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The Effect of Lead-time Uncertainty on Safety Stocks 
 

The pressure to reduce inventory investments in the supply chain have increased as 
competition expands and product variety grows.  Managers are looking for areas they can 
improve to reduce inventories required without hurting the level of service provided to 
customers. Two important areas that managers focus on are the reduction of the 
replenishment lead time from suppliers and the variability of this lead time. The normal 
approximation of lead time demand distribution indicates that both actions reduce 
inventories for cycle service levels above 50 percent. The normal approximation also 
indicates that reducing lead time variability tends to have a greater impact than reducing 
lead times, especially when lead time variability is large. We build on the work of Eppen 
and Martin to show that the conclusions from the normal approximation are flawed, 
especially in the range of service levels where most companies operate. We show the 
existence of a service level threshold greater than 50 percent below which re-order points 
increase with a decrease in lead time variability. Thus, for a firm operating just below this 
threshold, reducing lead times decreases reorder points, whereas reducing lead time 
variability increases reorder points. For firms operating at these service levels, decreasing 
lead time is the right lever if they want to cut inventories, not reducing lead time 
variability. 
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1.  Introduction and Framework 
 

Managers have been under increasing pressure to decrease inventories as supply 

chains attempt to become leaner. The goal, however, is to reduce inventories without 

hurting the level of service provided to customers. Safety stock is a function of the cycle 

service level, demand uncertainty, the replenishment lead time, and the lead time 

uncertainty. For a fixed cycle service level, a manager thus has three levers that affect the 

safety stock - demand uncertainty, replenishment lead time, and lead time uncertainty. In 

this paper we focus on the relationship between lead time uncertainty and safety stock 

and the resulting implications for management. 

 

Traditionally, a normal approximation has been used to estimate the relationship 

between safety stock and demand uncertainty, replenishment lead time, and lead time 

uncertainty. According to Eppen and Martin (1988), this approximation is often justified 

by using an argument based on the central limit theorem but in reality, they say, “the 

normality assumption is unwarranted in general and this procedure can produce a 

probability of stocking out that is egregiously in error”. Silver and Peterson (1985), 

however, argue that trying to correct this effect with a more accurate representation of 

demand during lead time may be ineffectual because the gain in precision may only 

induce minimal improvement in the cost. Tyworth and O’Neill (1997) also address this 

issue in a detailed empirical study for fast-moving finished goods (demand per unit time 

have c.v.’s below 40%) in seven major industries. Their investigations reveal that “the 

normal approximation method can lead to large errors in contingency stock – say, greater 

than 25%. Such errors have relatively little influence on the optimal solutions, however, 

because contingency stock holding cost comprises a small portion of the total logistics 
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system cost.” They further conjecture that reducing the fill rate, the proportion of orders 

filled from stock, “makes total system costs less sensitive to normal theory 

misspecifications” since this will in turn reduce the required safety stock level and thus 

make the total holding costs a smaller percentage of total system cost.  

 

In this paper our focus is not on the size of the error resulting from using the 

normal approximation (that has been captured very well by Eppen and Martin) but on the 

flaws in the managerial prescriptions implied by the normal approximation. In particular, 

we focus on two prescriptions of the normal approximation: 

1. For cycle service levels above 50 percent, reducing lead time variability reduces 

the reorder point and safety stock. 

2. For cycle service levels above 50 percent, reducing lead time variability is more 

effective than reducing lead times because it decreases the safety stock by a larger 

amount.   

 In this paper we show that for cycle service levels that are commonly used in 

industry both prescriptions are false if we consider the exact demand during the lead 

time. Using the exact demand during the lead time instead of the normal approximation 

we infer the following: 

1. For cycle service levels above 50 percent but below a threshold, reducing lead 

time variability increases the reorder point and safety stock. 

2. For cycle service levels above 50 percent but below a threshold, reducing the lead 

time variability increases the reorder point and safety stock, whereas reducing the 

lead time decreases the reorder point and safety stock. 

 4



Both effects are more pronounced when the coefficient of variation of demand is high 

and less pronounced when the coefficient of variation of demand is low. This is 

consistent with the conclusion of Tyworth and O'Neill (1997) that the normal 

approximation is quite effective for low c.v. Our inference also support the results in Jong 

(1994) who assumes a periodic demand that follows a compound Poisson process and 

derives a threshold value underneath which base stocks increase with a reduction in lead-

time uncertainty. It is easy to see that under the normal approximation, this threshold 

equals 0.5. For the distributions we analyze, assuming a normal period demand, we show 

that this threshold lies in a range where most firms operate (between 0.5 and 0.7). The 

comparison of the prescriptions is illustrated using Table 1. 

