
doi: 10.1098/rsif.2011.0059
 published online 13 April 2011J. R. Soc. Interface

 
Noa Pinter-Wollman, Roy Wollman, Adam Guetz, Susan Holmes and Deborah M. Gordon
 
of interaction networks in harvester ants
The effect of individual variation on the structure and function
 
 

Supplementary data

l 
http://rsif.royalsocietypublishing.org/content/suppl/2011/04/12/rsif.2011.0059.DC1.htm

 "Data Supplement"

References

ref-list-1
http://rsif.royalsocietypublishing.org/content/early/2011/04/12/rsif.2011.0059.full.html#

 This article cites 60 articles, 14 of which can be accessed free

P<P Published online 13 April 2011 in advance of the print journal.

Rapid response
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2011.0059v1

 Respond to this article

Subject collections

 (43 articles)biocomplexity   �
 
Articles on similar topics can be found in the following collections

Email alerting service
 hereright-hand corner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top

publication. 
Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial 
online articles are citable and establish publication priority; they are indexed by PubMed from initial publication.
the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance 
Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

This journal is © 2011 The Royal Society

 on April 16, 2011rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/content/suppl/2011/04/12/rsif.2011.0059.DC1.html 
http://rsif.royalsocietypublishing.org/content/early/2011/04/12/rsif.2011.0059.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2011.0059v1
http://rsif.royalsocietypublishing.org/cgi/collection/biocomplexity
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;rsif.2011.0059v1&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/early/2011/04/12/rsif.2011.0059.full.pdf?ijkey=7bbJs5in7esYLPh&keytype=ref
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/


The effect of individual variation on
the structure and function of

interaction networks in harvester ants

Noa Pinter-Wollman1,2,*, Roy Wollman3, Adam Guetz2,

Susan Holmes2 and Deborah M. Gordon1

1Department of Biology, 2Department of Statistics, and
3Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA

Social insects exhibit coordinated behaviour without central control. Local interactions
among individuals determine their behaviour and regulate the activity of the colony. Har-
vester ants are recruited for outside work, using networks of brief antennal contacts, in the
nest chamber closest to the nest exit: the entrance chamber. Here, we combine empirical
observations, image analysis and computer simulations to investigate the structure and func-
tion of the interaction network in the entrance chamber. Ant interactions were distributed
heterogeneously in the chamber, with an interaction hot-spot at the entrance leading further
into the nest. The distribution of the total interactions per ant followed a right-skewed
distribution, indicating the presence of highly connected individuals. Numbers of ant encoun-
ters observed positively correlated with the duration of observation. Individuals varied in
interaction frequency, even after accounting for the duration of observation. An ant’s
interaction frequency was explained by its path shape and location within the entrance
chamber. Computer simulations demonstrate that variation among individuals in connec-
tivity accelerates information flow to an extent equivalent to an increase in the total
number of interactions. Individual variation in connectivity, arising from variation among
ants in location and spatial behaviour, creates interaction centres, which may expedite
information flow.

Keywords: agent-based model; movement pattern; network analysis;
Pogonomyrmex barbatus; spatial behaviour; weighted degree

1. INTRODUCTION

Interactions are used to transfer information among
humans [1], other animals [2] and cells, such as neurons.
The structure of the interaction network, who interacts
with whom and how often, influences the flow of infor-
mation on the network [3]. Many animals use social
networks to coordinate group behaviour [1,4,5]. Social
insect colonies operate without central control. Individ-
uals use local cues, including interactions with others,
resulting in the regulation of the colony’s activities
[6–8] and possibly affecting its fitness [9]. Examining
the interaction network structure of social insects can
reveal the significance of various individuals to infor-
mation transmission. For example, certain individuals
may engage in more interactions than others and
function as information hubs [10].

Ants vary in task performance and task fidelity
[11–14] and so, like other social insects [15,16], ants
may vary in how often each individual interacts with
others. ‘Key individuals’, such as catalysts, may
enhance the task performance of other workers [17],

as demonstrated in honeybees. In honeybees, vibration
behaviour performed by certain individuals modulates
the search of other nestmates for new nest sites [18],
possibly through increasing the interaction rate among
nestmates [19]. Only few such examples of key individ-
uals have been studied and little is known about
what dictates who becomes a key individual and why
individuals vary in their connectivity.

The spatial distribution of workers in the nest
may produce variation among individuals in the frequ-
ency of interaction. For example, honeybees spatially
segregate by age, leading to more interactions among
individuals of similar age [20]. Specific locations, such
as arena edges [21], can facilitate interactions. Most be-
havioural tasks are location-specific; for example, brood
care occurs where broods are kept [22–24] and foraging
wherever food is available [23]. As a result, ants per-
forming the same task might interact more with one
another than with ants from a different task [25].
Thus, the location of an ant within a nest, and how
long it spends there [26], might dictate how many nest-
mates it encounters and who they are.

