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ABSTRACT 

There is considerable concern over the widespread use of 
caffeine during and after pregnancy. We have therefore examined 
the effect of perinatal caffeine use on the vulnerability of the 
immature brain to hypoxic ischemia (HI). Rat pups were exposed 
to caffeine during the first 7 d after birth by addition of a low or 
a high dose (0.3 or 0.8 g/L) of caffeine to the drinking water of 
their dams. At 7 d the pups were exposed to unilateral carotid 
occlusion + exposure to 7.70% oxygen for 100 min. The extent 
of HI brain damage was evaluated 2 wk after the insult. The 
effects of caffeine on A, and A,, receptors, A, mRNA and A,, 
mRNA, were examined by receptor autoradiography and in situ 

hybridization. Caffeine, theobromine, theophylline, and paraxan- 
thine were analyzed in plasma of separate animals. Exposure to 
caffeine reduced HI brain damage from 40.3 rt 3.2% in controls 
to 29.8 ? 4.0% (p < 0.05) in low dose and 33.7 2 3.9% (NS) 
in the high dose group. The A, receptor density measured as 
[3~]-1,3-dipropyl-8-cyclopentyl xanthine ([?HI-DPCPX) bind- 

Caffeine is widely consumed by women during pregnancy 

and immediately thereafter (1) and it is used, together with its 

metabolite theophylline, in the treatment of premature apnea 

(2). Furthermore, the fetus and the newborn become exposed 

because caffeine crosses the placenta (3,4) and diffuses into the 

breast milk (5). Caffeine affects several systems in the body, 

e.g. the renal, respiratory, cardiovascular (6), gastrointestinal, 

and the C N S  (7,8). Caffeine is metabolized in the liver (9), and 

the metabolites are then excreted in the urine. The metabolism 

is much slower in neonates than in adults: tl12 in infants is 

50-103 h (7,10, 11) and tIl2 in adults is 2-6 h (7, 12). Several 

recent reports have raised concern about the safety of caffeine 

use during and after pregnancy (13). 
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ing was not significantly affected after low dose caffeine but 
increased in the brain of rat pups in the high dose group. The A,, 
receptor density measured as [3~]-2[p-(2-carbonylethyl)- 

phenethylaminol-5'-N-ethylcarboxamidoadenosine ( f 3 ~ ] - c ~ S  
21680) binding and the expression of A, mRNA and A,, mRNA 
were not altered by caffeine treatment. In conclusion, low dose 
caffeine exposure (plasma levels corresponding to umbilical cord 
plasma in newborns of coffee-consuming mothers) reduced HI 
brain damage by 30% in 7-d-old rats. This ameliorating effect 
could not be accounted for by up-regulation of adenosine recep- 
tors. (Pediatr Res 38: 312-318, 1995) 

Abbreviations 

HI, hypoxic ischemia 
DPCPX, 1,3-dipropyl-8-cyclopentyl xanthine 
CGS 21680, 2[p-(2-carbonylethy1)-phenethylaminol-5'-N- 

ethylcarboxamidoadenosine 

Caffeine is a receptor antagonist for the endogenous nucle- 

oside adenosine. Adenosine influences various transmitter sys- 

tems in the CNS: noradrenaline, dopamine, serotonin, acetyl- 

choline, y-aminobutyrate, and glutamate (14). Adenosine also 

has neuroprotective actions during ischemia (15-20). The  ex- 

tracellular concentration of adenosine increases rapidly during 

ischemia (21, 22), and the number of adenosine receptors 

decreases promptly (23,24). In the adult brain, chronic caffeine 

treatment, which leads to up-regulation of adenosine receptors, 

reduces ischemic damage (25), whereas acute exposure (recep- 

tor antagonistic effect) increases ischemic damage (26). The  

purpose of this study was to extend present knowledge to the 

neonatal setting, considering the common situation of fetal and 

neonatal caffeine exposure (1). Adenosine receptors appear and 

are functional at an early ontogenetic age (27, 28). There are 

four types of adenosine receptors, A,, A,,, A,,, and A,, all of 

which are expressed in the brain (29). A ,  and A,, receptors are 

the most likely targets for caffeine actions. Exposure of neo- 

natal rats to high amounts of caffeine given by gavage during 

postnatal d 2-6 increases the binding and effect of an A, 
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receptor agonist (30). We investigated the effect of treating the 

pregnant and lactating female rat with caffeine on the extent of 

HI brain damage in their offspring. In addition, binding of the 

A, receptor ligand [%I]-DPCPX and the A,, receptor ligand 

[ 3 ~ ] - ~ ~ ~  21680, and adenosine receptor A, and A,, mRNA 

were examined, because earlier studies have suggested that 

caffeine-induced neuroprotection is explained by up-regulation 

of adenosine (A,) receptors (25). 

