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Abstract One of the key points to better understand the ori-
gins of friction is to know how two surfaces in contact adhere
to one another. In this paper we present molecular dynam-
ics (MD) simulations of two aluminium bodies in contact,
exposed to a range of normal loads. The contact surfaces of
both aluminium bodies have a self-affine fractal roughness,
but the exact roughness varies from simulation to simulation.
Both bodies are allowed to have an adhesive interaction and
are fully deformable. Tracking important contact parameters
(such as contact area, number of contact clusters, and con-
tact pressure) during a simulation is challenging. We propose
an algorithm (embedded within a parallel MD code) which
is capable of accessing these contact statistics. As expected,
our results show that contact area is increasing in propor-
tion with applied load, and that a higher roughness reduces
contact area. Contact pressure distributions are compared to
theoretical models, and we show that they are shifted into the
tensile regime due to the inclusion of adhesion in our model.

Keywords Contact mechanics - Molecular dynamics -
Friction - Roughness - Nanotribology

1 Introduction

To understand friction has been the goal for many research-
ers from the ancient Greeks until the current day. Although a
lot is known about the factors contributing to friction, a com-
plete picture of the origins of friction is still lacking. At the
macroscopic level it is understood since the days of Da Vinci,
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Amontons and Coulomb that the force of friction is directly
proportional to the applied load and that the apparent con-
tact area does not influence the frictional force [2,11]. The
direct proportionality between the applied load Fy and the
frictional force F yields a dimensionless constant © known
as the friction coefficient.

One of the important topics in current tribology research
is the influence of surface roughness on friction [5]. It has
long been shown that a simplistic geometrical representation
of surface roughness is not sufficient, and that real surfaces
have a quite different type of roughness, with asperities at
different length scales, which can be approximated by self-
affine fractals [21,31]. As a consequence the real contact area
Ap of two materials is much smaller than the apparent con-
tact area A, because the materials only touch at a few high
spots (asperities) of both respective surface landscapes, see
Fig. 1.

Bowden and Tabor proposed a model for friction in
which the tangential force is proportional to the real con-
tact area and to the shear strength of each contacting asperity
(e.g., assuming the occurrence of plastic deformation) [6].
They also investigated friction for a purely elastic sliding
process, and based on the Hertz theory of elastic contacts,
found a contradicting non-linear dependence of friction on
load: F « F 1%/ 3 [6,26]. This contradiction was resolved by
Archard [4] by assuming that contact involves many asperi-
ties and that the number of contacting asperities is load depen-
dent. Greenwood and Williamson [13] improved Archard’s
method even further by assuming Gaussian and exponen-
tial height distributions for the asperities. One of the draw-
backs of the Greenwood—Williamson approach is that it relies
on a known height distribution, and that it does not take
into account the elastic coupling between asperities. In later
work many of these limitations on the Greenwood—William-
son theory have been removed [9,30]. In order to cope with
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Fig. 1 A schematic depiction of two bodies in contact due to a normal
force (Fy). When zooming in on the contact interface it is observed that
the real area of contact (Ag) is much smaller than the apparent area of
contact (A), because the two bodies only contact on a small number of
asperities due to surface roughness

different length scales of asperities at once, Persson [31] pro-
posed a theory which is based on the auto-correlation of the
surface heights.

Most of the approaches mentioned above describe the sur-
face from a continuum mechanics point of view. However,
in the limit of smaller length scales contact occurs finally at
the atomistic level, where the continuum theory may become
inadequate [18,19]. To better understand the origins of fric-
tionitis important to analyze how two surfaces adhere to each
other at the atomistic level. In this paper we use molecular
dynamics (MD) simulations to investigate two aluminium
bodies in contact due to normal loading. Previous similar
MD simulations mainly covered two flat crystal surfaces in
contact, either commensurate or amorphous [3,19]. In this
work our interest lies with rough crystal surfaces in contact.
Some work has been done on rough surfaces, but mainly in
2D [14,20], or in 3D with one of the bodies rigid [7]. In this
paper we aim at a full 3D description of the problem with
both bodies deformable, which to the best of our knowledge
is done here for the first time.

