductors, 3 to 6 months for information
and communication technologies (ICT) and even shorter for software (Griss, 1993; Krasner, 2003; Wu, 2011; Kapoor,
2012; Haran, 2011; Mansfield, 1972). In addition, there is evidence that in some cases, patents are applied for not
at the end of the R&D process but at an early stage (Cohen 2010). Previous studies have found quick effects on
patenting. For example, Hall, Griliches, Hausman (1986) find the effect of R&D expenditures on patenting to be
immediate.
In principle, one exception should be pharmaceutical R&D, where it likely takes several years and sometimes decades

to invent and patent new drugs. Appendix Figure 1 replicates Figure 5 limiting the sample to inventors working in
technology classes for drug development (”drug, bio-affecting and body treating composition”; class code 424). While
the confidence intervals are inevitably much larger, there appears to be no evidence of an immediate effect in this
case.
A third feature of Figures 5 and 6 worth highlighting is that the effect appears, in large part, persistent. In Figure

5, after the initial increase in the first two years, productivity declines over the next three years, as inferred from the
downward drifting cumulative response in the bottom panel, but most of the effect persists. In the case of movers in
Figure 6, there is more decline, but even here most of the effect persists five years after the move.23

From the quantitative point of view, the estimated effects in Figures 5 and 6 appear larger than the baseline results
in Table 3. The reason is that these figures are based on a sample that includes inventors observed for 11 consecutive
years. By construction, this sample includes only the most prolific inventors. The effect of cluster size is particularly
large for superstar inventors, as I show in Section IV.B. There, I present estimates for increasingly stringent definitions
of star inventors and find that the effect is largest when I restrict the sample to inventors in the top 1% or 0.5% of
lifetime patent count, which account for the vast majority of the sample used in Figures 5 and 6.

C. Instrumental Variable Estimates

In this sub-section, I consider models based on two instrumental variables. While the baseline estimates in Table
3 use all the variation in cluster size observed in the data to estimate the effect on productivity, the IV estimates
isolate variation in cluster size that comes from specific and arguably exogenous sources. This approach is useful to
deal with simultaneity, namely the possible existence of unobserved time-varying productivity shocks at the city-field
level that are correlated with variation in cluster size.

(A) Rochester. First, I re-visit the Rochester case study. The difference in difference estimates uncovered in
Section II can be interpreted as reduced form estimates in a model where the excluded instrument is the Rochester
× 2007. The 2SLS estimates can be obtained by re-scaling the reduced form estimates by the relevant first stage
estimates. The identifying assumption is that the change in the number of inventors in Rochester caused by the

23Glaeser and Mare (2001) find that the effect of city size on wages manifests itself over time. De La Roca and Puga (2017) find that Spanish workers
in bigger cities obtain an immediate static wage premium and also accumulate valuable experience over time. They discus the biases that arise if the
benefits of bigger clusters take time to realize.
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demise of Kodak after 1996 is uncorrelated with unobserved productivity shocks of non-Kodak inventors outside the
Photography sector, conditional on controls.
The first stage estimates are presented in the top panel of Table 4. They are obtained by estimating models similar

to those in Table 2 (Panel A), where the dependent variable is the log of cluster size. Unweighted estimates range
from -0.491 (.128) in column 1 to -0.396 (.0460) in column 4. This last coefficient, for example, indicates that in a
model that conditions on field × year and field × city effects, the cluster size in Rochester declined by 39.6 percent
relative to other cities. (As discussed above, this is the mean across the five fields in Rochester.)
2SLS estimates are shown in the bottom panel. They are the ratio of the reduced form coefficients (Table 2) and

the corresponding first stage coefficients. The unweighted 2SLS estimates of the elasticity of inventor productivity
with respect to cluster size range from 0.131 (0.037) in column 1 to 0.232 (.0393) in column 4.

(B) Firm Spatial Networks. Next, I use the geographical structure of firms with multiple locations to build an
instrumental variable that isolates variation in local cluster size that originate elsewhere. The idea is that changes
over time in the number of inventors employed in other cities by firms other than the focal inventor’s firm but
that have a presence in the focal inventor’s city and field are predictive of changes in the local cluster size but are
unlikely to be systematically correlated with unobserved shocks to the focal inventor’s productivity. Specifically,
let Njf(−c)t be the number of inventors that firm j has in field f , year t in all the cities excluding city c, so that
∆Njf(−c)t = Njf(−c)t −Njf(−c)(t−1) is the change between year t − 1 and t. The instrumental variable for inventors
in firm j in cluster fct is defined as

IVjfct =
∑

s 6=j Dsfc(t−1)
∆Nsf(−c)t

∆Nft

where Dscf(t−1) is an indicator equal to 1 if firm s has at least 1 inventor in city c in field f in year t− 1; and ∆Nft

is the nationwide change in inventors in the field. Note that the summation is across all firms that have a presence
in the city excluding the focal firm j.
Identification comes from changes over time in the number of inventors employed in other cities by local firms

besides the focal inventor’s own firm. To see the intuition, consider as an example Boston and Minneapolis. In 1996,
Microsoft has a presence in Boston, with 3 inventors in the computer science field. Between 1996 and 1997 Microsoft
is generally expanding its overall R&D investment in the US and the total number of its inventors in all cities outside
Boston is growing. Now take a computer scientist in Boston employed by a firm other than Microsoft. The first
stage captures whether the size of the cluster that this inventor is exposed to in Boston increases as the number of
Microsoft computer science inventors outside Boston increases between 1996 and 1997. The idea is that the growth
of Microsoft inventors outside Boston may affect the size of the cluster that non-Microsoft inventors in Boston are
exposed to but it is arguably not correlated with productivity shocks of non-Microsoft inventors in Boston, since it is
driven by Microsoft’s growth elsewhere.
By contrast, consider Minneapolis in 1996, where Kodak had a presence, with two inventors in the computer science

field. Between 1996 and 1997, Kodak’s total number of inventors in all cities outside Minneapolis is declining, since
the firm is struggling due to rising competition from digital photography. For a computer scientist in Minneapolis
employed by a firm other than Kodak, the instrument will likely capture a decrease in cluster size. The decrease
arguably reflects Kodak’s overall demise rather than unobserved productivity shocks in Minneapolis. (In practice, the
instrument is not based only on one firm per city, but instead reflects the sum across all firms that have a presence
there. It also includes all years, not just 1996 and 1997).
More explicitly, the assumption is that for focal inventor i variation in the number of inventors in i’s field who are

located outside i’s city and work for firms other than i’s firm that have a presence in i’s city is orthogonal to unobserved
factors that affect i’s productivity, after conditioning on covariates. In the Boston example, the assumption is that
conditional on the controls, unobserved productivity shocks experienced by an inventor in computer science in Boston
who is not employed by Microsoft are orthogonal to changes in the number of computer scientists who work for
Microsoft outside Boston. Since the econometric model includes field × year and class × year effects, identification
is not driven by the sectoral mix of employers in a city. Rather, it is driven by the identity of the firms that exist
in a cluster at t − 1—other than the one where the focal inventor is employed—and by changes in their number of
inventors outside the focal inventor cluster.
One limitation is that this instrument predicts changes in cluster size, not its level. I estimate a version of equation



16 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

1 in first differences, precluding a direct comparison with the baseline models:

(3) ∆ ln yijfkct = α∆ lnS−ifct + dt + df + dk + dj + dft + dkt + uijfkct

The top panel of Table 5 reports OLS estimates of equation 3. The sample includes inventors who are observed in
two consecutive years. Standard errors in this table are clustered by city. The OLS estimates range between 0.0141
(0.00394) and 0.0164 (0.00397), depending on the set of controls and are smaller that the corresponding models in
levels in Table 3. This is in part due to the fact that relative to fixed effects models, models in first differences magnify
measurement error biases (Griliches and Hausman, 1986). Moreover, models in first differences only estimate on the
contemporaneous effect of cluster size. First differences models that include the contemporaneous change in log size
and lagged changes yield larger long run estimates.24

The bottom panel reports 2SLS estimates and the corresponding first stage estimates. The F-stats are between 40.2
and 64.2. The 2SLS estimates range from 0.0422 (0.0186) to 0.0630 (0.0211). The entry in column 6 is equal to 0.0491
(0.0144). The reason why IV is larger than OLS is that it corrects both for measurement error and endogeneity.
To assess the validity of the instrument, I re-estimated both the first stage and the second stage using as IV

the one-year lead. The idea is that a future shock to cluster size predicted by a future change in the IV should
have no effect on productivity or cluster size in the current period. In both cases, I find statistically insignificant
coefficients, suggesting that future values of the IV do not predict changes in current cluster size or changes in current
productivity.25

By construction, variation in the instrument comes from firms that have a presence in more than one city. Variation
in the focal inventor’s own firm is excluded to minimize the likelihood that unobserved shocks to the focal inventor
might be correlated with the instrument. To push the leave-out logic further, I re-estimate my models using the
same instrument but excluding from the regressions firms that have a presence in more than one city. In particular,
estimates in Appendix Table 4 are based on the sample of inventors who work in firms that in every year in which
they appear in the data are present in only one city. The IV estimates are larger, but less precisely estimated.
While I can’t completely rule out the possible existence of unobserved time-varying productivity shocks at the city-

field level that are correlated with variation in cluster size, the instrumental variable estimates based on the Rochester
shock and the ones based on firm spatial networks, taken together, appear to allay concerns about simultaneity.

