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Abstract 

Often, either from a lack of prior information or simply for convenience, variance 

components are modeled with improper priors in hierarchical linear mixed models. 

Although the posterior distributions for these models are rarely available in closed 

form, the usual conjugate structure of the prior specification allows for painless calcu­

lation of the Gibbs conditionals. Thus, the Gibbs sampler may be employed to explore 

the posterior distribution without ever having established propriety of the posterior. 

An example is given which shows that the output from a Gibbs chain corresponding 

to an improper posterior may appear perfectly reasonable. Thus, one can not expect 

the Gibbs output to provide a "red flag," informing the user that the posterior is 

improper. The user must demonstrate propriety before a Markov chain Monte Carlo 

technique is used. A theorem is given which classifies improper priors according to 

the propriety of the resulting posteriors. Applications concerning Bayesian analysis of 

animal breeding data and the location of maxima of unwieldy (restricted) likelihood 

functions are discussed. Gibbs sampling with improper posteriors is then considered 

in more generality. The concept of functional compatibility of conditional densities 

is introduced and is used to construct an invariant measure for a class of Markov 

chains. These results are used to show that Gibbs chains corresponding to improper 

posteriors are, in theory, quite ill behaved. 

KEYWORDS: Animal Breeding; Compatibility; Functional Compatibility; Improper 

Posterior; Markov Chain; Monte Carlo; Variance Components. 



1. INTRODUCTION 

Posterior distributions corresponding to hierarchical linear mixed models are usu­

ally unavailable in closed form, even when conjugate priors are used. The Gibbs sam­

pler (Geman and Geman 1984; Gelfand and Smith 1990) is an easily implemented 

simulation technique which allows one to draw random variables from the posterior 

distribution. Realizations of these random variables can be used to form Monte Carlo 

approximations of many features of the (joint) posterior, including marginal posterior 

densities of the variance components. 

The hyperparameters in these models, because of either convenience or a lack 

of prior information, are often modeled with improper priors. Unfortunately, the 

same mathematical intractability that necessitates use of the Gibbs sampler, also 

makes demonstrating propriety of the posterior distribution a difficult task. This 

difficulty can lead to the use of the Gibbs sampler when the posterior distribution is 

improper. There are many examples of this in the (statistical and other) literature 

(see Sections 3 and 4). 

To solidify these ideas, consider the simple one-way random effects model 

Yij = (3 + Ui + Eij i = 1, 2, ... 'k j = 1, 2, ... ' J (1.1) 

where it is assumed that the u/s (the random effects) are iid N(O, CJ2 ) and the Ei/s 

(white noise) are iid N(O, CJ;). The u/s and Ei/s are assumed independent. The 

overall mean, (3, and the variance components, CJ2 and CJ;, are considered unknown 

parameters. 

This model fits nicely into a (Bayesian) conditionally independent hierarchical 

model (Kass and Steffey 1989) by writing (1.1) as a two stage hierarchy and specifying 

priors on the three unknown parameters 

{3 rv 1f({3) (1.2) 

(J2 rv 1f ( (J2) 

where u = (u1 , ... , uk)' and the priors 1r((3), 1r (CJ;) and 1r (CJ2 ) must be elicited. 

The usual technique for calculating the conditional densities required for Gibbs 

sampling (Gibbs conditionals) is to use the conditional independence in model (1.2) 

to write the posterior density as 

7r ( CJ2 , CJ;, u, f31Y) ex f (Yif3, u, CJn f ( uiCJ2) 1r((3)1r ( CJ;) 7r ( CJ2) (1.3) 

and then pick the functional forms of each of the necessary conditionals off the right­

hand side of (1.3). For the benefit of those unfamiliar with the tricks of Markov 

chain Monte Carlo (MCMC), we describe this in a bit more detail. Technically, 
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when improper priors are used, the posterior density is not a conditional proba­

bility density. (See Berger (1985, p. 132) for an explanation and Hartigan (1983, 

Chap. 3) for a different point of view.) However, in a Bayesian analysis the func­

tion 1r ( o-2 , a-;, u, .BIY) is considered the conditional density of the parameters given 

the data, and is used as a joint density in the parameters which happens to in­

volve the fixed, known quantity y. Thus, for example, f (o-2 1a-;, u,;J,y) is given by 

1r ( o-2 , a-;, u, .B IY) / J 1r ( o-2 , a-;, u, .B I y) do-2 and since the denominator is constant with 

respect to o-2 , as a function of CJ2 , f (CJ2 ICJ;, u,;J,y) is proportional to the right-hand 

side of (1.3). Each of the Gibbs conditionals can be computed in this manner. 

A specific example of model (1.2) discussed by Hill (1965) and Tiao and Tan (1965) 

has 1r(;J) ex: 1, 1r (CJ;) ex: 1/CJ; and 1r (CJ2 ) ex: 1/CJ2• Suppose that we have data for which 

this model is appropriate and we wish to use the Gibbs sampler to make inferences 

about the posterior distribution. Proportionality (1.3) is used to calculate the Gibbs 

conditionals, as described above, and we find that (CJ2 Iall others) and (CJ;Iall others) 

have inverted gamma forms and (ulall others) and (.BlaH others) have normal forms. 

One may conclude from this that the Gibbs sampler could be used to construct a 

Markov chain whose stationary distribution is the posterior distribution. Hill (1965), 

however, shows that the posterior for this model is improper (and suggests several 

alternatives including Jeffreys's prior). Thus, although we used it to calculate the 

Gibbs conditionals, (1.3) is meaningless because the right-hand side is not integrable. 

Impropriety implies that there does not exist a joint density to which the Gibbs con­

ditionals correspond, and they are therefore called incompatible conditional densities 

(Arnold and Press 1989). 

This example suggests the two important questions that are addressed in this 

paper: 1. Which improper priors yield proper posteriors in the general hierarchical 

linear mixed model? and 2. In general, what can be said about Gibbs Markov chains 

that correspond to improper posteriors? 

A hierarchical linear mixed model with parametric improper priors is discussed in 

Section 2 where a theorem is given which classifies the improper priors according to 

the propriety of the resulting posterior distributions. This theorem is similar, in spirit, 

to those given in Ibrahim and Laud (1991), who consider the use of Jeffreys's prior 

in generalized linear models (GLM's), Dey, Gelfand and Peng (1994), who discuss 

the use of improper priors in overdispersed GLM's, and Natarajan and McCulloch 

(1995), which deals with mixed models for binomial responses. Another related paper 

is Zeger and Karim (1991) who discuss the use of improper priors and Gibbs sampling 

in GLM's. Section 3 of the present paper considers two applications of the theorem, 

one involving the Bayesian analysis of animal breeding data, and the other, finding 

maximum likelihood and restricted maximum likelihood estimates when closed form 

solutions are unavailable. 

