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Abstract

Two-dimensional discrete dislocation simulations of indentation in the sub-

micron range are presented for wedge indenters with a sharp tip and for indenters

with a circular tip. Plane strain calculations are carried out for single crystals that

are initially free of mobile dislocations and with all dislocations nucleating from

a specified distribution of internal sources. The hardness is expressed in terms of

the indentation force divided by the actual contact area accounting for roughness

of the surface in contact with the indenter. For wedge indenters the hardness is

found to decrease with increasing indentation depth, while for indenters with a

circular tip the hardness increases somewhat with increasing indentation depth.

However, at a given indentation depth, the indentation hardness of circular

indenters increases with decreasing tip radius. The difference in hardness

evolution for the two tip shapes is mainly due to the manner in which the

evolution of the contact area depends on indenter tip shape. The nominal

hardness, i.e. that based on the geometric contact area neglecting material sink-

in or pile-up and surface roughness, is found to follow the inverse square root

size dependence predicted by Nix and Gao [1] and by Swadener et al [2], even

though the plastic zone found in the simulations differs significantly in shape

and size from that assumed in deriving the scaling laws.

1. Introduction

Submicron scale indentation hardness of crystalline solids exhibits a distinct size effect, with

smaller generally being harder. This indentation size effect has been rationalized in terms of

the presence of geometrically necessary dislocations associated with the plastic strain gradients

in the vicinity of the indenter, [1]. Ideally, for a perfectly sharp wedge or conical indenter, the

hardness is independent of the indentation depth (or, equivalently, contact area) if the material

response is scale independent. The existence of the indentation size effect is one of the key

pieces of evidence for a plastic material length scale in the submicron range. However, in

an indentation experiment the conditions for the ideal scale-independent response are never

actually realized. At micron-scale indentation depths, length scales associated with surface
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Figure 1. Schematic of the indentation of a symmetric crystal of 2L1 ×L2 by (a) a wedge indenter

characterized by wedge semi-angle α or (b) a circular indenter of radius R. Plasticity by the motion

of edge dislocations is allowed in a process window of l1 × l2 that is confined within a significantly

larger, perfectly adhering crystal with three slip systems.

oxide layers or surface roughness could possibly come into play. Also, indenters are never

ideally sharp and self-similar so that a length scale (or scales) associated with the indenter

can affect the inferred hardness. Indeed, significant effects of indenter shape are observed

experimentally, e.g. [2–4]. Also, such effects are seen in indentation calculations using a

phenomenological size-dependent plastic flow rule [5].

Here, we employ discrete dislocation plasticity to study the effects of indenter shape on

hardness. Plane strain analyses are carried out for single crystals indented by wedge or circular

indenters. Plastic flow arises from the glide of dislocations generated by Frank–Read sources

in the bulk. For the wedge indenter the key length scale is the material length scale, while for

the circular indenter there is a complex interaction between the material length scale and the

indenter radius, as seen in the simulations in [6]. Results are presented for the variation of

the indentation size effect with indenter shape. The effect of dislocation source density is also

briefly explored.

2. Problem definition

We study a two-dimensional crystal, of size 2L1 = 200 µm by L2 = 200 µm, which is indented

on the face x2 = 0 and fixed to a rigid substrate at the opposite side x2 = L2, figure 1(a). The

lateral sides x1 = ±L1 are traction free and plane strain conditions are imposed perpendicular

to the x1–x2-plane of view. The crystal is assumed to be symmetric about the plane x1 = 0 so

that only half of the crystal, x1 � 0, is modelled.

The crystal is indented in the x2-direction with the indenter making first contact with the

crystal at (0, 0) as sketched in figure 1. Two indenter tip shapes are considered: (i) wedge

indenters with a tip semi-angle α and (ii) circular indenters of radius R, figure 1.

Plastic deformation of the crystal takes place by the motion of edge dislocations on three

slip systems, which are oriented at angles φ(β) (β = 1, 2, 3) of {35.3◦, 90.0◦, 144.7◦} relative

to the surface x2 = 0, as illustrated in figure 1(b). This orientation allows for the double slip

necessary for the assumed symmetry.