IV. Citations, Heterogeneity and Robustness

A. Citations Received and Citations Made

To understand the effect of cluster size on the quality of inventor output, not just its quantity, I now focus on
patent citations. The dependent variable in Panel A of Table 6 is the log number of subsequent patents that cite
any patent filed by inventor i in year t. The citing patents include any patent filed between year t and the end
of the sample, not just patents filed in t. The dependent variable in Panel B is the log of number of subsequent
patents that cite patents filed by inventor i in year t divided by the number of patents filed by inventor i in year t.
The former is a measure of overall impact of patents produced by an inventor in a given year, while the latter is a
measure of the mean quality of patents filed by an inventor in a given year. Estimates in column 6 suggest that the
elasticities for the overall number of citations and citations per patent are equal to 0.160 (0.043) and 0.092 (0.041),
respectively. This means that inventors in larger clusters produce not just more patents but also more influential
patents compared to otherwise similar inventors in smaller clusters. Estimates in the last two columns indicate that
the increase in citations is largely driven by an increase in local citations, defined as citations coming from patents
created by inventors in the same city as the focal inventor, as opposed to patents created by inventors in a different
city.26

24For example, in a model that has the contemporaneous change in log size and two lagged changes, and all the same controls as column 6, the sum
of the three coefficients is 0.031 (0.008), larger than the entry in the Table although still smaller than the corresponding estimates in levels.

25The coefficients for the first and second stage are -.039 (.032) and -.229 (.609), respectively.
26I have also estimated the effect of cluster size on measures of patent “Generality” and “Originality” based on citations. The measures, first

proposed by Trajtenberg, Jaffe and Henderson (1997), are between 0 to 1. If a patent is cited by subsequent patents that belong to a wide range of
fields the measure of “Generality” is close to 1, whereas if most citations are concentrated in a few fields it is close to 0. “Originality” is defined the
same way, except that it refers to citations made (Hall, Jaffe, Trajtenberg, 2001). Thus, if a patent cites previous patents that belong to a narrow set
of technologies the originality score is close to 0, whereas citing patents in a wide range of fields would render a score close to 1. More specifically,
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To shed some light on the channels that may lead to the productivity gains enjoyed by scientists in larger clusters,
I now turn to an analysis of citations made by focal inventors – namely citations of previous patents included in
the focal inventor patents. The dependent variable in columns 1 and 2 in Table 7 is the log of the total number
of citations by the focal inventor in the focal year, and the log of the total number of citations per patent filed,
respectively. Entries indicate that inventors in larger clusters tend to cite more than inventors in smaller clusters.
This is true both of the overall number of citations made—which is probably not surprising given that inventors
in larger clusters create more patents—but also of the number of citations per patent. Since citations made by an
inventor are arguably a sign that the inventor knows about a specific innovation, this finding is consistent with the
idea that scientists in larger clusters have more knowledge of existing innovations than otherwise similar scientists in
smaller clusters, possibly because larger clusters allow for more knowledge diffusion than smaller clusters.
The dependent variable in column 3 is the share of citations made by the focal inventor to inventors located in the

same city. The entry indicates that larger clusters are associated with a larger share of local citations, suggesting that
scientists in larger clusters not only have more overall knowledge of existing innovations, but that this is particularly
true of local innovations. This is consistent with the notion that larger clusters allow for knowledge and ideas to
spread more efficiently, as suggested, among others, by Saxenian (1994), who describes how in Silicon Valley ideas
flow very fluidly between innovators and this fosters their creativity.
The dependent variable in 4 is the share of citations from the focal inventor to inventors in the same field. The

estimated elasticity is only marginally significant, precluding definitive conclusions.

B. Are The Effect Larger for Larger Clusters or More Productive Firms or More Productive Inventors?

I now examine three potentially important sources of heterogeneity in the magnitude of the spillover effect.
Estimates by Cluster Size. My baseline estimates are based on a log-log specification that assumes a constant

elasticity. This is a natural starting point, but in reality, it is possible that the elasticity may vary depending on
cluster size. On the one hand, it is in principle possible that the elasticity in large clusters is lower than the elasticity
in small clusters, so that a 1% increase in size in a large cluster results in productivity gains that are proportionally
smaller than a 1% increase in size in a small cluster. This would be the case, for example, is size increases above a
certain threshold yield limited productivity benefits. On the other hand, the opposite could also be true–namely that
the elasticity grows with size. This could happen, for example, if a few extra inventors in a tiny cluster have limited
productivity benefits, and agglomeration economies begin to materialize only above a certain size. It’s even possible
that both cases are true, and that the relationship between log productivity and log cluster size is best represented by
an S curve, like many network models with social interaction would suggest. Ultimately, this is an empirical question.
In Figure 4, the relationship between log productivity and log cluster size appears visually slightly convex, after

controlling for a limited set of controls, more consistent with an elasticity that grows with cluster size. To test
more formally whether the estimated elasticity is constant across clusters of different size, Panel A in Table 8 shows
estimates where the I allow the coefficient on log size to vary across size quartiles and the vector of controls includes
all the controls that are included in the baseline model. The coefficients in the table give the elasticity of productivity
with respect to size for the relevant size. This specification allows me to determine whether the effect of log cluster
size on log productivity in large clusters is different from the effect of log cluster size on log productivity in small
clusters.
Estimates in column 1 condition on all the effects excluding firm effects. They appear to quantitatively similar,

ranging from 0.0556 (0.0114) to 0.0633 (0.0137). A test for equality, reported at the bottom of the table, has p-value
equal to 0.157, indicating that the coefficients are statistically not different from each other. In column 2, I add firm
effects. Here the p-value for the test for equality is 0.080. The elasticities remain quantitatively similar. The smallest
is the one for the first quartile, which is equal to 0.0702 (0.0137), while the largest is the one for the fourth quartile,
which is equal to 0.0821 (0.0163) and the relationship is not monotonic.
Overall, I conclude that there is limited evidence of large heterogeneity in elasticities. This is consistent with the

findings for the manufacturing sector by Kline and Moretti (2014). They find that the elasticity of manufacturing
productivity with respect to density of labor in a county is similar in counties with low density and high density.

Generality is defined as 1−
∑

k pik where where pik denotes the percentage of citations received by patent i that belong to patent class k. The sum is
the Herfindahl concentration index. “Originality” has the same definition, except that pik denotes the percentage of citations made by patent i that
belong to patent class k. The estimates (available ion request) indicate that inventors in larger clusters do not tend to produce patents that are more
original or general than inventors in smaller clusters.
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Estimates by Firm Productivity A separate question is whether the elasticity of productivity with respect to
cluster size depends on firm productivity. It’s in principle possible that the most productive firms are the ones most
able to take advantage of productivity spillovers. Indeed, recent contributions on firms sorting and agglomeration
(Gaubert, 2018; Combes, Duranton, Gobillon, Puga and Roux, 2012) are built on an assumption that the most highly
productive firms gain the most from agglomeration. On the other hand, it is also possible that the opposite is true,
namely that productivity spillovers are quantitatively more important for low-productivity firms. This would be the
case, for example, if inventors in low productivity firms are the ones with the most to gain from proximity to others
inventors.
Panel B in Table 8 tests whether estimates of the effect of cluster size on productivity depend on firm productivity.

Firms are divided in four quartiles, based on their average productivity, and a separate elasticity is estimated for each
quartile by interacting cluster size with four indicators for each quartile.27 Estimates in column 1 indicate that the
spillover effect is very similar across quartiles. When firm fixed effects are added in column 2, the point estimates
show a weak relationship with firm productivity. Statistically, I can reject that the four elasticities are identical,
as shown by the p-value reported at the bottom of the table. But quantitatively, the difference is limited. The
elasticity estimated for the top quartile—0.0744 (0.141)—is only slightly larger than the elasticity for the bottom
quartile—0.0583 (0.0142).
I conclude that there is some evidence of differences in the spillover effect as a function of firm productivity, but

the differences are economically small.

