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Numerous experimental studies have documented that injecting low salinity water into
an oil reservoir can increase the amount of oil recovered. However, due to the complexity
of the chemical interactions involved in this process, there has been much debate over the
dominant mechanism causing this effect. In order to further understand one proposed
mechanism, multicomponent ionic exchange, we study the motion of an oil slug through
a clay pore throat filled with saline water. The pore throat is modelled as a capillary
tube connecting two bulk regions of water. We assume that the surfaces of the oil and the
capillary are negatively charged and that, due to repulsion between these surfaces, the
oil slug is separated from the capillary surface by a thin film of water. Ion interactions
at the oil-water and clay-water interfaces are modelled using the law of mass action.
By using lubrication theory to describe the thin-film flow in the water layer separating
the oil from the clay surface, and the macroscopic flow through the capillary, we derive
expressions for the thickness of the wetting film, and the velocity of the oil slug, given
a pressure difference across the ends of the capillary. Numerical results show that the
thickness of the water layer and the velocity of the oil slug increase as the salinity of the
water is reduced, suggesting that this mechanism contributes to the low salinity effect.
An analytical solution is presented in the limit in which the applied pressure is small.

1. Introduction

The process of recovering oil from a reservoir traditionally comprises three stages.
When first drilling into a reservoir, the high pressure in the rock forces out hydrocarbons
in the form of gases and oils; this process is referred to as primary oil recovery. Eventually,
the naturally high pressure in the reservoir drops, and water needs to be injected to
maintain the rate at which the oil is retrieved. Typically, seawater is used for this
secondary waterflood. However, a high percentage of the oil remains undisturbed, and a
tertiary waterflood is often performed to remove some of the oil that can’t be recovered
using seawater alone. Numerous technologies have been developed for this tertiary
recovery stage, such as alkaline flooding, polymer flooding, and gas injection. This paper
is motivated by one such technology, namely low salinity waterflooding.

In low salinity waterflooding, low salinity water, rather than seawater, is injected
into the reservoir. Provided certain conditions are met, such as polar compounds being
present in the oil, clay compounds being present in the reservoir, and divalent ions being
present in the formation water (water naturally residing in the oil reservoir before any
waterflooding has taken place), a low salinity waterflood results in additional oil being
recovered (Austad et al. 2010). While the requirements for low salinity oil recovery to be
effective are relatively well known, the dominant causal mechanism is not well understood,
and a number of potential mechanisms have been proposed in the literature.

Morrow (1990) suggests that the presence of lower salinity water causes the electrical
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Figure 1: Schematic diagram of the multicomponent ionic exchange (MIE) mechanism.

double layer between the clay platelets present in the reservoir to expand and release
fines. These fines act as a surfactant, and alter the permeability of the reservoir. McGuire
et al. (2005) suggest that, due to the increase in pH during a low salinity injection, the
interfacial tension is reduced, leading to a wettability alteration. As a secondary effect,
they claim that the carboxylic compounds in the oil are desorbed from the clay as a
result of the pH increase.

Lager et al. (2008) propose an alternative mechanism, known as Multicomponent Ionic
Exchange (MIE). In this mechanism, divalent cations residing in the formation water
attract oil to the clay by forming a bridge across the thin film of water separating the oil
and the clay, binding the negatively charged carboxylate ions on the oil surface to the
negatively charged exchange sites on the clay surface. Lager et al. (2008) assert that, as
the concentration of divalent ions in the injected water is decreased, the ions attracting
the oil to the clay migrate into the bulk liquid, and are replaced by monovalent ions,
allowing the release of oil. A schematic diagram of the MIE process is shown in figure 1.
Additionally, they claim that the thin film of water between the oil and clay expands in
the low salinity regime, due to electric double layer expansion, reducing the attraction
of the oil to the clay surface, and thus assisting the release of oil.

Numerous experimental studies have been undertaken to distinguish between these
different mechanisms. The majority of these are core-scale experiments, in which a
sample of reservoir rock, a ‘core’, approximately 10 cm × 4 cm2, is waterflooded with
brine (Jadhunandan 1990; Yildiz 1995; Jadhunandan & Morrow 1991, 1995; Yildiz &
Morrow 1996; Ligthelm et al. 2009; Lager et al. 2008; RezaeiDoust et al. 2011). By
studying the amount of oil produced during core experiments, and the composition of
the brine produced at the outlet, for different oil, rock, and inlet brine compositions,
these experiments provide a good understanding of the requirements for effective low
salinity oil recovery.

By performing core-scale experiments, Lager et al. (2008) observe that a greater oil
recovery can be achieved without any increase in the number of fines produced, or any
significant permeability alteration, and thus they assert that fines migration is unlikely
to be the dominant mechanism. They also dispute the pH increase mechanism, as low
salinity effects were observed in experiments in which the pH only showed a slight
increase.

As an alternative to a core experiment, Berg et al. (2010) pass water over oil on a clay
surface and demonstrate the weakening of the adhesion forces between oil droplets and
a clay surface in the low salinity regime. They observe that the oil droplets lift from the
clay surface as the salinity of the surrounding fluid reduces. These results support the
MIE mechanism proposed by Lager et al. (2008).

A key component in the MIE mechanism is the expansion of the thin water film between
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the oil and clay. Lee et al. (2010) used Small Angle Neutron Scattering to measure the
thickness of the film, h∗, for various salinities, and found that h∗ varies from 0.9 nm in
the high salinity regime to 1.3 nm in the low salinity regime. These results support the
MIE mechanism by demonstrating the increase in the film thickness as a result of double
layer expansion and the weakening of adhesion forces at the oil-clay interface during a
low salinity waterflood.

Theoretical predictions for the thickness of the thin layer of water between the clay and
the oil have been made by balancing the capillary pressure and electro-osmotic pressure
(Kovscek et al. 1993; Hirasaki 1991; Wong et al. 1992). These forces are derived from the
Derjaguin-Verwey-Landau-Overbeek (DVLO) theory of colloidal stability (Derjaguin &
Landau 1941; Verwey & Overbeek 1948), in which the disjoining pressure, Π, is taken
to be the same as between two flat plates (Ben-Yaakov & Andelman 2010; McCormack
et al. 1995; Ohshima 1974a,b; Parsegian & Gingell 1972). However, there does not appear
to be a systematic derivation of the height at which the oil lies above the clay when
the oil-water interface is treated as a free surface. Further, the expressions often stated
for the film thickness are for static models (Hirasaki 1991; Kovscek et al. 1993; Wong
et al. 1992; Kuchin et al. 2014a,b); however, as can be seen by studing the motion of
bubbles through capillary tubes (Bretherton 1961; Wong et al. 1995a,b), or by studying
the spreading of droplets on surfaces (Tanner 1979), the film thickness below a moving
droplet is dependent on the velocity at which the droplet moves. Hence these static
models are of limited use when studying oil motion through a pore space.

The motion of a fluid through a prewetted capillary in the presence of a disjoining
pressure has been previously studied, for example, in Egorov et al. (2003); Starov et al.
(1994). However, these authors do not include the electrostatic effects of charged surfaces.
On the other hand, Kuchin et al. (2014a,b) study the profile of a capillary meniscus with
the inclusion of electrostatic effects. However, in their model the meniscus is static, and
so they do not consider Bretherton effects which will influence the motion of oil.

In this paper, we study the paradigm problem of the two-dimensional steady motion
of a charged oil slug in a charged pore throat, where the surrounding water contains
both monovalent and divalent ions. Our aim is to determine the speed at which an oil
slug moves through a pore throat as a function of the salinity of the surrounding brine,
assuming that the MIE reactions occur on the surfaces of the oil and the pore. An increase
in the velocity of oil in a reservoir can lead to a greater oil recovery, both per unit time
and in total, since the faster moving oil in the low salinity region catches up with the
slower moving oil ahead of the low salinity front. This results in increased connectivity
of the oil phase which leads to a reduction in the residual oil. Thus, by studying this
problem we can determine whether the MIE mechanism is likely to be responsible for the
increased oil recovery observed during a low salinity waterflood. We note though that
flow through a porous structure also depends on the pressure required to drive the oil
droplets into the throat from the pore body. Cobos et al. (2009) studied the flow of two
oil-in-water emulsions through a converging-diverging capillary tube. They found that,
for emulsions in which the droplet size is larger than the narrowest section of the capillary,
the flow is dominated by a blocking mechanism. Larger scale models (over many pores)
of the MIE mechanism would therefore need to include the effect of entry pressure.

In section 2, we will present a mathematical model to describe the motion of the oil
slug, which includes a simple model for the reactions occurring between the ions and
the oil and clay surfaces. The MIE reactions affect the surface charge densities of the
oil-water and clay-water interfaces which, in turn, affect the electrical component of the
force acting between them. In section 3, we will find the electric potential inside the
capillary as a function of the surface charge densities, as this is needed to determine how
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the thickness of the water film separating the oil slug from the clay surface depends on
the salinity of the surrounding brine.

In section 4, we will determine the film thickness between the oil and clay surfaces
as a function of the surface charge densities, and we will also determine the radii of
curvature of the front and rear ends of the oil slug. We will then study the macroscopic
flow problem to derive an expression for the velocity at which the oil slug moves given
a pressure difference along the length of the pore throat. On this scale, the water film
becomes an effective partial slip boundary condition on the oil-clay interface, with the
slip length determined by the film thickness. The front and rear menisci radii affect the
pressure drop felt by the oil slug, and thus the speed at which it moves through the pore.
We will solve the model assuming that the ratio of the pressure drop to the disjoining
pressure due to the charged surfaces is O(1), and we will compare the results with the
asymptotic solution in the limit in which this term tends to zero. Finally, in section 5,
we will draw together our findings and discuss their application.

2. Model formulation

We wish to model the motion of an oil slug through a clay pore throat filled with
saline water, subject to a constant pressure difference, P , across the ends of the pore.
We suppose that the pore throat can be represented by a two-dimensional capillary tube
of length L and height 2R, and that at each end of the capillary there is a bulk region
of water. We label the oil region by Ωo, the surrounding water region by Ωw, and the
clay regions bounding either side of the capillary tube by Ωc, as shown in figure 2. We
assume that there is a thin film of water separating the oil from the clay surface (due
to electrostatic and viscous effects) along the upper and lower surfaces of the oil slug.
The thickness of this water layer is unknown a priori ; however, we assume that it is thin
enough such that, from a macroscopic perspective, there appears to be contact between
the oil and the clay. We denote the length of the oil droplet, measured from the apparent
contact point of the rear meniscus to the apparent contact point of the front meniscus,
by Lo, and we assume that Lo = O(L). Taking the origin of our coordinate system to be
the lower left corner of the tube, we suppose that the rear apparent contact point has
horizontal coordinate xc, with the extremal positions of the front and rear menisci being
xf and xr, as shown in figure 3.

In order to model the effect of the salinity of the water on the motion of the oil
slug, we assume that the water phase contains solvated positively and negatively charged
ions, with the concentrations of the monovalent and divalent species being c± and c2±

respectively. In order to model ion exchange mechanisms on the capillary wall, and on
the oil-water interface, we assume that these surfaces contain a number of negatively
charged exchange sites at which reactions are allowed to occur.

2.1. Governing equations

We model the oil and water using the Navier-Stokes equations. Due to the presence of
the ions, the net charge density is q(c+ − c− + 2c2+ − 2c2−) in the water phase, where q
is the (absolute) charge of an electron. Hence, the electric field, −∇φ, induces a force on
the water, and we have to include this body force in the equations for the water phase
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Figure 2: Schematic diagram of the macroscopic motion of an oil slug through a capillary
between two bulk phases of water.
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Figure 3: Schematic diagram of the capillary problem. The thickness of the water layer
below the oil slug has been exaggerated for illustrative purposes.

(Waghmare & Mitra 2008; Yang et al. 2001). Thus we write

∇ · uw = 0, in Ωw, (2.1)

ρw
Duw
Dt

= −∇pw + µw∇2uw − q(c+ − c− + 2c2+ − 2c2−)∇φ in Ωw, (2.2)

∇ · uo = 0, in Ωo, (2.3)

ρo
Duo
Dt

= −∇po + µo∇2uo, in Ωo, (2.4)

where uw = (uw, ww) is the velocity in the water phase, uo = (uo, wo) is the velocity
in the oil phase, pw, ρw, and µw are the pressure, density, and viscosity of the water,
respectively, while po, ρo, and µo are the pressure, density, and viscosity of the oil,
respectively, φ is the electric potential, and D

Dt = ∂
∂t + u · ∇ is the advective derivative.
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The ion concentrations are governed by the Nernst-Planck (Drift-Diffusion) equations,

∂c±,2±

∂t
= −∇ · J±,2±, in Ωw, (2.5)

J± = −
(
D±∇c± − uwc

± ±D± q

kBT
c±∇φ

)
, in Ωw, (2.6)

J2± = −
(
D2±∇c2± − uwc

2± ±D2± 2q

kBT
c2±∇φ

)
, in Ωw, (2.7)

where J±, J2±, D±, D2±, kB , and T denote the flux of the monovalent and divalent ions,
the diffusive coefficients of the monovalent and divalent ions, Boltzmann’s constant, and
the temperature, respectively. These are coupled to Poisson’s equation, which determines
the electric potential for a given charge distribution, which reads

∇2φ =

{
− q
εw

(c+ − c− + 2c2+ − 2c2−) in Ωw,

0 in Ωo ∪Ωc,
(2.8)

where εw is the permittivity of the water phase. Note that, although we only need to solve
the fluid equations inside the capillary, we need to solve Poisson’s equation everywhere
in order to determine φ.