Row Lead Time Process CSL 
(α) 

Safety Stock 
(Normal Approximation) 

Safety Stock 
(Exact value) 

1 Gamma, L=10, sL = 5 0.6 28 20 
2 Gamma, L=10, sL=4  0.6 23 22 
3 Gamma, L=8, sL=5 0.6 27 15 
4 Gamma, L=10, sL = 5 0.95 182 218 
5 Gamma, L=10, sL=4  0.95 153 181 
6 Gamma, L=8, sL=5 0.95 179 218 

Table 1: Safety Stocks for Gamma Lead Times and Different Service Levels 
  

 Consider rows 1-3 of Table 1. For a cycle service level of 0.6, the normal 

approximation predicts that reducing the standard deviation of the lead time from 5 to 4 

should decrease the safety stock from 28 to 23. The exact calculation, however, shows 

that reducing the standard deviation of lead time increases the required safety stock from 

20 to 22. The normal approximation predicts that reducing the standard deviation of lead 

time by 20 per cent (5 to 4) is much more effective at reducing the safety stock than 

reducing the lead time by 20 percent (10 to 8). The exact calculation, however, shows 

that for a cycle service level of 0.6, decreasing lead time is more effective (safety stock 
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decreases from 20 to 15) than reducing the standard deviation of lead time (safety stock 

increases from 20 to 22).  

 

For a cycle service level of 95 percent, however, the prescriptions of the normal 

approximation are correct (see rows 4-6). At this cycle service level both the normal 

approximation and the exact calculation show that reducing the standard deviation of lead 

time decreases the safety stock and is more effective than decreasing the lead time itself.  

 

We next argue that many firms in practice operate at cycle service levels in the 

50-70 percent range rather than the 95-99 percent that is often assumed. In practice, 

managers often focus on the fill rate as a service quality measure (Aiginger, 1987, Lee 

and Billington, 1992, Byrne and Markham, 1991), rather than the cycle service level 

(CSL or α). The fill rate measures the proportion of demand that is met from stock, 

whereas the cycle service level measures the proportion of replenishment cycles where a 

stockout does not occur. Table 2 considers the cycle service level and fill rate for 

different reorder points for a product that has a weekly demand of 2,500, standard 

deviation of weekly demand of 500, lead time of 2 weeks, and a reorder quantity of 

10,000. All calculations for fill rate are as detailed in Chapter 11 of Chopra and Meindl, 

2003.  

 

Reorder Point Safety Stock  Cycle Service Level Fill Rate 
5000  0  0.500 0.9718  
5040  40  0.523  0.9738  
5080  80  0.545  0.9756  
5120  120  0.567  0.9774  
5160  160  0.590  0.9791  
5200  200  0.611  0.9807  
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5240  240  0.633  0.9822  
5280  280  0.654  0.9836  
5320  320  0.675  0.9850  
5360  360  0.695  0.9862  
5400  400  0.714  0.9874  

Table 2: Cycle Service Level and Fill Rate as a Function of Safety Stock 

In this example, Table 2 illustrates that fill rates of between 97-99 percent are 

achieved for cycle service levels between 50-70 percent. Most firms aim for fill rates of 

between 97-99 percent (and not cycle service levels). This implies cycle service levels of 

between 50-70 percent. As we show in this paper, it is for cycle service levels between 

50-70 percent that the prescriptions of the normal approximation to managers are most 

distorted and lead to managers pushing the wrong levers to reduce inventories. Our main 

point is that for cycle service levels where most firms operate, the normal approximation 

erroneously encourages managers to focus on reducing the variability of lead times when 

they would be better of reducing the lead time itself. 

 

Our general results range from specific theoretical outcomes when the lead time 

follows a uniform distribution (Section 3) to numerical observations when the lead time 

follows a uniform, gamma, or normal distribution (Section 4). In the next section, we 

formalize our model and re-examine the response to reducing uncertainty when the 

normal approximation is used rather than an exact characterization. We conclude with the 

scope and managerial implications of our findings in Section 6.  