METHODS 

Experimental procedures. Fifteen pregnant Wistar F rats 

and their litters were used. Anhydrous caffeine was obtained 

from Sigma Chemical Co. (St. Louis, MO). The experiments 

were designed to allow the dam to adapt to caffeine exposure 

before the start of the experimental period. Therefore a prenatal 

dose was included in the drinking water in different concen- 

trations (0, 0.3, and 0.8 g/L) throughout gestational d 8-21. 

Postnatally, pups were exchanged between three darns (receiv- 

ing 0, 0.3, and 0.8 g/L) so that 113 stayed with their biologic 

dam and 213 were divided between the remaining two. Dams 

were given 0 (control), 0.3 (low dose), and 0.8 (high dose) g/L 

of caffeine, respectively, during postnatal d 1-7. The dams 

accepted and fed pups from other litters. The daily intake of 

water was measured in all groups. 

In the morning of d 7 the dams were given water without 

caffeine and the pups were exposed to HI as follows. The pups 

were anesthetized with halothane (2.5-3.0% for induction and 

1.0-1.5% for maintenance) in a mixture of nitrous oxide and 

oxygen (1:l). The left common carotid artery was dissected 

and cut between double ligatures of silk sutures (6-0). The 

duration of anesthesia was <10 min. After the surgical proce- 

dure, the wounds were infiltrated with a local anesthetic. The 

pups were left to recover for at least 1 h. The litters were then 

placed in a chamber perfused with a humidified gas mixture 

(7.70 t 0.01% oxygen in nitrogen) for 100 min. The temper- 

ature in the gas chamber was kept at 36.5 t 0.2"C. After 

hypoxic exposure the pups were returned to their biologic dams 

and allowed to recover without caffeine treatment until post- 

natal d 21. All animal experiments were approved by the 

Ethical Committee of Goteborg (no. 131-93). 

Evaluation of brain damage. At postnatal d 21 the pups 

were anesthetized with thiopental, and the brains were ex- 

tracted. The brainstem and cerebellum were removed from the 

forebrain. The two cerebral hemispheres were separated and 

weighed on a high precision balance (Mettler Instruments AG, 
Greifensee, Switzerland, sensitivity i 0.1 mg). The brain 

damage was expressed as ipsilateral hemisphere weight deficit 

as percent of the contralateral hemisphere (31). A satisfactory 

correlation has been shown in earlier studies between brain 

weight and other measures of injury (31-35). 

Evaluation of plasma concentration of caffeine. Three 

biologic litters, 1.e. the pups born to the same dam, were killed 

on postnatal d 7 without exposure to HI. After decapitation, 

blood was collected in heparinized plastic tubes and centri- 

fuged. The concentration of caffeine and the caffeine metabo- 

lites theophylline, theobromine, and paraxanthine in plasma 

were analyzed immediately after caffeine withdrawal and 5 h 

after, corresponding to peak plasma levels and plasma levels at 

the time of hypoxic exposure. The HPLC system used did not 

separate theophylline and paraxanthine well, and the results are 

presented as the sum of the two metabolites. 

Sections. Brains from the three biologic litters mentioned 

above were dissected and frozen in dry ice-chilled dimethyl- 

butane. Evaluation of [ 3 ~ ] - ~ ~ C ~ ~  binding, [ 3 ~ ] - ~ ~ ~  21680 

binding, and adenosine receptor mRNA was done on coronal 

sections cut with a Leitz cryostat at the following anterior to 

posterior levels: +7.5, +6.5, +5.6, +4.4, +2.6, +1.6, +1.2, 

and f0 .8  mm from a plane 4.1 mm posterior to the bregma. 

Sections 10 p m  thick were thaw-mounted on gelatin-coated 

slides for quantitative receptor autoradiography. Sections 14 

p m  thick were thaw-mounted on poly-.L-lysine (50 pg/mL)- 

coated slides for in situ hybridization. 