2.2. Boundary conditions

Since the capillary is connected to two bulk regions of water, we assume that the
concentration of monovalent ions is the same at either end of the tube, and make an
equivalent assumption for the divalent ions. We denote these concentrations by c1∞ and
c2∞, respectively. For the electrical boundary condition, we suppose that the net current
over the cross section of the capillary at the inlet is zero (Cohen & Radke 1991; Erickson
& Li 2001). In addition, we fix the arbitrary constant in φ by setting φ = 0 at the
inlet. We prescribe a pressure drop of size P along the tube. Thus we have the boundary
conditions

c± = c1∞, c2± = c2∞, at x = 0, L, (2.9)∫ R

0

ex ·
(
J+ − J− + 2J2+ − 2J2−) dz = 0, at x = 0, (2.10)

pw = P, at x = 0, (2.11)

pw = 0, at x = L, (2.12)

where ex is the unit vector in the x direction, the direction of the applied pressure drop.
We restrict our attention to the lower half of the capillary by imposing symmetry

conditions on the surface z = R, which read

∂uw
∂z

=
∂uo
∂z

= ww = wo =
∂pw
∂z

=
∂po
∂z

=
∂c±,2±

∂z
=
∂φ

∂z
= 0, on z = R. (2.13)

One of the advantages of considering only the lower half plane is that the oil-water
interface becomes a single valued function in x. We denote this interface by z = h(x, t).
On the capillary wall we impose the no slip condition

uw = 0, at z = 0, (2.14)

and on z = h we impose continuity of velocity across the interface, the kinematic
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condition, and a balance of normal and tangential stresses. These conditions read

uw = uo, at z = h, (2.16)

ww = ht + uwhx, at z = h, (2.17)

n · Tw · t = n · To · t, at z = h, (2.18)

n · Tw · n = n · To · n +
γhxx

(1 + h2
x)3/2

, at z = h, (2.19)

where n is the normal vector to the surface, pointing out of the oil, t is the tangential
vector to the surface, pointing in the counter-clockwise direction relative to the oil, γ is
the (constant) surface tension of the oil-water interface, and Tw and To denote the stress
tensors for the water and oil respectively, given by

Tw = −pwI + µw
[
∇uw + (∇uw)T

]
+ εw(∇φ)(∇φ)T − εw

2
|∇φ|2I , (2.20)

To = −poI + µo
[
∇uo + (∇uo)T

]
+ εo(∇φ)(∇φ)T − εo

2
|∇φ|2I , (2.21)

where the last two terms in (2.20) and (2.21) correspond to the Maxwell stress tensor
(Vancauwenberghe et al. 2013; Xiao et al. 2013).

To determine the boundary conditions for the ion concentrations, we need to consider
the reactions occuring at the clay-water and oil-water interfaces. We model the reactions
occuring at the clay-water interface by supposing that there are a number of negatively
charged exchange sites on the clay surface which can either be occupied by a monovalent
cation to create a neutrally charged site, a divalent cation to create a positively charged
site, or remain unoccupied. We let C+ and C2+ denote the monovalent and divalent
cations, and Sc and S+

c denote sites on the surface occupied by monovalent and divalent
cations respectively. The subscript c denotes ‘clay’. We suppose the following reactions†
occur on the surface,

(hole)− + C+
K1

cf−−−⇀↽−−−
K1

cr

Sc, (hole)− + C2+
K2

cf−−−⇀↽−−−
K2

cr

S+
c . (2.22)

The first equation describes the adsorption of monovalent ions to create neutrally charged
sites, and the second describes the adsorption of divalent ions to create positively charged
sites. The rate parameters Ki

cf
and Ki

cr are the forward and reverse reaction rates,
repectively, for the reaction involving the ion of valence i, which we take to be constant.
We let sc and s+

c denote the concentrations of adsorbed monovalent and divalent cations
respectively, and let s∗c be the saturation concentration, which we assume is constant
along the capillary wall. Using the principle of mass action, we obtain the following
equations on the capillary surface,

∂sc
∂t

= K1
cf c

+
∣∣
z=0

(s∗c−sc−s+c )−K1
crsc,

∂s+c
∂t

= K2
cf c

2+
∣∣
z=0

(s∗c−sc−s+c )−K2
crs

+
c . (2.23)

Balancing the flux of positive ions to the surface with the rate at which ions react with
the surface sites yields the boundary conditions

D+

(
∂c+

∂z
+

q

kBT
c+
∂φ

∂z

)∣∣∣∣
z=0

=
∂sc
∂t

, D2+

(
∂c2+

∂z
+

2q

kBT
c2+

∂φ

∂z

)∣∣∣∣
z=0

=
∂s+c
∂t

. (2.24)

By representing carboxylic acid groups on the oil surface by negatively charged exchange
sites, and assuming that similar reactions occur on the oil-water interface, we derive a

† Note that, in order to model the effects of different reaction processes, such as pH variation,
we can replace equations (2.22) and apply the same methodology.
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similar set of boundary conditions on the surface of the oil,

Dso
Dt

= K1
of c

+
∣∣
z=h

(s∗o − so − s+o )−K1
orso,

Ds+o
Dt

= K2
of c

2+
∣∣
z=h

(s∗o − so − s+o )−K2
ors

+
o ,

(2.25)

−n · J+
∣∣
z=h

=
Dso
Dt

, −n · J2+
∣∣
z=h

=
Ds+o
Dt

, (2.26)

where the subscript o denotes ‘oil’. We note that, since the interface at z = 0 is stationary,
partial derivatives are used in (2.24), whereas the convective derivative is required in
(2.26). We assume that s∗o is constant along the oil-water interface. As the negatively
charged ions do not react with the surfaces, we have the zero flux conditions,

n · J−
∣∣
z=0,h

= 0, n · J2−∣∣
z=0,h

= 0. (2.27)

Equations (2.23) – (2.27) are the boundary conditions for the ion concentrations at
the clay-water interface, and the oil-water interface. As the surface concentration of
negatively charged, unoccupied sites is given by s∗c − sc− s+

c on the clay-water interface,
and s∗o − so − s+

o on the oil-water interface, the surface charge densities are given by
σc = q(2s+

c +sc−s∗c), and σo = q(2s+
o +so−s∗o), for the clay and oil surfaces respectively.

Due to the charged surfaces, there is a discontinuity in the electric field across the
clay-water and oil-water interfaces. We impose that the electric field is zero at infinity,
since we assume that the system is globally neutral. These conditions read

[εφz]
z=0+

z=0− = σc, [εn ·∇φ]
z=h+

z=h− = σo, (2.28)

∇φ→ 0 as x2 + z2 →∞, (2.29)

where the permittivity is given by ε = εw in the water phase, ε = εo in the oil phase,
and ε = εc in the clay phase.

Finally, we also assume that the electric potential is continuous across these interfaces,

[φ]
z=0+

z=0− = [φ]
z=h+

z=h− = 0. (2.30)

2.2.1. Capturing salinity variations

In order to study the effect of varying the concentrations of monovalent and divalent
ions simultaneously, since this is typical for waterflood experiments, we introduce the
parameter τ such that

c1,2∞ = c1,2low + 10τ
(
c1,2high − c

1,2
low

)
, (2.31)

where c1,2low are the concentration of monovalent and divalent ions, respectively, in the

low salinity regime, and c1,2high are the concentration of monovalent and divalent ions,
respectively, in the high salinity regime. By varying τ from −∞ to 0 we can study the
model continuously between the low salinity and high salinity regimes using a single
parameter. We choose a power law for τ as typically the salinities span multiple orders
of magnitude.
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2.3. Non-dimensionalisation

We non-dimensionalise the problem using the following scalings,

x = Lx̂, z = Rẑ, h = Rĥ,

uw = Uûw, uo = Uûo, ww = ε1Uŵw, wo = ε1Uŵo,

pw = P p̂w, po = P p̂o, t =
L

U
t̂,

c± = c1low ĉ
±, c2± = c2low ĉ

2±, φ =
kBT

q
φ̂, ε = εwε̂,

sc = s∗c ŝc, s+
c = s∗c ŝ

+
c , so = s∗oŝo, s+

o = s∗oŝ
+
o ,

(2.32)

where we choose U = PR2

µwL
in order to get a balance in (2.2), and ε1 = R/L is the aspect

ratio of the capillary tube. After substituting in these variables, and dropping the hats,
the dimensionless equations read

ε21Re
Duw
Dt

= −pwx +
(
ε21uwxx + uwzz

)
− ξ

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φx,

in Ωw, (2.33)

ε41Re
Dww
Dt

= −pwz + ε21(ε21wwxx + wwzz)

− ξ

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φz,

in Ωw, (2.34)

uwx + wwz = 0 in Ωw, (2.35)

ε21ρ
∗Re

Duo
Dt

= −pox + µ∗
(
ε21uoxx + uozz

)
, in Ωo, (2.36)

ε41ρ
∗Re

Dwo
Dt

= −poz + ε21µ
∗ (ε21woxx + wozz

)
, in Ωo, (2.37)

uox + woz = 0, in Ωo, (2.38)

ε21Pe±
Dc±

Dt
= ε21

(
c±x ± c±φx

)
x

+
(
c±z ± c±φz

)
z
, in Ωw (2.39)

ε21Pe2±Dc2±

Dt
= ε21

(
c2±x ± 2c2±φx

)
x

+
(
c2±z ± 2c2±φz

)
z
, in Ωw, (2.40)

δξ
(
ε21φxx + φzz

)
= −

(
c+ − c− + 2c∗c2+ − 2c∗c2−

)
in Ωw, (2.41)

ε21φxx + φzz = 0 in Ωo ∪Ωc, (2.42)

ε = 1 in Ωw, ε = ε1 in Ωo, ε = ε2 in Ωc, (2.43)

The dimensionless parameters, summarised in table 1, are as follows: Re = ρwPR
2/µ2

w is
the Reynolds number, Pe±,2± = PR2/D±,2±µw are the Péclet numbers for the different
ionic species, δ = s∗c/c

1
lowR is the ratio of the adsorption depth to the radius of the

capillary, P ∗ = εwP/q
2s∗c

2 is the ratio of the pressure drop across the capillary to the
electrostatic pressure due to the charged surfaces, ξ = εwkBT/q

2s∗cR is the ratio of the
thermal voltage to the potential due to the charged surfaces, ρ∗ = ρo/ρw is the ratio
of the density of the oil to the density of the water, µ∗ = µo/µw is the ratio of the
viscosity of the oil to the viscosity of the water, and c∗ = c2low/c

1
low is the ratio of the

bulk concentration of divalent ions to the bulk concentration of monovalent ions in the
low salinity regime. The dimensionless permittivity is ε1 = εo/εw in the oil phase, and
ε2 = εc/εw in the clay phase. Equations (2.33) – (2.43) are subject to the axial boundary
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Parameter Expression Value

ε1 R/L 0.1
ε2 λ/R 1.5× 10−3 − 2× 10−4

Re ρwPR
2/µ2

w 5.7× 10−5

Pe±,2± PR2/D±,2±µw 0.025− 0.064
δ s∗c/c

1
lowR 10−3

P ∗ εwP/q
2s∗c

2 9× 10−6

ξ εwkBT/q
2s∗cR 0.01

ρ∗ ρo/ρw 0.85
µ∗ µo/µw 11
Λ1,2
c PR2/µwL

2K1,2
cr � 1

Λ1,2
o PR2/µwL

2K1,2
or � 1

K1
c Kc

1
fc

1
low/Kc

1
r 1.7× 10−2

K2
c Kc

2
fc

2
low/Kc

2
r 0.99

K1
o Ko

1
fc

1
low/Ko

1
r 0.01

K2
o Ko

2
fc

2
low/Ko

2
r 1.5× 10−3

Γ 2γεwR/L
2q2s∗c

2 0.08
s∗ s∗o/s

∗
c 75

c∗ c2low/c
1
low 0.3

c̄1 c1high/c
1
low 100

c̄2 c2high/c
2
low 18

L∗o Lo/L 0.5

Table 1: Dimensionless parameters defined in sections 2.3, 3.3, and 4.1.