A general discussion of Gibbs sampling when the posterior is improper is given in 

Section 4. An invariant measure is constructed for the class of Markov chains gener­

ated using the Gibbs algorithm in conjunction with a set of functionally compatible 
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conditional densities. This result shows that Gibbs Markov chains are null (null re­

current or transient) when the posterior is improper and therefore cannot converge 

(in the usual sense). An insidious feature of this problem is that a null Gibbs chain 

may be undetectable to the practitioner, that is, the resulting Monte Carlo approxi­

mations appear completely reasonable. Such an occurrence has already appeared in 

a number of published works (Gelfand, Hills, Racine-Poon, and Smith 1990; Geyer 

1992; Wang, Rutledge and Gianola 1993, 1994). This is a dangerous situation because 

the Gibbs sampler will lead to seemingly reasonable inferences about a nonexistent 

posterior distribution. An example using model (1.2) is given at the end of Section 4. 

Section 5 contains concluding remarks. 

2. HIERARCHICAL LINEAR MIXED MODELS 

2.1 The Models 

The hierarchical linear mixed models introduced in this section have the standard 

(noninformative) flat prior on the fixed effects and a parametric "power" improper 

prior on the variance components. Special cases of this parametric set-up include 

standard forms, such as discussed in Hill (1965) and Tiao and Tan (1965), as well as 

some nonstandard forms, such as flat priors. The main results of this section concern 

the identification of priors which lead to proper posteriors. 

Our parametric prior specification leads to a manageable set of Gibbs conditionals, 

identical in form to those given in Gelfand and Smith (1990) who describe the Gibbs 

sampler for the one-way random effects model with proper priors. However, it is 

not only convenience that motivates our use of these priors. The main propriety 

result (Theorem 1) has applications in the analysis of animal breeding data and in 

likelihood theory. The results of this section also motivate the general discussion of 

Gibbs sampling with improper posterior distributions in Section 4. 

The model equation is defined as 

y = X,B+ Zu+ E (2.1) 

where y is an n x 1 vector of data, ,{3 is a p x 1 vector of fixed effects (parameters), 

u is a q x 1 vector of random effects (random variables), X and Z are known design 

matrices whose dimensions are n x p and n x q, respectively, and E is ann x 1 vector 

of residual errors. 

One may object to the use of the term "fixed effect" in a Bayesian model since, 

from a Bayesian standpoint, all "effects" are random. A frequentist's decision to re­

gard an effect as fixed or random is complicated one (McCulloch 1994). If, however, 

a frequentist decides that an effect is, indeed, random and provides a (prior) distribu­

tion, a Bayesian might be willing to use that distribution as a prior. In our Bayesian 

mixed models, the terms "fixed effect" and "random effect" are used to distinguish 
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the effects with priors that tend to arise from frequentist considerations from the 

others. 

The typical Bayesian hierarchy for mixed models begins with the assumptions 

(i) ulai, ... , a; ""Nq(O, D) 

(ii) Ela; rv Nn(O, Ia;) 
(2.2) 

where u = (u~ u; ... u~)', ui is qi x 1, D = EBi=1lq;a}, and 2::r=1 qi = q. The r 

subvectors of u correspond to the r different random factors in the experiment. We 

assume that X is full column rank so that X'X is invertible. 

Clearly, ( ii) implies that ylu, a;, ,B "" Nn (Xf3 + Zu, Ia;) and with the priors 

mentioned above, our hierarchical model may be written as 

1r(,B) ex 1 (2.3) 

where the a/s and b are known and the following conditional independence assump­

tions are in force: (1) given u, y is conditionally independent of O"i, .. . , O";, (2) given 

O"i, ... , a;, u is conditionally independent of f3 and a;, and (3) {3, O";, and ai, ... , O"; 
are a priori independent. 

This hierarchical model is important for at least two reasons. First, similar models 

are used to analyze data in many fields including animal breeding (Wang et al. 1993, 

1994, Datta 1992) and small area estimation (Ghosh 1994, Datta and Ghosh 1991). 

The animal breeders assume that the random variables within each subvector u~ are 

not necessarily independent, as they are in our model (D is diagonal). However, our 

assumption is merely for convenience, and we show in the next section that a simple 

reparameterization allows our results concerning the propriety of the posterior for 

model (2.3) to apply to the animal breeders' model. 

The second reason stems from the fact that there is a well-known, important con­

nection between the likelihood function for the linear mixed model and the posterior 

distribution for a special case of model (2.3). The frequentist version of model (2.3) 

is, of course 

(2.4) 

where ,6, O";, and ui, ... , O"; are viewed as fixed, unknown parameters. 
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The likelihood function is defined by integrating over all possible values of the 

unobservable random effects (Hill 1965, Searle, Casella and McCulloch 1992, p. 322). 

L ( ai, ... , a;, a;, ,Biy) def J(ylai, ... , a;, a;, ,B) 

jfR<i f(yiu, a;, ,B)J(uiai, ... , a;) du. (2.5) 

Consider the Bayesian model obtained by taking a1 = · · · = ar = b = -1 in (2.3), 

i.e., placing flat priors on all of the variance components. Denote the corresponding 

posterior density by 1rz. If the random effects, u, are integrated out of 1rz, the resulting 

marginal posterior is proportional to the likelihood function in (2.5). That is, 

L ( ai, ... , a;, a;, ,Biy) ex: 7rz(ai, ... , a;, a;, ,Biy) = kq 1rz( ai, ... , a;, a;, u, ,Biy) du. 

(2.6) 

The restricted likelihood function is used when (frequentist) inference centers on 

the variance components and the fixed effects are considered nuisance parameters. 

The restricted likelihood is the density function of a linear transformation of the 

data, K'y, given the variance components, viewed as a function of the variance com­

ponents. The matrix K can be any n x (n- p) matrix of rank n- p such that 

K'X = 0. This transformation is justified in a number of ways (Searle et al. 1992, 

p. 249) and leads to data whose density is not a function of the fixed effects, ,B. The 

values of the variance components which maximize this likelihood are called the re­

stricted maximum likelihood (REML) estimates. It is well known that the restricted 

likelihood function can be calculated simply by integrating ,B out of the full likelihood 

in (2.5). The connection between the restricted likelihood function and the posterior 

distribution corresponding to the flat prior hierarchy is therefore 

Lr (ai, ... , a;, a;IY) kv L (ai, ... , a;, a;, ,Biy) d,B 

ex: { 1rz(ai, ... ,a;,a;,,aly)d,B 
j~p 

1rz ( ar' ... 'a;' a; IY). (2.7) 

The ability to classify the posterior distributions corresponding to the flat prior 

hierarchy, 1r1, as proper or not is useful when it is desired to use the Gibbs sampler 

to explore likelihood functions via (2.6) and (2. 7). An example is given in the next 

section. 

2.2 Propriety Results and Gibbs Sampling 

Before we state the theorem indicating which values of a1 , ... , ar and b yield proper 

posteriors, we consider how model (2.3) lends itself to Gibbs sampling. Assume that 
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2ai > -qi Vi and 2b > -n. Use the conditional independence assumptions to write 

the posterior as 

r 

1r(o-i, ···,a-;, a-;, u, ,Biy) ex f(yiu, a-;, ,B)f(uio-i, ·. ·, o-;)7r(,6)7rE(o-;lb) IT 1ri(o-llai) 
i=l 

(2.8) 

where f is used to represent a generic density. 