How an ant moves around influences its interaction
rate. Theory predicts that the greater an ant’s standard
deviation of turning angle, or ‘turning index’ [27,28],
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the more tortuous its trajectory, the less ground it
covers and the less likely it is to interact with other
ants per time unit [29]. Empirical studies, however,
show a positive relationship between turning index
and encounter rate. Workers of the Argentine ant, Line-
pithema humile, increase both their turning index and
their encounter rate as local density increases [28],
and in Messor sancta, interaction rate is positively
related to turning index [27].

Individual variation in connectivity, defined as the
number of interactions, may have an important func-
tion. While the total number of interactions influences
information transmission rate [8,30], network structure
is also important. Networks exhibiting heterogeneity
in connectivity have a right-skewed degree distribution:
a few individuals have many connections, and most
individuals have few connections. Such networks with
highly connected nodes, or hubs, facilitate rapid disease
transfer [31,32], efficient air-traffic flow [33], problem-
solving in human groups [1] and the rate of neuron
activation, synchronization and response times in neural
networks [34]. Other attributes of network structure,
beyond the scope of the present work, may also expedite
or slow down the rate of information transfer [1,34].

The speed of information flow on a social insect net-
work can determine how fast a colony responds to
stimuli and achieves a collective decision [35]. For
example, in the rock ant, Temnothorax albipennis, the
more individuals visit the location of a new nest site,
the higher the recruitment to the new nest, the more
information about the nest’s location arrives at the
nest, and the faster the colony will move into it, thus
decreasing exposure to the danger associated with
emigration [36]. Other collective behaviours, such as
response to a predator, or foraging, may benefit from
the rapid dissemination of information throughout the
colony. However, rapid dissemination of disease, which
may travel on the same interaction network as
information, can have detrimental consequences [25].

Here, we examine the structure of an interaction net-
work in the red harvester ant, Pogonomyrmex barbatus,
to determine whether there is individual variation in
the number of ant encounters, with few highly interac-
tive ants. Harvester ants interact using brief antennal
contacts [6,37], and the rate of interaction influences
the task and activity of the ant. For example, patrollers
leave the nest early each morning and travel around the
foraging area [38]. Returning patrollers interact with
foragers in the entrance chamber, just inside the nest
entrance, and this stimulates the foragers to leave the
nest [39,40]. Later, the intensity of foraging depends
on the rate at which returning foragers interact with
inactive foragers in the entrance chamber [41,42].

We examine the structure of the interaction network
in the entrance chambers of laboratory nests, and use a
computer simulation to illustrate the consequences of
the observed structure. We ask whether (i) ant inter-
actions occur uniformly throughout the entrance
chamber; (ii) the spatial distribution of interactions
results solely from the ants’ paths, or instead ants pre-
ferentially associate with or avoid one another; (iii) the
distribution of ant interactions is random with all indi-
viduals having a similar number of interactions, or

right-skewed with few highly connected individuals
and many individuals with few interactions; (iv) indi-
vidual variation in the number of interactions can be
explained merely by variation in the duration of obser-
vation; (v) individual variation persists after accounting
for the duration of observation; and (vi) the shape of an
ant’s path and its location within the entrance chamber
is associated with its interaction frequency. We then use
a computer simulation to illustrate the possible function
of the interaction network structure, showing how indi-
vidual variation in connectivity, total number of
interactions or a dynamic probability of interactions
each affects the speed of information flow.

2. METHODS

2.1. Empirical observations

To determine the structure of the interaction network
exhibited by ants, we observed two queen-right labora-
tory housed colonies of P. barbatus. Each colony was
housed in a nest consisting of 7–10 closed plastic
boxes (17 � 8 � 4 cm each) with plaster flooring, con-
nected using Tygon tubing and kept in the dark using
red mylar. The nest chambers were connected to an
open, two-storey foraging arena, 122 � 60 cm in the
bottom and 92 � 33 cm in the top. The nest chambers
were connected to the foraging arena with one closed
plastic box that was kept in the dark with no plaster
floor, the entrance chamber (figure 1a). This entrance
chamber is where ants meet as they come in and go
out of the nest, and appears to function analogously
to the chamber just inside the nest entrance in the
field [36]. One colony, ‘Beth’, was collected from
the field near Rodeo, NM, in the summer of 2007; the
other colony, ‘Gozde’, was collected in summer 2008.
Observations were made in September 2009.

To measure interactions, ants were filmed in the
entrance chambers, and interactions were recorded
using image analysis. We made one 5 min film of the
entrance chamber of each colony, using a Canon Vixia
H20 camera at 30 frames s21. To remove debris that
could interfere with the image analysis, we cleaned
the chamber one week prior to filming. Within 2–3
days, the number of ants in the chamber and their be-
haviour, including walking through the chamber,
resting in it and transporting food from the outside,
were similar to that observed before cleaning. While
filming, the red mylar was removed from the covers of
the entrance chamber and the inner nest to improve
visibility. Removal of the mylar had no apparent
effect on the behaviour of the ants. Food was not pro-
vided in the foraging arena for 4 days prior to filming.
Both colonies had food stored in chambers further
inside the nest, past the entrance chamber.