conditions

pw = 1, c±,2± = 1 + 10τ
(
c̄1,2 − 1

)
, at x = 0, (2.44)

pw = 0, c±,2± = 1 + 10τ
(
c̄1,2 − 1

)
, at x = 1, (2.45)

as well as the zero net current constraint∫ 1

0

{
c+x + c+φx

Pe+ − c−x − c−φx
Pe−

+ 2c∗
[
c2+
x + 2c2+φx

Pe2+ − c2−x − 2c2−φx

Pe2−

]}
dz = 0, (2.46)

at x = 0, where we have substituted (2.6) and (2.7). We also have that,

uw = 0, ξ [εφz]
z=0+

z=0− = 2s+
c + sc − 1, [φ]

z=0+

z=0− = 0,

Λ1
c

∂sc
∂t

= K1
cc

+(1− sc − s+
c )− sc,

Λ2
c

∂s+
c

∂t
= K2

cc
2+(1− sc − s+

c )− s+
c ,

c+z + c+φz = ε21δPe+ ∂sc
∂t

, c−z − c−φz = 0,

c2+
z + 2c2+φz =

ε21δPe2+

c∗
∂s+
c

∂t
, c2−z − 2c2−φz = 0,


z = 0, (2.47)
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uw = uo ht = ww − uwhx, [φ]
z=h+

z=h− = 0,

ξ

(1 + ε21h
2
x)1/2

[
ε
(
φz − ε21hxφx

)]z=h+

z=h−
= s∗(2s+

o + so − 1),

Λ1
o

Dso
Dt

= K1
oc

+(1− so − s+
o )− so,

Λ2
o

Ds+
o

Dt
= K2

oc
2+(1− so − s+

o )− s+
o ,

c+z + c+φz − ε21hx
(
c+x + c+φx

)
= ε21Pe+

(
hxuwc

+ − wwc+ − δs∗
Dso
Dt

)
,

c2+
z + 2c2+φz − ε21hx

(
c2+
x + 2c2+φx

)
= ε21Pe2+

(
hxuwc

2+ − wwc2+ − δs∗

c∗
Ds+

o

Dt

)
,

c−z − c−φz − ε21hx
(
c−x − c−φx

)
= ε21Pe−

(
hxuwc

− − wwc−
)
,

c2−z − 2c2−φz − ε21hx
(
c2−x − 2c2−φx

)
= ε21Pe2− (hxuwc2− − wwc2−) ,



z = h, (2.48)

µ∗
[
(uoz + ε1woz)(1− ε21h2

x) + 2ε21hx(woz − uox)
]

= (uwz + ε1wwz)(1− ε21h2
x)

+ 2ε21hx(wwz − uwx)− ε1
P ∗
[
hx(ε21φ

2
x − φ2

z) + (1− ε21h2
x)φxφz

]z=h+

z=h−
, on z = h,

(2.49)

ε21µ
∗
[
woz − hxuoz + ε21hx(hxuox − wox)

]
1 + ε21h

2
x

= ε21

[
wwz − hxuwz + ε21hx(hxuwx − wwx)

]
1 + ε21h

2
x

+
1

2
(po−pw)+

ξ2

P ∗

[
ε21hxφxφz
1 + ε21h

2
x

+
1

4
(ε21φ

2
x − φ2

z)

]z=h+

z=h−
− Γhxx

4P ∗(1 + ε21h
2
x)3/2

, on z = h,

(2.50)

uwz = uoz = ww = wo = pwz = poz = c±z = c2±z = φz = 0, at z = 1, (2.51)

∇φ→ 0, as x2 + z2 →∞, (2.52)

where we have substituted in the expressions for the stress tensors, (2.20) and (2.21), into
the boundary conditions on the oil-water interface, (2.18) and (2.19), to obtain (2.49)
and (2.50).

The ratios of the ion concentrations in the high-salinity and low-salinity regimes are
given by c̄1,2 = c1,2high/c

1,2
low, the ratios of the timescales of the surface reactions to the flow

timescale are given by Λ1,2
c = PR2/µwL

2K1,2
cr and Λ1,2

o = PR2/µwL
2K1,2

or , the dimen-

sionless equilibrium constants are K1,2
c = Kc

1,2
f c1,2low/Kc

1,2
r and K1,2

o = Ko
1,2
f c1,2low/Ko

1,2
r ,

the ratio of the surface tension forces to the electrostatic forces is Γ = 2γεwR/L
2q2s∗c

2

(we note that 2ε31P
∗/Γ is the capillary number), and s∗ = s∗o/s

∗
c is the ratio of the

saturation concentration of the oil surface to the saturation concentration of the clay
surface.

Austad et al. (2010) performed experiments using brine with low salinity con-
centrations c1low ≈ 17 mol m−3, c2low ≈ 5 mol m−3, and high salinity concentrations
c1high ≈ 1.7× 103 mol m−3, c2high ≈ 90 mol m−3; hence we take these to be our low



12 Z. M. Wilmott, C. J. Breward, S. J. Chapman

salinity and high salinity regimes, respectively. In a given sample of reservoir rock there
will be a range of pore throat sizes. Nelson (2009) studies the distribution of these throat
sizes for various rocks, and for the purposes of this paper we assume R = 1 µm, which is
typical for a sandstone reservoir. The grain size, and hence the length of a typical pore
throat, is typically an order of magnitude larger, so we assume that L = 10 µm. For the
oil viscosity, density, and interfacial tension, we use values determined by Buckley (1996)
for a range of oil samples. Typically, γ ≈ 0.02 N m−1, with some variation depending on
the pH. The viscosities of the oils used by Buckley ranged from 0.006−0.035 kg m−1 s−1,
so we choose µo = 0.01 kg m−1 s−1. The oil densities were in the range 840−900 kg m−3,
so we choose ρo = 850 kg m−3. The viscosity of water is 8.9× 10−4 kg m−1 s−1, and the
density of water is in the range 1000 kg m−3 (pure water) to 1027 kg m−3 (seawater),
so we choose ρw = 1000 kg m−3 for simplicity. Injection rates used in core experiments
vary considerably (Jadhunandan 1990). For the purposes of this paper, we assume that
the flow velocity within the pores of a reservoir is Vp = 1.5× 10−5 m s−1 (≈ 4 ft day−1).
We estimate the pressure using Darcy’s law ψVp = KP/µL, where K is the permeability
of the reservoir rock, and ψ is the porosity. For K/ψ = 3000 mD (Ligthelm et al. 2009),
this gives P ≈ 0.045 N m−2.

Lager et al. (2008) performed core scale experiments at 102◦C, so we choose
T = 375K. Using εw = εwrε0, where εwr ≈ 56 (Malmberg & Maryott 1956) and
ε0 ≈ 8.9× 10−12 C2J−1 m−1 are the relative permittivity of water at 100◦C and the
permittivity of free space, respectively, we find that εw ≈ 5 × 10−10 C2 J−1 m−1. We
take D+ ≈ 1.3 × 10−9 m2 s−1, D− ≈ 2 × 10−9 m2 s−1, D2+ ≈ 7.9 × 10−10 m2 s−1, and
D2− ≈ 1.1× 10−9 m2 s−1, as these are the mass diffusivities of sodium, chloride, sulfate,
and calcium ions, respectively (Samson et al. 2003). We use the standard values for
q ≈ 1.6× 10−19 C and kB ≈ 1.4× 10−23 J K−1.

Fletcher & Sposito (1989) study the equilibrium constants for a sample of
montmorillonite. From these results, we estimate K1

cf
/K1

cr = 10−3 m3 mol−1 and

K2
cf
/K2

cr = 0.2 m3 mol−1. The ion exchange reactions occurring in the MIE mechanism
involve the dissociation and recombination of monovalent and divalent cations with
carboxylic acid groups on the oil surface. We assume that the monovalent and divalent
cations are sodium and calcium, respectively, and that the carboxylic acid on the
oil surface is acetic acid. The pKa values of sodium acetate and calcium acetate are
approximately −0.2 (Fournier et al. 1998) and −0.53 (Joseph 1946) respectively, so
we take the equilibrium constants for the reactions occurring on the oil surface to be
K1
of
/K1

or ≈ 6 × 10−4 m3 mol−1 and K2
of
/K2

or ≈ 3 × 10−4 m3 mol−1. Li & Xu (2008)
studied the surface charge densities for different clays for various values of the pH of
the surrounding fluid. For a binary system containing kaolinite, a typical maximum
surface charge is approximately σmaxc = 5 × 10−4 C m−2. Hence, by supposing that
σmaxc ≈ qs∗c , we estimate that s∗c ≈ 1016 m−2. Lewis (1937) studies the maximum charge
at an oil-water interface, from which we estimate that the saturation concentration
is approximately s∗o ≈ 7.5 × 1017 m−2. We present a summary of the dimensional
parameters in the model in table 2.

Using these values, we find that ε1 ≈ 0.1 � 1. The Reynolds number is
Re ≈ 5.7× 10−5 � 1, and therefore we neglect the inertial terms in the Navier-
Stokes equations. The Péclet numbers are Pe+ ≈ 0.039, Pe− ≈ 0.025, Pe2+ ≈ 0.064,
Pe2− ≈ 0.046; we will assume that these are all O(1) for generality. We also assume
that the ions react quickly at the surfaces by comparison to the flow timescale so that
instantaneous adsorption occurs, that is, we assume that Λ1,2

c � 1 and Λ1,2
o � 1.

We find that the ratio of the adsorption depth to the capillary radius is given by
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Parameter Value Reference/Notes

c1low 17 mol m−3 Austad et al. (2010)
c1high 1.7× 103 mol m−3 Austad et al. (2010)
c2low 5 mol m−3 Austad et al. (2010)
c2high 90 mol m−3 Austad et al. (2010)
R 1 µm Nelson (2009)
L 10 µm Nelson (2009)

λ 1.5× 10−9 − 2× 10−10 m λ =

(
εwkBT

2(c1∞+4c2∞)q2

) 1
2

γ 0.02 J m−2 Buckley (1996)
µo 0.01 kg m−1 s−1 Buckley (1996)
µw 8.9× 10−4 kg m−1 s−1 Buckley (1996)
ρo 850 kg m−3 Buckley (1996)
ρw 1000 kg m−3 Buckley (1996)
P 0.045 N m−2 P ∼ µwLVp/K
T 375◦K Lager et al. (2008)

D±,2± 7.9× 10−10 − 2× 10−9 m2 s−1 Samson et al. (2003)
s∗c 1016 m−2 Li & Xu (2008)
s∗o 7.5× 1017 m−2 Lewis (1937)

K1
cf /K

1
cr 10−3 m3 mol−1 Fletcher & Sposito (1989)

K2
cf /K

2
cr 0.2 m3 mol−1 Fletcher & Sposito (1989)

K1
of /K

1
or 6× 10−4 m3 mol−1 Fournier et al. (1998)

K2
of /K

2
or 3× 10−4 m3 mol−1 Joseph (1946)

εwr 56 Malmberg & Maryott (1956)
ε0 8.9× 10−12 C2J−1 m−1

q 1.6× 10−19 C
kB 1.4× 10−23 J K−1

Table 2: Dimensional parameters

ξ ≈ 0.01 and the ratio of the thermal voltage to the potential due to charged surfaces is
δ ≈ 10−3. Thus we suppose that δ � ξ � 1. We find that Γ ≈ 0.08, which we take to
be O(1) for generality, and P ∗ ≈ 9× 10−6. We will find later that viscous effects become
important for P ∗ ≈ 10−5, hence we will not neglect terms proportional to P ∗ at this
stage. In section 4.5 we will consider the limit P ∗ → 0. The values of the dimensionless
parameters in the model are presented in table 1.