We investigate a range of loading pressures and different
types of atomistic scale roughness. Determining the param-
eters that are of importance to the contact problem (such as
contact area and pressure) is a challenging task, and espe-
cially if this needs to be done on the fly. We present the
foundations of an algorithm that can be used within a MD
simulation to measure these contact parameters in real time.
This algorithm is implemented within the parallel MD code
LAMMPS [32].

In the following sections we describe the model setup and
validation including the explanation of the new contact detec-
tion algorithm. In the sections thereafter we present and dis-
cuss the results of the MD simulations. The final section
presents a summary and conclusion.
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2 Methods
2.1 Interaction potential

Molecular dynamics simulations are an interesting tool to
investigate physical processes at the level of individual
atoms. At its core this technique solves Newton’s equations
of motion for each individual atom in the system under con-
sideration. In order to do so, interactions between atoms need
to be accounted for, for instance by using pair-wise potential
energy functions between the atoms. A well-known exam-
ple of such pair-wise potential is the Lennard-Jones (LJ)
potential [17]

no=s©)- )]

where r is the distance between two atoms, o their char-
acteristic length, and € the energy at which the potential is
at its minimum. Although designed for MD simulations of
noble gases [1], the LJ potential is also used successfully
in biological MD simulations [15,16,23,33] as well as in
computational mechanics [8,19,34]. Other potentials can be
used to describe the interactions between atoms, such as the
Morse potential or the embedded atom method [12,27], but
for the system under investigation in this work the LJ poten-
tial suffices.

The material that is modeled in all simulations is alu-
minium, because its crystal structure is face centered cubic
(FCC), which is naturally recovered by the LJ potential. To
model the properties of aluminium, itis required to get correct
LJ parameters o and €. Given the density of aluminium (2.70
g/cm?) and its mass (26.98 g/mol) the crystal lattice constant
can be determined (0.404 nm). The simulations should start
from a crystal in a stable configuration, and, for this purpose
we use the configuration of minimal energy to determine
the characteristic length o. Taking into account all nearest
neighbors up to the fourth layer in the crystal, the character-
istic length for aluminium equals o = 0.2596 nm. Using the
minimum energy configuration to compute o ensures that the
crystal does not contract or expand in the bulk regions.

Modeling some mechanical parameters of aluminium cor-
rectly with the LJ model is important. Therefore, we derived
the energy parameter € by fitting it to aluminium’s Young’s
modulus of 68 GPa. Assuming the crystal is infinitely large
and using the Cauchy—Born rule at zero Kelvin [35], we can
proceed to determine the full elastic tensor, which is given
by
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where C is the elastic tensor, 2 the volume associated
with any atom, r; the distance from the arbitrary center of
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the crystal, r? the undeformed positions of the atoms, V;,
the interaction potential (in this case the LJ-potential), and
r?®4 = r? ® r? ® r? ® r?. As an approximation to isotro-
pic material the Poisson ratio and Young’s modulus can be
taken as

Ci1—Cp2

V= — —— and E =C11(1+v). 3)
2C;1 —Cr2

It can be easily seen that the Young’s modulus depends only
on the energy parameter, and that there even exists a lin-
ear relationship between the two. Based on aluminium’s
Young’s modulus this gives for the LJ energy parameter
€ = 10.3014 kJ/mol.

The cut-off radius for the LJ potential is set at 0.6039 nm
(at which point the potential is almost zero) and for search-
ing the nearest neighbor list an extra shell with a width of
0.234 nm is added. To avoid discontinuities in the Van der
Waals energy the potential is shifted to make sure that at the
cut-off radius the potential energy equals zero. The values
used in the simulations for the interaction energy between the
two contacting bodies are discussed in a subsequent section.

We performed MD simulations of simple tensile tests in
different lattice directions. When the loading is in the prin-
cipal direction (100) we recovered the Young’s modulus for
aluminium used as an input, but performing the same test in
the direction perpendicular to the packed plane (111) gives a
higher Young’s modulus, see Fig. 2. Thus, our simple alumin-
ium LJ model has a degree of anisotropy, which is slightly
higher that what is observed in experiments [29]. However, in
our simulations we apply all the loading along the principal
directions (where we recover the correct Young’s modulus),
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Fig. 2 The resulting stress-strain curve from the tensile test MD
simulations with the determined LJ parameters. The response differs
depending on the loading direction (along the principal directions, 100,
or perpendicular to the packed plane, 111). The tangents at zero stress
and strain (dashed lines) are used to compute the Young’s modulus as
shown in the figure

giving us confidence that our LJ model describes aluminium
well enough for our current purposes.