The path of each ant as it moved was automatically
identified from the film using GemVident, a Java-based
image analysis Multi-Target tracking software that we
developed [43]. The image analysis software assigned
each ant a unique identification number. Each ant
entering the entrance chamber during the observation
was assigned a unique number upon entry, so that an
ant that left the entrance chamber and returned to it
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during the observation was counted as two ants. Because
ant re-entry rate is low, it has little effect on our results
(details in the electronic supplementary material).
To ensure that each track represents the continuous
movement of a single ant within the entrance chamber,
we manually corrected any tracking errors introduced
by the automated algorithm when the view of an ant
was obstructed and the ant was lost by the tracking
system. Correction was conducted by overlaying the
ant walking trajectories on the movie images and advan-
cing them both frame-by-frame, using custom software
written in Matlab v. 2008a (The MathWorks Inc., MA).
We identified 131 ants and their trajectories for Beth
and 72 for Gozde (figures 1b and 2b).

We used the resulting trajectories to automatically
identify interactions among ants. An interaction was
defined as a physical contact between an ant’s antennae
and any part of another ant. To determine the spatial
and temporal criteria characterizing an interaction
between two ants, we haphazardly chose five inter-
actions for each colony from the films. We overlaid
the trajectories on the film and measured the distance
between the trajectories of the interacting ants and
the time they spent adjacent to each other during the
interaction. We used the average shortest distance
between the two trajectories measured and the shortest
interaction duration. Based on these measurements, we
characterized an interaction between two ants as two
trajectories within 55 pixels or less, approximately
two-thirds of an ant length, that remained at this

distance for at least 5 frames (0.2 s) (figure 1b).
A total of 3145 ant interactions were identified in
Beth and 1483 in Gozde (see interaction examples in
figure 1b). To verify that the interactions determined
automatically fit the definition above, we visually
examined 26 per cent of the automatically identified
interactions for each colony. The false-positive error
rate was 0.75 per cent in Gozde and 3.75 per cent in
Beth. Analysis showing this false-positive error rate
would not affect our results and an example of the pro-
cess used to check the automatic interactions is
provided in the electronic supplementary material.

2.2. Spatial distribution of interactions

To examine whether ant interactions were homoge-
neously distributed in space, we tested whether more
interactions than expected at random occurred in the
region of the chamber that was closest to the entrance
of the tube leading to the inner nest (figure 2a). We
chose this region because preliminary data suggested
that ant interactions were most likely to occur in this
region. However, the region used in our statistical
analysis was not defined using the location of the inter-
actions, but using the location of the tube leading to the
inner nest. For each of the two colonies, we defined a
region of interest (ROI) around the tube entrance lead-
ing to the inner nest, based on an image of the entrance
chamber (figure 2a). The spatial position of the ROI in
relation to the chamber walls differed slightly in the two
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Figure 1. (a) Laboratory nest structure, grey shading denotes dark chambers. (b) Walking trajectories of four ants in the entrance
chamber. The photos and arrows show interactions among these four ants that were identified using the trajectory data. The
turning index (standard deviation of turning angle) for the paths shown are light grey, 1318; dark grey, 1228; solid black,
1018; dotted black, 928.
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colonies because of differences in the plastic tube’s
shape, but the size of the ROI was the same for both
(figure 2a). To test whether ants interacted signifi-
cantly more in the ROI than elsewhere in the
entrance chamber, we ran a Monte Carlo test. Our
null hypothesis was that there were as many or fewer
interactions in the ROI as in any other similar-sized
area elsewhere in the entrance chamber. We randomly
selected, with replacement, 100 000 squares the size of
the ROI throughout the entrance chamber and
summed the number of interactions over the entire
5 min observation for each colony, within each square.
We computed the probability that the number of inter-
actions in the randomly selected squares was greater
than or equal to the number of interactions in the ROI.

To further investigate whether the spatial hetero-
geneity of interactions we found was due solely to
heterogeneity in the ants’ positions (figure 2b), or
whether ants regulate their interactions and either
avoid other ants or preferentially interact with them,
we ran another Monte Carlo test. Our null hypothesis
was that after taking into account the ants’ locations,
there will be as many or fewer interactions in the ROI
as in any other similar-sized area elsewhere in the
entrance chamber. To quantify ant locations we used
for each ant its position in all the frames of the video
for the duration it was visible, using a rate of
30 frames s21. We randomly selected, with replacement,
100 000 squares of the same size as the ROI throughout
the entrance chamber. We calculated the probability
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Figure 2. Spatial analysis of the entrance chamber for the two study colonies ((i) Beth; (ii) Gozde). (a) Images of the entrance
chamber. Left tube leads to the foraging arena, right tube leads to the inner nest. White squares are the ROI around the entrance
leading to the inner nest. (b) All ant trajectories. Each ant is represented in a different colour. (c) The utilization distribution map
of ant interactions. Colour represents the interaction density estimate at each location. The dashed squares are in the same
location as the solid squares in (a). (d) Trajectories of four ants illustrating the interpolation of the interaction density onto
the ant trajectories. Trajectory colour represents the interaction density in each location and is on the same colour-scale as
in (c). Numbers are used to distinguish the four ant trajectories. (Online version in colour.)
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that the ratio between the number of interactions and the
square of the number of ant positions (interactions/pos-
itions2) in the randomly selected squares was greater
than the same ratio in the ROI. The denominator of
this ratio is squared because an interaction requires two
ants to meet (see also [28]). If this ratio is greater in the
ROI than elsewhere in the chamber, the result will indi-
cate that ants preferentially interact in the ROI, more
than expected based on their movements alone. No sig-
nificant difference in this ratio across the chamber will
indicate that the spatial distribution of interactions is a
result of the ants’ movements alone and that ants do
not preferentially contact or avoid one another.