Receptor autoradiography. Sections were preincubated in 

170 mM Tris-HCl buffer containing 1 mM EDTA and 2 U/mL 

adenosine deaminase at 37°C for 30 min. To study binding to 

A, receptors the protocol described by Parkinson and Fred- 

holm (36) was followed. Sections were washed twice for 10 

min at 23OC in 170 mM Tris-HC1 buffer containing 1 mM 

MgC1,. Incubations were performed for 2 h at 23°C in Tris- 

HCI buffer containing 0.5 mM ["I-DPCPX (120 C,/mmol, 

DuPont, Sweden), 2 U/mL adenosine cieaminase, and 1 mM 

MgCl,. Nonspecific binding was defined by 100 p M  (R)- 

phenylisopropyladenosine. The experiments were carried out 

in the presence or absence of 100 ,uM GTP to convert all 

receptors to the low affinity state for agonists and in that way 

removing "cryptically" bound endogexlous adenosine (36). 

Sections were then washed twice for 5 min each in ice-cold 

Tris-HC1, dipped quickly three times in ice-cold distilled water, 

and dried at 4OC over a strong fan. Films were apposed to the 

dried sections for 3 wk. 

To study binding to adenosine A,, receptors the procedure 

described by Johansson et al. (37) was Followed. After prein- 

cubation sections were washed twice for 10 min at 23'C in 170 

mM Tris-HC1 buffer containing 10 mM MgCl,. Incubations 

were performed for 120 min at room temperature in Tris-HC1 

buffer containing 10 nM [ 3 ~ ] - ~ ~ S  21680 (43 C,/mmol, Du- 

Pont), 2 U/mL adenosine deaminase, and 10 mM MgCl,. 

Nonspecific binding was defined by 20 p M  2-chloroadenosine 

(Sigma Chemical Co.). The sections were washed twice for 5 

min in ice-cold Tris-HCl, dipped quickly twice in ice-cold 

distilled water, and dried at 4OC over a strong fan. The sections 

were apposed to film for 5 wk. 

In situ hybridization for A, and A,, receptor mRNA. The 
48-mer A, adenosine receptor probe was complementary to 

nucleotides 985-1032 of the rat A, receptor (37). The 44-mer 

A,, probe was complementary to nucleotides 916-959 of the 

dog RDC8 cDNA (37). The oligodeoxyribonucleotides were 

radiolabeled using terminal deoxyribonucleotidyl transferase 

(Amersham Corp., UK) and 3 5 ~ - d ~ ~ ~  (Amersham) to a spe- 

cific activity of about 10 cpmlpg. Slide-mounted sections were 

hybridized in a cocktail containing 50% formamide (Baker, 

Sanford, ME), 4 X SSC, 1 X Denhardt's solution, 1% Sarko- 

syl, 0.02 M NaPO, (pH 7.0), 10% dextran sulfate, 0.5 mg/mL 

yeast tRNA (Sigma Chemical Co.), 0.06 M dithiotreitol, 0.1 

mg/inL sheared salmon sperm DNA, arid 10 cpm/mL probe. 
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After hybridization for 16 h at 42OC the sections were washed 

four times for 15 min each in 1 X sodium chloride-sodium 

citrate at 55°C (A, probe) or 45°C (A,, probe), then dipped 

briefly in water, 60%, 95%, and 99.5% ethanol and air-dried. 

Finally the sections were apposed to Hyperfilm p-max from 

Amersham for 1-4 wk. 

Statistics. Factorial Anova with Fisher correction was used 

for statistical analyses of brain damage evaluation. Differences 

in mortality were evaluated with 2 and Yates' correction. 

Independent t test and multivariate analysis of variance in the 

Systat Inc. (Evanston, IL) program were used for analyzing the 

results from quantitative receptor autoradiography and irz situ 

hybridization. Statistical significance was expressed as "p < 
0.05, ""p  < 0.01, and *":":p < 0.001. 

RESULTS 

Efects of prenatal exposure to cafeine. The experiments 

were designed to evaluate the effects of postnatal exposure to 

caffeine. Thc purpose of the prenatal exposure was merely to 

adapt the dams to caffeine. Prenatal exposure to caffeine may 

also affect HI brain damage. To avoid this confounding influ- 

ence, postnatal treatment groups were composed of similar 

number of pups from each of the three prenatal exposure 

groups. Retrospective analysis showed that the brain damage 

was not different in the low dose prenatal exposure group (30.4 

+ 1.9% weight deficit of the contralateral hemisphere) com- 

pared with the control group (30.5 2 2.1%). However, there 

was a tendency to more extensive brain damage in pups 

prenatally exposed to high dose caffeine than prenatal control 

pups (45.2 + 1.1% and 30.5 & 2.1%, respectively, NS) (Table 

1). Moreover, dams in the high dose group appeared stressed, 

and their pups were dehydrated, growth retarded, and suffered 
from a higher mortality (Table 1). 