The functional forms of the Gibbs conditionals can be picked off of the right-hand 

side of (2.8) as discussed in Section 1. The results are as follows. 

where IG stands for inverted gamma and we say that X "' IG(r, s) if fx(t) ex 
rr-l exp(-1/st) for positive t. 

If 2ai :::; -qi for some i or 2b :::; -n, then at least one of the conditionals is 

improper, since the inverted gamma density is defined only when both parameters 

are positive (Berger 1985, p. 561). Clearly, one improper conditional implies an 

improper posterior. 

Although it may be tempting to assume that propriety of the conditionals in 

(2.9) implies propriety of the posterior distribution, the example in Section 1 shows 

that this is false. Indeed, there are many values of the vector (a1 , a2 , ... an b) which 

simultaneously yield proper conditionals (2ai > -qi Vi and 2b > -n) and an improper 

posterior. Thus, in general, if one incorrectly assumes propriety of a posterior and 

writes down a (false) proportionality statement like (2.8), it may happen that the 

Gibbs conditionals are all proper densities. Such a situation is very dangerous because, 

if the output from the Gibbs sampler fails to warn the user that the posterior is 

improper, the result could be inferences about a nonexistent posterior distribution. 

We now state the theorem. 
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Theorem 1. Let t = rank (PxZ) = rank (Z'PxZ) < q where we define Px 

(I- X (X'X)- 1 X'). There are two cases: 

1. If t = q or if r = 1 then conditions ( i), ( ii), and (iii) below are necessary and 

sufficient for the propriety of the posterior distribution of model (2.3). 

2. If t < q and r > 1 then conditions ( i), ( ii), and (iii) below are sufficient for the 

propriety of the posterior distribution of model (2.3) while necessary conditions 

result when (ii) is replaced with (ii') qi > -2ai. 

( i) ai < 0 

( ii) qi > q- t- 2ai 

(iii) n + 2 2: ai + 2b - p > 0. 

3. APPLICATIONS 

3.1 An Animal Breeding Model 

The following hierarchical model is employed in Wang et al. (1993, 1994) for the 

Bayesian analysis of animal breeding data 

r 

yiul, ... 'Ur, cr;, f3 rv Nn(X/3 + L Ziui, Ia;) 
i==l 

1f (/3) ex: 1 (3.1) 

where the ui 's are independent and the other model assumptions are the same as those 

of model (2.3) except, as mentioned above, the random effects in each subvector ui 

have a correlation structure described by the correlation matrix Gi. The matrices 

G 1 , ... , Gr are known positive definite matrices which " ... contain functions of known 

coefficients of coancestry" (Wang et al. 1993). They suggest that the hyperparameters 

s;, si, ... , s; be assigned the prior value of the corresponding variance component and 

refer to IJ0 v1 , ... , vr as "degree of belief" parameters. The values of these parameters 

are subjectively chosen to reflect the faith that the experimenter/statistician have in 

s;, si, ... , s; as prior estimates of the variance components. This parameterization is 

considered to be intuitively pleasing in that 
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and (3.2) 

when these moments exist. Therefore, if it is believed a priori that l7} = s7, but the 

degree of belief, Vi, is small, then the prior on l7[ is conservative; having a relatively 

large variance and a mean larger than s7. The variance and E ( l7l} - s7 both go 

to zero as the degree of belief goes to infinity. Wang et al. (1993) use model (3.1) 

with the degree of belief parameters all set to zero, which is supposed to reflect prior 

ignorance about the variance components. Theorem 1 is now used to show that this 

prior specification leads to an improper posterior distribution. 

In model ( 3.1), if we reparameterize from 

(u1 U ,..,.12 ,..,.2 ,..,.2 !3) to (u*1' ... ' ur*' ,..,.12' ... ' ,..,.r2' ,..,.; ' !3) , ... , r,v , ... ,vr,vE' v v v, 

1 

where u; = c; 2 tli, then model (3.1) with degree of belief parameters set to 0, can 

be written in the form (2.3) with u = ui · · · u; , Z = Z 1 G{ Z2Gi · · · ZrGi , ( 
I ')' [ .l .l .l] 

a partitioned matrix, and the a/s and b all set to 0. Theorem 1 may now be ap­

plied and implies that the posterior distribution 7r(l7;,l7f, ... ,l7;,ui,···,u;,f31Y) is 

improper since condition (i) is violated. This clearly implies the impropriety of 

7r(l7;,l7f, ... ,l7;,u1 , ... ,ur,/31Y) as well, since the difference is only a linear trans­

formation. Wang et al. (1993) actually point out that the posterior is improper, but 

employ the Gibbs sampler and find no suggestion from the output that the posterior 

is improper. The futility of this type of application of the Gibbs sampler, and the 

fictitious answers it can give, are discussed in Section 4. 

Wang et al. (1994) suggest that zero degree of belief parameters should not be used 

because the resulting posterior is improper. They suggest that, instead, ignorance 

should be modeled by placing flat priors on all of the variance components because 

such a prior specification leads to a proper posterior, but they provide no proof of 

this. (In order to get flat priors out of the inverted gamma priors in model (3.1), the 

degree of belief parameters must be set to -2 and the a priori variance estimates to 

0.) In fact, flat priors do not always yield a proper posterior. If flat priors are used in 

a balanced one-way random effects model with three classes, for example, condition 

( ii) of Theorem 1 is violated and the posterior is improper. 

Theorem 1 can be quite useful when the data follow a hierarchical linear mixed 

model and simple improper priors are used on the variance components. Its use 

requires only a simple (if computer intensive) rank calculation and no integration at 

all. 

3.2 Likelihood Estimation 

Closed form solutions for maximum likelihood (ML) and restricted maximum like­

lihood (REML) estimators of the parameters in model (2.4) are often unavailable. In 
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such cases, numerical optimization methods like the Newton-Raphson and EM algo­

rithms can be used to calculate these estimates (Searle et al. 1992, Chapter 8). These 

algorithms are not guaranteed to locate the global maximum of a likelihood function 

from an arbitrary starting point, but are much more likely to do so when the starting 

value is close to the ML (or REML) estimate. Standard starting values are easily 

computed, unbiased estimates of the variance components, which need not be near 

the ML (or REML) estimate. When a hierarchical version of the mixed model with 

flat priors yields a proper posterior distribution, the Gibbs sampler can be used to 

simulate from a density that is proportional to the likelihood function. The output 

from such a Gibbs sampler can be used to find better starting values. 

Consider a case in which a numerical method is to be used to locate the REML 

estimate. As in Section 2, let 1r1 represent the posterior density when flat priors 

are used in model (2.3). Suppose an application of Theorem 1 shows that 1r1 is a 

proper posterior (as will usually be the case in practice). Write the Gibbs chain 

as ( a-;U), a-~(j), ... , a-;(j), u'(i), f3'(i)), j 2:: 1, and let u 2U) = ( a-;(j), a-~(j), ... a-;(j))' 

The propriety of 1r1 guarantees that, as j ---+ oo, these random vectors converge in 

distribution to a random vector with density 1r1. Therefore, equation (2.7) shows 

that as j ---+ oo, u 2(i) converges in distribution to a random vector whose density 

is proportional to the restricted likelihood function. Now, insofar as the mode of 

this density corresponds to an area of high probability, we expect some of the values 

of u 2U) to be near the REML estimate, once the chain is burned-in. Therefore, 

reasonable starting values for the numerical optimization methods would be the u 2(i) 's 

yielding the largest values of the restricted likelihood function. (Incidentally, the 

modes of the mixed model likelihoods and restricted likelihoods that we've considered 

all corresponded to areas of high probability.) 