The elastic properties of the crystal are taken to be isotropic and have values typical

for aluminium; shear modulus G = 26 GPa and Poisson’s ratio of ν = 0.33. In a discrete

dislocation plasticity framework, the dislocations are treated individually, as singularities in an
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otherwise linear elastic continuum, and the magnitude of the Burgers vector of all dislocations

is b = 0.25 nm. Slip planes within each of the three slip systems are spaced at 100b inside a

square process window with side length 2l1 = l2 = 50 µm centered around the indenter tip

(figure 1). The process window is introduced for numerical convenience and does not affect

the results; the computations are terminated before any dislocation reaches the process window

boundary. Initially, the crystal is stress and dislocation free, but contains a random distribution

of dislocation sources with density ρnuc and of dislocation obstacles with density ρobs. The

sources are two-dimensional versions of Frank–Read sources, which generate a dipole of

edge dislocations when the resolved shear stress on the source is large enough (� τnuc) for a

sufficiently long time tnuc. The obstacles pin a dislocation when it attempts to pass by; pinned

dislocations are released when the Peach–Koehler force exceeds the obstacle strength bτobs.

Dislocation glide is taken to be drag controlled, with the dislocation velocity proportional to

the magnitude of the Peach–Koehler force and the drag coefficient being 104 (Pas)−1. When

dislocations of opposite sign come within 6b they annihilate.

Even though we perform a small-strain analysis, the boundary conditions evolve with

indentation depth because of the continuously changing region over which contact takes place.

Denoting the current contact surface by Sc, continued indentation is prescribed through the

displacement-rate conditions

u̇1 = 0, u̇2 = ḣ on Sc, (1)

assuming that the material sticks to the indenter when it moves with a velocity ḣ in the x2-

direction. The other boundary conditions are

u̇1 = 0, Ṫ2 = 0 on x1 = 0, (2)

because of symmetry, and

Ṫ1 = Ṫ2 = 0 on x2 = 0 /∈ Sc. (3)

Here, Ti = σijnj is the traction on the surface with normal nj directing outward from the

surface. Recalling the symmetry of the problem, the half-indentation force F is calculated as

F = −

∫

Sc

T2dx1.

The problem is solved in an incremental manner, making use of the superposition method

of Van der Giessen and Needleman [7] to incorporate the boundary conditions (1)–(3). This

framework has been used to analyse a variety of boundary value problems, giving predictions

that are qualitatively, e.g. [8– 11], and quantitatively, [12], in accord with experiment and that

provide insight into the origin of, for example, the observed size effects. The finite element

mesh used in this study is highly refined near the indenter tip to accurately represent contact.

Figure 2 not only shows an example of the mesh used, but also illustrates that the initially

flat surface of the crystal roughens as dislocations exit the crystal through the free surface. As

a consequence, contact builds up in the form of patches with a compressive traction between

crystal and indenter. The sum of these patches forms the true contact area or contact length

in two dimensions, a, which thus specifies Sc. In [13], we have compared the use of this

definition of contact area for wedge indenters (denoted there by aA) with other definitions,

such as nominal contact length aN or that proposed by Oliver and Pharr [14]. It was found that

the other definitions tend to overestimate the contact area, and thus underestimate hardness,

with the difference being larger for sharper indenters. In this paper, unless stated otherwise,

the hardness is defined using the actual contact length a sketched in figure 2.
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Figure 2. Illustration of the determination of the actual contact length a for a rough surface. The

finite element mesh is typical for the computations reported here.

3. Numerical results

In a discrete dislocation plasticity analysis, the initial dislocation structure needs to be specified.

In the framework here, this initial dislocation structure is represented by a random distribution

of dislocation sources and obstacles with given densities. Most results presented are for crystals

with a source density ρnuc = 49 µm−2 and an obstacle density ρobs = 99µm−2. Crystals with

these densities are referred to as high source density (HSD) crystals since subsequently we show

the effect of a significantly lower source density (LSD): ρnuc = 9 µm−2 and ρobs = 18 µm−2.