2.3. Individual variation in interactions

We examined whether the structure of the interaction
network identified in each of the two colonies was
random or included some individuals that were much
more interactive than others. We constructed an inter-
action network for all the ants in the entrance chamber
and examined its structure. We computed for each ant
its weighted degree (WD), defined as the total number
of interactions with any other ant, including repeated
interactions, also known as ‘strength’ [44,45]. We used
the Akaike Information Criterion (AIC) [46] as a like-
lihood-ratio test [47] to determine whether a Poisson,
a geometric, a negative binomial or a power-law distri-
bution best fits the observed WD distribution. If a
Poisson (bell-shaped) distribution best fits the WD dis-
tribution, this indicates a random network structure
with little individual variation [48]. A geometric fit to
the WD distribution indicates a network structure
with right-skewed connectivity, i.e. few individuals
with many interactions and many individuals with
few interactions. Both the Poisson and the geometric
distributions are special cases of the negative binomial
distribution. A negative binomial distribution will pro-
vide a better fit to the WD distribution because it is
more general and has two parameters instead of one.
If r of the negative binomial distribution is 1, the distri-
bution is geometric and as r approaches infinity, the
negative binomial distribution approaches a Poisson
distribution. Finally, if a power-law distribution fits
the WD distribution, this indicates more extreme indi-
vidual variation in connectivity than the geometric
distribution, i.e. the highly interactive individuals have
more interactions than in the geometric fit [47,49].

To determine what produced the observed WD dis-
tribution, we examined the relationship between WD,
i.e. an ant’s number of interactions, and how long it
was observed. We used a generalized linear model
(GLM) to test whether WD was associated with the
duration for which an ant was observed and colony
identity. We included colony identity in the model to
account for colony-specific attributes such as size and
age. We predicted that the longer an ant was observed
in the entrance chamber, the more nestmates it will
encounter.

Because the number of interactions an ant experi-
enced depended on the length of time it was observed,
in the subsequent analyses we examined variation
among ants in interaction frequency, i.e. WD per unit

time. We used the AIC [46] as a likelihood-ratio test
[47] to determine whether an exponential or a Gaussian
distribution best fits the interaction frequency distri-
bution. A good fit to the continuous equivalent of a
geometric distribution, the exponential distribution,
indicates a right-skewed interaction frequency distri-
bution, i.e. few individuals with high interaction
frequency and many individuals with low interaction fre-
quency. A good fit to the continuous equivalent of the
Poisson distribution, the Gaussian distribution, indi-
cates no individual variation in interaction frequency.

We then examined how interaction frequency
depends on the ant’s spatial behaviour: the shape of
its path and its location. Because the colony in which
we observed more trajectories showed significantly
more interactions overall, we also included colony iden-
tity as an effect in this analysis. Theoretical work
predicts a negative relationship between an ant’s turn-
ing index and its interaction rate [29]. We computed
the turning angle between each two steps in an ant’s
trajectory; a step was defined as the line traversed
by an ant between two successive frames. We then
calculated the turning index, or standard deviation of
turning angle, for each trajectory (figure 1b), as in
Gordon [28]. To consider the effects of location, because
interactions were heterogeneously distributed through-
out the entrance chamber, we examined whether an
ant that passed through regions of high interaction
density was likely to have a high interaction frequency.
We first mapped the interaction density throughout
the chamber, by creating a utilization distribution map
of all ant interaction locations using a kernel density
estimate [50] (figure 2c). We then interpolated the inter-
action density onto the ant trajectories (figure 2d) and
computed the average interaction density of each trajec-
tory. Because of the large number of interactions used to
create the utilization distribution map (3145 for Beth
and 1483 for Gozde), the contribution of each individual
ant (131 ants in Beth and 72 in Gozde) to the interaction
density was very small, so we did not exclude the same
ant’s interactions when interpolating the interaction
density onto its trajectory. We ran a GLM to examine
the relationship between interaction frequency and turn-
ing index, average trajectory interaction density and
colony identity.