Estimates by Inventor Productivity. Does the elasticity of productivity with respect to cluster size depend on
inventor productivity? On the one hand, it’s possible that the most productive inventors are the ones most able to
take advantage of productivity spillovers. On the other hand, it is also possible that the opposite is true, and that
relatively weaker inventors are the ones with the most to gain from proximity to others inventors.
Table 9 reports estimates based on different cutoff for the definition of star inventors. Column 1 includes all

inventors, while columns 2 to 6 include increasingly stringent definitions of star inventors based on the total number
of patents over their lifetime. The estimated coefficients indicate that estimates are larger if more stringent definitions
of stars are adopted. In particular, the estimate for the top 0.5% of inventors (column 6) is larger than estimate for
the top 1% (column 5), which in turn is larger than the estimate for the top 5% (column 4), and so on. The estimate
for the full population of inventors (column 1) is the smallest and it is indistinguishable from zero.
I conclude that the most productive inventors are the ones who benefit the most from agglomeration economies.

This suggests an interesting form of complementarity between inventor quality and cluster size.

C. Robustness

Cross-Field Spillovers. The baseline model in Equation 1 assumes that the productivity spillovers enjoyed by
scientists in a given research field only depend on the size of the cluster in that field, and does not depend on the
size of clusters in other fields. In reality, cross-field spillovers could be empirically important if scientists in a city
benefit from spillovers stemming not only from their own research field, but also from other research fields. It is not
hard to imagine that researchers in semiconductors, for example, might benefit from learning about new discoveries
in computer science. Strong cross-field spillovers may help explaining the tendency of firms belonging to different
parts of the high tech sector to locate near each other, as observed in cities like San Francisco, Boston and Seattle.
The existence and magnitude of cross-field spillovers also have important implications for our understanding of the
nature and scope of knowledge spillovers.28

To assess how important cross-field spillovers are, I estimate a model that includes not only cluster size based on
the focal inventor’s own research field, S−ifct, but also the mean cluster size of the other four fields in the relevant
city and year. Column 1 in Appendix Table 5 show that the coefficient on the mean cluster size of the other fields is
not statistically different from zero, suggesting that on average cross-fields spillovers are not very important.
It is still possible that cross-fields spillovers are important for specific pairs of fields. In columns 2 to 6, I estimate a

more general version of Equation 1 that includes five cluster size, one for each of the main research fields. This allows

27Firm productivity is measured as mean inventor productivity by firm and research field across all years. Thus, if a firm has inventors working in
different fields, there are different measures of productivity depending on the field.

28Patent citations seem to suggest that cross-field spillovers may be important: The fraction of patents cited by scientists in my sample that are in
one of the four fields different from their own is 53.3%.
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me to estimate a 5x5 matrix where each off-diagonal element is the effect of a field on another field. The diagonal
elements are the own field effect. The matrix is shown in columns 2 to 6.29 Empirically, most of the cross-field effects
are not statistically different from zero. One exception is the Semiconductor field in column 6. The productivity of
inventors in this field depends not only by the size of the local Semiconductor cluster, but also by the size of the local
clusters in Computer Science and Other Science. The cross-field effects are 0.138 (0.0650) and 0.196 (0585) – large
compared with the own-field effect estimate of 0.218 (0.0644)– suggesting that Semiconductor scientist productivity
is highly sensitive to the presence of scientists in these two other fields.30

Sample Selection. In Section I.C, I noted that when inventors don’t apply for a patent in a given year, they
are missing from my data because their location in unknown. I argued that a regression of number of patents on
cluster size captures the intensive margin—namely the effect of cluster size on number of patents, given a positive
number of patents—but misses the extensive margin—namely the effect of size on the probability of patenting. As
a consequence, the elasticities estimated so far should be interpreted as a lower bound of total effect of cluster size
on patenting. Here I present two pieces of evidence intended to empirically probe the direction and magnitude of the
sample selection bias.

Appendix Table 6 shows what happens when I use interpolation to impute some of the inventor-year pairs that are
missing due to lack of patenting by an inventor in a given year. I expect interpolation to result in larger estimates. By
including some of inventor-year pairs when an inventor does not patent, estimates in the interpolated sample reflects
not only the the effect of size on number of patents (intensive margin), but also part of the effect of cluster size on
the probability of patenting (extensive margin).

Since the dependent variable is in logs, and log(0) is undefined, I set it equal to the inverse hyperbolic sine (Panel
A) or log(number of patents +1) (panel B). Column 1 uses the baseline sample. In column 2, I interpolate the data
when one missing year is immediately preceded and followed by non-missing years. If a scientist is missing in year t
but observed in years t−1 and t+1, she is assigned to the cluster in which she is at t−1. For example, this would be
the case of an inventor observed patenting in 2003 and 2005, and not observed in 2004 due to the lack of patenting.
In this case, I assume that the inventor is located in 2004 in the same cluster as the one where I observe her in 2003.
The sample increases to 860,806 observations, indicating that 37,431 observations are interpolated.31 In column 3, I
interpolate the data when 2 missing years are immediately preceded and followed by non-missing years. For example,
this would be the case of an inventor observed patenting in 2003 and 2006, and not observed in 2004 and 2005. In
this case, I assume that the inventor is located in 2004 and 2005 in the same cluster as the one in 2003. The sample
increases to 873,346 observations.

The estimated coefficients in column 2 are larger than the corresponding coefficients in column 1. Intuitively, by
adding some of the missing 0’s, the estimate in column 2 reflects not only the intensive margin, but also part of
the effect of the extensive margin. The coefficients in column 3 are even larger because an even larger share of the
extensive margin is captured.

Appendix Table 7 reports estimates obtained with different temporal units of analysis. Specifically, I re-estimate
my baseline models using measures of productivity defined over 1 month, 2 months, 3 months, 6 months, 2 years
and 3 years. I expect that when the temporal unit of analysis is short (months), the problem of sample selection
and the downward bias are more pronounced. In the extreme, if I was to measure productivity second by second,
very few inventor-second pair would be non-missing and the selection bias would be large. By contrast, when the
temporal unit of analysis is long (2 or 3 years), I expect the problem of sample selection and the downward bias to be
less pronounced. In the extreme, if I was to have just one observation per inventor with productivity defined as the
number of patents created in all the years in the sample, there would be no selection and both the intensive margin
and extensive margin would be reflected in my estimates. Empirically, Panel A confirms that the estimated coefficient
is monotonically increasing with the length of the unit of analysis. In columns 1 and 2, it is negative. In column 3 it
is close to 0. In column 4 it is positive, although half of the size of the baseline coefficient. In columns 6 and 7, the

29Models in this Table do not include city ∗ year effects to avoid multicollinearity.
30To test whether the productivity spillovers enjoyed by an inventor depend on her intellectual linkages to research fields other than her own, as

measured by an inventor’s propensity to cite patents outside her own field, I estimate the baseline model augmented by the interaction of cluster
size with an indicator for whether the focal scientist share of citations to her own field is above 90%. The coefficient on the interaction is negative,
indicating that scientists who tend to cite patents only in their own field enjoy smaller productivity spillovers, possibly because they are less open to
learning about other fields.

31When I do this interpolation, I do not change the measure of cluster size on the right hand side.
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estimated coefficient is significantly larger than the baseline coefficient. Panel B repeats the exercise for inventors in
the top 1% of lifetime patent count. It shows that even for the most prolific inventors the problem of the missing 0’s
is pronounced when the unit of time is only 1 month, since even the most prolific inventors rarely have patents every
single month. As expected, the problem declines the longer the temporal unit.
Overall, findings in Appendix Tables 6 and 7 confirm that the baseline estimates capture only part of the overall

effect—namely the intensive margin—and that including the extensive margin leads to larger estimates. When I
interpolate the data to include some of the 0’s, the estimated effects increase precisely because part of the extensive
margin gets included in the estimates. Similarly, when I focus on long units of time, my estimated effects grow because
part of the extensive margin gets included in the estimates. I conclude that the baseline estimates in Table 3 should
be interpreted as a lower bound of the true effect of cluster size on productivity.