The strength of the sources τnuc follows a Gaussian distribution with mean value of 50 MPa

and standard deviation of 10 MPa. The nucleation time is tnuc = 10 ns in all calculations. The

obstacle strength τobs is 150 MPa. Uniaxial tension (or compression) simulations of specimens

having the size of the process window, 2l1 = l2 = 50 µm by 2l1 = l2 = 50 µm, (see

figure 1(a)) give an overall yield strength of about 50 MPa for the HSD crystals and 60 MPa

for the LSD crystals.

Calculations are carried out for wedge indenters with α = 70◦ and α = 85◦ and for

circular indenters with radii of R = 0.25, 0.5, 1, 2 and 4 µm. For wedge indentation, we

report the average of three realizations of source and obstacle distributions, while for circular

indentation the results are for one realization. The finite element mesh is highly refined near

the indenter tip, with the smallest element length near the tip being 0.24 nm for the wedge

indenters and 1 nm for the circular indenters.

The evolution of (half) the indentation force F with increasing indentation depth h is shown

in figure 3(a) for the circular indenters. For comparison purposes, results for α = 70◦ wedge

indentation are also shown. Initially, the slope is high and almost independent of indenter

shape. However, when plastic flow by the collective motion of dislocations initiates, dF/dh

decreases but less so for large circular indenters than for small circular indenters or for wedge

indenters. While the force on the α = 70◦ wedge indenter tends to increase linearly with depth

after about h = 0.2 µm, the force on the circular indenters increases less than proportionally

with depth. The raggedness of the curves is mainly due to individual nucleation events and

is sensitive to statistical fluctuations; the results for wedge indentation are smoother than for

circular indentation because they are averaged over three realizations.

As indentation progresses, the contact length increases. The evolution of contact length a

versus depth h is shown in figure 3(b). For the relatively sharp wedge indenter with α = 70◦,

the contact length is small because of sink-in. The large error bar around h = 0.4 µm is caused
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Figure 3. Evolution of (a) the indentation half-force F and (b) the contact length a with indentation

depth for 70◦-wedge and circular indenters with various radii. The wedge results are averaged over

three realizations and the error bars give an impression of the spread.

by jumps in contact length in some of the three realizations. These jumps occur for two reasons.

First, due to material sink-in a portion of the deformed material surface outside the contact

tends to become almost parallel to the indenter surface so that when indentation continues and

the indenter touches the surface of the crystal, the contact length suddenly increases. Secondly

the surface roughens and, as discussed in detail by Widjaja et al [13], this also leads to abrupt

increases in contact length. The predicted increase in the contact length a for the circular

indenters in figure 3(b) exhibits the same general trend, with occasional jumps in contact

length occurring with the average da/dh decreasing for increasing indentation depth. Also,

the contact length increases with increasing indenter radius. For a given indentation depth,

the contact length is a strong function of indenter shape, but the contact force is much less

sensitive to indenter shape.

Figure 4 shows distributions of dislocations and normal stress in the direction of

indentation, σ22, for an α = 70◦ wedge indenter and a circular indenter with R = 2 µm.

The nominal contact lengths noted in figure 4 are quite different for these two indenters.

However, the overall dislocation and stress distributions are quite similar. It is noted that in

both cases the dislocation distribution extends over a distance of several micrometres, which

is much larger than the indentation depth, the contact length (see figure 3) or the nominal

contact length. Since all dislocations have nucleated inside the envelope of the dislocation

distribution, Figure 4 gives an indication of the region in which dislocations have moved and

produced plastic deformation.

3.1. Hardness

The hardness H : = F/a is shown as a function of depth h in figure 5. For α = 70◦ wedge

indentation, the hardness decreases with increasing depth, revealing the usual indentation size

effect. The drop in hardness around h = 0.34 µm and h = 0.4 µm is caused by the jumps in

contact length; the large error bar around h = 0.4 µm corresponds to the error bar in contact

length (figure 3(b)). The hardness is high since the contact length is small. For comparison,

in figure 5 we also include the hardness for α = 85◦ wedge indentation, which is lower than

the hardness for α = 70◦ as the contact length is significantly larger [13]. For the larger tip
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Figure 4. Dislocation distributions and contours of σ22 in HSD crystals when indented to

h = 0.1 µm by (a) an α = 70◦ wedge or (b) an R = 2 µm circular indenter.
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Figure 5. Hardness H = F/a as a function of indentation depth h for wedge and circular indenters.