This method is attractive because the Gibbs sampler is so straightforward in this 

situation. Simple matrix calculations and the ability to simulate normal and inverted 

gamma random variables are all that is required. Other uses of Markov chain Monte 

Carlo techniques in likelihood theory are found in Geyer (1991), Geyer and Thompson 

(1992), and Casella and Berger (1994). 

4. GIBBS SAMPLING WITH IMPROPER POSTERIORS 

If a complicated hierarchical model with improper priors is postulated, it will often 

be the case that demonstration of propriety of the posterior will be mathematically 

tedious, if not impossible. On the other hand, many such models have some type 

of conjugate structure that makes calculation of the Gibbs conditionals a simple 

exercise in the recognition of common functional forms. If propriety has not been 

demonstrated, however, calculating these densities via recognition requires assuming 

(possibly incorrectly) that a proportionality like (2.8) holds. If a set of proper densities 

results, it is tempting to assume that the posterior distribution is proper, but this may 
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not be true. The end result is that the Gibbs sampler may be employed in conjunction 

with a set of conditionals corresponding to an improper posterior distribution. Wang 

et al. (1993) and Gelfand et al. (1990) both analyze data using the Gibbs sampler 

in conjunction with one-way random effects models with improper posteriors. (The 

model labeled I in Section 4 of Gelfand et al. (1990) is slightly different from model 

(2.3) in that a proper, normal prior is placed on the fixed effects, but the techniques in 

the proof of Theorem 1 can be used to show that the resulting posterior is improper.) 

Both articles show plots of approximate marginal posterior densities and give other 

results which seem completely reasonable. It is not at all obvious in these examples 

that the posterior distribution is improper and, in fact, that all inferences are to 

nonexistent posterior distributions. 

In this section, we show that Gibbs Markov chains constructed using conditionals 

from an improper posterior are null, i.e., null recurrent or transient, and therefore do 

not enjoy the convergence properties associated with Gibbs chains corresponding to 

proper posteriors. Thus, although Monte Carlo approximations based on the output 

from a null Gibbs chain may appear reasonable, as in Wang et al. (1993) and Gelfand 

et al. (1990), their limiting behavior is often quite unreasonable (Hobert and Casella 

1995). Section 4.2 gives a simple example using the one-way random model from 

Section 1. 

4.1 Improper Posteriors and Null Markov Chains 

The members of a set of conditional density functions are called compatible if there 

exists a joint density function which generates them (Arnold and Press 1989). We 

call the members functionally compatible if there exists a (possibly nonintegrable) 

function that acts as a joint density with respect to generating the conditions. This 

section contains results concerning the behavior of Markov chains constructed using 

the Gibbs algorithm in conjunction with functionally compatible conditional densities. 

The behavior of Gibbs chains corresponding to improper posteriors can be gleaned 

from these results since Gibbs conditionals are functionally compatible. 

Suppose that Nx and Ny are subsets of~ and that fxiY(xly) and fylx(Yix) are 

real-valued functions with domain ~ 2 such that for any y E Ny, fxiY(xly) is a prob­

ability density function (pdf) in x with support Nx, and similarly for any x E Nx, 

fylx(Yix) is a pdf in y with support Ny. (In this section, X andY are generic random 

variables which do not necessarily correspond to parameters or data from a Bayesian 

model.) An obvious question is: Under what conditions will there exist a joint pdf, 

fx,Y(x, y), with support N = Nx x Ny, whose conditional pdf's are fxiY(xly) and 

fylx(Yix). Following Arnold and Press (1989), fxiY(xly) and fylx(Yix) will be called 

compatible conditional densities when such a joint density exists. In general, they 

will be called candidate conditional densities to reflect the fact that there may not 

exist a joint density to which they correspond. We begin with something weaker than 

compatibility. 
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Definition 1. If there exists a real-valued function g (x, y) with domain N such that 

f ( I ) - g(x,y) and J ( I ) - g(x,y) 
XjY X Y - J Nx g(x,y)dx YjX Y X - J Ny g(x,y)dy ( 4.1) 

then fxw(xly) and fYJx(ylx) are functionally compatible. 

Note that g (x, y) need not be integrable. Thus, functional compatibility is neces­

sary, but not sufficient, for compatibility. For example, consider the two exponential 

conditional densities from Example 2 of Casella and George (1992): fxw(xly) = 

yexp(-xy) and fYJx(ylx) = xexp(-yx) (Nx = Ny = R+)· These candidate con­

ditionals are functionally compatible since the conditions of Definition 1 are satis­

fied using g (x, y) = exp( -xy). This does not imply compatibility, however, since 

exp( -xy) is not integrable. 

In order to make our point without introducing unwieldy notation, we will stick 

to the simple example concerning two candidate conditional densities. It is a simple 

matter, however, to generalize Definition 1 and all of the results of this section to the 

case of arbitrarily many candidate conditionals (Hobert and Casella 1995). We will 

therefore take the liberty of referring to the general results. 

Clearly, Gibbs conditionals that are calculated via proportionalities like (2.8) and 

(1.3), are functionally compatible, with the (possibly improper) posterior density 

serving as g. Thus, everything in this section concerning functionally compatible 

conditional densities is directly relevant to such Gibbs conditionals. 

We now develop a result which allows one to check for functional compatibility 

and to construct g when it exists. Fix x 0 and y0 in Nx and Ny, respectively, and 

define two functions 

( X y) _ fxty(xjy)fYtx(vlxo) 
gl ' - fxty(xoiY) and g (x y) = fYtx(vlx)fxiY(xlvo) 

2 ' f¥tx(Yolx) · (4.2) 

If fxw(xly) and fYJx(ylx) are compatible, then the joint density is unique and is 

proportional to both g1 (x, y) and g2 (x, y) (Besag 1974; Gelman and Speed 1993). 

Thus, compatibility requires that the ratio of g1 to g2 be constant. This condition is 

actually necessary and sufficient for functional compatibility. (See Brook (1965) for 

general results concerning factorizations like those in (4.2).) 

Theorem 2. The candidate conditionals fxw(xly) and fYJx(ylx) are functionally 

compatible if and only if the ratio of g1 (x, y) to g2 (x, y) is constant. If they are 

functionally compatible, then both g1 and g2 can serve as g, which is unique up to 

constant multiples. 

If the compatibility of a pair of candidate conditional densities is in question, one 

should first establish whether or not they are functionally compatible. If they are 

not, then they are not compatible either. If they are, then compatibility follows if 

and only if g is integrable. This result is stated formally in the following theorem. 