2.4. Model

Weused an agent-based computer simulation to illustrate
how individual variation in interaction number, and total
numberof interactions, each affect the flowof information
among ants. We compared the speed of information
flow in four models that varied in the probability of ant
interactions. (i) Uniform: null model in which all ants
have an identical and consistent probability of interac-
ting with one another. (ii) Highly Interactive Uniform
(UniformHI): to illustrate the effect of increasing the
total number of interactions on information flow, ants
have an identical and consistent probability of interacting
with one another which is greater than that of the Uni-
form model. (iii) Skewed: to illustrate the effect of
individual variation in interaction probability on infor-
mation flow, ants vary in their probability of interaction
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with nestmates, and the probability of interaction does
not change over time. (iv) Changing: to illustrate the
effect of a dynamic probability of interaction on infor-
mation flow, ants start with a uniform probability of
interaction and each ant increases its probability of inter-
action once, when it becomes informed, as detailed below.

In each of the simulations, 100 ants interacted for
1000 timesteps, and each simulation was repeated 100
times for each of the four models. We assigned each
ant a status, informed or not informed, depending on
its number of interactions. At the beginning of each
simulation, 10 random ants were assigned an ‘informed’
status. During each timestep, we allowed a maximum of
10 interactions, which corresponds to the number of
interactions per second we observed (average: 4.5,
range: 0–14 for Gozde; average: 9.5, range: 3–26 for
Beth). Each ant was allowed no more than one inter-
action per timestep. Ants that interacted 10 times
with informed individuals became informed themselves.
In our model the ants did not forget; once an ant
became informed, it remained informed for the duration
of the simulation.

The probability that two ants interacted depended
on the product of their individual interaction probabil-
ities. For the Uniform, UniformHI and Skewed models,
the probability that each ant interacted with another in
a given timestep was pre-assigned at the beginning of
the simulation. In the null Uniform model, all ants
were assigned an individual probability of interaction
of 0.03. In the UniformHI model, all ants were assigned
an individual interaction probability of 0.039, 1.3 times
the Uniform one. In the Skewed model, ants were
assigned individual interaction probabilities following
an exponential distribution with a mean of 0.03, assign-
ing most ants a low individual interaction probability
and few ants a high probability. In the fourth model,
Changing, ants were initially assigned a lower individ-
ual interaction probability than that of the Uniform
model, 0.0275. Once an ant became informed, its indi-
vidual interaction probability increased 1.3-fold to
0.0358. The average individual probability of inter-
action in the Changing model was similar to that of
the Uniform model, 0.03. Each ant changed its individ-
ual interaction probability only once, effectively
maintaining very low individual variation in inter-
actions in the Changing model, as in the Uniform
model. For more details on parameter choice and for
the source code of the simulation, see the electronic
supplementary material.

The total number of interactions in the Uniform,
Skewed and Changing models was similar, to control
for the effect of total number of interactions and allow
a valid comparison among the different network struc-
tures. However, there was some variation in the total
number of interactions because the number of inter-
actions at each timestep was not fixed. We compared
the total number of interactions in the four models
using a one-way analysis of variance (ANOVA) and a
Tukey’s test for multiple comparisons.

The simulation output was used to illustrate the
effect of interaction probability and the total number
of interactions on information flow speed. To quantify
the speed of information flow, we recorded the

number of informed ants in each timestep. We deter-
mined the time at which 50 per cent of the ants
become informed (T50) as in O’Donnell & Bulova [50].
We compared speed of information flow among the
four models using a one-way ANOVA and a Tukey’s
test for multiple comparisons. By comparing the
speeds of the Skewed, UniformHI and Changing
models to the Uniform model we can distinguish
whether what speeds up information flow is the inter-
action network structure (Skewed), the total number
of interactions (UniformHI) or a dynamic change in
interactions (Changing).

Spatial analysis, Monte Carlo tests, simulations and
model-fitting were conducted in Matlab v. 2008a (The
MathWorks Inc., MA, USA); other statistical analysis
was conducted in JMP 8.0 (SAS, NC, USA).

3. RESULTS

A total of 131 distinct trajectories were identified in the
first colony, Beth, with 3145 interactions. In the second
colony, Gozde, we identified 72 trajectories and 1483
interactions (figures 1b and 2b).

3.1. Spatial distribution of interactions

The spatial distribution of interactions was hetero-
geneous. Significantly more interactions occurred near
the chamber entrance leading to the inner nest (the
ROI) than elsewhere in the entrance chamber (Monte
Carlo test, p, 0.01 for both colonies; figure 2c).

The spatial distribution of interactions corresponded
to the spatial distribution of ant positions, showing that
ants do not actively seek or avoid contact with others.
The Monte Carlo test showed no significant difference
between the ROI and the rest of the entrance chamber
in the ratio between the number of interactions and ant
positions squared (interactions/positions2) (Monte
Carlo test: Beth: p ¼ 0.11; Gozde: p ¼ 0.34).