Neglecting terms proportional to ε1, Re, Λ1,2
c , and Λ1,2

o , equations (2.33) – (2.52) read

uwzz = pwx +
ξ

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φx,

pwz =
ξ

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φz,

uwx + wwz = 0,

 in Ωw, (2.53)

µ∗uozz = pox, poz = 0, uox + woz = 0, in Ωo, (2.54)(
c±z ± c±φz

)
z

= 0,
(
c2±z ± 2c2±φz

)
z

= 0, in Ωw, (2.55)

δξφzz =

{
−
(
c+ − c− + 2c∗c2+ − 2c∗c2−

)
in Ωw,

0 in Ωo ∪Ωc,
(2.56)
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ε = 1 in Ωw, ε = ε1 in Ωo, ε = ε2 in Ωc, (2.57)

subject to

pw = 1, c±,2± = 1 + 10τ
(
c̄1,2 − 1

)
, x = 0, (2.58)

pw = 0, c±,2± = 1 + 10τ
(
c̄1,2 − 1

)
, x = 1, (2.59)

∫ 1

0

{
c+x + c+φx

Pe+ − c−x − c−φx
Pe−

+2c∗
[
c2+
x + 2c2+φx

Pe2+ − c2−x − 2c2−φx

Pe2−

]}
dz = 0, x = 0, (2.60)

uw = 0, ξ [εφz]
z=0+

z=0− = 2s+
c + sc − 1, [φ]

z=0+

z=0− = 0,

K1
cc

+(1− sc − s+
c )− sc = 0,

K2
cc

2+(1− sc − s+
c )− s+

c = 0,

c±z ± c±φz = 0, c2±z ± 2c2±φz = 0,

 z = 0, (2.61)

uw = uo, ξ [εφz]
+
− = s∗(2s+

o + so − 1), [φ]
z=h+

z=h− = 0,

K1
oc

+(1− so − s+
o )− so = 0,

K2
oc

2+(1− so − s+
o )− s+

o = 0,

c±z ± c±φz = 0, c2±z ± 2c2±φz = 0,

ht = ww − uwhx, µ∗uoz = uwz,

pw = po −
ξ2

2P ∗
[
φ2
z

]z=h+

z=h−
− Γhxx

2P ∗
,


z = h, (2.62)

uwz = uoz = ww = wo = pwz = poz = c±z = c2±z = φz = 0, z = 1, (2.63)

∇φ→ 0, x2 + z2 →∞. (2.64)

Taking the limit ε1 → 0 has resulted in a system which is not closed: the extra information
we need arises from solvability conditions on higher-order terms in the expansion when
substituted into (2.39) and (2.40). To find these conditions, we separate the water phase
into five regions shown in figure 3; the bulk region of water to the left of the oil slug
(region I), the thin layer of water separating the oil from the capillary walls (region II),
the bulk region of water to the right of the oil slug (region III), and the meniscus regions
at each end of the oil slug (regions IV and V). We integrate (2.39) and (2.40), and impose
(2.47), (2.48), and (2.51) to get

Pe+

∫ 1

0

Dc+

Dt
dz =

∂

∂x

∫ 1

0

(
∂c+

∂x
+ c+

∂φ

∂x

)
dz − δPe+ ∂sc

∂t
, (2.65)

Pe2+

∫ 1

0

Dc2+

Dt
dz =

∂

∂x

∫ 1

0

(
∂c2+

∂x
+ 2c2+ ∂φ

∂x

)
dz − δPe2+

c∗
∂s+
c

∂t
, (2.66)

Pek−
∫ 1

0

Dck−

Dt
dz =

∂

∂x

∫ 1

0

(
∂ck−

∂x
− kck− ∂φ

∂x

)
dz, for k = 1, 2, (2.67)
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in regions I and III, and

Pe+

∫ h

0

Dc+

Dt
dz =

∂

∂x

∫ h

0

(
∂c+

∂x
+ c+

∂φ

∂x

)
dz

− δPe+

(
s∗

Dso
Dt

+
∂sc
∂t

)
− Pe+ ∂h

∂t
c+|z=h,

(2.68)

Pe2+

∫ h

0

Dc2+

Dt
dz =

∂

∂x

∫ h

0

(
∂c2+

∂x
+ 2c2+ ∂φ

∂x

)
dz

− δPe2+

c∗

(
s∗

Ds+
o

Dt
+
∂s+
c

∂t

)
− Pe2+ ∂h

∂t
c2+|z=h,

(2.69)

Pek−
∫ h

0

Dck−

Dt
dz =

∂

∂x

∫ h

0

(
∂ck−

∂x
− kck− ∂φ

∂x

)
dz − Pek−

∂h

∂t
ck−|z=h, (2.70)

in regions II, IV, and V for k = 1, 2. Note that we have swapped the order of integration
and differentiation in (2.68) – (2.70) by applying the kinematic and flux boundary
conditions in (2.48). Equations (2.53) – (2.70) form a closed system of equations and
boundary conditions for uw, uo, ww, wo, pw, po, c

±, c2±, φ, sc, s
+
c , so and s+

o , which will
be solved in sections 3 and 4.

3. Solution to the electrical probem

Since the oil and clay surfaces are charged, there is a net force acting between them;
this force can be attractive or repulsive, depending on the relative signs of the two
surface charge densities. The proposed low salinity enhanced oil recovery mechanism
states that as the attraction between the surfaces decreases due to the salinity reduction,
the thickness of the water layer separating them increases, thus enabling the oil within
the pore throat to move more freely.

To determine the thickness of the water film as a function of the salinity we must first
find the electric potential, φ, resulting from the charged surfaces. In this section, we solve
the electrical problem (2.55) – (2.70) in the limit δ → 0 to determine φ, considering the
oil, clay, and water phases separately.

3.1. In the oil phase

In the oil phase, Ωo, we solve (2.56) subject to (2.63) to get that φz ≡ 0. This is
sufficient for our needs, however to find φ(x, t) we could first solve for φ in the water
phase, and then impose (2.62).

3.2. In the clay phase

In the clay phase, Ωc, we solve (2.56) subject to (2.64) to find that φz ≡ 0. Again, this
is sufficient for our needs. However we could find φ(x, t) by solving for φ in the water
phase and applying (2.61).

3.3. In the water phase

In the water phase, Ωw, integrating (2.55) twice and applying (2.61) yields

c± = d±e∓φ, c2± = d2±e∓2φ, (3.1)

for some functions d±,2±(x, t). By substituting (3.1) into (2.56), (2.65) – (2.70), we find
that

δξφzz = d−eφ − d+e−φ + 2c∗(d2−e2φ − d2+e−2φ), (3.2)
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Pe+

[
∂

∂t

∫ 1

0

d+e−φdz +

∫ 1

0

(uw · ∇)d+e−φ dz

]
=

[∫ 1

0

d+x e−φdz

]
x

− δPe+ ∂sc
∂t

, (3.3)

Pe2+

[
∂

∂t

∫ 1

0

d2+e−2φdz +

∫ 1

0

(uw · ∇)d2+e−2φ dz

]
=

[∫ 1

0

d2+x e−2φdz

]
x

− δPe2+

c∗
∂s+c
∂t

, (3.4)

Pek−
[
∂

∂t

∫ 1

0

dk−ekφdz +

∫ 1

0

(uw · ∇)dk−ekφ dz

]
=

[∫ 1

0

dk−x ekφdz

]
x

, (3.5)

in regions I and III, and

Pe+

[
∂

∂t

∫ h

0

d+e−φdz +

∫ h

0

(uw · ∇)d+e−φ dz

]
=

[∫ h

0

d+x e−φdz

]
x

− δPe+

(
s∗

Dso
Dt

+
∂sc
∂t

)
,

(3.6)

Pe2+

[
∂

∂t

∫ h

0

d2+e−2φdz +

∫ h

0

(uw · ∇)d2+e−2φ dz

]
=

[∫ h

0

d2+x e−2φdz

]
x

− δPe2+

c∗

(
s∗

Ds+o
Dt

+
∂s+c
∂t

)
,

(3.7)

Pek−
[
∂

∂t

∫ h

0

dk−ekφdz +

∫ h

0

(uw · ∇)dk−ekφ dz+

]
=

[∫ h

0

dk−x ekφdz

]
x

, (3.8)

in regions II, IV and V, for k = 1, 2. To solve these equations for φ and d±,2±, we
consider the five regions of the water phase separately.

3.3.1. Regions I and III

In regions I and III, we expand φ and d±,2± in powers of δ to find that the leading
order contributions, φ0 and d±,2±0 , satisfy

d−0 eφ0 − d+
0 e−φ0 + 2c∗(d2−

0 e2φ0 − d2+
0 e−2φ0) = 0. (3.9)

Since (3.9) is an algebraic expression relating φ0 and d±,2±0 (x, t), it follows that
φ0 = φ0(x, t), and therefore at leading order (3.3) – (3.5) become

Pe±
[(
d±0 e∓φ0

)
t

+ (d±0 e∓φ0)x

∫ 1

0

uw dz

]
= (d±0x

e∓φ0)x, (3.10)

Pe2±
[(
d2±

0 e∓2φ0
)
t

+ (d2±
0 e∓2φ0)x

∫ 1

0

uw dz

]
= (d2±

0x
e∓2φ0)x, (3.11)

for 0 < x < x∗r and x∗f < x < 1, where x∗r = xr/L and x∗f = xf/L. Equations (3.10) and

(3.11) are subject to d±,2±0 (1, t) = d±,2±0 (0, t) = 1 + 10τ
(
c̄1,2 − 1

)
and(

d+
0

)
x
e−φ0

Pe+ −
(
d−0
)
x
eφ0

Pe−
+ 2c∗

[(
d2+

0

)
x
e−2φ0

Pe2+ −
(
d2−

0

)
x
e2φ0

Pe2−

]
= 0, (3.12)

at x = 0, from (2.58) – (2.60). We will find that the relevant solutions are φ0 constant,
which we take to be zero without loss of generality, and d±,2±0 ≡ 1 + 10τ

(
c̄1,2 − 1

)
by

matching with the solutions in regions IV and V.
However, after imposing (2.61) and solving φzz = 0 in the clay phase, we find that φz

becomes unbounded as z → −∞, which contradicts (2.64). Hence, there is a boundary
layer at the capillary wall of size ε2 (to be determined). We rescale z = ε2Z. From (2.61)
and (2.62), we observe that the rescaling φ = ε2ξ

−1Φ is required to balance the terms in
the boundary conditions.

We expand d±,2± ∼ d̃0
±,2±

+ ε2ξ
−1d̃1

±,2±
+O

(
ε22ξ
−2
)

(assuming that ε2ξ
−1 � 1) and



The effect of ions on the motion of an oil slug through a charged capillary 17

substitute into (3.2) to get

δξ

ε22
ΦZZ =

[
d+0 + d−0 + 4c∗

(
d2+0 + d2−0

)]
Φ+ d̃1

− − d̃1
+

+ 2c∗
(
d̃1

2− − d̃1
2+
)

+ O

(
ε2
ξ

)
, (3.13)

where we have used the fact that d̃0
±,2±

= d±,2±0 by matching with the solution for
d±,2± in the outer region. To balance the leading-order terms in (3.13), we substitute
d−,2−0 = d+,2+

0 and set

ε2 =

(
δξ

2(d+
0 + 4c∗d2+

0 )

)1/2

=
λ

R
, (3.14)

where

λ =

(
εwkBT

2(c1∞ + 4c2∞)q2

)1/2

, (3.15)

is the Debye length. From (3.14) we see that ε2ξ
−1 = O

(
δ1/2ξ−1/2

)
. Since δ � ξ, the

assumption we made that ε2ξ
−1 � 1 is valid, so our asymptotic analysis is consistent.

The dimensionless parameter ε2ξ
−1 is the ratio of the adsorption depth to the Debye

length.
Since ε2ξ

−1 � δ, and the next non-zero terms in the expansions for d±,2± in the outer

region away from the capillary wall are O(δ), it follows that the O
(
ε2ξ
−1
)

terms, d̃1
±,2±

,
in the expansion for d±,2± near the capillary wall are zero. Hence, with this definition of
ε2, equation (3.13) reads

ΦZZ = Φ, (3.16)

for 0 < x < x∗r , 0 < z < ∞, and x∗f < x < 1, 0 < z < ∞ at leading order in ε2ξ
−1,

subject to

ΦZ → 0, as Z →∞, (3.17)

[Φ]
Z=0+

Z=0− = 0, ΦZ = 2sc
+
0 + sc0 − 1, at Z = 0. (3.18)

Equation (3.17) is the matching condition required to ensure that the potential in the
boundary layer, Φ, matches with the outer solution, φ0 = 0. Note that we have used the
fact that φz = 0 in the clay phase to derive (3.18). We solve (3.16) subject to (3.17) and
(3.18) to get

Φ = −
(
2sc

+
0 + sc0 − 1

)
e−Z . (3.19)

From (3.19), we see that there is a boundary layer on the order of the Debye length across
which the electric potential decays exponentially due to screening from counter-ions in
the water phase.

3.3.2. Region II

We now turn our attention to finding the potential in region II. Since we expect the
thickness of the wetting film to be partly determined by the electrostatic forces occurring
between the two charged surfaces, we suppose that h∗ = O(ε2)†. Therefore, we rescale
h = ε2H. To balance the terms in (2.53) and (2.62), we rescale uw = ε2ξUw, ww = ε22ξWw,
and t = ε−1

2 ξ−1T . In terms of Z, H, Φ, Uw, Ww, and T , equations (3.2), (3.6) – (3.8)
read

ΦZZ =
ξ

ε2

d− − d+ + 2c∗(d2− − d2+))

2(d+
0 + 4c∗d2+

0 )
+
d+ + d− + 4c∗(d2+ + d2−)

2(d+
0 + 4c∗d2+

0 )
Φ+ O

(
ε2
ξ

)
, (3.20)

† This is the canonical scaling. If h∗ is larger than O(ε2) there is a bulk region between the
surfaces in which φ = 0, and therefore there is no electrical interaction between them.
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ξ2
ε2
ξ
Pe+

[
Hd+T + d+x

∫ H

0

Uw dZ

]
=

[
d+x

∫ H

0

(
1− ε2

ξ
Φ

)
dZ

]
x

− δξPe2+

c∗

(
s∗

Ds+o
DT

+
∂s+c
∂T

)
+ O

((
ε2
ξ

)2
)
,

(3.21)

ξ2
ε2
ξ
Pe2+

[
Hd2+T + d2+x

∫ H

0

Uw dZ

]
=

[
d2+x

∫ H

0

(
1− 2ε2

ξ
Φ

)
dZ

]
x

− δξPe2+

c∗

(
s∗

Ds+o
DT

+
∂s+c
∂T

)
+ O

((
ε2
ξ

)2
)
,

(3.22)

ξ2
ε2
ξ
Pek−

[
Hdk−T + dk−x

∫ H

0

Uw dZ

]
=

[
dk−x

∫ H

0

(
1 +

kε2
ξ
Φ

)
dZ

]
x

+ O

((
ε2
ξ

)2
)
, (3.23)

for k = 1, 2. We expand Φ and d±,2± in powers of ε2ξ
−1 to find that, at leading order,

equations (3.20) – (3.23) read

d−0 − d+
0 + 2c∗(d2−

0 − d2+
0 ) = 0. (3.24)(

d±0 xH
)
x

= 0,
(
d2±

0 xH
)
x

= 0. (3.25)

We have used the fact that that δξ = O
(
(ε2/ξ)

2ξ2
)
� (ε2/ξ)

2, so that the terms involving
the surface concentrations in (3.21) and (3.22) are neglected at leading order. We
will find that the relevant solutions to (3.24) and (3.25) are the constant solutions
d±,2±0 ≡ 1 + 10τ

(
c̄1,2 − 1

)
, by matching with the solutions in regions IV and V.