2.2 Rough surface generation

Many surfaces have some sort of roughness on all length
scales, including the atomistic level, that can be described by
a self-affine fractal scaling, with the Hurst exponent H play-
ing a pivotal role in quantifying the roughness [3,14,31].
Other interesting quantities that characterize the rough sur-
face are the root mean square (RMS) roughness, the maxi-
mum peak to minimum valley distance, the height skewness
and kurtosis, and the RMS slope. Using the random midpoint
displacement (RMD) algorithm [24,36], which has the Hurst
exponent as one of its inputs, a rough surface can be gener-
ated which is periodic across its boundaries. The original
RMD algorithm starts by displacing the center of the under-
lying square surface grid, and in the next step taking the four
points between the center and the corners, and so on until
the algorithm arrives at the smallest possible dimension of
the grid. However, by using the RMD algorithm in this way
it is likely that the generated surface has only a few, albeit
large asperities. This can be unfavorable if one wants a larger
number of asperities, while still maintaining the same RMS
roughness. To avoid this, the RMD algorithm should not start
by displacing only the center, but by displacing the centers
which would have emerged at a later stage in the algorithm
instead. In other words, the algorithm does not start with
one large square, but with multiple smaller but equally sized
squares (e.g., 4 or 16). This is similar to moving the cut-
off wave vector of the surface roughness power spectrum to
higher frequencies [31]. To create a surface with a prede-
fined RMS roughness, it is sufficient to scale the heights of
the surface accordingly after it has been generated by the
RMD algorithm.

2.3 System setup

One of the major drawbacks of MD is that its computa-
tional cost increases rapidly with the number of particles. As
we wish to study different types of rough surfaces, we choose
a relatively small system size in order to keep the computa-
tional cost acceptable. The aluminium crystal structures we
create measure 32 x 32 unit cells in the lateral direction,
which is equivalent to lateral dimensions of approximately
13 x 13 nm. To avoid interlocking of the two crystals when
they are pressed together (due to the same crystal orientation)
the underlying crystal structure of the upper body is rotated
by 21°.

Because the behavior of the material is not known
before and possible plasticity (including atom shuffling and
the emission of dislocations) might occur when the two
contacting bodies are loaded and pressed together, it is
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important to have sufficient bulk material [39]. Therefore,
we choose to make each of the bodies cubic, giving them a
depth of 13 nm as well.

After creating two crystals for either the upper or lower
body of the system, we generated two rough surfaces. These
surfaces were projected onto the crystals, and we removed
any atoms above (lower body) or below (upper body) the
corresponding rough surface, creating an atomistic equiva-
lent of our rough aluminium sample. Consequently the cubic
shape of either of the two bodies is slightly altered, but it is
believed the remaining bulk material is sufficiently large to
still resemble correctly mechanical properties.

In Fig. 3 a schematic depiction of the system setup is
shown. Each of the two bodies (with its rough surface) is
shown as well as the subdivision into different regions. For
the lower body the lowest region (number 6) is kept fixed
at all time, giving the system its support. On the contrary
the highest region of the upper body (number 5) is kept
rigid, but is allowed to move as one entity upon an exter-
nally applied pressure. The two main regions (numbers 1 and
2) are completely free (thus deformable), whereas two small
thermostat regions (numbers 3 and 4) are used to maintain the

Externally applied pressuer

@@@@@@@@

Rigid body region

Thermostat region

Free deformable region

@ Thermostat region

[OTEEEI IR Fixed body region
A

Fig. 3 Schematic representation of the system setup. The gray scales
and numbers indicate different regions, where the upper domain is num-
bered with even numbers and the lower domain with odd numbers. The
inset shows that the system has an atomistic representation. Though
this schematic representation is 2D the system extends into the third
dimension as well
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temperature in the system as constant as possible, but where
the atoms are (except for their thermocoupling) free to move
as well. Furthermore, in the x- and y-directions the system is
considered to be periodic. The size in z-direction of regions 5
and 6 (in terms of number of lattice layers) is 4, for regions 3
and 4 this size is 8, and for the main regions 1 and 2 approx-
imately 40 layers.