2.  Effect of Lead-time Uncertainty: The Normal Approximation 
 

For a given cycle service level, determining the required safety stock levels is 

predicated on characterizing the distribution of demand during the lead time. We assume 

that there is an indivisible period of analysis; for example, a day.  Demand during day i, 
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Xi, are independent and identically distributed random variables drawn from a normal 

distribution with mean µX and standard deviation σX.  For a generic lead time distribution 

of mean L and standard deviation sL, the demand during lead time under the normal 

approximation has mean M = LµX and standard deviation S = 222
LXX sL µσ +  (Silver and 

Peterson, 1985).   

Let F(•) represent the cumulative distribution function (cdf) of the standard 

normal distribution with mean 0 and standard deviation 1.  Define z as the solution to F(z) 

= α and ROPN  as the re-order point for a cycle service level of α. Under the normal 

approximation, we have zSMROPN +=  with zS as the safety stock. Observe that under 

the normal approximation S increases (decreases) as sL increases (decreases). Thus, 

whether the safety stock S and the reorder point ROPN, rise or fall as  sL increases 

depends only on the sign of z.  For a given mean lead-time L, Figure 1 depicts the 

relationship between the lead-time uncertainty (represented by sL) and the re-order points 

predicted by the normal approximation for three α’s.  As can be seen from Figure 1, the 

safety stock S and reorder point ROPN  rise with an increase in  sL for a CSL above 0.5 

(since z > 0) and drop with an increase in  sL for CSL below 0.5 (since z < 0).  For a CSL 

of 0.5, the re-order point remains at the level of the deterministic case (sL = 0) and does 

not change with an increase in  sL (since z = 0, ROPN = M). These observations lead to the 

following conclusion: 

Theorem 2.1:  Suppose that the lead-time uncertainty represented by sL increases. Then 

for a given CSL = α, the following is true: 

(i)  If α < .5, then ROPN  falls; 

(ii)  if α = .5, then ROPN  is invariant; and 

 8



(iii) if α > .5, then ROPN  rises. 

 

 

Re-Order 
Point ROPN 

Lead Time Uncertainty 

α   > 0.5 

α   = 0.5 

α   < 0.5 

 

Figure 1 
 

Theorem 2.1 indicates that, as management works on the reduction of lead-time 

uncertainty (reduction of  sL), the re-order point drops for CSLs above 0.5. Unfortunately, 

as demonstrated in Eppen and Martin (1988), this neat prescription is a consequence of 

the normal approximation. In the next section, we show the existence of a threshold 

5.0>α  such that for CSLs in (0.5, α ], the reorder point and safety stock actually 

increase as  sL decreases. 

3. Effect of Lead-time Uncertainty: The Exact Distribution 
 

In this section, we show how the prescriptions of the normal approximation in 

Theorem 2.1 are flawed for the case when periodic demand follows the normal 

distribution and the lead time has a discrete uniform distribution with a mean of Y and a 

range of Y± y. Denote the re-order point by R and let Gy(R) be the (unconditional) 

probability that demand during the lead time is less than or equal to R when the lead-time 
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is uniformly distributed between Y± y.  If µx is the expected demand per period and σx is 

the standard deviation of demand per period, we define 

Y
x

x
z R R Y

Y( ) ( )
(=

−
)

µ
σ .       (3.1) 

It is clear from the definition of zY(R) that it represents the number of standard deviations 

R is away from the expected value of demand given that the lead time is Y.  Let F(zY(R)) 

represent the probability that the standard normal is less than or equal to zY(R). As in 

Eppen and Martin (1988) it then follows that 

∑
+

=
+

−=

yY

yYW
Wy RzF

y
RG ))(()

12
1()( .      (3.2) 

From (3.1) and (3.2), it thus follows that  

  if and only if .     (3.3) y yG R G R( ) ( )1 > 2 21R R>

Observe that the case when y=0 corresponds to the case of deterministic lead-time.  We 

are interested in examining how Gy(R) behaves as the lead time uncertainty represented 

by y changes.  We begin by examining the effect of increasing uncertainty by increasing y 

by one period.  Then, simple algebra yields: 

)}(2))(())((){
32

1()()( 111 RGRzFRzF
y

RGRG yyYyYyy −+
+

=− −−+++ , (3.4) 

and 

))](())(()[
32

1()()
32
12()( 111 RzFRzF

y
RGy

yRG yYyYyy −−+++ +
+

+
+
+

= .  (3.5) 

Since , it readily follows that ,  so that  011 ≥−−>++ yYyY )()( 11 RzRz yYyY ++−− ≥

0))(())((1 11 >>> ++−− RzFRzF yYyY .     (3.6) 
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Our objective for the rest of the section is to try and come up with an analogue to Figure  

for the case when we use the exact distribution of demand during the lead time (shown in 

(3.2)). To proceed we need the following lemma. 