At the next order in ε2ξ
−1, equation (3.20) reads

Φ0ZZ = Φ0 +
d−1 − d+

1 + 2c∗(d2−
1 − d2+

1 )

2(d+
0 + 4c∗d2+

0 )
. (3.26)

We solve this subject to the boundary conditions

[Φ0]
Z=0+

Z=0− = 0, Φ0Z = 2sc
+
0 + sc0 − 1, at Z = 0, (3.27)

[Φ0]
Z=H+

Z=H− = 0, Φ0Z |Z=H− = −s∗(2so+
0 + so0 − 1), at Z = H, (3.28)

to get

Φ0 = −d
−
1 − d+

1 + 2c∗(d2−
1 − d2+

1 )

2(d+
0 + 4c∗d2+

0 )
+
(
2sc

+
0 + sc0 − 1

)
sinhZ

−
(
2sc

+
0 + sc0 − 1

)
coshH + s∗(2so

+
0 + so0 − 1)

sinhH
coshZ. (3.29)

We have used the fact that φz = 0 in the oil and clay phases to derive the boundary
conditions (3.27) and (3.28). We have also used the fact that Hx is small in order to make
the approximation n · ∇Φ ∼ −ΦZ on the oil surface, which is required to derive (3.28).

The first-order terms in (3.21) – (3.23) read[(
d±1
)
x
H
]
x

= 0,
[(
d2±

1

)
x
H
]
x

= 0. (3.30)

In order to verify the solution d±,2±0 ≡ 1 + 10τ
(
c̄1,2 − 1

)
throughout the water phase,

and d±,2±1 ≡ 0 in the thin film, we must match together the solutions in regions I,
II, and III via regions IV and V. A schematic diagram of the matching process is
shown in figure 4. Towards the left of region IV, the oil and clay surfaces are far
enough apart for the bulk water solution, φ0 ≡ 0, d±,2±0 ≡ 1 + 10τ

(
c̄1,2 − 1

)
, to be

valid. We assume that, in region IV, the meniscus is approximately circular which,
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Hx ≪ ǫ−1
1 ǫ−1

2

x∗c − ǫ1ǫ
1/2
2 x∗cx∗r x∗c − ǫ1

H ≫ 1

Figure 4: Schematic diagram of region IV. For |x− x∗c | � ε1ε
1/2
2 the bulk water solution

is valid, as H � 1. For |x− x∗c | � ε1 the thin film solution is valid, as Hx � ε−1
1 ε−1

2 .

dimensionally, reads h ∼ (x− xc)2
/2R. In terms of the dimensionless variables (x = Lx̂,

h = ε2RĤ, and subsequently dropping the hat notation for convenience) this reads
H ∼ 1

2ε
−2
1 ε−1

2 (x− x∗c)2 for |x− x∗c | � 1, where x∗c = xc/L is the dimensionless apparent

contact point. Thus, for |x− x∗c | � ε1ε
1/2
2 , we find that H � 1 and therefore the relevant

solution is φ0 ≡ 0 and d±,2±0 ≡ 1 + 10τ
(
c̄1,2 − 1

)
, with a boundary layer on the clay

surface in which Φ is given by (3.19).
Towards the right of region IV, the gradient of the oil-water interface is small so (3.29)

applies. This approximation is valid provided Hx � ε−1
1 ε−1

2 , which holds for |x−x∗c | � ε1
assuming the circular shape of the meniscus. Hence, for |x−x∗c | � ε1, Φ is given by (3.29),
d±,2±0 satisfy (3.25), and d±,2±1 satisfy (3.30).

The two regimes (H � 1 and Hx � ε−1
1 ε−1

2 ) overlap for ε1ε
1/2
2 � |x− x∗c | � ε1.

By applying a similar analysis to region V, we deduce that constant solutions for
d±,2±0 are applicable throughout the water region. Thus, our previous assertion that
d±,2±0 ≡ 1 + 10τ

(
c̄1,2 − 1

)
is justified. To show that d±,2±1 ≡ 0 in the thin film, we use the

fact that, in regions I and III, d±,2± ∼ 1+10τ (c1,2−1)+O(δ), since the solution for d±,2±

is found using an expansion in powers of δ. Since d±,2±1 appear as the O(δ1/2ξ−1/2)� δ
terms in the expansions of d±,2± in the thin film, we must match d±,2±1 with zero in
regions IV and V. Hence, the constant solutions d±,2±1 ≡ 0 are applicable. Finally, as
(3.29) is asymptotically equivalent to (3.19) as H →∞, equation (3.29) is valid near the
clay wall throughout region IV and V.

It is worth noting that a streaming potential does not develop in the leading-order
solution since we have assumed that Pe±,2± = O(1). Therefore, the terms relating to
ionic advection are O(ξε2, ξδ) in equations (3.21) – (3.23), and consequently affect the

potential at O
(
ε22, ε2δ

)
� O

(
ε2ξ
−1
)2

; this result is observed by Schnitzer et al. (2012).

3.4. Expressions for the surface charge densities

To write φ as a function of the salinity, we find expressions for the surface charge
densities, sc0, sc

+
0 , so0, and so

+
0 , in terms of the salinity, τ . From (2.61) and (2.62), we

obtain the following expressions for the surface concentrations:

sc0 =
K1
cc

+
0

1 +K1
cc

+
0 +K2

cc
2+
0

, sc
+
0 =

K2
cc

2+
0

1 +K1
cc

+
0 +K2

cc
2+
0

, (3.31)
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so0 =
K1
oc

+
0

1 +K1
oc

+
0 +K2

oc
2+
0

, so
+
0 =

K2
oc

2+
0

1 +K1
oc

+
0 +K2

oc
2+
0

, (3.32)

where c±,2±0 = 1 + 10τ
(
c̄1,2 − 1

)
. We observe that as c2+

0 decreases, sc0 and so0 increase.
This supports the claim made by Lager et al. (2008) that, as the concentration of divalent
ions in the injected water decreases, the divalent ions attracting the oil to the clay migrate
into the bulk and are replaced by monovalent ions.

Using the relations for the surface charge densities, σc = 2s+
c + sc − 1, and

σo = 2s+
o + so − 1, we find that

σc0 =
K2
cc

2+
0 − 1

1 +K1
cc

+
0 +K2

cc
2+
0

, σo0 =
K2
oc

2+
0 − 1

1 +K1
oc

+
0 +K2

oc
2+
0

. (3.33)

Note that σc0 and σo0 are constant along the capillary surface and oil-water interface,
since, at leading order, the ion concentrations are constant. This is a result of the fact
that φ = O(ε2/ξ), so the exponential factors in (3.1) are near unity. In figure 5a, we plot
the surface charge densities of the two surfaces as a function of the salinity. In the high
salinity regime (near τ = 0) the clay surface is positively charged and the oil surface is
negatively charged. As the salinity is reduced, the oil surface becomes more negatively
charged and the clay surface becomes slightly negatively charged. The surface charge
reversal occurs when K2

cc
2+
0 − 1 changes sign. Since c2+

0 typically spans multiple orders
of magnitude, we expect charge reversal to occur for a wide range of parameters. This
is consistent with the MIE proposal as the surfaces are attractive in high salinity brine
and repulsive in low salinity brine; this could potentially aid the oil recovery process by
increasing the mobility of oil within the reservoir. This effect is enhanced by the fact that
the Debye length is greater in the low salinity regime, so the repulsion between the two
surfaces is greater as a result of the reduced screening from the counter-ions.

In figure 5b, we plot the surface charge density against the salinity, keeping the ratio
of divalent ions to monovalent ions constant (given by the ratio typically observed in the
low salinity regime). The concentration of each ion species is defined to be c := c±,2±.
In the limit c → 0, we see that both surfaces have the same surface charge density,
−1, resulting in the maximum repulsion between the two surfaces in the low salinity
regime. As c → ∞, the surface charge density on each surface approaches a limiting
value determined by the reaction rates. These are given by σc0 → K2

c/(K1
c +K2

c) ≈ 0.98
and σo0 → K2

o/(K1
o +K2

o) ≈ 0.13.
To understand how the change in the attraction between the surfaces affects the motion

of the oil slug, we write the potential in the water phase terms of the surface charge
densities, namely

Φ =

{
−σc0e−Z I, III,

σc0 sinhZ − σc0 coshH+s∗σo0

sinhH coshZ, II, IV, V,
(3.34)

where σc0 and σo0 are given by (3.33). The electric potential affects the macroscopic flow
through equations (2.53) and the boundary condition (2.62).

Having found an expression for the electric potential in the water phase, we are now
in a position to find the thickness of the water film, the profile of the oil-water interface,
and consequently the speed at which the oil slug moves through the capillary.

4. Solution to the fluid dynamics problem

As the shape of the oil slug is unknown a priori, it must be found as part of the solution.
We will solve for the profile of the oil-water interface at the front and rear (downstream
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Figure 5: Graphs showing the surface charge densities of the oil-water and clay-water
interfaces as a function of the salinity. In figure (a), the salinity varies between the high
salinity (τ ≈ 0) and low salinity (τ ≈ −6) regimes used for low salinity waterflooding
experiments. In figure (b), the salinity ratio is kept constant, and the dimensionless
concentration is defined to be c := c±,2±. The values of the dimensionless parameters,
given in table 1, are c̄1 = 100, c̄2 = 18, K1

c = 1.7 × 10−2, K2
c = 0.99, K1

o = 0.01, and
K2
o = 1.5× 10−3.

and upstream) ends of the oil slug separately, noting that the shape of the oil slug is
different at each end due to the motion of the fluids in the capillary. We will first find
the shape of the front end, assuming that the oil-water interface here can be split into
three distinct regions as shown in figure 6. These are: (i) a flat region with constant
thickness h∗ (to be determined) along the base of the oil slug, in which the electrostatic
forces balance the viscous forces, (ii) a meniscus region with constant curvature r+ (to be
determined) in which the capillary forces balance the viscous forces, and (iii) a transition
region matching regions (i) and (ii), in which we balance the capillary forces and the
electrostatic forces with the viscous forces.

Once we have found the shape of the front end of the oil slug, we will find the shape
of the rear end using the fact that the front end advances at the same speed that the
rear end recedes. We must find the velocity of the oil slug, V , as part of the solution,
but in order to do so we must first determine the film thickness below the oil slug and
the menisci radii at the front and rear ends. We will then consider the macroscopic flow
problem, in which the water film allows the oil to slip along the clay interface, and the
corrections to the front and rear curvatures affect the pressure drop felt by the oil slug.
We will determine V from this macroscopic problem.

4.1. Front end of the oil slug

We study the neighbourhood of the point near x = xc+Lo where, from the macroscopic
perspective, there appears to be a three phase contact. We examine how the region of
constant thickness matches with the region of constant curvature, and this will allow us
to determine h∗ and r+.

4.1.1. Shape of the oil-water interface in the transition region

In the transition region, we expect the electrostatic, capillary, and viscous forces to
balance. In order to balance the terms in (2.53), (2.54), (2.61), and (2.62), we define the
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hxx ∼ 1
r

σo
h ∼ h∗

h(x, t)

Thin Film Transition Meniscus

σc

Figure 6: Schematic diagram of the three regions at the front meniscus.

rescalings

x− (x∗c + L∗o) = ε
1/2
2 X̄, z = ε2Z, h = ε2H, (4.1)

uw = ε
3/2
2 Ūw, uo = ε

3/2
2 Ūo, ww = ε22W̄w, wo = ε22W̄o, t = ε−1

2 T̄ , (4.2)

where L∗o = Lo/L is the dimensionless length of the oil slug. At leading order in the new
variables, (2.53), (2.54), (2.61), and (2.62) read

ŪwZZ
= pwX̄ −

1

P ∗
ΦX̄ΦZZ , ŪwX̄

+ W̄wZ
= 0, (4.3 a,b)

µ∗ŪoZZ
= poX̄ , ŪoX̄ + W̄oZ = 0, (4.4 a,b)

pwZ =
1

P ∗
ΦZΦZZ , poZ = 0, (4.5 a,b)

subject to

Ūw = W̄w = 0, Z = 0, (4.6)

Ūw = Ūo, W̄w = W̄o = ŪHX̄ +HT̄ , ŪwZ
= µ∗ŪoZ , Z = H, (4.7)

pw = po +
1

2P ∗
Φ2
Z |Z=H− −

Γ

2P ∗
HX̄X̄ , Z = H, (4.8)

UoZ → 0, WoZ → 0, Z →∞, (4.9)

where we have substituted ΦZ = 0 in the oil phase in (4.8). Note that (4.9) is the
constraint that the velocity is bounded in the bulk of the oil.

