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Abstract— This study evaluates the robustness of a fuzzy
classifier when class distribution of the training set varies. The
analysis of the results is based on the classification accuracy and
ROC curves. The experimental results reported here show that
fuzzy classifiers are less variant with the class distribution and
less sensitive to the imbalance factor than decision trees.

I. INTRODUCTION

In order to evaluate correctly the performance of a given

classification method on real data sets, information such as the

error costs and the underlying class distribution are required

[1], [2]. For learning with imbalanced class distributions - that

is, for a two-class classification problem, the training data for

one class (majority or negative class) greatly outnumbers the

training data for the other class (minority or positive class) -

such information is crucial and yet, many times not available.

Since standard methods of classification are driven by the

minimization of the overall accuracy, without considering

(or knowing) error costs of the two classes (minority and

majority), they are not suitable for imbalanced data sets. A

common practice for dealing with this problem is to rebalance

classes artificially, either by up-sampling or down-sampling.

As suggested in [2], up-sampling does not add information

while down-sampling actually removes information. Consid-

ering this fact, the best research strategy is to concentrate on

how machine learning algorithms can deal most effectively

with whatever data they are given. Fuzzy classifiers, [3] and

[4], derived from class frequency distributions proved effective

in classifying imbalanced data sets.

II. CLASS DISTRIBUTION IN THE LEARNING PROCESS

In this experiment the role of class distribution in learning

a fuzzy classifier from imbalanced data is investigated. A

similar experiment was published in [5] using decision trees.

The performance of the fuzzy classifier for multidimensional

data is evaluated on five real data sets and compared with

the results published in [5]. This study emerged from the fact

that, there is no guarantee that the data available for training

represent (capture) the distribution of the test data. Therefore,

reduced variance of classifiers output over different training

class distributions is a very important feature of a classifier.

TABLE I

STATISTICS ABOUT THE REAL DATA SETS. SECOND COLUMN SHOWS THE

NATURAL DISTRIBUTION OF THE DATA SETS AS THE MINORITY CLASS

PERCENTAGE OF THE WHOLE DATA SET.

Name Minority of Size Train Test

class features size size

letter-a

optDigits

letter-vowel

german

wisconsin

A. The Data Sets

Table I shows characteristics of the five UCI Repository

domains used in this study. In the second column of the Table

I are listed the natural class distributions of the data sets

expressed in this paper as the minority class percentage of

the whole data set.

The letter-a/letter-vowel data set was obtained from the

letter data set as follows: instances of letter ’a’/of vowels

represent the minority class and the remaining letters, the

majority class. For the optDigits data set, the minority class

is represented by the digit and the remaining digits ( - )

represent the majority class. The wisconsin and german data

sets are two-class domains: cancer versus non-cancer patients

and good versus bad credit history of persons asking loans,

respectively.

B. Altering the Class Distribution

To study experimentally how the class distribution affects

the fuzzy classifier in learning the real domains, the distribu-

tion of the training set is varied and the classifier is evaluated,

for each distribution, on the same test data (see a similar study

in [5] using C4.5).

The test data set reflects the natural distribution and it is

obtained by selecting randomly of examples from each

class (for example, for the letter-a data set, a testing set of

points is obtained: minority instances and

majority instances). By are denoted the remaining minority

examples and by the remaining majority examples. In order
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to compare the performance of different classifiers obtained for

different class distributions, the same test data is used.

The training set size( ) is equal to the

(number of minority examples left after forming the

test data - that is , for the letter-a data set). The training

set is altered to obtain different class distribution, as follows:

for class distribution, random

minority points are selected from and

randomly selected majority points

from , where is , , , , , and the

natural distribution (listed in the second column of the Table

I).

III. THE FUZZY CLASSIFIER

The main problem in designing a fuzzy classifier is to

construct the fuzzy sets, more precisely their membership

functions. Approaches to construct fuzzy classifiers range

from quite ad-hoc to more formal approaches, in which the

membership function is constructed directly from data without

any intervention of the designer. The current approach relies

on the interpretation of a fuzzy set as a family of probability

distributions and therefore, a particular membership function

is the result of selecting one of the probability distributions in

this family. The mechanism of deriving a fuzzy set member-

ship function makes use of mass assignment theory(MAT) [6]

and is presented shortly next (for in depth presentation, please

see [7], [8] and [4]).

Given a collection of data, and the relative frequency dis-

tribution corresponding to it,

, the corresponding

fuzzy set is obtained from the Equation 1:

(1)

where denotes the th largest value of the membership

function corresponding to the general, lpd(least prejudiced

selection rule) selection rule [6].

Example 1 illustrates the complete mechanism of converting

a simple artificial data set into a fuzzy classifier, corresponding

to the selection rule [9].

Example 1: Let and denote respectively the

majority and minority classes given as:

Their relative frequency distributions (in nonincreasing or-

der) corresponding to are:

The membership values for each fuzzy set are computed (in

decreasing order of the relative distributions) as shown in Table

TABLE II

FOR THE AND CLASSES OF EXAMPLE 1.

x1 x2 x3 x4 x5 x6
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Fig. 1. The fuzzy sets obtained for the majority (left) and the minority (right)
class using selection rule.