Quality of the Cluster. It is possible that productivity spillovers depend not just of the overall size of a cluster,
but also on the quality of the inventors in that cluster.32 To investigate this possibility, I estimate models where the
size of cluster is defined as a function not just of the number of inventors, but also of their quality, where quality is
measured by the number of patents created, or the number of citations received. In column 1 of Appendix Table 8
cluster size is measured as the weighted sum of inventors in a given city-field-year cell, with weights reflecting the
lifetime number of patents of each inventor. In column 2, cluster size is measured as the number of inventors with
a lifetime patent count above 3. In column 3, cluster size is measured as the weighted sum of inventors in a given
city-field-year cell, with weights reflecting the lifetime number of patent citations received. Finally, in column 4,
cluster size is measured as the number of inventors with a lifetime patent citation received count above 5. Compared
with the baseline elasticity in Table 3, column 8, the elastcities in columns 1 to 4 are about twice as large, suggesting
that local spillovers from high quality scientists have a significantly larger impact on productivity than spillovers from
the average scientist.

Teams. Increasingly, innovation is created by teams of inventors working together. If larger teams are both more
productive and more likely to be in larger clusters, team size could be an important omitted variable. (Note that there
is no mechanical relationship between team size and productivity, since my measure of productivity is already adjusted
for team size: in case of patents with multiple inventors, each of them receives a fraction of the patent.) In my data, I
define teams as a group of inventors whose names are on the same patent. In column 5 of Appendix Table 8, I control
for a quadratic in team size. The coefficient is 0.117 (0.0113), significantly larger than the corresponding baseline
coefficient, suggesting that teams size is negatively correlated with inventor unobserved productivity determinants.
In column 6, cluster size is defined excluding all members of the focal inventor’s team. The estimated elasticity is
larger than the baseline elasticity, confirming that if anything, omitting team size biases the results downward. In the
last 2 columns, I ask whether the spillover effect is larger for larger teams. For each inventor, I compute the mean
team size in the relevant year. I estimate models where cluster size is interacted with an indicator for teams with size
above median (column 7) or an indicator for solo inventors (column 8).33 The negative coefficient on the interaction
in column 8 indicates that the spillover effect is smaller for solo inventors.

V. Implications of Agglomeration for the Aggregate Production of Innovation

I found that inventors tend to cluster geographically in a small number of areas and that inventors who locate in
large clusters enjoy productivity gains relative to those in small clusters. A natural question is therefore how much
geographical clustering contributes to the overall production of patents in the US. Put differently, is the total number
of patents produced each year in the country made larger by the fact that inventors in each field concentrate in a
handful of locations, compared to the case where inventors are spread more equally across locations?
In this section, I use my estimates of the elasticity of inventor productivity with respect to cluster size to quantify

the macro-economic benefits of agglomeration for the US as a whole. I seek to estimate what would happen to the
total number of patents produced annually in each field in the US if inventor quality and firm quality did not change
but some inventors were spatially reallocated from large clusters to small clusters up to the point where clusters
size within each field is equalized across cities. In the presence of productivity spillovers, one would expect that

32For example, Iaria, Schwarz, Waldinger (2018) show that access to the very upper tail of scientists is crucial for scientific output.
33More precisely, for each inventor, I computed the share of solo patents in the relevant year, defined as patents with only one inventor. Column 8

is based on an indicator equal to 1 if the focal inventor’s share of solo patents in the relevant year is above .9.
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such spatial redistribution would increase the productivity of inventors in clusters smaller than average and lower
the productivity of inventors in clusters larger than average. On net, the magnitude of the aggregate effect for the
country as a whole of such spatial redistribution depends on the relative magnitude of the gains in smaller clusters
compared to the losses in larger clusters. In turn, this depends on the strength of agglomeration economies and how
unequal is the initial spatial distribution.

Complete equalization of cluster size is of course an extreme counterfactual. It is intended to be a useful benchmark
to assess the aggregate benefits of agglomeration, rather than a specific policy objective. At the end, I provide an
additional estimate based on partial equalization.

A. How Spatial Agglomeration Affects the Aggregate Number of Patents

To see how spatial agglomeration might affect the aggregate number of patents produced in the US, consider the
following simplified example. Assume there are only two clusters, A and B, and cluster A is initially larger: SA > SB.
Assume that inventor i’s output is only a function of cluster size Sc: yic = g(Sc), with g′ > 0. (In equation 1
there are of course many other terms that affect an inventor productivity which I ignore in this example to keep
notation as simple as possible.) Aggregate output in this economy is the sum of output in location A and location B:
Y 1 = SAg(SA)+SBg(SB) where the total number of patents produced in a location is simply the product of inventor
output times the number of inventors in that location.

Consider a counterfactual where some inventors are moved from cluster A to B so that the number of inventors is
equalized: SA = SB = S

2 . The total number of inventors in the economy, S, does not change, but cluster A becomes
smaller and cluster B larger. This could happen, for example, through the provision of subsidies in B. Aggregate
output in this counterfactual is Y 2 = Sg(S2 ). The change in the aggregate output is

(4) Y 2
− Y 1 = SA[g(

S

2
)− g(SA)] + SB[g(

S

2
)− g(SB)]

The first term is the change in number of patents in A: it is the product of the change in inventor productivity
in A times the initial number of inventors in A. This term is negative because cluster A has become smaller, and
as a consequence the change in inventor productivity is negative: [g(S2 ) − g(SA)] < 0. By contrast, the second
term, which measures the change in number of patents in B, is positive because B has become larger and therefore
[g(S2 )− g(SB)] > 0.

The effect of redistribution on aggregate output depends on the magnitude of the output losses in the cluster that
was initially larger, A, and the output gains in the cluster that was initially smaller, B. Equation 4 clarifies that the
aggregate effect depends on the change in inventor productivity in each cluster weighted by the initial cluster size.
Intuitively, a certain change in inventor productivity in a cluster that is initially large has a larger aggregate impact
on total number of patents produced than the same change affecting a cluster that is initially small. Although it
may not be immediately obvious, equation 4 is analogous to the expression for aggregate effects derived by Kline and
Moretti (2014).34

Extending equation 4 to the case of many cities, fields and years, the difference between counterfactual and observed
aggregate number of patents in field f and year t, Y 2

ft−Y 1
ft, can be estimated by summing across all cities the estimated

change in inventor productivity in each cluster multiplied by the relevant cluster size:

34To see the analogy, rewrite equation 4 as Y 2−Y 1 = −g(SA)αA+g(SB)αB = −(YA/SA)αA+(YB/SB)αB where Yc is the total number of patents
produced in a cluster and αc is the elasticity, which is allowed to vary across locations. This is equivalent to the expression in Section IV.B of Kline and
Moretti (2014) for the effect of redistribution from one county to another. They write their expression in terms of elasticity of output with respect to
density and show that under the assumption of perfect mobility and homogeneous tastes for locations, when both the elasticity and per-worker output
are the same in all locations, reallocating workers has no aggregate effects, as the benefits in the areas that gain activity are identical to the costs in
areas that lose it. In this paper, elasticity of agglomeration is found to be constant across cities, but per inventor productivity is not assumed to be
the same in all cities. This is the reason why spatial redistribution is found to have aggregate effects even with constant elasticity. In a model with
homogenous tastes for location and perfect mobility, Kline and Moretti (2014) argue that the welfare effects are the same as the output effects. Put
differently, if wage differences are only a function of local amenities, cities with low wages are larger and have better amenities than cities with high
wages. Thus, redistributing workers from larger to smaller cities implies a utility loss, as more workers end up living in less desirable locations. This
is not true in a more general setting with idiosyncratic preferences for location. When labor supply to a locality is upward sloping, equilibrium wages
will reflect both local amenities and local productivity. See also Glaeser and Gottleib (2008) and Gaubert (2018).
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(5) Y 2
ft − Y 1

ft =
∑

c

Scft[g(Sft)− g(Scft)]

where Sft is the average cluster size in the relevant field and year across all cities; Scft is the actual cluster size; and

the change in inventor productivity [g(Sft)− g(Scft)] can be quantified empirically as [g(Sft)− g(Scft)] = Sft
α̂
−Sα̂

cft

where α̂ = 0.0662. The reason is that equation 1 assumes that ln g(S) = αS, so that g(S) = Sα, and the elasticity
of productivity with respect to cluster size was estimated to be α̂ = 0.0662 in the baseline estimates in column 8 of
Table 3. The elasticity α was found to be constant across clusters of different sizes.35