It is important to note that although six regions are pres-
ent in the system, each atom in any region is modeled to be
aluminium. The benefit for naming the regions differently is
to simplify both the simulations and the analysis.

2.4 Simulations

In order to investigate different roughnesses and different
loading pressures a large number of MD simulations has to
be performed. We have chosen to investigate three differ-
ent surface roughness (with RMS roughness of 0.2, 0.5 and
1.0 nm, respectively), and use three different random seeds
to generate three surfaces for each roughness. Thus, in total
we look at nine different surfaces. However, to avoid making
the problem too complex, we have chosen to use only one
Hurst exponent for our surfaces, namely 0.8. The same RMS
roughness and Hurst exponent are used to generate the rough
surfaces of the upper and lower bodies. In Fig. 4 the top view
of the rough surfaces for the lower bodies for three different
RMS roughnesses are shown as an example.

Although the RMS roughness is an input in the generation
of the rough surfaces, due to the removal of atoms above or
below the rough surface (depending on whether it is the upper
or lower body), the actual RMS roughness of the atomistic
surface can be changed to a small extent. To show this effect
and also that all generated surfaces are quite different in their
topology, we computed some statistically relevant parame-
ters of the surface roughness, which are shown in Table 1.

The general observation from Table 1 is that skewness
(asymmetry) and kurtosis (peakedness) are not influenced
significantly by different RMS roughness and that the RMS
slope is proportional to the RMS roughness. Furthermore,
from this table it is observed that the RMS roughness of the
atomistic representation is slightly less than the RMS rough-
ness used as an input. This effect is caused by the fact that
the atoms reside on a crystal lattice and the surface is thus
discretized. The lattice discreteness can be observed from the
peak to valley distances (column denoted by PV in the table),
which are sometimes the same for different rough surfaces.
Because the distance between subsequent atomistic crystal
layers is fixed, the peak to valley difference is determined
by the number of atomistic layers between the highest and
lowest value of the atomistic surface.

To investigate the effect of Van der Waals interactions
at the atomistic scale we have chosen to use two different
LJ energy parameters for the interaction between the two
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(a) RMS0.2nm

(b) RMS0.5nm

(C) RMS1.0nm

Fig. 4 Top views of the atomistic representation of the bottom surfaces for three systems with different RMS roughness (increasing from the left
to the right figure). The darker or lighter the scale of grays, the lower or higher the valleys or peaks

Table 1 Surface statistics for the systems with different surface roughness used in the MD simulations

RMSj (nm) Random seed PV (nm) RMS (nm) Skew. Kurt. RMS slope

Upper body rough surface
0.2 1 1.21 0.194 0.090 0.085 0.132
0.2 2 1.01 0.196 0.145 —0.076 0.127
0.2 3 1.01 0.190 0.032 —-0.374 0.141
0.5 1 2.82 0.466 0.046 —0.069 0.300
0.5 2 2.42 0.463 0.041 —0.183 0.283
0.5 3 242 0.454 0.056 —0.609 0.323
1.0 1 5.24 0.924 0.064 —0.166 0.582
1.0 2 5.24 0.910 —0.139 —0.120 0.579
1.0 3 4.64 0.900 0.087 —0.526 0.636

Lower body rough surface
0.2 1 1.21 0.198 —0.112 0.164 0.149
0.2 2 1.21 0.192 0.018 0.112 0.133
0.2 3 1.01 0.188 —0.101 —0.206 0.138
0.5 1 2.82 0.461 —-0.217 0.130 0.332
0.5 2 2.42 0.471 0.111 0.051 0.311
0.5 3 2.42 0.452 —0.103 —0.425 0.328
1.0 1 5.24 0.934 —0.157 0.158 0.670
1.0 2 6.05 0.958 0.026 0.353 0.617
1.0 3 4.84 0.910 —0.133 —0.408 0.656

The first table is for the rough surface of the upper body and the second for the rough surface of the lower body. The first column gives the RMS
roughness (RMSy) used as an input. All other columns give computed values. Differences between RMSy and RMS show the effect of lattice

discreteness. PV stands for peak to valley distance

bodies. To model the case of full adhesion between the two
bodies €15 is kept at the value for the bulk material (€;_, =
10.3014 kJ/mol), and for the case where adhesion is almost
completely absent €1 is put at 10% of the bulk value (¢ =
1.03014 kJ/mol). The lack of adhesion can be seen as the
effect of, for instance, an oxide layer on the metal, which
reduces the adhesive energy considerably, but without mod-
eling this oxide layer explicitly.