3.2. Individual variation in interactions

Most ants had few interactions and few ants had many
interactions (figure 3). The structure of the ants’ inter-
action network fits a discrete, right-skewed, geometric
WD distribution and a negative binomial distribution
with r � 1 (figure 4). The observed WD distributions
showed a better fit with the geometric and negative bino-
mial distributions than with the Poisson or power-law
distributions, for both colonies (Beth: negative bino-
mial AIC ¼ 1260, geometric AIC ¼ 1277, power-law
AIC ¼ 1626, Poisson AIC ¼ 3908; Gozde: negative
binomial AIC ¼ 672, geometric AIC ¼ 679, power-
law AIC ¼ 783, Poisson AIC ¼ 2201; figure 4). The
good fit to the negative binomial distribution with r
values close to 1 (Beth: r ¼ 1.65; Gozde: r ¼ 1.49) and
to the geometric distribution shows that the distribution
of interactions is right-skewed, i.e. few individuals have
many contacts while most have few. The negative bino-
mial distribution fits the WD distribution slightly
better than the geometric distribution, because the nega-
tive binomial has two parameters while the geometric
distribution has only one. Of the three models that have

6 Individual variation in social networks N. Pinter-Wollman et al.

J. R. Soc. Interface

 on April 16, 2011rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


only one parameter (Poisson, geometric and power-law),
the geometric distribution best fits our data. The lack of
fit with a Poisson distribution shows that individuals
differ in the number of interactions, while the lack of fit
with the power-law distribution shows that the highly
interactive individuals do not havemanyorders ofmagni-
tude more interactions than the rest of the population.

The ants’ WD increased with the duration of obser-
vation, and the two colonies differed in the total
number of interactions (GLM: p, 0.0001, r2 ¼ 0.35).
The longer an ant was observed in the entrance
chamber, the greater is its WD (p , 0.0001, T ¼
10.16). The average (+s.d.) duration of a trajectory

was 150+ 115 s for Beth and 173+ 119 s for Gozde.
Furthermore, Beth, the colony with more identified tra-
jectories, had a significantly greater average WD than
Gozde ( p, 0.01, T ¼ 2.61).

To account for variation among ants in the duration of
observation, subsequent analysis used the WD per time
unit, or interaction frequency. The distribution of inter-
action frequencies, which takes into account the
duration of observation, was right-skewed, similar to
the WD distribution. The distribution of ant-interaction
frequency (a continuous variable) fits an exponential
distribution better than a Gaussian distribution for
both the colonies (Beth: exponential AIC ¼ 27.9220,

(a) (b)

831

0 8050 100 115 140 191

Figure 3. Interaction network among ants in the entrance chamber of two laboratory housed colonies ((a) Gozde; (b) Beth). Each
ant is represented as a node in the network. Node colours reflect the WD of an ant (same colour scale for both colonies). Edge
thickness corresponds to the number of interactions. Network layout is ‘Spring embedded’ in which the distance between nodes
corresponds to how tightly they are connected. Networks were created using Cytoscape 2.6.2. (Online version in colour.)
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Figure 4. WD distribution of the interaction network in the entrance chamber of two laboratory housed colonies. Open circles
(Beth) and closed circles (Gozde) represent binned weighted degree for each colony. The dotted (Beth) and solid (Gozde)
lines are the fits of (a) a geometric distribution to the data; (b) a negative binomial distribution to the data. (See figure S6 in
the electronic supplementary material for a representation of this figure on a log-linear scale).
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Gaussian AIC ¼ 20.1621; Gozde: exponential AIC ¼
210.4501, Gaussian AIC ¼ 20.1621).

Variation in ant-interaction frequency was associated
with path shape and spatial position. As predicted [29],
interaction frequency decreased with turning index, i.e.
the more tortuous an ant’s trajectory, the less likely it
was to interact with other ants per time unit. This is prob-
ably because ants that turn around more are likely to
cover less ground. Furthermore, the more time an ant
spent in regions with many interactions (interaction
hot-spots), the greater is its interaction frequency. The
interaction frequency was significantly correlated with
the turning index, average trajectory interaction density
and colony identity (GLM: p, 0.0001, r2 ¼ 0.4). Inter-
action frequency decreased with turning index ( p,
0.0001, T ¼ 26.35) and was positively correlated with
average trajectory interaction density ( p, 0.0001, T ¼
9.24). The colonies differed in interaction frequency, as
they did in interaction number ( p, 0.0001, T ¼ 4.28,
Beth. Gozde).

3.3. Model

Of the four models we tested, only the Skewedmodel pro-
duced a network with individual variation in the number
of interactions. The Uniform, UniformHI and Changing
models produced networks with no individual variation
in the number of interactions. Like the network we
observed, the WD distribution of the simulated Ske-
wed model fit a geometric distribution better than a
Poisson distribution (AIC Poisson ¼ 652 300. AIC
geometric ¼ 106 780; figure 5a). The WD distributions
for the other three models—Uniform, UniformHI and
Changing—like those of random networks [48], fit a Pois-
son better than a geometric distribution (Uniform: AIC
Poisson ¼ 71 348, AIC geometric ¼ 108 240; Uniform
HI: AIC Poisson ¼ 75 809, AIC geometric ¼ 117 370;
Changing: AIC Poisson ¼ 76 125, AIC geometric¼
107 820; figure 5a). The interaction probability of the
UniformHI model was greater than that of the Uniform
model, so its Poisson WD distribution had a higher
mean (Uniform: 82+ 9, UniformHI: 130+11), but

they both had a similar interaction network structure
(figure 5a). The Changing and Uniform models differed
slightly in the interaction structure because theChanging
model’s interaction probability was not constant
throughout the simulation. However, their mean WD
was similar (Uniform: 82+ 9 � Changing: 80+11)
allowing a comparison among the speed of information
flow in these twomodels that illustrates the effect of chan-
ging the probability of interaction in response to
information without being affected by increasing the
total number of interactions.