Lemma 3.1: Let  and  be such that yR yR +1 y y y yG R G R( ) ( )= =+ +1 1 α . We have > 

(<)   if and only if 

yR +1

yR )(2)())(())(( 11 RGRzFRzF yyyyYyyY ><+ −−++ . 

Proof: Observe that if )(2)())(())(( 11 RGRzFRzF yyyyYyyY ><+ −−++ , we have 

y y y yG R G R+ < > =1( ) ( ) ( ) α  by (3.4). Since y yG R+ + =1 1( ) α , using (3.3) we thus have 

> (<) . yR +1 yR

 On the other hand, if > (<) , (3.3) implies that yR +1 yR

α = > <+ + +y y y yG R G R1 1 1( ) ( ) ( ) . Since α = y yG R( ) , we have . 

From (3.4) we thus have 

y y y yG R G R( ) ( ) ( )> < +1

)(2)())(())(( 11 RGRzFRzF yyyyYyyY ><+ −−++ . The result thus 

follows.    

•••• 

Another result needed is presented below. The proof follows from the definition of the 

standard normal distribution. 

Lemma 3.2: Let F(.) be the standard normal cumulative distribution function. If 

, then 1 < F(zzz 21 0 << 1) + F (z2) if and only if -z1 < z2 .  

We start by considering the reorder point changes as y increases for the case 

where the CSL is 0.5. For a given value of lead-time uncertainty y, let  be the re-

order point such that  = 0.5. For the case y = 0, observe that  is the 

expected demand, , during the lead time Y.  We have  

yR ( . )05

y yG R( ( . )05 ) yR ( . )05

µ xYM = <<+ 0))5.0(( 01 RzY
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))5.0(())5.0(( 0101 RzRz YY −+ <−  from (3.1). From Lemma 3.2 it thus follows that 

 > = 1. Using Lemma 3.1 it thus 

follows that <  .  

)))5.0((()))5.0((( 0101 RzFRzF YY −+ + 2 00 0G R( ( . ))5

1 05R ( . ) 0 05R ( . )

•••• 

In other words, the re-order point decreases as lead-time uncertainty increases 

from y = 0 to y = 1 for a cycle service level of 0.5. In the next result we prove that this 

pattern continues to hold as lead-time uncertainty (y) increases, i.e., the re-order point 

continues to drop as lead-time uncertainty (y) increases for a cycle service level of 0.5. 

Theorem 3.3:  For a cycle service level α = 0.5, the re-order point  declines with 

an increase in lead-time uncertainty y, i.e., < .  

yR ( . )05

yR +1 05( . ) yR ( . )05

•••• 

Theorem 3.3 is equivalent to stating that the median of the distribution of demand 

during the lead time declines as lead-time uncertainty represented by y increases. In 

contrast, the median is invariant when the normal approximation is used. For the specific 

case of the median, Theorem 3.3 provides a complete characterization of the behavior of 

the reorder point as y increases.  In general, the reorder point is the solution to  

α=∑
+

=
+

−=

yY

yYW
Wy RzF

y
RG ))(()

12
1()( .      (3.7) 

Let yR ( )α represent the unique solution to (3.7).  To examine the effect of increasing the 

cycle service level α it is sufficient to specialize (3.4) to: 

}2)))((()))(((){
32

1())(())((1 ααααα −+
+

=− −++ RzFRzF
yRGRG yyYyyYyyyy  (3.8) 
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Observe that Theorem 3.3 implicitly analyzes (3.8) for the special case α = .5.  By 

Lemma 3.1, for arbitrary α, determining whether the re-order point increases or decreases 

depends on the sign of the term )))]((()))((([2 ααα RzFRzF yyYyyY −+ +− .  We have been 

unable to fully characterize the sign of this term for all values of  y.  However, for the 

special case when y increases from 0 to 1 we can sign this term and be more definitive. 