The results for wedge indenters with α = 70◦ and 85◦ are averaged over three realizations and the

error bars illustrate the spread among the individual simulations.

angle, the hardness clearly shows the typical size effect for wedge indentation, levelling off at

a constant value of around H = 0.4 GPa at h = 0.4 µm. This levelling off is not yet visible for

α = 70◦. Over the range of indentation depths studied, the hardness found with 70◦ indenters

is several times higher than that for the more shallow 85◦ indenters, which is still almost an

order of magnitude higher than the yield stress of 50 MPa. The sensitivity to indenter tip angle

is already present in the elastic regime; in fact, when sink-in is neglected, the elastic H scales

with cot α [15].

On the other hand, for circular indentation, the hardness increases with depth. The

initial rapid increase of hardness with indentation depth occurs while the deformations are

mainly elastic. At larger indentation depths, and for indenters with larger indenter radii, the
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curves through the data points serve merely as a guide to the eye.

hardness becomes less sensitive to depth. Thus, for circular indenters, once significant plastic

deformation has occurred, the hardness does not increase much with indentation depth. At a

given indentation depth, on the other hand, the hardness increases with decreasing indenter

radius (as summarized in figure 6). In this sense, ‘smaller is harder’ for indentation with a

circular indenter.

Another way to present the circular indenter results is by plotting hardness versus relative

contact size a/R (see figure 7). By analogy with spherical indenters [16], a/R can be

interpreted as a strain measure (up to a scaling factor). When one additionally invokes the Tabor

relation between hardness and flow strength, H ≈ 3σf , the curves in figure 7 can be regarded

as effective stress–strain curves. For each value of R, the curves show strain hardening of

the crystal. With strain being defined as 0.2a/R [16, 2] one can determine the 0.2% ‘yield’

point by the intersection of each of the H–a/R curves with a line parallel to the elastic part

that intersects a/R = 0.01. The hardness values thus found, shown in figure 6 by the gray

dots, exhibit a ‘smaller is harder’ size effect; one that is even stronger than that for fixed h/R.

The lowest yield strength of 0.7/3 = 0.23 GPa for the largest indenter radius R = 4 µm is

substantially larger than the uniaxial compression yield strength 50 MPa but is lower than what

is obtained with sharp indenters at the same penetration depth.

3.2. Effect of source density

The densities of dislocation sources and obstacles can vary significantly due, for example,

to differences in prior plastic deformation. To explore the dependence of the indentation

hardness on the source and obstacle densities, some of the calculations have been repeated

for LSD crystals which have an approximately five times lower source and obstacle densities

(ρnuc = 9 µm−2 and ρobs = 18 µm−2). We recall that the uniaxial response of the LSD crystals

equal to the process window is essentially the same as that of the HSD crystals.

The indentation response, presented in figure 8, does however change significantly. Since

fewer sources are activated in the LSD crystals near the indenter, the indentation forces for all
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Figure 8. Evolution of (a) indentation force and (b) contact length with indentation depth for a

crystal with a low density of sources and obstacles. The wedge results are averaged over three

realizations and the error bars give an impression of the spread.

indenters are higher than in the corresponding HSD material (figure 3(a)). Quite interestingly,

while the scatter in the 70◦ wedge results has increased, the effect of the reduced source and

obstacle density seems to be smaller than for the circular indenters. However, for the circular

indenters the contact length is rather insensitive to source density, at least for radii R � 2 µm,

figure 8(b) versus figure 3(b). As a consequence, the hardness of the LSD crystals is higher

than that in figure 5 for the HSD crystals.