In all the four models, the increase over time in
numbers of informed ants followed a logistic curve
(figure 5b). At first, there were many uninformed ants,
and in most interactions, ants switched from uninformed
to informed status. This led initially to rapid information
flow. As the simulation progressed, and informed ants did
not forget and change the status back to uninformed,
fewer uninformed ants were available, and the informa-
tion flow slowed down. Such a logistic process is similar
to the recruitment rate dynamics in O’Donnell &
Bulova’s [51] model of task performance.

The speed of information flow of the Skewed and Uni-
formHImodels was much faster than that of the Uniform
model, while the speed of information flow in the Chan-
ging model was only slightly faster than that of the
Uniform model (ANOVA: p, 0.0001, F ¼ 526; Tukey’s
test: Uniform–UniformHI: p, 0.00001; Uniform–
Skewed: p, 0.00001; Uniform–Changing: p, 0.0001;
figure 6a). There was no difference between the Uni-
formHI and the Skewed models in the speed of
information flow (Tukey’s test: p ¼ 0.26; figure 6a).

The total number of interactions was higher in the
UniformHI model than in the Skewed, Changing and
Uniform models (ANOVA: p, 0.0001, F ¼ 1399.
Tukey’s test: UniformHI–Uniform: p, 0.00001; Uni-
formHI–Skewed: p, 0.00001; UniformHI–Changing:
p, 0.00001; figure 6b). The Skewed model had slightly
fewer interactions than the Uniform and Changing
models (Tukey’s test: Skewed–Uniform: p, 0.0001;
Skewed–Changing: p ¼ 0.046; figure 6b). This slight
difference in the total number of interactions may be
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Figure 5. (a) WD distribution resulting from the four models: Uniform (solid), Changing (dotes and dashes), Skewed (dotted)
and UniformHI (dashed). (b) Number of informed ants at each time-step of the simulation (averaged over 100 simulation
runs) for the four models, same legend as in (a).
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owing to the high variance among simulation runs of
the Skewed model, which results from the high variance
in individual interaction probabilities in the Skewed
model and the random assignment of ‘informed’ status
to the first 10 ants. There was no difference between
the Uniform and Changing models in the total num-
ber of interactions (Tukey’s test: Uniform–Changing:
p ¼ 0.11; figure 6b).

4. DISCUSSION

The interaction networks we observed in harvester ants
had right-skewed WD distributions: few ants engaged
in most of the interactions while most ants engaged in
few interactions. Interestingly, many other biological sys-
tems exhibit variation in connectivity, with right-skewed
distributions such as exponential, geometric or power-law
degree distributions [3,47–49]. Previous work on social
insects shows that some individuals are more interactive
than others in honeybees [20] and rock ants [52], as in
other animals [53–55]. However, little is known about
the functional importance of these highly interactive indi-
viduals and what processes lead certain individuals to
engage in more interactions than others. In harvester
ants, it appears that variation among ants in interactions
arises from the ants’ spatial behaviour.

We found that an ant’s number of interactions
depended on its time in the entrance chamber and on
colony identity. However, even after taking these fac-
tors into account, there was further variation among
ants in interaction frequency. We observed significantly
more interactions in the colony with more identified tra-
jectories. Colony size influences interaction number and
network structure in other ant species [21] and in wasps
[15]. However, we observed only two colonies, so further
work is needed to examine the relationship between
colony size, or other colony-specific characteristics,
and the network structure of harvester ants.

Interaction frequency, i.e. the number of interactions
per unit time, depended on path shape. We found that
the more convoluted an ant’s path, i.e. high turning
index, the less ground it covers, and the fewer other

ants it meets. This is consistent with the predictions
of Adler & Gordon [29] on differences in interaction fre-
quency among groups of ants, in which all ants in the
group had a particular turning index. We found further
that variation in path shape, within a group, also
accounts for the variation in interaction frequency.

Interaction frequency depended on location as well as
path shape. The spatial distribution of ant interactions
was heterogeneous throughout the entrance chamber.
Most interactions occurred at a specific, functionally
significant, location: the tube linking the entrance
chamber and the inner nest. Interaction hot-spots
were observed at this location in two laboratory nests,
suggesting that this is an important location for infor-
mation exchange. The interaction hot-spots emerged
from the ants’ walking trajectories, resulting from the
way the colonies respond to nest structure [56,57].
Further observation of nests with a different structure
is required to test the effect of nest structure on the
location of ant interactions.