Integrating (4.5b) in the oil phase yields po = po(X̄, T̄ ). By substituting this into
(4.4a) and applying (4.9), we find that ŪoZ = 0, and poX̄ = 0. Hence, Ūo = Ūo(X̄, T̄ ),
and po = po(T̄ ). By integrating (4.5a) and applying (4.8) we find that the pressure in
the water layer is given by

pw = po +
1

2P ∗
Φ2
Z −

Γ

2P ∗
HX̄X̄ . (4.10)

By substituting this into (4.3a), and applying (4.6) and (4.7), we find that the horizontal
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velocity in the transition region is given by

Ūw =
1

4P ∗
(2HZ − Z2)

(
ΓHX̄X̄ +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
X̄

, (4.11)

where we have substituted Φ using (3.34). By integrating (4.3b) from Z = 0 to Z = H,
and applying (4.6) and (4.7), we obtain the following thin-film equation describing the
thickness of the water layer, H(X̄, T̄ ), in the transition region,

HT̄ +

[
H3

6P ∗

(
ΓHX̄X̄ +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
X̄

]
X̄

= 0. (4.12)

In the limit X̄ → −∞ we impose the condition that the solution approaches a constant
value, H∗, to be determined. As X̄ → ∞ we require the solution to match with the
meniscus region. We assume that the radius of the meniscus is approximately the radius
of the capillary tube and that the leading-order correction, r+

1 , is of the order of the
thickness of the wetting layer i.e. r+ = 1 − ε2r

+
1 + O(ε22) (the + superscripts denote

the front meniscus). Hence, the boundary conditions we impose on H are H → H∗ as
X̄ → −∞, and HX̄X̄ → 1 as X̄ →∞.

We assume a quasi-static travelling wave solution, H(X̄, T̄ ) = H(Y ), where
Y = X̄ − X̄R(T̄ ), and X̄R corresponds with the origin in the reference frame moving
with the oil slug, which can be chosen arbitrarily. In the travelling wave coordinate,
equation (4.12) becomes

ε
−3/2
2 P ∗V HY =

[
H3

6

(
ΓHY Y +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
Y

]
Y

, (4.13)

subject to

H → H∗ as Y → −∞, (4.14)

HY Y → 1 as Y →∞, (4.15)

where V = ε
3/2
2 dX̄R/dT̄ is the velocity at which the oil slug moves, scaled with the

macroscopic variables†. We integrate (4.13) once to arrive at

6ε
−3/2
2 P ∗V

(H −H∗)
H3

= ΓHY Y Y +

(
σc

2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
Y

. (4.16)

We would like to be able to determine the film thickness, H∗, for a given applied pressure,
P ∗. However, at this stage the velocity, V , is still unknown. To better understand (4.16)
we will, for the moment, treat P ∗V as an independent parameter. In section 4.3 we
will find V by solving the macroscopic flow problem in combination with (4.16). We
note that we can rescale the transition region equation, (4.16), so that the viscous and
capillary forces balance and we recover a Bretherton type equation (Bretherton 1961)
which includes electrostatic effects. The details of this rescaling are given in appendix B.

To solve (4.16) subject to (4.14) and (4.15) for a given P ∗V , we use a shooting method.
We treat (4.16) as an initial value problem with H∗ as the initial parameter, and vary
H∗ until H(Y ) satisfies (4.15) in the limit Y →∞. This gives us the correct value of the
film thickness, H∗, and the shape of the transition region, H(Y ).

In figure 7b we plot h(x) = ε2H(Y ) in the high salinity (τ = 0) and low salinity
(τ = −6) regimes, for P ∗V = 9× 10−6, where P ∗ is determined by the values in table 2,

† In appendix A, we show that (4.14) and (4.15) impose the required number of constraints
on (4.16) to be able to find both H(Y ) and H∗.
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Figure 7: Plots of the rear (a) and front (b) transition region profiles, h(x), in the low
(τ = −6) and high (τ = 0) salinity regimes, for P ∗V = 9× 10−6.

and we have chosen V = 1. Values for the other parameters used are given in table 1. In
the numerical computations we use a fourth-order Runge-Kutta method to solve (4.16).
We observe that the film is thicker in the low salinity regime than in the high salinity
regime. This is consistent with the MIE proposal that reducing the salinity of the brine
increases the film thickness, thus aiding the release of oil.

4.1.2. Correction to the radius of curvature

To determine the leading-order correction to the radius of curvature in the meniscus
region, r+

1 , we consider the behaviour of H(Y ) as Y approaches the meniscus region.
Since HY Y ∼ 1 as Y →∞, at leading order

H ∼ 1

2
(Y + α+)2 + β+, (4.17)

as Y →∞ for some constants α+ and β+. Using the leading-order translational invariance
of the problem, α+ can be chosen arbitrarily. To determine β+ we match (4.17) with the
film thickness in the meniscus region. In the meniscus region the oil-water interface is
circular, which, in terms of the macroscopic variables x and h, gives

(1− h)
2

+ (x− x∗)2
=
(
r+
)2 ∼ (1− ε2r+

1

)2
, (4.18)

where (x∗, 1) is the centre of the circle with the same tangent and curvature as the
extremal point of the oil-water interface, as shown in figure 8. As x → x∗ (i.e. as x
approaches the transition region), expanding in (x− x∗) and ε2 yields,

h ∼ 1

2
(x− x∗)2

+ ε2r
+
1 + O

(
(x− x∗)4, ε2(x− x∗)2

)
. (4.19)

Matching the inner solution (4.17) with the outer solution (4.19) gives β+ = r+
1 .

Rearranging (4.17) then gives the first correction to the radius of the meniscus as

r+
1 = lim

Y→∞
H − 1

2
H2
Y . (4.20)

By substituting the solution for H(Y ) found in section 4.1.1 into (4.20), we can therefore
compute the correction to the curvature in the front meniscus region.
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Figure 8: Schematic diagram of the circular solution the oil-water interface approaches.

4.2. Rear end of the oil slug

4.2.1. Shape of the oil-water interface in the transition region

We study the rear end of the oil slug advancing with speed V by considering the
equivalent problem of the front end receding with speed V . Thus, to find the shape of
the oil-water interface at the rear end of the oil slug, we make the substitution V 7→ −V
and solve (4.16) subject to (4.14) and (4.15) using a shooting method. However, as we
found H∗ by considering the shape of the front transition region, we can no longer use
this as a shooting parameter. To determine the correct parameter to vary, we examine
the behaviour of H(Y ) as Y → −∞ (towards the thin film region). In this limit, we
assume that H ∼ H∗ + H̄, where H̄ is small. By substituting this into (4.16), applying
H̄ → 0 as Y → −∞, and using the translational invariance of the problem to eliminate
one constant of integration, we find that

H ∼ H∗ + ek1Y +Aek2Y . (4.21)

The constants k1 and k2 are roots of the characteristic equation associated with the
linear o.d.e. satisfied by H̄ (see appendix A for details), and A is an unknown constant.
We determine the shape of the rear transition region, H(Y ), by solving (4.16) (with the
substitution V 7→ −V ) subject to (4.15) in the limit Y → ∞ and (4.21) in the limit
Y → −∞, with A as a shooting parameter.

In figure 7a we plot h(x) = ε2H(Y ) in the high salinity (τ = 0) and low salinity
(τ = −6) regimes, with P ∗V = 9 × 10−6. We observe that the profile of the rear of
the oil slug is non-monotonic in the high salinity regime. This in contrast to the profile
of the front of the oil slug, shown in figure 7b, which is monotonic in both regimes.
This is consistent with Bretherton (1961), who studied the motion of a bubble though
a capillary and found that the front meniscus is monotonic, whereas the rear meniscus
exhibits sinusoidal behaviour in the absence of electrostatic forces.

4.2.2. Correction to the radius of curvature

At the rear of the oil slug we find that, similarly to the front of the oil slug, the
leading-order correction to the radius of curvature of the meniscus is given by

r−1 = lim
Y→∞

H − 1

2
H2
Y , (4.22)

where the radius of curvature is r− ∼ 1− ε2r−1 + O(ε22), and H(Y ) is the solution found
in section 4.2.1.

4.3. Macroscopic capillary problem

We now consider the macroscopic flow problem to determine the velocity, V , at which
the oil slug moves through the capillary, using the solutions for the shape of the oil slug
found in sections 4.1 and 4.2. On the macroscopic scale, the thickness of the thin wetting
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Figure 9: Schematic diagram of the macroscopic flow problem.

film is effectively zero and the presence of this thin film will be felt by the oil through an
effective boundary condition on the clay interface. The corrections to the menisci radii
will affect the pressure difference at the oil-water interface at each end of the oil slug,
and hence the speed at which the oil slug moves.

Returning to the macroscopic variables x, z, uw, uo, ww, and wo, the leading-order
equations governing the fluid dynamics, (2.53) and (2.54), read

uwzz = pwx, pwz = 0, uwx + wwz = 0, (4.23 a,b,c)

µ∗uozz = pox, poz = 0, uox + woz = 0. (4.24 a,b,c)

We separate the problem into the five regions shown in figure 3. However, we can neglect
meniscus regions IV and V as x is scaled with the length of the capillary, L, and these
regions have length O(R). Hence, x∗c − x∗r = O(ε1) and x∗f − x∗c − L∗o = O(ε1), where
x∗r = xr/L and x∗f = xf/L are the dimensionless positions of the rear and front end
of the oil slug, respectively. Thus, we impose the Laplace-Young boundary condition,
(2.62), on x = x∗c and x = x∗c + L∗o. In figure 9, we present a schematic diagram of the
the regions involved in the macroscopic problem.

We let P1 and P2 correspond to the unknown pressures on the water side of the water-
oil interfaces at x = x∗c and x = x∗c + L∗o respectively. The boundary conditions (2.58) –
(2.64) read

pw = 1, at x = 0, (4.25)

pw = P1, po = P1 +
Γ

2P ∗(1− ε2r−1 )
, at x = x∗c , (4.26)

pw = P2, po = P2 +
Γ

2P ∗(1− ε2r+
1 )
, at x = x∗c + L∗o, (4.27)

pw = 0, at x = 1, (4.28)

uw = 0, at z = 0, (4.29)

uw = uo, µ∗uoz = uwz, pw = po, at z = ε2H
∗ (4.30)

pz = uwz = uoz = ww = wo = 0, at z = 1. (4.31)

We will solve (4.23) – (4.31) to determine the flux in regions I, II, and III separately, in
terms of P1 and P2. We will then use conservation of flux between the three regions to
eliminate the unknown pressures and find the macroscopic flux through the capillary.
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4.3.1. Regions I and III

From (4.23b), we see that pw = pw(x). By integrating (4.23a) twice and applying (4.29)
and (4.31), we find that in regions I and III,

uw = pwx

(
1

2
z2 − z

)
. (4.32)

By integrating (4.23c) from z = 0 to z = 1 and applying (4.29) and (4.31), we find that

∂

∂x

[∫ 1

0

uwdz

]
= 0. (4.33)

It follows that pwxx = 0, i.e. the pressure gradient is constant. Integrating (4.33) and
substituting (4.32) yields

Qw :=

∫ 1

0

uw dz = −1

3
pwx, (4.34)

where Qw is the volumetric flow rate of water in the lower half of the capillary tube. By
applying (4.25) – (4.28) we find that

Qw =
1

3x∗c
(1− P1), in region I, (4.35)

Qw =
1

3(1− x∗c − L∗o)
P2, in region III. (4.36)

4.3.2. Region II

From (4.24b), we see that po = po(x). Integrating (4.23a) and (4.24a) subject to (4.29)
– (4.31) yields (to O(ε2)),

uw = pwx

(
1

2
z2 − z

)
0 < z < ε2H

∗, (4.37)

uo =
1

µ∗
pox

(
1

2
z2 − z + ε2H

∗(1− µ∗)
)

ε2H
∗ < z < 1. (4.38)

By integrating (4.23c) from z = 0 to z = ε2H
∗, (4.24c) from z = ε2H

∗ to z = 1, and
applying (4.29) – (4.31), we find that

∂

∂x

[∫ ε2H
∗

0

uwdz +

∫ 1

ε2H∗
uodz

]
= 0, in region II. (4.39)

By substituting (4.37) we find that the water flux is O
(
ε22
)
, since the water layer is thin

and has low velocity near the capillary surface, and can thus be neglected. Hence, by
substituting (4.38), it follows that that poxx = 0. Integrating (4.39) yields

Qo :=

∫ 1

ε2H

uo dz = − 1

µ∗
pox

(
1

3
− ε2(1− µ∗)H∗

)
, in region II, (4.40)

where Qo is the volumetric flow rate of oil in the lower half of the capillary tube. By
applying (4.26) and (4.27) we find that

Qo =
1

µ∗L∗o

{
P1 − P2

3

+ ε2

[
Γ

6P ∗
(r−1 − r+

1 )− (P1 − P2)(1− µ∗)H∗
]}

,

in region II. (4.41)
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To better understand how the water film affects the flow of oil, we derive the effective
boundary condition satisfied by the oil on the capillary surface. By evaluating uo and
uoz on z = 0 using (4.38), and eliminating pox, we find that

uo = ε2H
∗ (µ∗ − 1)uoz, on z = 0. (4.42)

We observe that, since the oil is more viscous than the water, the presence of the thin
water film below the oil slug results in partial slip along the capillary surface, with the
slip length being proportional to the width of the water film.