Theorem 3.4: 

1. If 0 < α ≤ 0.5 then 1R ( )α < 0R ( )α ;  

2. There exists ( ]1,5.0∈α  such that 1R ( )α < 0R ( )α  if ( ]αα ,5.0∈  

Part 1 of this theorem states that the optimal re-order point falls with increasing 

uncertainty if the CSL is less than 0.5. Part 2 indicates that when α > 0.5, but below a 

threshold, the re-order point initially falls with an increase in lead-time uncertainty.  This 

contradicts the prediction for the normal approximation.  

In the next section we numerically study the effect of decreasing lead time 

uncertainty on safety stocks for various lead time distributions.  

 
 

4.  Numerical Results and Analysis  
 

Theorems 3.3 and 3.4 show that there is a range of cycle service levels above 50% 

where decreasing the lead time uncertainty increases the reorder point and safety stock 

when the lead time is uniformly distributed. In this section we present computational 

evidence to show that these claims are valid when lead times follow the gamma, uniform, 

or the normal distribution. For the gamma lead time distribution we show that for cycle 

service levels around 60 percent, decreasing lead time variability increases the reorder 
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point. For the uniform lead time this effect is observed for cycle service levels close to, 

but above, 50 percentAs we have discussed earlier, most firms operate at cycle service 

levels in this range because they imply fill rates of around 98 percent. Using the 

computational results we also show that in this range, a manager is better off decreasing 

lead time rather than lead time variability if reducing inventories is their goal. 

 

We first consider the effect of reducing lead time variability on reorder points and 

safety stock when the lead time follows the uniform or gamma distribution. In both case 

we try and keep the mean lead time fixed and vary the standard deviation. Demand per 

period is assumed to be normal with a mean µ=20 and standard deviation σ= 15 or 5. 

This allows us to analyze the effect for both high and low coefficient of variation of 

demand.  

 

Figure 3 shows the effect of reducing lead time variability when periodic demand 

has a high coefficient of variation (15/20) and lead time is uniformly distributed with a 

mean of 10 and a range of 10 ± y, where y ranges from 0 to 10. We plot the change in 

reorder point as y changes using both the normal approximation and the exact 

calculations for cycle service levels of 0.5, 0.51, and 0.55. The safety stock is calculated 

as ss = ROP - 200 because 200 is the mean demand during the lead time. The curves 

marked Norm(.) represent the results of the normal approximation, whereas the others 

represent the exact calculation of reorder point. 
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From Figure 3 we conclude that for high coefficient of variation of periodic 

demand, if lead times are uniformly distributed, there is a range of cycle service levels 

above 0.5 (but close to 0.5), where reducing lead time uncertainty increases safety stocks, 

whereas the normal approximation predicts the opposite. 

R eo rder P o int  as a F unct io n o f  y fo r N o rmal A ppro ximatio n and Exact
P erio d D emand is N o rmal, mean=20, s igma=15

190.0

195.0

200.0

205.0

210.0

215.0

220.0

0 1 2

R
O

P'
s

0.55

n

Figure 3: ROP as a Funct
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Reorder Point as  a Function of Lead Tim e SD for Norm al 
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Figure 4: ROP as a Function of Lead Time Standard Deviation for Gamma Lead Time 

 

Figure 4 shows that the normal approximation is even more erroneous when lead 

time follows the gamma distribution. Even for a cycle service level of 0.6, decreasing the 

lead time uncertainty increases safety stocks, whereas the normal approximation predicts 

just the opposite. When lead times are gamma distributed we thus conclude that there is a 

range of cycle service levels even beyond 0.6 when decreasing lead time variability 

increases the required safety stock. 

 

Figure 5 repeats the results of Figures 3 and 4 but for low coefficient of variation 

(5/20) of periodic demand. Figure 5 shows that even with a low coefficient of variation of 

periodic demand, for cycle service levels between 50 percent and a threshold, the exact 

calculation shows that decreasing lead time variability increases the required safety stock, 

whereas the normal approximation predicts the opposite. The computational results show 

that the threshold value decreases as the coefficient of variation of periodic demand 
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decreases. Thus, for very low coefficient of variation of period demand, the error of the 

normal approximation is less pronounced. 