II. The obtained fuzzy sets (each class is mapped into a fuzzy

set) are displayed in the Figure 1.

For a test data point, the membership degree to each of

these fuzzy sets are computed and compared: the point is

assigned to the class to which it belongs with a higher degree.

For example, the derived fuzzy classifier classifies the data as

follows: belong to class and

belong to class.

Example 1 illustrates for one-dimensional data set the basic

one-pass fuzzy classifier used in this study. In principle, for

multidimensional data sets the approach outlined above can

be applied as well. However, it should be noticed that as the

dimensionality increases the data set becomes sparse, and that

there may be very few data points with frequency greater

than 1. Otherwise stated, this means that in order to obtain

meaningful frequencies, either the data set size must increase

with each new dimension, or for a given data set, preprocess it

by collecting data into bins and apply the approach described

to bins. The bin approach is apt to introduce errors, while

increasing the data set size is not always possible (in fact,
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rarely is possible).

In any case, regardless of the approach used, another

problem that arises is that of interpolation for computing

the membership degree to unlabeled data points. Having

multidimensional fuzzy sets makes this step more complex.

The approach currently taken in this study is to derive

fuzzy sets along each dimension, in effect, deriving as many

classifiers as the dimension of the attribute space and to

aggregate these classifiers in order to evaluate a data point.

Several aggregation operators are proposed here but other

aggregation methods such as the ones presented in [10] can

be used too. The following notations are used in defining the

aggregation methods ( , ):

denotes the class label of a test point ;

with is the indicator

function;

for is a set of weight characterizing

the attributes ( is the number of correctly classified training

data by the attribute).

Then, the aggregations are defined as follows:

1) : .

2) : .

3) : .

4) : .

Based on the , , the class label of is decided

by evaluating

for .

But first, it is interesting to understand why one may

expect a good performance from the fuzzy classifier applied to

imbalance data. As it can be observed from Figure 1, will

be assigned as belonging to the minority class since its degree

to this class is and the membership to the majority class

is . Looking at the original data shows that ’s frequency

in the minority class is while in the majority class it is .

Any classifier in which is learned based on its contribution

to a class relative to the whole data set, will assign to the

majority class.

Classifiers such as the fuzzy classifier used in this study,

which learn the classification based on the relative frequency

within the class will assign to the minority class, where its

relative frequency of is greater than its relative frequency

of in the majority class. Otherwise stated, within the

class-size context, the point is more representative for the

minority class than for the majority class. This idea is captured

by the fuzzy classifier and makes it suitable for imbalanced

data sets.

IV. PERFORMANCE EVALUATION

When learning classes, even for balanced data sets, for

which the errors coming from different classes have different

costs, the overall accuracy is not a good measure of the

classifier performance. Even more, when the class distribution

is highly imbalanced, the accuracy is biased to favor the

TABLE III

THE CONFUSION MATRIX.

Predicted

Negative Positive

Actual Negative

Positive

majority class and does not value rare cases as much as

common cases. Therefore, it is more appropriate to use as

performance evaluation measure the ROC (Receiving Operator

Characteristic) curves. The ROC curves provide a visual

representation of the trade-off between true positives (TP) and

false positives (FP) as expressed in the Equations 2 and 3. The

confusion matrix shown in Table III contains information about

actual and predicted classification done by a classification

system.

(2)

(3)

However, for the purpose of comparing the results of

this study with results published in [5], accuracy is also

used as a measure to evaluate a classifier, in addition of the

ROC curves. The fuzzy sets obtained with the procedure

indicated previously in this paper are discrete fuzzy sets.

However, their evaluation is required on unseen points.

The standard approach to this problem is to extend the

discrete fuzzy set to a continuous version by piecewise

linear interpolation. More precisely, if denotes a data

point, and a fuzzy set with membership , with support

, then the

membership degree of to is given by

otherwise

(4)

V. RESULTS AND ANALYSIS OF THE STUDY

All the results reported in this study are averaged over 30

runs and the test data reflect the natural distributions of the

domains.

Figures 2 - 6 show the overall error percentage when

different training class distributions are used. and

outperform decision trees in four of the five domains studied

here. For letter-vowel domain, and give less error only

for class distributions higher than (Figure 4). In Figures

7 - 11 are plotted the ROC curves of the four fuzzy classifiers,

obtained for various class distributions. For all the five data

sets ’s ROC curve is dominant: it is above the other ROC

curves and it is closer to the y axis.
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Fig. 2. Letter-a: the error in classification over various degrees of class
distributions. Natural distribution is .
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Fig. 3. OptDigits: the error in classification over various degrees of class
distributions. Natural distribution is .
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Fig. 4. Letter-vowel: the error in classification over various degrees of class
distributions. Natural distribution is .
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Fig. 5. German: the error in classification over various degrees of class
distributions. Natural distribution is .
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Fig. 6. Wisconsin: the error in classification over various degrees of class
distributions. Natural distribution is .