(Arnold and Press (1989) prove a similar result without the concept of functional 

compatibility.) 
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Theorem 3. If fxiY(xiy) and !Yix(Yix) are functionally compatible, then they are 

compatible if and only if J J g (x, y) dx dy < oo. Moreover, if they are compatible 

then the normalized version of g is the joint density. 

Given some starting value for Y, say y*, consider constructing a Gibbs chain 

using fxiY(xiy) and fylx(Yix) assuming only that they are functionally compatible. 

Write the Gibbs chain as (X1, Y1), (X2, Y2), ... and the algorithm as X 1 '""fxiY(·iy*) 
followed by 

li rv fylx(·lxi) 

Xi+l '""fxiY(·IYi) 

fori= 1, 2, .... The results above will be used to establish that this Markov chain is 

positive recurrent if and only if the conditionals are compatible. 

Let P((x, y), A) denote the probability that the chain will be in the set A ~ N 

after the next iteration, given that it is currently at the point (x, y). (Assume A is a 

two-dimensional Borel set throughout.) P((x,y),A) is called the Markov transition 

function (Meyn and Tweedie 1992, p. 65) and is given by 

P((x, y), A)= L fxiY(siy)fYix(tis)d(s, t) (4.3) 

(Robert 1993; Schervish and Carlin 1990). A measure v on the set N is an invariant 

measure for this Markov chain if for any A ~ N, 

v(A) = JN v(d(x, y))P((x, y), A). ( 4.4) 

The word invariant refers to the fact that if vis a probability measure and the starting 

value of the chain is generated according to v, then the distribution of (Xi, li) is v Vi. 

Define a measure va on the set N as follows. 

va(A) = L g (x, y) d (x, y). (4.5) 

Theorem 4. The measure va is an invariant measure for the Gibbs chain with Markov 

transition function P(·, ·)in (4.3). 

Theorems 3 and 4 can be used to deduce the behavior of the Gibbs Markov 

chain. Although our main interest is in the chains associated with incompatible 

conditionals, the well-known compatible case is mentioned for completeness. Suppose 

that fx!Y(xiy) and !Yix(Yix) are compatible. Theorem 3 implies that va is (up 

to a constant multiple) the probability measure associated with the joint density, 

fx,Y(x, y). Therefore, in the compatible case, Theorem 4 simply states the well 

known result (Tierney 1995) that the probability measure corresponding to the joint 

density is the invariant measure for the Gibbs Markov chain. When the Markov chain 

possesses an invariant probability measure, it is called positive recurrent and under 
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(weak) regularity conditions (Meyn and Tweedie 1992, p. 310), (Xj, }j) ::::} (X, Y) rv 

fx,Y where the double arrow denotes convergence in distribution. This is basically 

why the Gibbs sampler "works" when the posterior distribution is proper. 

Gibbs conditionals from an improper posterior are a special case of functionally 

compatible conditional densities which are not compatible. The general versions of 

Theorems 3 and 4 can be used to show that when a posterior (of arbitrary dimension) 

is improper, the Gibbs Markov chain possesses an invariant measure with infinite mass 

and is therefore null, i.e., not positive recurrent (Meyn and Tweedie 1992, p. 231). 

It follows that if A is any compact set in the parameter space that contains the 

starting value, the probability of the chain being in the set A after n, say, iterations 

converges to zero as n -+ oo (see Meyn and Tweedie 1992, p. 454 for a more precise 

statement). Therefore, when the posterior is improper, the random vectors of a Gibbs 

Markov chain cannot converge in distribution to any random vector whose probability 

distribution puts positive mass on compact sets containing the starting value. 

These results can be used to show that many Monte Carlo approximations have 

undesirable limiting behavior when the posterior is improper (see Section 4.2). How­

ever, as a reviewer has pointed out, it may be possible to use null Gibbs chains to 

make inferences about lower dimensional functions of the parameters that have proper 

posteriors. 

4.2 Practical Considerations and an Example 

The behavior of a null Gibbs chain can often be anticipated by studying the 

improper posterior. For example, suppose (X, Y) E ~~is the parameter in a Bayesian 

model which yields the improper posterior 1r (x, y) ex: yd-l exp ( -xy) where d > 0. 

The Gibbs conditionals are easy to compute: XIY = y rv exponential(1/y) and 

YIX = X rv gamma(d, 1/x). The posterior is improper because I I 7r (x, y) dx dy = 
I yd- 2dy = r (d) I x-ddx = oo no matter what the value of d. If d < 1, then the 

"marginal" of Y has an infinite amount of mass near the origin, while the marginal of 

X has an infinite amount of mass in the limit towards infinity. As we might expect, 

when the Gibbs chain with d = 1/2 is run, the y component gets "absorbed" at 

zero and the x component "escapes" to infinity. Similarly when d > 1, the marginal 

of X has an infinite amount of mass near the origin, while the marginal of Y has 

an infinite amount of mass in the limit towards infinity. When the Gibbs chain 

with d = 3/2 is run, the y component escapes to infinity and the x component 

gets absorbed at zero. When d = 1, the Gibbs conditionals are the exponential 

conditionals from Section 4.1, and both of the marginals have infinite mass near the 

origin and in the limit towards infinity. Surprisingly, this Gibbs chain is relatively 

well behaved, periodically returning to the origin in between long charges towards 

one of the "absorbing states" associated with d =J 1. 

Sometimes the behavior of a null Gibbs chain is a function of the starting values. 
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The following example was suggested by a referee. Consider the hierarchical model 

X ,....., N2 (p,, I) 
J-L,....., N2(l8, lr2) 

7r(8, T 2) <X T-2 . 

(4.6) 

The resulting posterior is improper due to an infinite amount of mass near T 2 = 0. 

Suppose that x 1 = -x2 = 10. This posterior density possesses a well defined peak 

whose mode is near the point (J.L1, J.L2 , 8, T 2) = (9.8, -9.8, 0, 48). This peak is well 

defined because it is separated from the infinite mass near T 2 = 0 by a region of 

extremely small mass. Starting the Gibbs chain with T 2 very close to zero, say 10-30 , 

causes the T 2 component to be absorbed at zero. On the other hand, if T 2 is started 

at a more typical value, say one, then absorption does not occur. The null Gibbs 

chain apparently "gets stuck" in a "reasonable" part of the parameter space due 

to the very small probability of a transition to the "bad" part of the space, where 

absorption would occur. See Geyer (1992, p. 481) for a similar example. 

Since this posterior is only an approximation based on an inexact prior and model, 

one might be willing to simply restrict T 2 to be larger than some positive E, in order to 

make the posterior proper. In fact, when the Gibbs sampler is started with a relatively 

large T 2 component, the Gibbs output appears to be providing realizations from this 

"restricted" posterior, but it is not. No matter what the starting values, an arbitrarily 

small T 2 component is possible at every iteration. Thus, not only is it impossible for 

the random vectors of the Gibbs Markov chain to converge in distribution to a random 

vector from the restricted posterior, but absorption could occur at any time. 