Furthermore, each of the nine different systems is subject
to five different normal loads in the range of 0.05-0.25 GPa,
each load being far below the yield strength of aluminium.
Together with the change of the LJ energy parameter this
puts the total number of MD simulations for the current work

at 90. For all simulations the Large-scale atomic/molecular
massively parallel simulator (LAMMPS) is used [32], with
some important changes to the code to accommodate our
analysis (see next section).

For each simulation the temperature of the entire system
is set at 10 K, modeling a situation as close as possible to 0 K
without causing numerical instabilities. During the simula-
tion this temperature is controlled in the thermostat regions
through the use of a Langevin thermostat with the damping
constant 250 fs~!. Hence, there can be a heat flow in the
bulk material from or to the thermostat regions. The integra-
tion time step for all simulations is set at 5 fs, and periodic
boundary conditions are applied only in the lateral directions.
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(a) Orthogonal view (b) Perspective view

Fig. 5 Orthogonal side view (a) and perspective view (b) of the same
system at the end of the initial loading process. The surface roughness
equals 0.5 nm and the applied pressure is 0.10 GPa. In b the fop domain
is omitted to allow a good view of the rough surface

For each generated system, we make sure that the two
bodies are not in contact, i.e., no atomic pair between two
opposing surfaces is within the cut-off radius of the LJ poten-
tial. During the first part of each simulation the upper body
is lowered quickly, and moves as a rigid body, until one of
the atoms enters the neighborhood of an atom of the lower
body. From this point on the lowest pressure (0.05 GPa) is
imposed on the topmost layer of atoms (region 5) and the
upper body is allowed to descend gradually, contacting the
lower body, until the entire system is in equilibrium (which
takes about 250 ps). Thereafter the pressure is repeatedly
increased by 0.05 GPa and equilibrated again for 250 ps,
until the final equilibrated pressure of 0.25 GPa is reached.
In Fig. 5 an example of a loaded system is shown. For the
equilibrated systems, at 0.05, 0.10, 0.15, 0.20 and 0.25 GPa,
a snapshot of the system is obtained, which is used for any of
the production runs. For these production runs a MD simu-
lation with constant pressure on the rigid region of the upper
body (region 5) is carried out for 1 ns, where the last 500 ps
are used for analysis. A typical system for a MD simulation
contains about 217,000 atoms and one production run takes
about 7 h on eight processors of a Linux commodity cluster.

2.5 Contact detection algorithm

To monitor the evolution of loading, it is important to know
which atoms of both separate bodies are in contact and at
which time. However, when dealing with interactions due to
classical potentials it is not so clear to determine when two
atoms are in contact or not. Indeed atoms feel each other’s
presence from a distance of about 0.6 nm, but at that distance
exert only a small force on each other. For the sake of simplic-
ity we have chosen to assume that two aluminium atoms are
in contact when they are closer than 0.5 nm, which implies
that typically the first and second neighbors of an atom are
assumed to be in contact with it.

As mentioned in the introduction, we have extended the
LAMMPS code to compute this contact on the fly during the
simulation. It has to be mentioned that most of this algorithm
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is developed with the aim of performing MD simulations of
two bodies sliding on top of each other. Although the current
work (normal loading) does not benefit from all possibilities
the algorithm provides, we describe the entire algorithm for
completeness.

At predefined time steps (for this work every 1,250 fs, thus
400 times during the analysis part of the production run) the
system is analyzed and possible contact is examined. At each
such time step we compute the current total force on each of
the regions (decomposed in Cartesian directions), the con-
tact area (projected on the xy-plane), the number and size
of contacting clusters (also projected on the xy-plane), the
force on each atom in contact due to atoms from its own
body and from the other body, and the pressure contribution
for each atom in contact. It is crucial for the algorithm that
we can identify to which region an atom belongs, so we can
compute the correct contact properties accordingly.