I stress that my analysis is deliberately a partial equilibrium analysis. In the counterfactual, only cluster size
changes, while everything else in the economy is kept unchanged. In reality it is possible that changes in cluster size
induce general equilibrium effects. Examples of general equilibrium effects may include lower congestion and housing
prices in cities that currently have large high tech clusters, and higher congestion and housing prices in cities that
currently do not have large high tech clusters. While the question of how these changes sum up in the aggregate is an
interesting one, it is well outside the scope of this paper. In thinking about the possible magnitude of these general
equilibrium effects, it is important to keep in mind that in my counterfactual, I equalize cluster size, not city size.
The implied changes in congestion and land prices are likely to be considerably smaller than the changes that would
be caused by equalizing city size.36

B. Estimates of the Effect of Agglomeration on the Aggregate Number of Patents

To gain a concrete idea of which cities may gain and which may lose in the counterfactual scenario, Table 10 reports
examples of the estimated effect of size equalization on mean inventor productivity for computer science in 2007.37 my
estimate of α̂ = 0.0662 from column 8 of Table 3 implies that under size equalization, clusters that are currently large
would lose productivity. For example, the average productivity of computer scientists in the San Francisco-Silicon
Valley region would be 22.76% lower than the observed productivity in 2007. This productivity loss stems from the
fact that the size of the San Francisco-Silicon Valley cluster is larger than the average, so that in the counterfactual
the cluster is made smaller. The corresponding figures for other large clusters like New York, Seattle, Austin, and
Boston are -17.81%, -16.52%, -14.76% and -13.345%.
On the other hand, the bottom panel shows that the average productivity of computer scientists in clusters that

are originally below average increase, since their counterfactual size is larger. Many of these clusters are in the South
are in the Mid-West. For example, the average productivity of computer scientists in Kansas City would be 2.66%
higher than the observed productivity in 2007. The corresponding figures for Omaha, NE, Portland ME, Memphis,
TN and New Orleans are 13.42%, 17.76%, 23.36% and 35.36%.
Table 11 reports the estimated effect of size equalization on inventor productivity for all fields in 2007 by initial

cluster size. Unsurprisingly, large clusters experience declines in per-inventor productivity, while small clusters ex-
perience gains in per-inventor productivity. Clusters in the bottom quartile of the size distribution gain on average
27.53% in per inventor productivity. Clusters with sizes between the 25th percentile and the median gain 18.49%.
Since the mean is above the median in most fields, clusters with size between the median percentile and the 75th
percentile also gain, although only 9.41% By contrast, clusters above the mean lose productivity. The changes in per
inventor productivity for clusters with size between 75th and 90th percentile, 90th and 95th percetile, and 96th and
100th percetile are, -0.50%, -8.18% and -14.73%, respectively.
Overall, Tables 10 and 11 indicate that small clusters gain productivity and large cluster lose. The question is

what happens in the aggregate. Using equation 5, I estimate the the aggregate effect of equalizing cluster size in each

35A log log model with α < 1 implies that the relationship between number of patents and cluster size in levels is concave. The magnitude of
coefficient α governs the degree of concavity: the smaller the coefficient the more concave the function in levels. My estimate of α equal to 0.0662
points to a very concave function.

36Moreover, what matters is how the general equilibrium effects sum up in the aggregate. For each city that in the counterfactual experience a
decline in congestion and prices there is a city that experience an increase. While the former does not need to be equal to the latter, in the aggregate
part of the change among ”winners” will be offset by changes among ”losers”.

37Specifically, for a city c, I am showing [g(Sft)− g(Scft)] estimated as Sft
α̂
− Sα̂

cft
where f = ”computer science” and t = 2007.
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research field on the total number of patents produced in the US in that field. Column 1 Table 12 shows estimates for
2007, by field. The total number of patents created in the US in Computer Science would be 13.34% lower in 2007
if computer scientists were uniformly distributed across cities. The losses in biology and chemistry, semiconductors,
other engineering and other science would be -10.06%, -14.83%, -7.71%, and -9.75%, respectively. The last row shows
the total effect across all fields. The change in the total number of patents produced in the US in 2007 is -11.20%.
Estimates in column 1 are based on a specific functional form assumption, namely that the relationship between

log inventor productivity and log cluster size is linear. In Section IV.B above, I tested this assumption and concluded
that there is limited evidence of large departures from a log-log specification. My most reliable estimates of any
curvature in the relationship between log inventor productivity and log cluster size (in column 2 of Table 8, Panel A)
indicate that the effect may be slightly larger for larger clusters, although the amount of heterogeneity is small. To
assess the sensitivity of my aggregate findings to departures from the functional form assumption, I re-estimated the
aggregate effects using the parameters in Table 8, Panel A, column 2. The aggregate losses from equalization become
slightly larger—12.35% for all fields— since a larger elasticity in larger clusters implies that redistribution away from
larger clusters is more costly in the aggregate.38

Overall, based on estimates in Table 12, I conclude that the aggregate productivity gains from agglomeration are
large in the US.

VI. Conclusions

One of the most remarkable and consequential aspects of the economic geography of the US is the strong degree of
geographical clustering of the high-tech sector. High-tech firms and workers appear to concentrate in a small number
of expensive labor markets, such as San Francisco, New York, Boston and Seattle, and not in less expensive locations.
The top ten clusters in the computer science, semiconductors, and biology and chemistry fields account, respectively,
for 69.3%, 77.0% and 59.2% of all inventors in their field in 2007. These shares were significantly larger in 2007 than
in 1971, pointing to increasing geographical agglomeration of inventors.
I find an economically important effect of cluster size on an inventor’s productivity. An inventor moving from

a small cluster to a large cluster enjoys an increase in annual productivity, as measured by the number of patents
produced in a year or number of citations. The estimated elasticity of number of patents produced in a year with
respect to cluster size is 0.0676 (0.0139). This estimate reflects the intensive margin of the effect of cluster size on
productivity but misses the extensive margin. Therefore it is likely to be a lower bound of overall effect. I also find
aggregate gains for the US as a whole from agglomeration of inventors. My estimates suggest that the overall number
of patents created in the US in a given year is 11.20% larger relative to a counterfactual scenario where all clusters
are equalized.
Clustering of the high-tech sector may exacerbate inequality in earnings and income across communities. At the

same time it appears to be important for overall production of innovation in the US.39 Policies designed to spread
innovation across communities, such as place based subsidies that favor areas with little high-tech presence, need to
take into account both benefits and costs.

38Alternative counterfactuals are possible. For example, I have estimated aggregate losses in the case of “partial equalization”, where the number of
inventors in city-field pairs with observed number of inventors below (above) the field mean is increased (decreased) by 1/2 of the difference between
that city-field number and the mean. In this counterfactual, spatial inequality in the number of inventors is lower than observed inequality but higher
than in the case of full equalization. I estimate that the aggregate loss in the number of patents would be -2.5%.

39Kline and Moretti (2014b) provide a formal discussion of the equity-efficiency trade off in placed-based policies.
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Table 1—Largest Clusters in “Computer Science”, “Biology and Chemistry” and “Semiconductors” - 2007

Size
(A) Computer Science

San Jose-San Francisco-Oakland, CA .261
New York-Newark-Bridgeport, NY-NJ-CT-PA .092
Seattle-Tacoma-Olympia, WA .082
Austin-Round Rock, TX .060
Boston-Worcester-Manchester, MA-NH .047
Los Angeles-Long Beach-Riverside, CA .039
Minneapolis-St. Paul-St. Cloud, MN-WI .034
Raleigh-Durham-Cary, NC .028
Denver-Aurora-Boulder, CO .023
San Diego-Carlsbad-San Marcos, CA .023
Portland-Vancouver-Beaverton, OR-WA .022
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV .019
Dallas-Fort Worth, TX .015
Chicago-Naperville-Michigan City, IL-IN-WI .015
(B) Biology and Chemistry

New York-Newark-Bridgeport, NY-NJ-CT-PA .113
San Jose-San Francisco-Oakland, CA .111
Boston-Worcester-Manchester, MA-NH .069
Philadelphia-Camden-Vineland, PA-NJ-DE-MD .064
Los Angeles-Long Beach-Riverside, CA .059
San Diego-Carlsbad-San Marcos, CA .045
Minneapolis-St. Paul-St. Cloud, MN-WI .038
Houston-Baytown-Huntsville, TX .031
Chicago-Naperville-Michigan City, IL-IN-WI .031
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV .028
Raleigh-Durham-Cary, NC .019
Seattle-Tacoma-Olympia, WA .019
Indianapolis-Anderson-Columbus, IN .015
Cincinnati-Middletown-Wilmington, OH-KY-IN .015
(C) Semiconductors