R e o rde r P o int  a s  a  F unc t io n o f  Le a d T im e  S D  f o r N o rm a l 
A ppro xim a t io n a nd E xa c t  ( Le a d T im e  is  G a m m a )

P e rio d D e m a nd is  N o rm a l, m e a n=2 0 , s igm a =5
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Figure 5: Reorder Point as a Function of Lead Time Uncertainty for Low c.v. 

In Figures 6 and 7, we compare the impact of reducing lead time variability and 

lead time on safety stocks. In both cases we consider periodic demand to have a high 

coefficient of variation (15/20). In Figure 6 we consider lead time to be uniformly 

distributed with a mean of 10 and a range of 10 ± y. The chart on the left shows how the 

ROP changes as y is decreased from 5 to 0. The chart on the right shows how for y = 5, 

the ROP changes as the lead time decreases from 10 to 5. The results are shown for cycle 

service levels of 0.51, 0.55 and 0.6. In both cases the results show that the error of the 

normal approximation is less pronounce for low coefficient of variation of periodic 

demand. 
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Figure 6: Safety Stock as a function of lead time uncertainty (left) and lead time mean (right) for 
Uniform Lead Times 
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Figure 7: Safety Stock as a function of lead time uncertainty (left) and lead time mean 
(right) for Gamma Lead Times 
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5.  Finding the Thresholds 
 

We now show how the thresholds, below which the conclusions of the normal 

approximation are flawed, are obtained. These thresholds are obtained by studying the 

cumulative distribution function (CDF) of the demand during the lead-time. The CDF 

shows how the ROP changes as a function of the cycle service level. Recall that the 

safety stock ss = ROP - mean demand during lead time. In Figure 8 we represent two 

CDFs corresponding to the cases where the lead-time is uniformly distributed between 

(represented by y) and yY ± )1( +± yY (represented by y + 1). The crossover α  represents 

the CSL for which both distributions require the same safety stock. 

 

CSL 

ROP

1 

α  

cdf for y+1 

cdf for y 

α 

β 

 

Figure 8: CDF for Demand During Lead time 

 

For a cycle service level α, larger than the crossover point α , decreasing lead-

time range from Y ± (y+1) to Y ± y  results in a decrease in the safety stock. However, 

when the CSL is below α , say β, decreasing lead-time range from Y ± (y+1) to Y ± y 

results in an increase in the ROP. Thus, the ROP increases with a decrease in lead-time 

uncertainty for cycle service levels below the crossover α . The crossover point α  is the 
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threshold below which decreasing the lead time variability increases the required safety 

stock.  For cycle service levels between 50 percent and the crossover point, decreasing 

the lead-time uncertainty results in an increase of safety stock. 

 Next, we numerically describe the cumulative distribution functions for the case 

where the lead time distribution is uniform or Gamma and obtain crossover points to 

explain the results in Section 4. Figure 9 shows the CDF for the demand during the lead 

time when lead time is uniformly distributed between 10 ± y as y changes from 9 to 1. 

Observe that the crossover point between the CDF for y = 3 and y = 1 is at 0.564. This 

implies that for any cycle service level between 50 and 56.4 percent, decreasing y from 3 

to 1 will increase the safety stock, whereas the normal approximation predicts otherwise. 

The crossover point thus establishes the threshold below which the normal approximation 

is directionally wrong when lead time is uniformly distributed. 

CDFs for Exact Uniform, y=1, 3,...,9

0.5000

0.5100
0.5200

0.5300

0.5400

0.5500

0.5600
0.5700

0.5800

0.5900

0.6000

190.0 195.0 200.0 205.0 210.0 215.0 220.0

Re-Order Point

C
SL

y=1

y=3

y=5

y=7

y=9

 

Figure 9: CDF of Lead Time Demand for different y’s when µ=20, σ=15 and L=10 
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Figure 10 shows how the reorder point ROP varies with the cycle service level 

when lead time follows a gamma distribution with a mean of 10 and a standard deviation 

that varies from 9 to 1. Once again the cross over point helps explain the range of cycle 

service levels over which the conclusions of the normal approximation are directionally 

flawed. For example, the crossover point for the CDF for a standard deviation of 5 and 3 

is at 0.68. Thus, for cycle service levels between 50 and 68 percent, decreasing the 

standard deviation of lead time from 5 to 3 increases the safety stock required, whereas 

the normal approximation predicts just the opposite. 