For the german data set, the trade-off between FP and TP

is obvious (Figure 10): training with more Min examples in-

troduces more false positives. The combination of two factors

contributes to this behavior:

1) attributes (out of ) have exactly the same range of

values for the Min and Maj classes (complete overlap)

and the remaining three attributes overlap partially;

2) the natural class distribution (present in the test data) is

.

Therefore, when the classifier is trained with many Min

examples, the recognition of the Min class (which makes

of the test set) improves, but at the cost of misclassifying much

more Maj points, since the Maj class is present in testing with

of data. The analysis of Figure 5 (where the plain error

is reported) leads to the same conclusion.

The letter-a domain presents naturally more imbalance

( ) than the letter-vowel domain ( ), though surpris-

ingly, letter-a is better recognized (see Figures 2 and 4). This is

mainly due to the fact that, the Min class for letter-a (instances

of letter a) is better defined, as a concept, than the Min class for
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Fig. 7. Letter-a: the ROC curves obtained for the various class distributions.
Natural distribution is .
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Fig. 8. OptDigits: the error in classification over various degrees of class
distributions. Natural distribution is .

letter-vowel (instances of a, e, i, o, u). In the same idea, there

is more overlap between the classes in letter-vowel set than

in the letter-a data set: letter-vowel domain has two attributes

completely overlapped and in other attributes (out of )

has more overlap than the letter-a data set. The ROC curves

are also consistent with the previous observation: they show

indeed, a better (tighter) clustering of the letter-a Min class

(Figure 7) than the letter-vowel (Figure 9).

Figure 3 shows that fuzzy classifier performs well in

recognizing both the Min and Maj class for the optDigit

domain. This domain has attributes (of which, attributes

totally overlap) and a natural imbalance of . A higher

error when the training class distribution is , is due to the

fact that the Min class is not learned well and mainly Min

class contributes to the error (for , a ROC point on the y

axis at ). The increase in error for the class distribution

of is due to the fact that Maj class is under-represented

in training and this time Maj class has a higher error rate.

Though, the number of false positives does not grow much

(Figure 8: for , the ROC point is ).
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Fig. 9. Letter-vowel: the ROC curves obtained for the various class
distributions. Natural distribution is .
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Fig. 10. German: the ROC curves obtained for the various class distributions.
Natural distribution is .
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Fig. 11. Wisconsin: the ROC curves obtained for the various class
distributions. Natural distribution is .
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TABLE IV

THE BEST CLASS DISTRIBUTIONS (AMONG THE ONES STUDIED HERE)FOR

LEARNING TASK. DUE TO THE LACK OF SPACE, RESULTS FOR C4.5 AND

D2 ONLY WERE REPORTED HERE.

Name Natural class Fuzzy Classifier

distribution (Weiss) (D2)

letter-a

optDigits

letter-vowel

german

wisconsin

The Maj and Min classes for the wisconsin data set overlap

completely on three (out of nine) attributes. For this domain,

it is interesting to investigate why the largest error is obtained

when training class distribution is (Figure 6). For this

analysis, the ROC curves from Figure 11 are useful: the Maj

class is well defined, as a concept (a high ROC point for class

distribution ). By increasing the positive training examples,

the false positives do not increase much (so Maj class is still

recognized well) but a better recognition of the Min class is

achieved.

In Table IV are presented for each of the five data sets,

the training distributions which achieved the best accuracy in

testing among the distributions studied here. It is obvious that

not always the natural or the (that means no imbalance)

distribution gives the best generalization power: the fuzzy clas-

sifier achieved best generalization for a distribution

for only two domains (optDigits and letter-vowel) and C4.5

achieved the best distribution of for wisconsin data and

the best distribution of for letter-vowel domain. Of

course, the above ”best distribution” discussion addresses only

the distributions investigated here: we do not know the best

learning distribution among all possible ones. The Table IV

raises a natural question: why distributions greater than

do not give good results? The ranking of the distributions is a

result of evaluating accuracies. Since the testing data respect

the natural distributions of the data sets (which are naturally

imbalanced, please see Table I), Maj class contributes more

to the accuracy than the Min class. From this experiment we

can also say that the issue of ”best distribution for learning

the data” is both, domain and classifier dependent.

VI. CONCLUSIONS AND FUTURE WORK

This study investigates the sensitivity of the fuzzy classifier

to the learning distribution. This is possible by evaluating the

classifier performance on the same test data (which respects

the natural distribution), for various training distributions.

The results show that the fuzzy classifier is less error

prone than C4.5 and outperform C4.5 for the majority of

class distributions used in training (Figures 2 - 6). The fuzzy

classifier is less sensitive to the class imbalance: its output

varies less than C4.5 over various training class distributions.

Therefore, when the class distribution of the data set (or testing

set) is not known, the fuzzy classifier is more robust as learner

of imbalanced data than C4.5.

Since different classifiers learn in different ways, it will be

interesting to investigate the performance of classifiers such as

neural network, decision trees, minimum distance classifier,

support vector machines and the fuzzy classifier presented

here, for various distributions. Such an experiment will show

generalization ability and limitations of each classifier. In a

different direction, the aggregation rules for the fuzzy classifier

require further investigations.
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