San Jose-San Francisco-Oakland, CA .252
New York-Newark-Bridgeport, NY-NJ-CT-PA .152
Los Angeles-Long Beach-Riverside, CA .062
Dallas-Fort Worth, TX .050
Phoenix-Mesa-Scottsdale, AZ .048
Boise City-Nampa, ID .047
Portland-Vancouver-Beaverton, OR-WA .045
Austin-Round Rock, TX .039
Burlington-South Burlington, VT .036
Boston-Worcester-Manchester, MA-NH .034
Albany-Schenectady-Amsterdam, NY .022
Minneapolis-St. Paul-St. Cloud, MN-WI .015
San Diego-Carlsbad-San Marcos, CA .014
Raleigh-Durham-Cary, NC .014

Notes: Cluster size is defined as number of inventors in a cityxfieldxyear, excluding the focal inventor, as a share of
all inventors in fieldxyear.
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Table 2—Difference in Difference Estimates: 1996-2007 Productivity Change of Non-Kodak Inventors in Rochester Compared to

Other Cities

(1) (2) (3) (4) (5)
Weighted

Panel (A)
Rochester × 2007 -0.0641 -0.0673 -0.0805 -0.0916 -0.0947

(0.00757) (0.00674) (0.00631) (0.00665) (0.00860)
Rochester -0.0148 -0.0364 -0.0317

(0.0105) (0.0101) (0.00987)
2007 -0.190 -0.189

(0.00757) (0.00713)
N 194120 194120 194120 194120 193331

Field Y Y Y Y
Field × Year Y Y Y
Field × City Y Y

Panel (B): Within-Inventor Difference in Difference Estimates
Rochester × 2007 -0.206 -0.222 -0.257 -0.309 -0.363

(0.0772) (0.0782) (0.0825) (0.0609) (0.0387)
2007 -0.205 -0.206

(0.0190) (0.0193)
N 16430 16430 16430 16430 16379

Inventor Y Y Y Y Y
Field Y Y Y Y
Field × Year Y Y Y
Field × City Y Y

Notes: Each column within a panel is a separate regression. The level of observation in the regressions is
inventor-year. The dependent variable is log of number of patents filed in a year. The sample in Panel A includes
non Kodak inventors excluding the “Photography” or ”Electrophotography” technology classes. The sample in
Panel B only includes the subset observed both in 1996 and 2007. Weights in column 5 are based on a vector of
observable city characteristics measured before the shock to Kodak: 1990 city population, 1990 mean household
income, 1996 mean inventor productivity, 1996 share of patents in each research fields, 1990 share of non-white

residents, 1990 city total employment, and 1990 city industry mix defined as share of employment in manufacturing,
trade, construction and agriculture. The weight for inventors who are not in Rochester is 1/(1− p). Standard errors

clustered by city in parenthesis.



VOL. VOLUME NO. ISSUE THE EFFECT OF HIGH-TECH CLUSTERS ON THE PRODUCTIVITY OF TOP INVENTORS 29

Table 3—Effect of Cluster Size on Inventor Productivity – Baseline Models

(1) (2) (3) (4) (5) (6) (7) (8)
Log Size 0.0518 0.0762 0.0881 0.0907 0.0677 0.0923 0.0545 0.0676

(0.00815) (0.0167) (0.0187) (0.00926) (0.00862) (0.00990) (0.0116) (0.0139)

N 932059 932059 932059 932059 932059 932059 932059 823375

Year y y y y y y y y
City y y y y y y y y
Field y y y y y y y y
Class y y y y y y y y
City × Field y y y y y y y
City × Class y y y y y y
Field × Year y y y y y
Class × Year y y y y
Inventor y y y
City × Year y y
Firm y

Notes: Each column is a separate regression. The level of observation in the regressions is inventor-year. The
dependent variable is log of number of patents filed in a year. The model estimated is equation 1. Standard errors

are clustered by city × research field.
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Table 4—First Stage and 2SLS Estimates: Non-Kodak Inventors in Rochester Compared to Other Cities

(1) (2) (3) (4) (5)
Weighted

First Stage
Rochester× 2007 -0.491 -0.462 -0.449 -0.396 -0.385

(0.128) (0.113) (0.117) (0.0460) (0.0466)
F stat. 14.63 16.59 14.83 73.89 68.19
Second Stage
Cluster Size 0.131 0.145 0.179 0.232 0.247

(0.0372) (0.0372) (0.0501) (0.0393) (0.0469)

Rochester Y Y Y Y Y
2007 Y Y Y Y Y
Field Y Y Y Y
Field × Year Y Y Y
Field × City Y Y

Notes: Each entry is a separate regression. The dependent variable in the First Stage is log cluster size. The
dependent variable in the Second Stage is log number of patents in a year. Entries in the Second Stage are the ratio
of reduced form estimates in the first row of Table 2 divided by the corresponding first stage estimates of this Table.
The level of observation in the regressions is inventor-year. The sample includes all non Kodak inventors in years

1996 and 2007, excluding those employed in the Photography sector. Standard errors clustered by city in
parenthesis.
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Table 5—Models in Differences: Effect of Changes in Cluster Size on Changes in Inventor Productivity – OLS and IV Estimates

(1) (2) (3) (4) (5) (6)
Panel (A): OLS

∆ log Size 0.0141 0.0145 0.0153 0.0164 0.0162 0.0159
(0.00394) (0.00392) (0.00376) (0.00397) (0.00392) (0.00385)

Panel (B): 2SLS

∆ log Size 0.0422 0.0630 0.0502 0.0496 0.0502 0.0491
(0.0186) (0.0211) (0.0189) (0.0131) (0.0137) (0.0144)

First Stage 1.109 1.076 1.096 1.431 1.475 1.488
(0.151) (0.170) (0.167) (0.214) (0.189) (0.185)

F stat. 53.8 40.2 43.0 44.5 60.8 64.2

N 419596 419596 419565 405111 405111 403955
Year y y y y y y
Field y y y y y
Class y y y y
Firm y y y
Field × Year y y
Class × Year y

Notes: Each entry is a separate regression. Dependent variable is the change in the log number of patents in a year.
The model estimated is equation 3. The instrumental variable for workers in firm j in cluster fct is defined as

IVjfct =
∑

s 6=j Dsfc(t−1)
∆Nsf(−c)t

∆Nft
where Djcf(t−1) is an indicator equal to 1 if firm j has at least 1 inventor in city c

in field f in year t− 1. Njf(−c)t is the number of inventors that firm j has in field f , year t in all the cities excluding
city c; and ∆Njf(−c)t = Njf(−c)t −Njf(−c)(t−1) is the change in Njf(−c)t between time (t− 1) and t. Standard errors

are clustered by city.
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Table 6—Effect of Cluster Size on Inventor Productivity – Patent Citations Received by Focal Inventor

(1) (2) (3) (4) (5) (6) (7) (8)
Same Different
City City

(A) Dependent Variable: Number of Citations

Log Size 0.195 0.205 0.230 0.209 0.168 0.160 0.193 0.0194
(0.0938) (0.0448) (0.0392) (0.0297) (0.0419) (0.0438) (0.0786) (0.0302)

(B) Dependent Variable: Number of Citations Per Patent

Log Size 0.107 0.114 0.162 0.117 0.114 0.0927 0.126 -0.0476
(0.0812) (0.0435) (0.0372) (0.0272) (0.0396) (0.0411) (0.0740) (0.0283)

N 932059 932059 932059 932059 932059 823375 730283 730283

Year y y y y y y y y
City y y y y y y y y
Field y y y y y y y y
Class y y y y y y y y
City × Field y y y y y y y y
City × Class y y y y y y y y
Field × Year y y y y y y y
Class × Year y y y y y y
Inventor y y y y y
City × Year y y y y
Firm y y y

Notes: The dependent variable is log of patent citations (Panel A) or log of citations per patent (Panel B). In
particular, Panel A shows estimates where the dependent variable is the log number of patents that cite any patent
filed by inventor i in year t, where the citing patent may be filed in any year between t and the end of the sample.
Panel B shows estimates where the dependent variable is the log of number of subsequent patents that cite patents
filed by inventor i in year t divided by the number of patents filed by inventor i in year t. The model estimated is
equation 1. Column 7 is for citations by inventors located in the same city as the focal inventor. Column 8 is for

citations by inventors located in a city different from the focal inventor city. Standard errors are clustered by city ×

research field.
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Table 7—Citations By Focal Inventor

Citations Citations Share Share
Per Patent Same City Same Field

(1) (2) (3) (4)

Log Size 0.158 0.0899 0.00752 0.00553
(0.0158) (0.0137) (0.00268) (0.00330)

N 810495 810495 810495 810495

Notes: Each column is a separate regression. The level of observation in the regressions is inventor-year. Standard
errors are clustered by city × research field. Models include Year, City, Field, Class, City × Field, City × Class,