4. Discussion

The notion of an indentation size effect, with smaller being harder, depends on the measure of

size used. In the case of a wedge indenter, which is self-similar, the only relevant geometrical
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length scale in the problem is h. As seen in figure 5, the hardness versus indentation depth,

H(h), is a decreasing function. For circular indenters, there are two length scales, h and R,

so that the hardness versus size function is of the form H(R; h/R) or H(h; h/R). However,

since the hardness for circular indenters does not vary much with h except at very small h when

plasticity has not initiated (see figure 5), the size effect then emerges through the dependence

on indenter radius R and figure 6 shows that in this sense ‘smaller is harder’ for any value of

h/R.

The wedge and circular indenters considered are, respectively, the two-dimensional

equivalents of Vickers or Berkovich and spherical indenters used in experiments. The

indentation size effect for our wedge indenters, with H decreasing with increasing h, is

consistent with experimental nano- and micro-hardness results using sharp indenters, e.g.

[17, 2, 4].

The hardness values reported are based on using the actual contact length a (see figure 2),

taking into account the roughening of the surface due to slip steps left after dislocations have

left the crystal. Another, simpler definition of contact is the nominal contact length aN which

is determined by the intersection of the indenter at a given depth with the undeformed free

surface of the crystal. Thus, the nominal hardness is governed by the geometry of the indenter

tip and does not account for surface roughening or sink-in or pile-up of the material. When

pile-up does not occur, which is the case in all calculations here, aN is greater than a. Then,

the nominal hardness HN : = F/aN underestimates the true hardness H .

Nix and Gao [1] have used an argument based on geometrically necessary dislocations to

derive a scaling law, which phrased in terms of nominal hardness is

HN

H0

=

√

1 +
h∗

h
, (4)

for conical indenters. Following a similar approach, Swadener et al [2] developed the

expression

HN

H0

=

√

1 +
R∗

R
, (5)

for spherical indentation. Repeating the developments of [1,2] but in two dimensions, we find

that the expressions (4) and (5) also hold for wedge and circular indenters, respectively.

Figure 9 shows that these expressions give an excellent fit to our data when expressed

in terms of nominal hardness. Each of the three curves in this figure are separate fits (with

a correlation coefficient that is 0.976 or better), but it is interesting to note that the values of

H0 are between 140 and 177 MPa. The length parameters h∗ and R∗ are not material length

parameters as they depend sensitively on the indenter shape: h∗ = 1.2 µm for the 70◦ indenter

and is 10 times smaller when α = 85◦, while R∗ = 6.6 µm.

The quality of the fit in figure 9 is quite remarkable when considering the assumptions

underlying equations (4) and (5). One key assumption in [1, 2] is that the plastic zone has a

semi-circular shape (in 2D) with a radius equal to aN. However, according to figure 4, the

plastic zone according to our simulations is much larger and is not semi-circular. Secondly,

the square-root scaling originates directly from assuming Taylor hardening, which 2D discrete

dislocation plasticity with the constitutive rules used here does not reproduce.

A main reason for the usefulness of indentation hardness measurements is the connection

between hardness and strength. For non-hardening isotropic materials one can extract the

yield strength from the hardness using the Tabor relation H ≈ 3σf . The values of hardness

obtained here using circular indenters with R up to 4 µm correspond to yield strengths that
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Figure 9. Size dependence of nominal hardness HN from discrete dislocation computations (blue)

and the fits of the scaling laws (4) and (5) for (a) wedge and (b) circular indenters, respectively.

exceed the uniaxial compression yield strength of approximately 50 MPa by at least a factor

of 4. Indeed, Swadener et al [2] found that spherical indenters with a radius of a few hundred

micrometres were needed before the hardness was no longer size dependent. Wedge indentation

approaches the uniaxial yield strength at smaller indentation depths when the tip angle is

large (α = 85◦).

For a wedge indenter with α = 70◦ and for circular indenters with radii between 0.25

and 4 µm, the force necessary for any indentation depth is only mildly dependent on the tip

shape or radius. On the other hand, the hardness as a function of depth is found to be quite

sensitive to shape. This shape sensitivity is caused primarily by the contact area evolving in

significantly different ways depending on the shape of the indenter.
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