4.3.3. Macroscopic flux

Since we assume that the slug fills almost the whole width of the channel (ε2H
∗ is

small), conservation of volume imposes that Q := Qo ∼ Qw. Hence, by solving the three
equations, (4.35), (4.36), and (4.41), for the three unknowns, P1, P2, and Q, we find that

Q ∼ 1

1 + (µ∗ − 1)L∗o

{
1

3
+ ε2

[
Γ

6P ∗
(r−1 − r+

1 ) +
µ∗L∗o

1 + (µ∗ − 1)L∗o
(µ∗ − 1)H∗

]}
. (4.43)

We see from (4.43) that the volumetric flow rate consists of a leading order term, plus
a capillary contribution resulting from a difference between the droplet shape at the
front and rear of the slug, and a slip contribution resulting from the finite film thickness.
In order to make use of this expression, we require the solutions for r±1 and H∗ found
in section 4.1 and 4.2 by solving (4.16) subject to (4.14) and (4.15). However, since the
volumetric flow rate is the velocity of the oil slug multiplied by the channel width, Q = V ,
the solution for H given by solving (4.16) is dependent on Q. Thus, we must solve (4.16)
and (4.43) simultaneously to determine the velocity.

In figure 10a, we plot the film thickness, h∗ = ε2H
∗, against the salinity, τ . As

the salinity increases from the low salinity regime to the high salinity regime, the film
thickness decreases by 39%. This is consistent with the MIE model proposed by Lager
et al. (2008). However, the percentage decrease is larger than found experimentally by
Lee et al. (2010). This is likely due to the fact that structural and van der Waals forces
have been neglected in this model. In the high salinity limit, structural forces dominate
the electrostatic forces which prevents the film thickness from reducing further. Hirasaki
(1991) discusses this in more detail. Furthermore, as the thickness of the film becomes
comparable with the size of the ions in the model, the continuum assumption breaks
down and the model presented here is no longer applicable.

In figure 10b we plot the corrections to the menisci radii, r±1 , and the magnitude of
the difference between them, |r+

1 − r−1 |. The front and rear corrections are similar, so
that the difference between them is an order of magnitude smaller than the corrections
themselves. The difference is approximately 8.4 times larger in the high salinity regime
than in the low salinity regime.

In figure 11a, we plot the velocity of the oil slug, V , against the salinity, τ . We choose
L∗o = 0.5 for this calculation and for subsequent computations. We observe that the
velocity decreases as the salinity increases, with the velocity being approximately 3.1
times larger in the low salinity regime than in the high salinity regime.

In figure 11b, we plot the components of the velocity corresponding to (i) the difference

in the menisci radii, V
(1)
1 = ε2Γ

(
r−1 − r+

1

)
/6P ∗, and (ii) the slip resulting from the

thin water layer, V
(2)
1 = ε2µ

∗L∗o (µ∗ − 1)H∗/(1 + (µ∗ − 1)L∗o). We observe that these
components are larger in magnitude than the total velocity, V . Since P ∗ � ε2 for the
values of the parameters used (given in table 2), we find that the primary balance in

(4.43) is between V
(1)
1 (which depends on V through (4.16)) and 1/3 + V

(2)
1 . This is
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Figure 10: (a) Plot of the film thickness, h∗ as a function of the salinity, τ . (b) Plots
of the corrections to the menisci radii, r±1 , and the difference between the front and
rear menisci, |r+

1 − r−1 |, as functions of the salinity, τ . The low salinity and high salinity
regimes correspond to τ ≈ −6, and τ ≈ 0, respectively.
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Figure 11: Plots of the velocity of the oil slug, given by equation (4.43), as a function
of the salinity, τ , where τ ≈ −6 corresponds to the low salinity regime, and τ ≈ 0
corresponds to the high salinity regime. Figure (a) is the total velocity, and figure

(b) shows the two corrections to the velocity. These are V
(1)
1 = ε2Γ

6P∗

(
r−1 − r+

1

)
, and

V
(2)
1 =

ε2µ
∗L∗o

1+(µ∗−1)L∗o
(µ∗ − 1)H∗.

in contrast with the P ∗ � ε2 regime, in which V
(1)
1 and V

(2)
1 are perturbations to the

leading-order velocity. Although P ∗ � ε2 for the values used in this paper, it is worth
noting that due to the diversity of reservoir conditions there will likely be applications
in which P ∗ � ε2. Since we are able to make further analytical progress in this regime,
we will briefly discuss the case P ∗ � ε2 in section 4.4.

4.4. Solution when P ∗ � ε2

Since P ∗ is the ratio of the applied pressure drop across the capillary to the electrostatic
pressure, we expect that, in the P ∗ � ε2 regime, the electrostatic effects will result in
a perturbation to the viscous-dominated flow. We expand Q ∼ Q0 + ε2Q1 + O(ε22) and
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V ∼ V0 + ε2V1 + O(ε22). At leading order in ε2, (4.43) reduces to

Q0 = V0 =
1

3

[
1

1 + (µ∗ − 1)L∗o

]
, (4.44)

Using this leading-order expression for the velocity, we determine H∗ and r±1 using the
method described in sections 4.1 and 4.2 with V = V0. We substitute the resulting
solutions into (4.43) to get the correction to the velocity. By expanding in ε2, we are able
to solve (4.16) and (4.43) independently since, at leading order, (4.43) does not depend
on the shape of the oil slug. For P ∗ � ε2 this is not possible since the velocity correction
due to the difference in the menisci radii can no longer be neglected at leading order.

However, for P ∗ � ε
3/2
2 we can simplify (4.16), enabling us to make further analytical

progress.

4.5. Solution when P ∗ � ε
3/2
2

The limit P ∗ � ε
3/2
2 corresponds to the regime in which the pressure difference across

the capillary tube is negligible in comparison with the electrostatic pressure between the

charged interfaces. For the values used in this paper, ε
−3/2
2 P ∗ ≈ 0.15 in the low salinity

regime which justifies considering this limit. However, different reservoirs will contain
different clays, oils, and pore geometries, so the quasi-static limit in which P ∗ → 0 may

not always be applicable. Furthermore, in the high salinity regime, ε
−3/2
2 P ∗ ≈ 3.2, so

this approximation does not apply. We note that this P ∗ � ε
3/2
2 regime corresponds to

uniform flux along the film, as can be seen by taking the limit P ∗ → 0 in (4.12).

4.5.1. Film thickness in the limit P ∗ � ε
3/2
2

To determine the film thickness in the limit P ∗ � ε
3/2
2 , we return to (4.16) and

integrate once to find that

ΓHY Y +
σc

2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H
+ 6ε

−3/2
2 P ∗V

∫ ∞
Y

H −H∗
H3

dY ′ = Γ. (4.45)

We expand H ∼ H0+ε
−3/2
2 P ∗H1+O(ε−3

2 P ∗2) and H∗ ∼ H∗0 + ε
−3/2
2 P ∗H∗1 + O(ε−3

2 P ∗2)
and consider (4.45) in the limit Y → −∞. We find that at leading order, after some
simplification, the film thickness is given by

H∗0 = cosh−1

s∗σc0σo0 +
√

(σc20 + Γ )
(
s∗2σo2

0 + Γ
)

Γ

 . (4.46)

In figure 12a we plot the film thickness against the salinity, for −6 < τ < 0. We
compare the numerical solution found in section 4.3.3, using P ∗ = 9 × 10−6, with

the asymptotic solution in the limit ε
−3/2
2 P ∗ → 0, (4.46). There is good agreement

between the two solutions. In figure 12b we show that the film thickness, h∗ = ε2H
∗,

found numerically in section 4.3.3 varies with ε
−3/2
2 P ∗ in the low salinity regime, for

10−2 < ε
−3/2
2 P ∗ < 102. We compare the result with the film thickness found in the

asymptotic limit ε
−3/2
2 P ∗ → 0. The asymptotic solution agrees with the numerical

solution to within 4.4%, for ε
−3/2
2 P ∗ < 10.
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Figure 12: (a) Film thickness as a function of the salinity, comparing the numerical

solution for P ∗ = 9×10−6 with the asymptotic solution in the limit ε
−3/2
2 P ∗ → 0. (b) Film

thickness as a function of the dimensionless pressure, ε
−3/2
2 P ∗, in the low salinity regime,

comparing the numerical solution with the analytic solution in the limit ε
−3/2
2 P ∗ → 0.

4.5.2. Corrections to the menisci radii in the limit P ∗ � ε
3/2
2

To determine r±1 in the quasi-static limit, we integrate (4.45) to get

Γ

2
H2
Y +

2s∗σc0σo0 + (σc
2
0 + s∗2σo

2
0) coshH∗

sinhH∗
− 2s∗σc0σo0 + (σc

2
0 + s∗2σo

2
0) coshH

sinhH

+6ε
−3/2
2 P ∗V

∫ Y

−∞
HY

∫ ∞
Y ′

H −H∗

H3
dY ′′dY ′ = Γ (H −H∗).

(4.47)

We expand H ∼ H0 + ε
−3/2
2 P ∗H1 + O

(
ε−3
2 P ∗2

)
and consider the leading-order terms in

the limit Y →∞ to get

H0 ∼
1

2

(
Y + α+

)2
+

{
H∗0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0

Γ sinhH∗0

}
. (4.48)

By matching terms with (4.17), and using the fact that β+ = r+
1 , we find that the

bracketed term in (4.48) must be the first-order (in ε2) correction to the radius of the
meniscus,

r+
1 ∼ H∗0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0

Γ sinhH∗0
+ O(ε

−3/2
2 P ∗). (4.49)

Since the oil slug is moving, we expect the front and rear menisci to have different
radii, and hence, by the Laplace-Young equation (2.62), the pressure drop across the oil
will be dependent on the difference between these two radii. To find the correction to
the meniscus radius at the rear end of the oil slug, we make the substitution V 7→ −V .
However, as the leading-order correction to the radius of curvature (4.49) is independent
of V , the first-order correction is required in order to find the leading-order difference
between the radii of the two menisci.
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The O(ε
−3/2
2 P ∗) terms in equation (4.47) read

ΓH0YH1Y +H1
2s∗σc0σo0 coshH0 + σc

2
0 + s∗2σo

2
0

sinh2H0

+ 6V

∫ Y

−∞
H0Y

∫ ∞
Y ′

H0 −H∗0
H3

0

dY ′′dY ′ = ΓH1, (4.50)

where we have made use of (4.46) in eliminating some of the terms. We find that

H1 ∼
6V

Γ

∫ ∞
−∞

(H0 −H∗0 )
2

H3
0

dY ′, (4.51)

as Y → ∞, which provides the O(ε
−3/2
2 P ∗) term in the expression for r+

1 . By making
the substitution V 7→ −V we find that the O(ε2) corrections to the front (r+) and back
(r−) radii are

r±1 ∼ H
∗
0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0
Γ sinhH∗0

± 6P ∗V

ε
3/2
2 Γ

∫ ∞
−∞

(H0 −H∗0 )2

H3
0

dY ′. (4.52)

4.5.3. Velocity of the oil slug in the limit P ∗ � ε
3/2
2

To determine the velocity of the oil slug in the limit P ∗ � ε
3/2
2 , we substitute (4.52)

into (4.43) and rearrange (using the fact that Q = V ) to find

Q = V ∼
1+(µ∗−1)L∗o

3 + ε2 [L∗oµ
∗(µ∗ − 1)H∗0 ]

[1 + (µ∗ − 1)L∗o]
2

+ 2ε
−1/2
2 (1 + (µ∗ − 1)L∗o)

∫∞
−∞

(H0−H∗0 )2

H3
0

dY ′
, (4.53)

where H∗0 is given by (4.46).
It should be noted that (4.16) needs to be solved numerically to evaluate the integral

term in (4.53), even in this asymptotic limit. However, this computation can be made

significantly simpler. Since the integral term occurs in the first-order (in ε
−3/2
2 P ∗)

correction to the meniscus radius, (4.52), we only require the leading-order term of the
integral (as we have neglected O(ε−3

2 P ∗2) terms). To determine the leading-order film
profile, H0(Y ), we set the left-hand side of (4.16) to zero, integrate twice to obtain (4.47)
(with P ∗ set to zero), and thus we only need to solve a first-order ode in the small P ∗

limit. Further, since we have an expression for the film thickness, (4.46), we can solve

(4.47) as a boundary value problem, whereas for the ε
−3/2
2 P ∗ = O(1) problem we need

to use a shooting method as this boundary condition is unknown.
In figure 13a we plot the velocity of the oil slug against the salinity, τ , for −6 < τ < 0.