Field × Year, Class × Year, Inventor, City × Year and Firm effects.
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Table 8—Heterogeneity in Elasticity By Cluster Size and By Firm Productivity

(1) (2)
(A) Heterogeneity By Cluster Size
First Quartile (Smallest) 0.0556 0.0702

(0.0114) (0.0137)
Second Quartile 0.0596 0.0760

(0.0120) (0.0143)
Third Quartile 0.0574 0.0743

(0.0123) (0.0148)
Fourth Quartile (Largest) 0.0633 0.0821

(0.0137) (0.0163)

N 932059 823375
p-value equal elasticities 0.157 0.080

Firm y
(B) Heterogeneity By Firm Productivity
First Quartile (Least Productive) 0.0539 0.0583

(0.0122) (0.0142)
Second Quartile 0.0568 0.0731

(0.0117) (0.0140)
Third Quartile 0.0534 0.0713

(0.0116) (0.0145)
Fourth Quartile (Most Productive) 0.0558 0.0744

(0.0118) (0.0141)

N 932059 823375
p-value equal elasticities 0.785 0.003

Firm y
Notes: Dependent variable is log number of patents in a year. Each column within a panel is a separate regression.
Standard errors are clustered by city×research field. Models include Year, City, Field, Class, City × Field, City ×

Class, Field × Year, Class × Year, Inventor, and City × Year effects. Column 2 also includes Firm effects.
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Table 9—Alternative Definitions of Star Inventors

All Top 25% Top 10% Top 5% Top 1% Top 0.5%
(Baseline)

(1) (2) (3) (4) (5) (6)
log Size 0.0182 0.0371 0.0669 0.102 0.250 0.274

(0.0117) (0.0116) (0.0139) (0.0176) (0.0403) (0.0424)

N 2360153 1349320 826761 528833 156051 132445
Notes: Dependent variable is log number of patents in a year. Baseline is the entry in Col 8 of Table 3. Models

include Year, City, Field, Class, City × Field, City × Class, Field × Year, Class × Year, Inventor, City × Year and
Firm effects. Standard errors are clustered by city×research field.
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Table 10—Some Examples of the Effect of Cluster Size Equalization on Inventor Productivity – Computer Science in 2007

Percent Change
Examples of Losers
San Jose-San Francisco-Oakland, CA -22.76%
New York-Newark-Bridgeport, NY-NJ-CT-PA -17.81%
Seattle-Tacoma-Olympia, WA -16.52%
Austin-Round Rock, TX -14.76%
Boston-Worcester-Manchester, MA-NH -13.45%
Minneapolis-St. Paul-St. Cloud, MN-WI -11.48%
Raleigh-Durham-Cary, NC -10.42%
San Diego-Carlsbad-San Marcos, CA -9.10%
Portland-Vancouver-Beaverton, OR-WA -8.84%
Pittsburgh-New Castle, PA -2.64%
Boise City-Nampa, ID -2.54%

Examples of Winners
Miami-Fort Lauderdale-Miami Beach, FL 1.36%
Kansas City-Overland Park-Kansas City, MO-KS 2.66%
Buffalo-Niagara-Cattaraugus, NY 6.88%
Omaha-Council Bluffs-Fremont, NE-IA 13.42%
Des Moines-Newton-Pella, IA 14.60%
Portland-Lewiston-South Portland, ME 17.76%
Scranton-Wilkes-Barre, PA 21.53%
Toledo-Fremont, OH 23.36%
Memphis, TN-MS-AR 23.36%
Oklahoma City-Shawnee, OK 25.76%
New Orleans-Metairie-Bogalusa, LA 35.36%

Notes: Entries are estimates of the percent difference between mean inventor productivity in the counterfactual
scenario and observed productivity.
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Table 11—Effect of Cluster Size Equalization on Inventor Productivity - All Fields, 2007

Percent Change
0-25th Percentile 27.53%
25th-50th Percentile 18.49%
50th-75th Percentile 9.41%
75th-90th Percentile -0.50%
90th-95th Percentile -8.18%
95th-100th Percentile -14.73%

Notes: Entries are the estimated percent difference between inventor productivity in the counterfactual scenario and
observed productivity, by initial size of cluster.
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Table 12—Aggregate Effects of Cluster Size Equalization – 2007

Constant Heterogeneous
Elasticity Elasticty

(1) (2)
“Computer Science” -13.34% -14.54%
“Biology and Chemistry” -10.06% -11.27%
“Semiconductors” -14.83% -16.05%
“Other Engineering” -7.71% -8.61%
“Other Science” -9.75% -10.93%

All Fields -11.20% -12.35%
Notes: Entries are the estimated percent difference between total number of patents created in the US in the

counterfactual scenario and observed number of patents created in the US. Entries in column 1 are computed using
a constant elasticity (Table 3, column 8). Entries in column 2 are computed using an elasticity that varies by cluster

size (Table 8, Panel A, column 2).
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Figure 1. Share of Top Ten Cities Over Time
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Figure 2. Kodak Decline
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Figure 3. Average Inventor Productivity in Rochester Outside Kodak
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Figure 4. Average Log Number of Patents Per Inventor Per Year and Log Cluster Size –– All Years and Fields
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Notes: The slope is 0.053 (0.008). Controls include dummies for year, field and city.
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Figure 5. Dynamic Response Following a Change in Cluster Size
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Notes: This figure is based on equation 2 in the text. In the top panel I plot the estimated β coefficients in equation
2 on the lag and lead terms. For example, β5 is the coefficient on the fifth lead term. In the bottom panel, I plot the
cumulative response, where the µ’s are defined as: µn = β5 + β4 + ...+ βn for n = −5 through 5. Only inventors who
are 11 consecutive years in the data are included. N=21787. Standard errors are clustered by city × research field.
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Figure 6. Dynamic Response Following a Change in Cluster Size – Movers

-.
2

0
.2

.4
.6

β5 β4 β3 β2 β1 β0 β-1 β-2 β-3 β-4 β-5

t

-.
2

0
.2

.4
.6

.8

µ5 µ4 µ3 µ2 µ1 µ0 µ-1 µ-2 µ-3 µ-4 µ-5

t

Notes: In the top panel I plot the estimated β coefficients on the lag and lead terms. In the bottom panel, I plot the
cumulative response, where the µ’s are defined as: µn = β5 + β4 + ...+ βn for n = −5 through 5. Only inventors who
are 11 consecutive years in the data and move across cities are included. Standard errors are clustered by city ×

research field.
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The Effect of High-Tech Clusters on the Productivity of Top Inventors

Enrico Moretti
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Appendix Table 1—Largest Patent Assignees by Total Number of Patents 1971-2007

INT BUSINESS MACHINES 155790

GEN ELECT 69051

MICROSOFT 43556

INTEL 42085

EASTMAN KODAK 41538

MOTOROLA 40995

XEROX 35034

MICRON TECHNOLOGY 31999

TEXAS INSTRUMENTS 27871

E I DU PONT DE NEMOURS 25250

HEWLETT-PACKARD DEV LP 25030

AT&T 24903

ADV MICRO DEVICES 21253

DOW CHEM 19879

GEN MOTORS 19763

US OF AMER AS REPRESENTED BY SECRETARY OF NAVY 19680

LUCENT TECHNOLOGIES 18862

EXXON RES ENGN 18571

HONEYWELL INT 18180

PROCTER GAMBLE 17751

REGENTS OF UNIV OF CALIFORNIA 16749

APPL MATERIALS 16449

HEWLETT-PACKARD 15979

SUN MICROSYSTEMS 15362

BOEING 14705
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Appendix Table 2—Field-Specific Elasticities

Comp. Science Biol. and Chem. Semiconductors Other Engineer. Other Science
(1) (2) (3) (4) (5)

Log Size 0.187 0.145 0.262 0.104 0.0768
(0.0403) (0.0208) (0.0626) (0.0222) (0.0299)

N 77208 198905 38230 428029 81003

Notes: Each column is a separate regression. The level of observation in the regressions is inventor-year. The
dependent variable is log of number of patents filed in a year. Models include Year, City, Field, Class, City × Field,

City × Class, Field × Year, Class × Year, Inventor, and Firm effects. City × Year are not included. Standard
errors are clustered by city × research field.
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Appendix Table 3—Some Examples of Firm-Specific Productivity Spillovers – 2007