The T 2 step of this Gibbs algorithm entails simulating an IG(1, 2/((J.L1 -8)2+ (J.L2-

8) 2 )) random variable. Consider modifying this step by simulating from the inverted 

gamma density restricted to (E, oo). This modified Gibbs sampler can be used to 

simulate from the restricted posterior. Note that unless (J.L1 - 8)2 + (J.L2 - 8)2 is very 

small, the inverted gamma density has negligible mass in the region (0, E). Thus, if 

the starting value of T 2 is relatively large, there will probably be little difference in the 

outputs from these two Gibbs samplers (over a finite number of iterations) because, 

at each T 2 step, there will be little difference between the inverted gamma density 

and its restriction to (E, oo). We conclude that, although the theory implies that the 

unmodified Gibbs chain cannot converge in distribution to the restricted posterior, 

the output from such a chain may provide a reasonable approximation. 

We have just shown that null Gibbs chains can get stuck in reasonable parts of 

the parameter space for long periods of time. In these cases, output from the Gibbs 

sampler can produce nice looking pictures of the supposed marginal posterior densi­

ties, particularly when the posterior density is computed as an average of conditional 

densities. However, as the results of this section show, there can be no actual distri­

bution to which the Gibbs picture corresponds. Thus, when we previously referred 

to the Gibbs-based conclusions of Wang et al. (1993) and Gelfand et al. (1990) as 

"fictitious," this was based on the observation that, in the problems they analyzed, 
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there can be no conclusions about a posterior distribution because such a distribution 

does not exist. 

In order to demonstrate just how reasonable some of these null Gibbs chains 

can appear, we give an example. Consider the one-way random effects model from 

Section 1 with k = 7 and J = 5. In order to simulate some data we set CY2 = 5, 

CY; = 2, and (3 = 10. The vector ( u1 , ... , u7) was simulated by generating seven iid 

N(O, 5) random variables and the vector (t:11 , ... , t:75 ) was simulated by generating 

35 iid N(O, 2) random variables. These numbers were combined according to (1.1). 

We use the hierarchical model (1.2) with the priors 1r((3) ex: 1, 1f (CY;) ex: 1/CY; and 

1f ( CY2 ) ex: 1/ CY 2 which yield an improper posterior (Hill 1965 or take a = b = 0 in (2.3) 

and use Theorem 1). A Gibbs chain was constructed using the conditionals given 

in (2.9). We denote the chain by ( CY2(j), CY;(j), u'(j), f3Ul), j 2: 1. At the start, all 

parameters were set to one, except for the overall mean, (3, which was set to eight. 

The chain was first allowed to run for 15,000 iterations; keep in mind that the word 

"burn-in" is not appropriate for these initial iterations because the chain is null and 

is therefore not converging (in the usual sense). The sole purpose of these initial 

iterations was to provide the chain with ample opportunity to misbehave and alert 

us that something may be wrong; it never did. We chose 15,000 because a typical 

burn-in would probably be in the hundreds (see Gelfand et al. (1990) and Wang et 

al. (1993)) so that if our chain did not misbehave during the burn-in stage, neither 

would that of an unknowing experimenter. 

After the initial 15,000 iterations, the output from the 15,001st through the 

16,000th was collected. Figure 1 is a histogram of the 1,000 effect variances from 

the null Gibbs chain, that is, CY2(i+15•000l, j = 1, 2, ... , 1000, with a Monte Carlo ap­

proximation of the supposed marginal posterior density superimposed. Figure 2 is the 

analogue of Figure 1 for the error variance component. The density approximations 

in Figures 1 and 2 were calculated using the usual "average of conditional densities" 

approximation (see formula 2.9 in Casella and George 1992). All of these plots appear 

perfectly reasonable even though the posterior distribution is improper. (In fact, it 

can be shown (Hobert and Casella 1995) that the Monte Carlo density approxima­

tions have almost sure pointwise limits of zero or no limit at all.) Clearly, if one 

were unaware of the impropriety, plots like these could lead to seriously misleading 

conclusions. 

This particular posterior is improper due to an infinite amount of mass near 

CY2 = 0. Given the above discussion, one might expect that if the starting value of 

CY 2 were near zero, the CY 2 component of the Gibbs chain would be absorbed at 0. 

This is not the case, however. In fact, the CY2 component and the random effects 

components move towards zero, but eventually they all return to a reasonable part 

of the space. For example, we started the chain with CY2 = 10-50 and after 20,000 

iterations the CY 2 component was approximately 10-122 and the largest magnitude of 

any of the random effects components was about 10-60 • The chain was allowed to 

run for a total of one million iterations, after which all of the components were back 
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in a reasonable part of the parameter space. This Gibbs chain behaves somewhat like 

the one constructed with the exponential conditionals in that it leaves the "center" of 

the space for long periods of time, but eventually returns. Such behavior is consistent 

with null recurrence. 

5. DISCUSSION 

The fact that it is possible to implement the Gibbs sampler without checking 

that the posterior is proper is dangerous. What magnifies the problem is that a null 

Gibbs chain may not provide a "red flag," indicating that something is wrong. This 

entire problem, however, is based on the initial assumption of propriety necessary to 

write down the proportionality (like (1.3) in Section 1) which is used to identify the 

Gibbs conditionals. Clearly, care must be taken to show that such a proportionality is 

valid, when improper priors are used, before a Markov chain Monte Carlo technique 

is employed. The examples above and those in the references demonstrate that one 

should not charge blindly ahead and expect to be informed of an improper posterior 

by the Markov chain itself. 

One way to avoid improper posteriors is to use proper priors. In mixed models, 

ignorance can be modeled by using a normal prior with very large variance for the 

fixed effects and inverted gamma priors with very small parameter values for the 

variance components. The Gibbs conditionals for such a model are easily derived and 

have the same form as those in (2.9). 

The authors have experimented with some diagnostics for null Markov chains 

(Hobert 1994), but have not met with much success. Typically, the diagnostics work 

well only in cases where they are not really needed, that is, when the Markov chain 

is clearly misbehaved. Note that common diagnostics for monitoring "convergence" 

of the Markov chain are really not appropriate for the cases considered here, since 

these diagnostics are working under the assumption that the Markov chain is positive 

recurrent. Thus, they are not diagnosing if the chain will converge but rather when it 

will converge. It seems that, for now, the only foolproof way of avoiding the problem 

is to use proper priors or results like Theorem 1 and those in Ibrahim and Laud (1991) 

and Dey et al. (1994) which give sufficient conditions for propriety of posteriors for 

classes of improper priors. 
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APPENDIX: THEOREM PROOFS 

A.l Proof of Theorem 1 

Before developing conditions under which the posterior is proper, we define some 

notation and state two lemmas which are required in the sequel. Let the (real-valued) 

eigenvalues of a v x v symmetric matrix S be written as 

Amax (S) = A1 (S) ~ A2 (S) ~ · · · ~ Av-l (S) ~ Av (S) = Amin (S). (A.1) 

Further, let Asp (S) denote the smallest non-zero eigenvalue. Then we have the fol­

lowing results 

Lemma 1. If c is a scalar and S is non-negative definite (n.n.d.) then 

[ Il- 1 
lim S S + - S = S, 
c-too c 

(A.2) 

that is, in the limit, (S + I/c)-1 is a generalized inverse of S. 