cdf  w hen daily demand is normal (mean=20, sig=15)
Lead time is gamma, mean=10, stdev=s
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Figure 10: CDF of Lead Time Demand for Gamma lead time, µ=20, σ=15 and L=10 
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Figure 11 shows how the reorder point ROP varies with the cycle service level 

when lead time follows a truncated normal distribution (with mean of 10 and a discrete 

support from 0 to 20 days). Here we note that the cross over points are closer to 0.5 (0.54 

when s=1 and s=3 intersect, and 0.51 when s=3 and s=5 intersect) illustrating that the 

width of the interval of service levels in which the re-order point decrease as variability 

increases is dependent on the shape of the lead time distribution.  

cdf  w hen daily demand is normal (mean=20, sig=15)
Lead time is truncated normal, mean=10, stdev=s
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s=7
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Figure 11: CDF of Lead Time Demand for Normal lead time, µ=20, σ=15 and L=10 

 

The procedure detailed above for uniform, gamma, and normal lead times can be 

used for any lead time distribution to estimate the threshold below which decreasing lead 

time variability increases the safety stock required. To identify whether decreasing the 

lead time variability from σh to σl will increase or decrease the safety stock required, we 
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plot the CDF of demand during the lead time for each lead time variability and identify 

the crossover point X. Cycle service levels between 50 percent and the crossover point 

represent the range over which the exact distribution predicts an increase in safety stock 

if lead time variability is decreased, whereas the normal approximation predicts the 

opposite.   

 
 

6.  Conclusion  
 

For the most part, management’s understanding of the effect on safety stocks of 

uncertainty in lead-time is based on an approximate characterization of demand during 

lead time using the normal distribution.  For cycle service levels above 50 percent the 

normal approximation predicts that a manager can reduce safety stocks by decreasing 

lead time uncertainty. Our analytical results and numerical experiments, however, 

indicate that for cycle service levels between 50 percent and a threshold, the prescriptions 

of the normal approximation are flawed and decreasing the lead time uncertainty, in fact, 

increases the required safety stock. In this range of cycle service levels, a manager who 

wants to decrease inventories should focus on decreasing lead times rather than lead time 

variability. This contradicts the conclusion drawn using the normal approximation. 

 

Our conclusion is more pronounced when demand has a high coefficient of 

variation. When the lead time follows a gamma distribution, the prescriptions of the 

normal approximation are flawed over a wide range of cycle service levels. This range is 

narrower when lead times are uniformly or normally distributed. Thus, using the normal 

 23



approximation makes sense if lead times are normally distributed but would not make 

sense if lead times follow a distribution closer to the gamma. 
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Appendix: Proof of theorem 3.3 

Theorem 3.3:  For α = 0.5, the re-order point  declines with an increase in lead-

time uncertainty y, i.e., < .  
yR ( . )05

yR +1 05( . ) yR ( . )05

Proof: The result is proved using induction. We first consider the case for y = 0, i.e., the 
lead time is fixed at Y. For a fixed lead time Y, the reorder point for a cycle service level 
of 0.5 is given by .  µ xo YR =)5.0(
Now consider the lead time to be uniformly distributed with equal support on {Y+1, Y, Y-
1}, i.e., y = 1. If the re-order point is kept at R0(0.5) = Yµx, the cycle service level is given 
by 

( )( ) ( )( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−

Y
YYF

Y
YYF

Y
YYF

x

x

x

x

x

x
σ

µ
σ

µ
σ

µ
1

1
1

1
3
1  

 

To lighten notation, we let xxc µσ= . We claim that 1
1

1
1

1
>⎟

⎠

⎞
⎜
⎝

⎛
+

−
+⎟

⎠

⎞
⎜
⎝

⎛
− Yc

F
Yc

F . By 

Lemma 3.2, this follows because 
1

10
1

1
−

<<
+

−
YcYc

 and 
1

1
1

1
−

<
+ YcYc

. This 

implies that if y = 1, the cycle service level for a reorder point of R0(0.5) is strictly greater 
than 0.5.Thus, R1(0.5) < R0(0.5).  Define ∆1 = (R0(0.5) - R1(0.5)) / µx. The service level at 
R1(0.5) is 0.5 and is given by  
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Now consider raising the lead time uncertainty by assuming lead time to be uniformly 
distributed over {Y-2, Y-1, Y, Y+1, Y+2}. If the re-order point is kept at R1(0.5) = Yµx -  
∆1µx, the cycle service level is given by  
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, (A3) thus follows. This implies that if y = 2, the 

cycle service level for a reorder point of R1(0.5) is strictly greater than 0.5. Thus, R2(0.5) 
< R1(0.5). Define ∆2 = (R1(0.5) - R2(0.5)) / µx.  
 