In order to evaluate the total force on each of the regions,
the LAMMPS code has been changed in the innermost force
computation loop. Whenever a force between the two atoms
of the pair interaction is computed, the force is also stored
but then as a force between two regions to which both atoms
belong. In the current work this means a 6 x 6 x 3 array of
forces is computed for each time step (six regions and three
Cartesian dimensions). Although the force decomposition in
the case of normal loading only serves to see if the system
is in equilibrium, it can be very useful in a sliding simula-
tion, because it then easily allows for the computation of the
friction coefficient.

The computation of the contact area is slightly more com-
plicated, mainly because we wish to be able to distinguish
individual contacting clusters. Moreover, if due to the load-
ing, parts of one region break off and stick to the other region
(thus, without being in contact with its original region), we
do not want to count these atoms as being in contact, as they
are no longer load bearing. That this might happen is not so
evident in the case of normal loading, but, again, becomes
important with sliding (where scratching of the surface might
occur).

Therefore, all atoms that are in regions 1 and 2 are being
sorted into clusters by a depth-first search (a black-white-gray
cluster algorithm) [10], implemented in a parallel environ-
ment and taking the periodic boundary conditions in mind.
Whenever a cluster is considered to be an orphan (i.e., the
cluster is not connected to the bulk part of the region it should
belong to, but instead connected to the other), the region num-
ber of the atoms in this cluster is changed to the number of
their new parent region. Subsequently, these atoms are dis-
carded as being in contact. By treating the atoms in this way,
we ensure only considering atoms that are truly in contact,
and, thus, that are load bearing.

After having determined the atoms that are in contact, we
project them on a square grid lying in the xy-plane, where
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in b the grid representation of the contact area is shown (gray boxes).
The contact area equals 0.58 (as fraction of the apparent contact area),
when the RMS roughness is 0.2 nm, the load is 0.15 GPa and full adhe-
sion between the two bodies is used

each grid cell measures 2.5 times the Van der Waals radius of
an aluminium atom. By counting which grid cells are occu-
pied by at least one atom, we can get a good estimate of the
projected contact area. As an example of this computation,
we show the projected contact area for one of the three cases
with imposed RMS roughness of 0.2 nm and a 0.15 GPa load
in Fig. 6. Although the grid projection could result in a slight
overestimate of the true contact area, this method has the
advantage to allow for unambiguous contact area detection.
Moreover, it easily allows determining the fraction of real
and apparent contact area.

The next step in the algorithm is to determine the number
of contacting clusters. This is done by using the same depth-
first search to sort the projected area grid into clusters (e.g.,
the example of Fig. 6 gives three clusters). At all time it is
tracked to which cluster the individual atoms belong.

At the level of the atoms, the force on each atom is
recorded and split whether it stems from the same or another
region. Also, for each contacting atom its pressure contribu-
tion (computed using the virial theorem) is recorded.

By using the information on the contacting clusters and
the individual atom information it is possible to compute the
local pressure on each contact cluster.

Finally, to investigate the changes in the surface prop-
erties, the roughness statistics as presented in Table 1 are
recomputed every 12.5 ps.

3 Results

We begin by considering the dependence of the contact area
on applied load, surface roughness, and adhesive properties,
which is shown in Fig. 7. In this figure the different sur-
face roughnesses and adhesive properties (weak or full adhe-
sion) are indicated by the different gray scales and markers.

Applied load (GPa)

Fig. 7 The contact area as a fraction of the apparent area is shown for
different loads, different surface roughness, and full and weak adhesion.
Error bars indicate the spread due to the different random seeds used
in the generation of the rough surfaces. The minor x-offsets for each
pressure are introduced for clarity

The error bars indicate the standard deviation in the contact
area due to the different random seeds used in the rough
surface generation.

As expected, for all cases the contact area increases with
increasing load [7,14,19]. This increase seems to be linear,
but because we have used only five different loads, it is diffi-
cult to put the linearity into numbers. Furthermore, the error
bars increase with decreasing RMS roughness, indicating that
for the current sample size the topography of the surfaces is
important. For the higher RMS roughness the topographies
look more alike (more prominent asperities), whereas the
differences for the lower roughnesses could lead to quite dif-
ferent surfaces being in contact. Note however that the RMS
0.2 nm full adhesion case is special. There, the system is
almost in full contact for all applied loads, which leads to
smaller error bars.