The longer an ant spent in the interaction hot-spot,
the greater its rate of interactions. Previous work on
other social insects shows that differences among individ-
uals inmovement patterns can restrict them to particular
nest areas [26], and lead to differences in task performance
[22–24]. Here we found that an ant’s location can also
determinewhether it becomes one of themore interactive
individuals in the interaction network. The relationship
between an ant’s number of interactions and its spatial
behaviour is consistent with the possibility that each
ant’s interactions are Poisson-distributed, while varia-
tion among ants is gamma-distributed, leading to the
observed negative binomial WD distribution overall.
Further work is needed to determine the causes of
individual variation in movement patterns.

Other processes, in addition to spatial behaviour,
may contribute to individual variation in connectivity.
For example, a behavioural rule in which all ants toler-
ate a certain number of uninformed contacts before they
stop contacting other ants, i.e. a Bernoulli process,
would lead to a negative binomial WD distribution.
Most commonly, animals socially assort based on gen-
etic relatedness to form family groups. However, social

Uniform Changing Skewed UniformHI Uniform Changing Skewed UniformHI
0

100

200

300

400

500

600

700

800

900
(a) (b)

T
5
0

c ca b b ca a

0

2000

4000

6000

8000

10 000

12 000

to
ta

l 
in

te
ra

ct
io

n
s

Figure 6. (a) Boxplot of the T50, averaged for the 100 simulations for each of the four models. Models with different lower case
letters are significantly different (Tukey’s test p, 0.0001). (b) Boxplot of the total number of interactions, averaged for the 100
simulations of each of the four models. Models with different lower case letters are significantly different (Tukey’s test p , 0.05).

Individual variation in social networks N. Pinter-Wollman et al. 9

J. R. Soc. Interface

 on April 16, 2011rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


assortment and variation in interactions can also be
determined by reproductive state [58], dominance
rank [54,59], familiarity [60], behavioural traits [61],
task [4,37,62], body size [63] and location [64]. In ants,
the structure of interaction networks may depend on
colony age, the amount of brood and stored food or eco-
logical conditions such as seasonal changes. Further
work is needed to determine when and how the struc-
ture of the network changes. We do not know
whether the role of a highly interactive individual is
transient or whether certain individuals persist in this
role. In either case, variation among individuals in
interaction frequency may facilitate rapid information
transfer within a colony.

The speed at which information flows in a network
dictates how fast a group collectively responds to
environmental stimuli and therefore may have fitness
consequences. As illustrated, when comparing our
models, an interaction network structure with variation
among individuals in interaction frequency (Skewed
model) can expedite information flow to an extent
equivalent to an increase in the total number of inter-
actions (UniformHI model), and to a greater extent
than dynamically increasing the interaction probability
in response to environmental cues (Changing model).
Thus, variation among individuals in connectivity can
facilitate rapid information flow without increasing
the total number of interactions. Networks with vari-
ation among individuals in interaction frequency have
faster information flow than uniform networks because
the highly interactive individuals reduce the number
of interactions required to connect distant nodes
[1,3,31,32,34]. The speed of information flow was similar
in the two models (Uniform and Changing) with a Pois-
son degree distribution, in which there was no or little
variation among individuals in interaction frequency,
and a similar total number of interactions.

Most other models on information networks in
social insects [26,29,51] have not considered individual
variation in connectivity. Our model extends these
studies by introducing individual variation in inter-
action probability, and by illustrating its effect on
information flow speed. Naug & Camazine’s [25]
model examined the effect of variation on disease trans-
mission in social insects and showed, in contrast with
ours, that heterogeneity reduces the speed of disease
transmission. Their model used only two interaction
variants, one within and the other among tasks but
no further variation among individuals, producing a
modular network with uniform clusters that are loosely
connected to one another. Information, or disease, flow-
ing on such a modular network is less likely to pass
through the weak connections among clusters, and
thus is slower than a uniform network in which all con-
nections are identical.

Our simulations illustrate that variation among indi-
viduals in interaction frequency increases information
flow. The presence of unusually interactive individuals
has an effect on information flow similar to that of
two other, not mutually exclusive, well-studied pro-
cesses: increasing the total number of interactions,
and dynamically increasing interaction rate in response
to environmental cues. Both of these processes increase

the speed of information flow by increasing the rate at
which individuals interact [51,65]. Empirical studies
show that social insects increase the number of inter-
actions in response to environmental information, as
in our Changing model. Encountering a food source
increases the number of interactions in fire ants, Sole-
nopsis invicta [66,67], honeybees, Apis mellifera [68]
and rock ants, T. albipennis [52]. Increasing the total
number of interactions, as in our UniformHI model,
speeds-up the transmission of disease in bumblebees
[16]. Empirical studies are still needed to determine
how individual variation in connectivity, as in our
Skewed model, contributes to information flow in
social insects. Understanding the structure of inter-
actions among animals and the role of each individual
in these networks can shed light on how information
flows in a group and how collective behaviours arise.
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