We compare the numerical solution found in section 4.3.3 using P ∗ = 9× 10−6, with the

asymptotic solution in the limit ε
−3/2
2 P ∗ → 0, (4.53). There is good agreement between

the two solutions. The velocity is approximately three times greater in the low salinity
regime, for P ∗ = 0, which suggests that the MIE mechanism, as described by the model
presented here, contributes to the low salinity effect.

In figure 13b we plot the velocity as a function of ε
−3/2
2 P ∗ in the low salinity regime,

comparing the numerical and asymptotic solutions. The solutions agree to within 2.8%

for ε
−3/2
2 P ∗ < 10. We expect that ε

−3/2
2 P ∗ < 10 for most reservoir conditions, and

consequently that the quasi-static limit can usually be applied. However, there will be
many applications where the applied pressure is much larger, and P ∗ can no longer be
considered small. We briefly study how larger pressures affect the shape and velocity of
the oil slug.
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Figure 13: (a) Velocity of the oil slug as a function of the salinity, comparing numerical

solution for P ∗ = 9 × 10−6 with the asymptotic solution in the limit ε
−3/2
2 P ∗ → 0. (b)

Velocity as a function of the dimensionless pressure, ε
−3/2
2 P ∗, in the low salinity regime,

comparing the numerical solution with the analytic solution in the limit ε
−3/2
2 P ∗ → 0.
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Figure 14: Plots of the rear and front oil-water interface profiles, h(x), in the low salinity
regime, τ = −6, for P ∗ = 10−5, 10−2, 10−1.5, 10−1.

4.6. Shape of the oil-water interface for large ε
−3/2
2 P ∗

In figure 14, we plot the front and rear transition rear profiles, H(Y ), for
P ∗ = 10−5, 10−2, 10−1.5, 10−1 in the low salinity regime, τ = −6. We see that the front
meniscus is always monotonic, but that non-monotonic solutions are possible for the rear
meniscus. This is because the characteristic equation of (4.16) under a perturbation,
H = H∗ + H̄, admits real-valued solutions when V > 0 for all P ∗, but admits complex-
valued solutions when V < 0 for P ∗ > 1.6 × 10−3 in the low salinity regime†. Hence,
the front profile is monotonic for all pressures, the rear profile is monotonic at lower
pressures (P ∗ = 10−5), but for higher pressures (P ∗ = 10−2, 10−1.5, 10−1) the rear profile
has a sinusoidal component. We also observe that as P ∗ increases, the film thickness
increases. This is because at higher pressures the oil slug is moving more quickly, so
more water is being forced between the oil and the clay surface.

† Details of this calculation can be found in appendix A
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Figure 15: Velocity of the oil slug, V , as a function of the salinity, for
P ∗ = 10−2, 10−1.5, 10−1.

4.7. Velocity of the oil slug for large ε
−3/2
2 P ∗

In figure 15 we plot the velocity of the oil slug against the salinity for −6 < τ < 0,
comparing the solutions in which P ∗ = 10−2, 10−1.5, 10−1. For all of the applied pressures,
P ∗, the speed increases as the salinity decreases. This is consistent with the MIE proposal,
and suggests that MIE mechanism contributes to the low salinity effect. We observe that
as P ∗ increases the percentage increase in the velocity also increases. The percentages
are 130%, 330%, and 390%, for P ∗ = 10−2, 10−1.5, 10−1, respectively.

5. Conclusion and Discussion

In this paper, we have presented a model for the steady motion of an oil slug through a
pore throat, assuming that low salinity oil recovery can be explained by multicomponent
ionic exchange (MIE). We assumed that the pore throat could be represented by a
capillary tube with small aspect ratio, for which lubrication theory is applicable. We
treated the oil and clay surfaces as charged surfaces, separated by a thin layer of salt
water, and we assumed that the rates at which the ions in the water react with the surfaces
are fast in comparison to the typical relaxation time of the surfaces in the viscous fluid.

In section 3, we derived expressions (3.33) for the surface charge densities on the oil-
water and clay-water interface resulting from the MIE reactions. These were determined
as functions of the salinity of the surrounding fluid, with this surrounding fluid behaving
as a reservoir of ions at specified concentration. As a result of these charges, there is an
electrostatic force acting between the two surfaces. We derived an expression (3.34) for
the electric potential, Φ, in the water phase in terms of the surface charge densities. Since
the electric field affects the distance between the two charged surfaces, and governs how
charges are distributed in saline water, an expression for Φ is required when solving the
fluid flow problem.

In section 4.1, we derived an equation (4.16) describing the shape of the water film
separating the oil and the clay surfaces as a function of the salinity of the surrounding
fluid. During low salinity injection, the film thickness increases enabling the release of oil.
This is consistent with experimental data (Berg et al. 2010; Lee et al. 2010) and previous
theoretical models Lager et al. (2008). In sections 4.1 and 4.2, we determined the menisci
radii of the oil slug as a function of the salinity, as this affects the pressure drop felt by
the oil slug.
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In section 4.3 we solved the macroscopic flow model to obtain an expression for the
velocity of the oil slug, (4.43). We found that, on this scale, the thin water film acts as
a slip layer, with the slip length proportional to the film thickness. As the salinity of
the water reduces, the slip length increases, so the speed of the oil slug increases. The
corrections to the menisci radii at the front and rear of the oil slug affect the pressure
drop felt by the oil, and hence also affect the speed at which it moves. In section 4.5
we considered the asymptotic limit P ∗ → 0 (P ∗ = εwP/q

2s∗c
2) to derive an analytical

expression for the thickness of the wetting film between the oil and the capillary, (4.46),
as well as a simplified expression (4.53) for the velocity.

Numerical results showed that, for the values given in table 2, the flow rate increases by
approximately three times when transitioning from high salinity to low salinity regimes,
which contributes to the increase in oil recovery often observed in core scale experiments.
While care was taken to estimate reasonable values for the parameters, one of the main
limitations of our numerical results is that the values of s∗o, s

∗
c , Kkc , and Kko , for k = 1, 2,

are difficult to estimate without more data. An experimental investigation to determine
the correct values of these parameters would improve the accuracy of the results.

A restriction on our model is that at high salinities the width of the water film becomes
comparable with the size of the ions. This will restrict the movement of ions in and out of
the water film. At some point the continuum model will break down and an alternative
model for ion movement in the thin film would need to be considered. Hirasaki (1991)
discusses this issue in more depth, and includes structural forces in his model to account
for the fact that the finite size of the ions will dominate the behaviour of the film for small
thicknesses. Furthermore, when the number of ions in the film, c1lowh, falls as low as the
number of exchange sites on the surface, s∗c , then the film will cease to act as a reservoir
of ions at fixed concentration. This occurs when δ = s∗c/c

1
lowR = O(h/R) = O(ε2), and

from (3.14) it follows that ε2 = O(ξ). Hence, in this regime, φ = O(1), so that the
exponential factors in (3.1) are no longer near unity and the subsequent analysis is no
longer valid.

In order to get an accurate estimate of how the increase in velocity due to a low
salinity injection at the pore scale would affect flow in an oil reservoir, a larger scale
model needs to be developed. Our future aim is to homogenise the pore scale model
described in this paper, assuming a microscopic network of capillaries containing flow
governed by (4.43), to describe the flow at the core sample scale in order to compare
with experiments. Further, due to the similarities between the MIE and pH increase
mechanisms, by considering different reactions in place of (2.22), and following the same
procedure, different mechanisms for the low salinity oil recovery process can be compared.
The benefit of such models is the ability to translate chemical-scale mechanisms into
core-scale results. By comparing experimental results with such a model, we hope to
obtain a better understanding of the low salinity process.
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Appendix A. Transition region boundary conditions

At first glance it may appear that there are not enough boundary conditions to solve
the third order differential equation, (4.16). In order to examine this, we consider the
behaviour of H as Y → ±∞.

As Y → −∞, we set H = H∗ + H̄, and linearise in H̄(Y ), to give

H̄Y Y Y − aH̄Y − bH̄ = 0, (A 1)

where

a =
2

Γ sinh3H∗

[
(s∗2σo

2
0 + σc

2
0) coshH∗ + (cosh2H∗ + 1)s∗σo0σc0

]
, (A 2)

b =
6P ∗V

ε
3/2
2 ΓH∗3

. (A 3)

The solution is

H̄ = A1ek1Y +A2ek2Y +A3ek3Y , (A 4)

where ki are the roots of k3 − ak − b = 0. By rescaling k = b1/3k̂, we can show that
finding these roots is equivalent to finding the roots of

k̂3 − a

b2/3
k̂ − 1 = 0. (A 5)

This equation has precisely two roots with negative real part, and one root with positive
real part, for any real value of ab−2/3. A plot of the real part of these roots is given in
figure 16.

We require H̄ to decay as Y → −∞. At the front meniscus, V > 0, so b > 0; hence,
the coefficients of the two exponentials corresponding to the roots with negative real part
must be zero. Thus, the boundary condition H → H∗ (for unknown H∗) as Y → −∞
eliminates two degrees of freedom of the solution.

By translational invariance, we can set the final coefficient in (A 4) to be unity without
loss of generality. Hence, as Y → −∞ in the front meniscus region, the film thickness is
given by

H ∼ H∗ + ek1Y . (A 6)

The remaining degree of freedom, H∗, is constrained by the condition HY Y → 1 as
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Y → ∞. Hence, the two boundary conditions (4.14) and (4.15) are sufficient to solve
(4.16) (for V > 0, i.e. at the front of the oil slug), and to determine H∗. Numerically, we
find H∗ by using a shooting method. That is, we treat (4.16) as an initial value problem,
using (A 6) as the initial value, and vary H∗ until limY→∞HY Y = 1.

At the rear meniscus, we solve the same differential equation with V < 0. Hence, b < 0,
so k = b1/3k̂ has only one root with negative real part, and thus only one coefficient is
determined (to be zero) in (A 4). After setting one of the remaining coefficients to be
unity by translational invariance, there is still one degree of freedom. Explicitly,

H ∼ H∗ + ek1Y +Aek2Y , (A 7)

as Y → −∞, for some A to be determined. Since H∗ is determined by the solution to the
equation at the front meniscus, this leaves one unknown to be found, which is determined
by imposing the condition HY Y → 1 as Y → ∞. Hence, (4.14) and (4.15) are sufficient
to solve (4.16) for V < 0, provided H∗ is known. This is what we expect; the shape of
the front end of the oil slug determines the film thickness, which in turn determines the
shape of the rear end of the oil slug, i.e. the information travels in the direction of the
flow in a frame of reference in which the oil slug is stationary.

To determine A numerically, we solve (4.16) using a shooting method, similarly to the
V > 0 case. We use (A 7) as the initial value, and vary A until limY→∞HY Y = 1.

It can be shown that the roots of (A 5) with negative real part are complex-valued for
ab−2/3 < 3/22/3. Thus, the rear of the oil slug is non-monotonic for

P ∗V >
ε
3/2
2

√
2ΓH∗3

9
√

3 sinh3/2H∗

√
(s∗2σo2

0 + σc20) coshH∗ + (cosh2H∗ + 1)s∗σo0σc0. (A 8)

Using equation (4.44) to estimate the velocity at leading order, we find that this inequality
holds for approximately P ∗ > 7.2×10−4 in the high salinity regime, and P ∗ > 1.6×10−3

in the low salinity regime, where σc0 and σo0 are given by (3.33) and the values for the
dimensionless parameters are given in table 1.

The limit of (A 1) in which the electrostatics become unimportant is given by a → 0.
In this limit, (A 8) is satisfied and thus the profile of the rear meniscus is non-monotonic.
This is in agreement with the Bretherton model of a bubble moving through a capillary
tube (Bretherton 1961), in which electrostatic effects are neglected.

Appendix B. Bretherton scaling

If we rescale H = χη and Y = χ1/2y, where

χ =

(
6P ∗

ε
3/2
2 Γ

)2/3

, (B 1)

then (4.16) reads

V
η − η∗
η3

=
d3η

dy3
+

1

Γ

(
σc

2
0 + 2σc0σo0 cosh (η/χ) + s∗2σo

2
0

sinh2 (η/χ)

)
y

. (B 2)

Equation (B 2) is an extension of the Bretherton equation (Bretherton 1961) which
includes electrostatic effects. We can treat the electrostatic effects as a perturbation to the
Bretherton model if Γ � 1. Whilst this regime is not applicable to the MIE mechanism,
it will apply to systems in which the electrostatic forces are small in comparison to the
surface tension forces.
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