Firm City Estimated
Productivity
Spillover

(A) Computer Science

MICROSOFT Seattle-Tacoma-Olympia, WA .0806
INT BUSINESS MACHINES Minneapolis-St. Paul-St. Cloud, MN-WI .0415
CISCO TECHNOLOGY San Jose-San Francisco-Oakland, CA .0020
DELL PROD Austin-Round Rock, TX .0061
TEXAS INSTRUMENTS Dallas-Fort Worth, TX .0184
CATERPILLAR Peoria-Canton, IL .1047
MOTOROLA Chicago-Naperville-Michigan City, IL-IN-WI .0088
HEWLETT-PACKARD San Jose-San Francisco-Oakland, CA .0007
Average Firm Average City .0032

(B) Biology and Chemistry

E I DU PONT DE NEMOURS Philadelphia-Camden-Vineland, PA-NJ-DE-MD .0117
BRISTOL-MYERS SQUIBB New York-Newark-Bridgeport, NY-NJ-CT-PA .0054
PROCTER GAMBLE Cincinnati-Middletown-Wilmington, OH-KY-IN .0347
AMGEN Los Angeles-Long Beach-Riverside, CA .0065
CHEVRON RES San Jose-San Francisco-Oakland, CA .0014
3M Duluth, MN-WI .0899
PFIZER Hartford-West Hartford-Willimantic, CT .0124
EXXON RES ENGN Washington-Baltimore-Northern Virginia, DC-MD-VA-WV .0043
Average Firm Average City .0024

Notes: Entries reflect the impact that a specific firm is estimated to have on the productivity of scientists in other
firms in the same cluster in 2007. For a given firm j, field f and city c, entries are obtained as α̂∆S−jfct where
α̂ = 0.066 is the estimated elasticity in Table 3, column 8 and ∆ lnS−jfct is the difference in log cluster size with
and without a given firm. In particular, ∆ lnS−jfct = [ln(Nfct/Nft)− ln(Njfct/Nft)], where Nfct in the number of
scientists in cluster fct; Nft is number of scientists in field f and year t; Njfct is number of scientists in firm j in

cluster fct; and t = 2007.
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Appendix Table 4—Models in Differences: Effect of Changes in Cluster Size on Changes in Inventor Productivity – OLS and IV

Estimates — Single Location Firms

OLS OLS OLS 2SLS 2SLS 2SLS
(1) (2) (3) (4) (5) (6)

∆ log Size 0.000657 0.00105 0.00157 0.0828 0.0778 0.0529
(0.00662) (0.00659) (0.00663) (0.0364) (0.0332) (0.0313)

First Stage 1.264 1.289 1.342
(0.191) (0.195) (0.180)

F stat. 43.9 43.7 55.8
N 53627 53624 51196 53627 53624 51196

Year y y y y y y
Field y y y y y y
Class y y y y y y
Field × Year y y y y
Class × Year y y

Notes: Each entry is a separate regression. Dependent variable is the change in the log number of patents in a year.
The model estimated is equation 3. The instrumental variable for workers in firm j in cluster fct is defined as

IVjfct =
∑

s 6=j Dsfc(t−1)
∆Nsf(−c)t

∆Nft
where Djcf(t−1) is an indicator equal to 1 if firm j has at least 1 inventor in city c

in field f in year t− 1. Njf(−c)t is the number of inventors that firm j has in field f , year t in all the cities excluding
city c; and ∆Njf(−c)t = Njf(−c)t −Njf(−c)(t−1) is the change in Njf(−c)t between time (t− 1) and t. Standard errors

are clustered by city.
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Appendix Table 5—Cross-Field Spillovers

All Biology and Chem. Computer Sc. Other Eng. Other Sci. Semicond.
(1) (2) (3) (4) (5) (6)

Own Field 0.0719
(0.0207)

Mean of Other Fields 0.0126
(0.0456)

Biology and Chem. 0.173 -0.0602 -0.0145 0.0268 -0.0670
(0.0395) (0.0576) (0.0210) (0.0478) (0.0804)

Computer Science 0.0238 0.224 0.0119 0.00122 0.138
(0.0141) (0.0417) (0.00905) (0.0276) (0.0650)

Other Eng. -0.00385 0.0349 0.123 0.0165 -0.185
(0.0376) (0.105) (0.0342) (0.0710) (0.206)

Other Sci. -0.0448 0.00740 -0.0135 0.0806 0.196
(0.0238) (0.0682) (0.0145) (0.0498) (0.0585)

Semicond. 0.00754 -0.0376 0.00813 0.00220 0.218
(0.00677) (0.0319) (0.00543) (0.0167) (0.0644)

N 822320 37961 174966 74825 367397 74111
Notes: Each column is a regression. Column 1 includes all inventors. The sample in columns 2 to 6 includes

inventors in the field specified at the top. Entries in a given row show the coefficient on the field-specific cluster size.
For example, the entry in row 3, column 3 show the effect of the size of the Biology and Chemistry cluster on the
productivity of Computer Scientists. Models include Year, City, Field, Class, City × Field, City × Class, Field ×

Year, Class × Year, Inventor, and Firm effects.
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Appendix Table 6—Interpolation

Interpolation
Baseline Sample 1 Year 2 Years

(1) (2) (3)
(A): Inverse Hyperbolic Sine

0.0543 0.0664 0.0685
(0.00860) (0.00822) (0.00813)

(B): log(patents+1)
0.0409 0.0507 0.0525

(0.00647) (0.00619) (0.00612)

N 823375 860806 873346
Models include Year, City, Field, Class, City × Field, City × Class, Field × Year, Class × Year, Inventor, City ×

Year and Firm effects. Standard errors are clustered by city × research field.
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Appendix Table 7—Alternative Units of Time

1 Month 2 Months 3 Months 6 Months 1 Year 2 Years 3 Years
(Baseline)

(1) (2) (3) (4) (5) (6) (7)
(A) All
Log Size -0.0248 -0.0120 0.000149 0.0297 0.0676 0.134 0.171

(0.00841) (0.00927) (0.00970) (0.0106) (0.0139) (0.0148) (0.0193)
N 1321719 1234635 1165648 1013458 823375 610136 500822

(B) Top 1% Inventors
Log Size 0.0176 0.0456 0.0640 0.134 0.249 0.341 0.399

(0.0165) (0.0204) (0.0224) (0.0272) (0.0405) (0.0513) (0.0675)
N 345063 304488 274684 216476 155240 100759 77551

Notes: Dependent variable is log number of patents in unit of time. Baseline in Panel A is the entry in Col 8 of
Table 3. Models include Year, City, Field, Class, City × Field, City × Class, Field × Year, Class × Year, Inventor,

City × Year and Firm effects. Standard errors are clustered by city × research field.
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Appendix Table 8—Cluster Quality and Teams

(1) (2) (3) (4) (5) (6) (7) (8)
log Size 0.124 0.133 0.115 0.134 0.117 0.237 0.229 0.0886

(0.0461) (0.0552) (0.0372) (0.0570) (0.0113) (0.0446) (0.0452) (0.0138)
log Size X 1(Team 0.00546
size ≥ Median) (0.00370)
log Size X (Solo -0.0194
Inventor) (0.00404)

N 823536 823199 823505 823434 823375 822892 822747 823375
Notes: Each entry is a separate regression. Dependent variable is log number of patents in a year. In column 1,
cluster size is measured as the weighted sum of inventors in a given city-field-year cell, with weights reflecting the

lifetime number of patents of each inventor. In column 2, cluster size is measured as the number of inventors with a
lifetime patent count above 3. In column 3, cluster size is measured as the weighted sum of inventors in a given
city-field-year cell, with weights reflecting the lifetime number of patent citations. In column 4, cluster size is
measured as the number of inventors with a lifetime patent citation count above 5. Column 5 controls for a

quadratic in team size. In column 6, cluster size is defined excluding all members of the focal inventor’s team. In
column 7, cluster size is interacted with a dummy equal to 1 if the focal inventor team has size above median. In
column 8, cluster size is interacted with a dummy equal to 1 if the focal inventor share of patents where he is the

only inventor is above .9. Models include Year, City, Field, Class, City × Field, City × Class, Field × Year, Class ×
Year, Inventor, City × Year and Firm effects. Standard errors are clustered by city × research field.



10 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Appendix Figure 1. Dynamic Response Following a Change in Cluster Size – Pharmaceutical Only
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Notes: This figure is based on equation 2 in the text. In the top panel I plot the estimated β coefficients in equation
2 on the lag and lead terms. For example, β5 is the coefficient on the fifth lead term. In the bottom panel, I plot the
cumulative response, where the µ’s are defined as: µn = β5 + β4 + ...+ βn for n = −5 through 5. Standard errors are

clustered by city × research field.
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