Proof. Since S is symmetric, it can be factored as S = H' AH where H is orthogonal 

and A is a diagonal matrix of the eigenvalues of S. Now 

lim S [s + !l-1 
S = lim H' AHH' [A + !l-1 

HH' AH = lim H' A [A + !l-1 
AH. 

c-too c c-too c c-too c 

Assume (w.l.o.g) that A = diag (A1 (S), A2 (S), ... , At (S), 0, ... , 0) where t ::::; v is 

the rank of S. Then 

[ Il -l ( \2 \2 \2 ) . C/\1 C/\2 C/\t 
A A + - A = d1ag A , A 1 , ... , A 1 , 0, ... , 0 . 

c c1+1c2+ Ct+ 

and the result follows since 

l . cA; - ' 
lm - /\i· 

c-too CAi + 1 

D 

Lemma 2. (Marshall and Olkin 1979). If two symmetric matrices S1 and S2 are 

both n.n.d. then 

v v 

II [Ai (Sl) + Ai (S2)] :S IS1 + S2l :S II [Ai (Sl) + Av-i+l (S2)]. 
i=l i=l 



We first prove case (1) of Theorem 1. From equation (2.8), we have 

where m(y), the marginal density of the data, is given by 

m(y) = J f(yiu, lY;, /3)/(ullY~, ... , lY;)7r(,l3)7re(lY;Ib) IT 1ri(lYJiai) du d,l3 dlY; IT dlYf. 
~1 ~1 

It is straightforward to show that 

j f (ylu, lY;, ,8) f ( ullYi, ... , lY;)1r(,l3) du d,l3 = 

exp { ~y' (M1XM2X'M1 - M1) y} 

(27r) N;p (lY;} N-rp IDit IX'XIt I(Y;n-1 + Z'P xzlt 

where P x is defined in the statement of Theorem 1 and 

(A.4) 

(A.5) 

M 1 = ( ZDZ' + llY;) - 1 and M 2 = (X' ( ZDZ' + llY;) - 1 X) -
1

. (A.6) 

Note that (A.5) is the restricted likelihood function in (2.7). We may now write 

j f(yiu, lY;, /3)/(ullYi, ... , lY;)7r(,l3)7re(lY;Ib) IT 1ri(lYflai) dud,l3 IT dlYf = 
~1 ~1 

1f e( lY; lb) 
(A.7) 

Consider the exponential in (A.8). Write it as 

(A.8) 

where t = ( lYi, ... , lY;). A lengthy differentiation argument will show that f ( t) is 

non-decreasing in each of its arguments. Upper and lower bounds are now developed 

for f(t). The lower bound is simple 



f(O) = exp {- 2 ~;y'Pxy}. (A.9) 

The next step is to find an upper bound. We let the variance components go to oo at 

the same rate, so we will calculate lime-too f (lc), where 1 is a one-vector. Applying 

the Schur complement formula (Searle 1982 p.261) we have 

(ZDZ' + lo2 )-
1 = _!_- ~z (CJ2D-1 + Z'Z)-1 Z'. € (J2 (J2 € 

€ € 

(A.10) 

Lemma 1 and (A.10) together give 

( )
-1 1 

lim ZlcZ' + ICJ; = 2 P z 
c-too (JE 

(A.ll) 

where Pz =I- Z (Z'Z)- Z' with- denoting a generalized inverse. A slightly more 

complicated calculation involving the Schur complement and another application of 

Lemma 1 shows that 

,!i,~ X'PxX [X' (1- Z ( Z'Z + "'~Ir' Z') Xr X'PxX = X'PxX. (A.12) 

Equations (A.ll) and (A.12) yield 

}1~ f (lc) = exp {- 2 ~;y' (Pz- PzX (X'PzX)- X'Pz) y} (A.13) 

where writing (X'PzX)- as (T'T)- forT= PzX shows that PzX (X'PzX)- X'Pz 

is invariant to the generalized inverse. Also, PzX (X'PzX)- X'PzX = PzX which 

means that P z - P z X (X'P zX)- X'P z is idempotent. Combining the results above 

gives 

exp {-~y'Pxy} ~ f (t) ~ exp {-~y' (Pz- PzX (X'PzX)- X'Pz) y}. 
2~ 2~ 

(A.14) 

Conditions (i), (ii), and (iii) are first shown to be sufficient for integrability. Using 

the upper bound 

r r 

j f (ylu, CJ;, !3)! ( uiCJ~, ... , CJ;)1r(j3)7r€( CJ;Ib) II 1ri ( CJI lai) du df3 II dCJI ~ 
i=l i=l 

1r€((J;Ib) exp { -~y' (Pz- PzX (X'PzX)- X'Pz) y} 
N-p .!:!...::::.9.: 1 

(27r) 2 (CJ;) 2 IX'XI2 



J rr~=1 1Ti ( o}Jai) ITT d ~ 
1 (Jt . 

JDJt J(J;n-1 + Z'PxZj 2 i=1 

(A.15) 

Focusing on the integrand, Lemma 2 gives 

q 

IT [>.i ((J;n-1) + >.i (Z'PxZ)] ~ j(J;n-1 + Z'Pxzj 
i=1 

q 

~IT [>.i ((J;n-1) + >.q-i+I(Z'PxZ)] 
i=1 

(A.16) 

Assume that t = q. (A slightly different argument is necessary when t < q and r = 1 

which is explained below.) When t = q, equation (A.16) yields 

T [ 2 l q; T [ 2 l q; g ~f + Amin (Z'PxZ) ~ JCJ;n-l + Z'PxZj ~ g ~l + Amax (Z'PxZ) 

(A.17) 

and employing the lower bound in (A.17) yields an upper bound for the integral in 

(A.15) 

ITT ( 2J ) T T ( 2)-(a;+l) J i=1 1Ti (Ji ai IT d 2 < IT j (Ji d ~ 
1 1 (Jt - 5!.i (Jt . 

JDJ2j(J;n-1 + Z'PxZj 2 i=l i=1 (>.min (Z'PxZ) CJT + CJ;) 2 

(A.18) 

The generic form of the integrals on the right-hand side in (A.18) can be written as 

5!.i J t-(a;+l) 
l2 5!.i dt 

(tCJ; + t) 2 

(A.19) 

where l = ( Amin ( Z'P x Z)) - 1 . This integral will be finite if and only if ai > 0 and qi > 
-2ai and when these conditions hold, the integral in (A.19) equals ci (CJ;)-(a;+q;/2), 

where ci is constant in CJ;. Therefore, since we've assumed that these two conditions 

hold fori= 1, 2, ... , r, we may write 

T T 

j J(yJu, (J;, !3)! ( uJCJr, ... , (J;)7r(/3)7r€( (J?Ib) IT 1Ti( (Jllai) du df3 IT dCJl ~ 
i=l i=1 

7r€(CJ;Jb) exp { -~y~ (P z-;zx (X'P~X)- X'Pz) Y} . c. (CJ;) -(%+I: a;) . (A. 20) 

(27r)T (CJ;)~ JX'XJ2 

Sufficiency will follow if it can be shown that (A.20) is integrable with respect to CJ;. 