The difference between the adhesive properties is most
clearly shown by the fact that the contact areas for the full
adhesive cases are always larger than with weak adhesion.
This is easily understood because with strong adhesion sur-
faces are attracted to each other and, thus, are likely to be in
closer contact.

Carefully examining the results shows that the contact area
also decreases with increasing RMS roughness, irrespective
of the adhesive strength, although it remains more or less the
same for a RMS roughness of 0.5 nm or higher. However,
for the weak adhesion case the results for the two higher
RMS roughnesses are reversed. This is most likely due to the
relative small system size of our simulations, which gives a
very small number of contacting asperities for higher RMS
roughness.
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(a) RMS roughness

Fig. 8 Change of surface properties due to normal loading, either with
full or weak adhesion. Shown are in a the relative change of RMS rough-
ness and b the relative change of the RMS slope. Different gray scales

Due to the large loads imposed on the system it is expected
that both surfaces change their roughness characteristics, see
Fig. 8. In (a) the relative change of the RMS roughness is
shown and in (b) the relative change of the RMS slope. The
rough surfaces of both contacting and deformable bodies are
used for this analysis, and to compute the relative change the
values for the characteristics as found in Table 1 are used as
a reference.

From Fig. 8a it can be seen that the RMS roughness
changes (as a function of applied load), although to a very
small extent (just over 1% in the most extreme case). The
changes in the RMS slope, see Fig. 8b, are much more pro-
nounced, and can go up to 10%. Not shown in a figure is
the change in skewness (a measure for the change in sym-
metry of the height distribution), but for all cases is on aver-
age 0.156 = 0.053, which is almost without exception at
least a doubling of the initial measured skewness. All of
these changing surface statistics indicate that the contact-
ing asperities become flatter due to the applied load, and that
some atoms are displaced to fill parts of the valleys. Hence,
the RMS roughness changes only mildly, but the slopes and
skewness are much more affected by this displacement effect.
We have also directly verified that atoms are displaced by
visualizing their trajectories. The observation that the RMS
slope changes is important, because it is known that the mean
pressure is a function of the RMS slope [14]. Thus, if the
sample would be subject to repetitive loading and unloading,
leading to local changes in the RMS slope, the mean pressures
recorded during each new loading phase would be different.
Furthermore, it is already known from simulations, where
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one of the two surfaces is considered rigid, that a changing
surface roughness affects the friction [7,28].

During the simulation the pressure contribution for each
atom in contact is computed and in Fig. 9 the probability
distributions of these atomic pressures are shown. In this fig-
ure markers are used to indicate the different adhesive and
surface properties. Furthermore, the average distributions for
the two adhesive cases are depicted by solid lines.

From the pressure distributions it can be seen that lower
roughnesses give lower compressive, but higher tensile pres-
sure probabilities. In the cases with weak adhesion, com-
pressive pressures are more likely to occur, whereas tensile
pressures are more prone to be found with stronger adhesion
between the two bodies. Finally, we observe that the adhesive
properties influence the shape of the pressure distributions
considerably.

4 Discussion

In the previous section we have discussed the results that
could be directly inferred from our MD simulations. How-
ever, closer examination reveals some more intriguing points,
which are in need for a more thorough discussion.

For instance, the dependence of contact area on surface
roughness as shown in Fig. 7 seems to break down when
the RMS roughness increases above 0.5 nm. Apparently,
for these high roughnesses the presence of more prominent
asperities (the points which will be load bearing) is more
important than the actual RMS roughness.
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Fig. 9 Pressure distributions for all atoms in contact in all systems for a weak adhesion and b full adhesion. The solid lines indicate the average
values and negative pressures indicate tension and positive pressures compression. The dotted line in both figures indicates the best fit for a shifted

Rayleigh distribution

As pointed out before for the weaker adhesion case, the
load-area dependence for the two highest RMS roughness-
es seems reversed, which might be explained by the rela-
tive small system size (13 x 13 nm in lateral directions).
A small system size limits the number of atoms that can
be used to model (i.e., discretize) a surface, and as stated
before, the presence of prominent asperities becomes more
important for a higher RMS roughness. This also means that
the pressure being carried by each of these asperities must
increase as well (when applying the same load as for lower
RMS roughness). This implies that the occurrence of plas-
tic events (e.g., displacing of atoms) is much more likely to
occur, which changes the roughness and complicates observ-
ing the dependence between contact area and RMS rough-
ness. Yet an additional effect to explain why there is almost
no difference in contact area for the two higher RMS rough-
nesses for this small system could be that, as has been shown
by others, that stress distributions of contact clusters change
considerably when the system size decreases [7].