We now use induction to complete the proof. Define ∆y = (Ry-1(0.5) - Ry(0.5)) / µx. To 
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The result thus follows using Lemma 3.2. This implies that Ry+1(0.5) < Ry(0.5). 
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Appendix: Technical Methodology

The Normal Approximation for the Exact Uniform Distribution 

ROPN = F-1 {α, µµ xy
, ( ) 31 22

XXy yy µσµ ++ } where F-1 {•, •, •} is the inverse of the 

normal distribution (NORMINV) of given mean and standard deviation. 

The Normal Approximation for the Gamma Distribution 

ROPN = F-1 {α, µ x
L , 222

XLX sL µσ + } where F-1 {•, •, •} is the inverse of the normal 

distribution of given mean and standard deviation and L and sL are the mean and standard 
deviation of the Gamma distribution. 

The Exact Uniform 
Sheet 1. Generate Table indexed by (row) ROP and (column) y with CSL in the 

body of the Table. 
Sheet 2. Use VLOOKUP function to extract ROP index which corresponds to 

given y and CSL 

The Discrete Gamma Distribution 
We seek the inverse (G-1) of the cumulative distribution function of the demand during 
lead time. The lead time distribution has mean L and standard deviation sL. We know 
 
ROP = G-1{P(D < X) =∑l = 1,…,30  wl * NORMDIST(X, l*µX, σX*sqrt(l),1)} 
 
Sheet 1. Generate weights (wl , l=1,…,30) Table indexed by (row) support 

(between 0 and 30) and (column) standard deviation with, in row j and 
column s the value 
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That is, we add to j=30 the mass of the tail to the right of 30.  
In Sheet 1, we also generate a table of NORMDIST values as per the ROP 
formula above. 
 

Sheet 2. Matrix multiply the Sheet 1’s Normdist table to Sheet 1’s weights table. 
Sheet 3: Use a VLOOKUP(CSL) on Sheet 2 to find the ROP which yields the 

given CSL.  
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The resulting discrete gamma distributions for lead time are illustrated in Figure A1. 
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1E-06 3 6 9 12 15 18 21 24 27 30

Support (Lead Tim e has m ean = 10)

Discrete Gamma, s=5

0
0.01

0.02
0.03
0.04
0.05

0.06
0.07
0.08

0.09
0.1

0 3 6 9 12 15 18 21 24 27 30

Support (Lead Tim e has m ean = 10)

Theor. Mass

Discretized

Discrete Gamma, s=7.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1E-06 3 6 9 12 15 18 21 24 27 30

Support (Lead Tim e has m ean = 10)

Discrete Gamma, s=9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1E-06 3 6 9 12 15 18 21 24 27 30

Support (Lead Tim e has m ean = 10)

 

Figure A1: Gamma Lead Time Distributions for standard deviations of 2.5, 5, 7.5, and 9. 

The Truncated Normal Distribution 
We seek the inverse (G-1) of the cumulative distribution function of the demand during 
lead time. The lead time distribution has mean L and standard deviation sL. We know 
 
ROP = G-1{P(D < X) =∑l = 1,…,L  wl * NORMDIST(X, l*µX, σX*sqrt(l),1)} 
 
Sheet 1. Generate weights Table indexed by (row) support (between 0 and 30) and 

(column) standard deviation with, in row j and column s the value 

 for j=1,…,29 with 
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That is, we add to j=0 and j=30, respectively, the mass of the tail to the left 
of 0 and to the right of 30. In Sheet 1, we also generate a table of 
NORMDIST values as per the ROP formula above. 

Sheet 2. Matrix multiply the Sheet 1’s Normdist table to Sheet 1’s weights table. 
Sheet 3: Use a VLOOKUP(CSL) on Sheet 2 to find the ROP which yields the 

given CSL.  
 

The resulting truncated normal distributions for lead time are illustrated in Figure A2. 

Discrete Normal, s=2.5
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Figure A2: Normal Lead Time Distributions for standard deviations of 2.5, 5, 7.5, and 9. 
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