This follows from condition (iii) and the fact that, aside from a constant, (A.20) is 

an inverted gamma density in CJ;. 



Necessity is simple given all of the bounds above. Using the lower bound on the 

exponential in (A.l4) and the upper bound in (A.17) yields 

j f(yiu, CJ;, ..B)f(uiCJi, · .. , CJ;)7r(,8}7!ACJ;Ib) IT 1ri(CJfiai) dud{3 IT dCJf ~ 
. i=1 i=1 

7rf ( (J; ib) exp {- 2!; y'P xY} r j ( (Jf) -(ai+1) 2 
!:!.::.1!. !:!..=!J=:E. 1 • IT fl.i dCJ i . 

(27r) 2 (CJ;) 2 IX'XI 2 i=1 (Amax (Z'PxZ) CJI + CJ;) 2 

(A.21) 

This inequality demonstrates the necessity of conditions ( i) and ( ii) since the right­

hand integral will diverge if either (or both) fails to hold. If both hold, an argument 

similar to one above shows 

r r 

j J(yiu, CJ;, {3)f(uiCJi, ... , CJ;)7r({3)7rf(CJ;Ib) IT 1ri(CJfiai) du d,B IT dCJf ~ 
i=1 i=1 

7rf(CJ;Ib)exp{-~y'Pxy} , ( 2)-(%+I>i) 
!:!.::.1!. !::!..:::..9.:: 1 • c . (Jf 

(27r) 2 (CJ;) 2 IX'XI2 
(A.22) 

where c' is constant in CJ;. As a function of CJ;, the right-hand side of (A.22) is, again, 

an inverted gamma density and this makes clear the necessity of condition (iii). 

For the case when t < q and r = 1, 

1 

I(J;n-1 + Z'PxZ! 2 

1 

1~:~ + Z'PxZI
2 

1 

1~:~ + H'AHI2 

where H is orthogonal and A is a diagonal matrix of the eigenvalues of Z'P x Z. Since 

Z'PxZ is a n.n.d. matrix with rank t < q, it hast positive eigenvalues and q- t zero 

eigenvalues. Therefore 

(A.23) 

where Asp= Asp (Z'PxZ) and Amax = Amax (Z'PxZ). The proof above can then be 

used with (A.23) in place of (A.17). 

That is the end of the proof of Case 1 of Theorem 1. The only thing that changes going 

from case 1 to case 2 is that in case 2, the matrix Z'PxZ has some zero eigenvalues 

which result in a slightly different lower bound for !CJ;D-1 + Z'PxZ!. In particular, 

Lemma 1 can be used to show that 



t q 

II [Ai (a-;n-1) +Asp (Z'PxZ)] II [Ai (a-;n-1)] :::; Jo-;n-1 + Z'PxZI 
i=1 i=t+1 

(A.24) 

:::; f] [:} + Amax (Z'Pxz)ri 

The fact that the upper bound in (A.24) is the same as it was in case 1 (see (A.17)) 

means that the proof of necessity for case 1 can be used again for case 2. Basically, 

the proof of sufficiency for case 1 also works again except that some extra work is 

needed to integrate over R~ in (A.15). Using the lower bound in (A.24) directly 

in the integral over R~ is impossible because it requires knowledge of the smallest 

eigenvalue of n-1 which changes depending on your location in R~. We avoid this 

problem by introducing the following mutually exclusive sets 

(A.25) 

where (i1 , i2 , ... , ir) is one of the r! permutations of (1, 2, ... , r). On each of these 

sets the eigenvalues of n-1 (the inverses of the variance components) have a constant 

ordering. We can therefore use the lower bound to integrate over each of these r! sets 

and then add the results to get the full integral over R~. For instance, let S denote 

the set in (A.25) with (i1,i2, ... ,1r) = (1,2, ... ,r). On the setS, the lower bound in 

(A.24) becomes 

t q 

II [Ai ( a-;n-1) +Asp (Z'P xZ) J II [ Ai ( a-;n- 1) J = 
i=1 i=t+1 

(a-; ) ql (a-; ) q2 ••• (a-; ) t-I::,:ll q; (a-;) q-t 

2 + Asp 2 + Asp 2 + Asp 2 
o-1 o-2 o-r o-r 

where again Asp = Asp ( Z'P x Z) and from this follows 

r nr=1 1ri(o-[\ai) ir do-t 

.fs \D\t Ja-;n-1 + Z'PxzJt i=1 

< r (o-;).tr rn=l 1ri(o-[\ai) ir d ? 

- .1~+ (o-;+a-;Asp(Z'PxZ))1-L::,;;;;¥IT;,:{(a-;+a-[Asp(Z'PxZ))¥ i=1 o-z 

since the integrand is positive. The rest of the proof of sufficiency for case 2 follows 

closely that of case 1. D 



A.2 Proof of Theorem 2 

Assume that fx!Y and fYIX are functionally compatible. From the definition we 

have that 9i(x, y) ex: 9 (x, y), i = 1, 2, which implies that the ratio of 91 to 92 is 

constant. Now suppose that the ratio is constant. Clearly, 91 (x, y) I J 91 (x, y) dx = 
fx!Y· Furthermore, the constant ratio implies that 91 (x, y) I J 91 (x, y) dy = fYIX· 
Therefore, Definition 1 is satisfied with 91 serving the role of 9 in ( 4.1). D 

A.3 Proof of Theorem 3 

If f X!Y and fYIX are compatible, then g must be a proportional to the joint density. 

Conversely, if the integral is finite, then g is normalizable and compatibility follows. 

D 

A.4 Proof of Theorem 4 

.IN v (d(x, y)) P((x, y), A) 

.IN, /Ny [L fx!Y(sly)fYix(tis)d(s, t) J g(x, y)dx dy 

{ [11 9(X, y)fx!Y(sly)fYIX(tls)dx dyl d(s, t) }A Ny Nx 

L [.!Ny 9(s, y)fYix(tls)dy] d(s, t) 

L 9(s, t)d(s, t) 

v (A) 

where the third and fourth equalities follow from functional compatibility. D 
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Figure 1. Histogram of the 1000 values of the effect variance from the null Gibbs chain, that is, a 

histogram of tT 2(i+15•000) for j = 1, 2, ... , 1000. Superimposed is the approximate (supposed) marginal 

posterior density of tT2 . An appropriately scaled version of fro-2IY (tjy) is on the ordinate with t on the 

abscissa. (Actually, 15 of the 1,000 values of the effect variance, ranging from 21.0 to 45.1, were not 

included in the histogram.) 



Histogram of Error Variances 
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Figure 2. Histogram of the 1000 values of the error variance from the null Gibbs chain, that is, a 

histogram of a;(H15•000) for j = 1, 2, ... , 1000. Superimposed is the approximate (supposed) marginal 

posterior density of a;. An appropriately scaled version of 1T u; IY (tjy) is on the ordinate with t on the 

abscissa. 