Turning our attention to the change in surface characteris-
tics it is noted that although the surface roughness decreased
when a load is applied to the body, the change in RMS rough-
ness was minor (around 1% maximal). However, the standard
deviations observed for each applied load are relatively large.
These large error bars are also seen for the change in skewness
and RMS slope. Because the error bars indicate the differ-
ences between the different random seeds used in the rough
surface generation, it is clear that the topography (location
and size of peaks and valleys) of each of the rough surfaces
has a strong effect on the change in roughness due to the
applied load. Or, in other words, the different surfaces can-
not be characterized only by their statistics as provided in

Table 1, but the topography of the actual surface is important
as well. Of course, that there is such a strong dependence
on the surface topography is also due to the fact that our
systems are relatively small (as has been mentioned above).
If we would increase the system size it is very likely that
the dependence on topography would decrease. However,
increasing the system size increases the computational cost
as well. To investigate a sufficiently large number of differ-
ent roughnesses, adhesive properties and applied loads then
becomes prohibitively expensive.

When introducing the contact detection algorithm it was
mentioned that our approach allows for the computation of
the local pressure on each of the contact clusters. Investi-
gating the relation between the size of the contact clusters
and the measured pressures showed that especially for small
contact clusters the pressures can vary orders of magnitude.
Moreover, there is hardly any difference between different
roughnesses, adhesive properties and applied loads. A possi-
ble explanation for these irregular local pressure distributions
could be that due to plasticity effects at the contacting asper-
ities the surface becomes more amorphous, and thus could
lead to more irregular pressure distributions [18].

As one of the final results we showed the pressure dis-
tributions for atoms in contact. Although these distributions
resemble the shapes of distributions reported by others [7,
25,26], which are shown to be in reasonable agreement with
Persson’s theory, there are some important differences. In the
model of Persson the pressure distributions are described by
a double-Gaussian function, or in the limit of low loads by a
Rayleigh distribution [22,37,38]. In all of these cases adhe-
sion is neglected and the material is considered to be linear
elastic, and, consequently, the distributions are only defined
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on the positive interval. In our simulations (with adhesion
and plasticity) we do observe negative (tensile) pressures,
and, thus, our pressure distributions are shifted into the neg-
ative interval as well. In Fig. 9 we have added a best fitting
‘Rayleigh’ distribution (dashed line and shifted into the neg-
ative pressure range, because theoretically, a Rayleigh dis-
tribution is only defined on the positive interval). From the
shapes of the pressure distributions, it can be easily seen that
neither matches perfectly the Rayleigh distributions. How-
ever, the salient point of our results is that due to the presence
of the tensile pressures, the distributions proposed by Pers-
son do not seem to apply for the systems under consideration
in this paper.

5 Conclusion

Understanding how two surfaces adhere to each other at the
atomistic level is key to better understand the origins of fric-
tion. To that end we presented the results from MD simula-
tions of two aluminium bodies in contact, where both contact
surfaces are considered to have a self-affine fractal rough-
ness.

Furthermore, we implemented a parallel contact detec-
tion algorithm within the MD code used for our simulations
(LAMMPS), and we discussed the current possibilities of
this algorithm, although not all of the features are relevant
for a system under normal loading.

In agreement with theoretical models, we have shown that
the contact area increases in proportion to normal load, and
that, for a fixed load, increasing surface roughness decreases
the contact area. Furthermore, we have demonstrated that
due to the normal loading the surface roughness changes,
the primary mechanism being a flattening of the contacting
asperities. As such, the fractal properties of the surface are
lost. Finally, it has been shown that the pressure distributions
obtained from systems, which do not necessarily behave elas-
tically and which include adhesion between bodies, differ
significantly from Greenwood’s and Persson’s theories.
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