General comparison between the postnatal exposure 

groups. The mortality was low (0-2%) after HI in the control 

and caffeine-treated groups (Table 2). The body weight and 

contralateral hemispheric weight at the time of sacrifice and 

daily water intake were also similar in the low dose and the 

control group (Table 2). On the contrary, in the high dose 

group the body weight and the weight of the contralateral 

hemisphere tended to be lower (NS) and the water intake was 

lower ( p  < 0.001). 

The mean daily intake of caffeine pre- and postnatally by the 

dams in the low dose group was 8.8 mg and 16.5 mg in the high 

dose group. Peak plasma concentration of caffeine in the pups 

Table 1. Data for the three prenatal exposure jiroups 

Group 

Control 0.3 giL 0.8 glL 

Measurement (II = 37)" (n = 54) (n = 56) 

Brain damage (%) 30.5 i 4.47 30.4 t- 3.5 45.2 i- 2.4 

Body weight at birth (g) 6.1 + 0.1 6.0 ? 0.1 5.0 + 0.6 

Weight of contralateral 520.8 i- 8.6 537.0 t 5.5 518.2 t 5.3 

hemisphere (mg) 

Mortality day 0-21 (%) 21.6 20.4 48.2 

' n = numbcr o l  animals. 

'1 Mean + SEM. 

Table 2. Data for the three postnatal exposure groups 

Group 

Control 0.3 g/L 0.8 glL 
Measurement (n = 39)" (n = 50) (n  = 50) 

Brain damage (96) 40.3 i- 3.27 29.8 2 4.0 33.7 ? 3.9 

Body weight at 3 weeks (g) 27.6 i 0.9 28.7 t 0.8 23.9 F 1.0 

Weight of contralateral 533.5 i 7.2 533.0 t 5.1 506.3 t 7.5 

hemisphere (mg) 

Daily intake of water 29.7 i 1.4 29.2 + 0.5 20.7 t 0.9""" 

(mliday and 10 pups) 

Mortality day 7-21 (96) 0 2.0 2.0 

after HI insult 

.L n = number of animals. 

Mean 5 SEM. 

" * *  p < 0.001. 

was 0.26 -+ 0.031 mgiL (mean t- SEM) in the low dose group 

and 0.014 -+ 0.0078 mgiL in the control group. Peak plasma 

concentration of theophylline and paraxanthine was 0.58 -+ 
0.037 mg/L (mean 2 SEM) in the low dose group and 0.039 t- 

0.010 mg/L in the control group. Plasma concentrations of 

caffeine, theobromine, theophylline, and paraxanthine at the 

time of HI are given in Table 3. 

Brain damage in the postnatal exposure groups. Two 

weeks after HI, infarction and selective neuronal necrosis 

occurred in the cerebral cortex, thalamus, hippocampus, and 

striatum of the left hemisphere (ipsilateral hemisphere) (Fig. 

1). Brain damage, >5% weight deficit of the ipsi- compared 

with contralateral hemisphere, developed in 96% of the control 

pups, i.e. 4% devoid of damage, compared with 27% in the low 

dose group and 17% in the high dose group. The mean brain 

damage amounted to 40.3 -+ 3.2% in the control, 29.8 -+ 4.0% 

in the low dose and 33.7 2 1.7% in the high dose group, i.e. the 

brain injury was reduced by 30% ( p  < 0.05) in the pups treated 
with low dose caffeine compared with controls (Fig. 2). Ac- 

cording to the above mentioned, high dose caffeine (pre- and 

postnatally) severely affected the health of the pups. However, 

even if all the pups prenatally exposed to high dose caffeine 

were excluded, there was a 38% reduction ( p  < 0.05) of brain 

damage in the low dose group (24.1 t- 4.7%) compared with 

control (38.6 -+ 3.9%). 

Changes in adenosine receptors. There was a high density 

of ["I-DPCPX binding in the cortex and in hippocampus, as 

expected. The binding in absence of GTP was lower than that 

observed in the presence of GTP in cortex (Table 4) and in 

hippocampus (not shown), in agreement with previous findings 

in adult animals (36). Optical densities were measured in 

hippocampus regions CAI and CA3, dentate gyrus, and in 

Table 3. Plasma concentrations of methylxanthines in pups at time 

,for HI 

Methylxanthinc 
Group 

( m a )  Control 0.3 glL 0.8 g/L 

Caffeine 0.000 t 0.00* 0.22 t 0.054 0.64 t 0.00 

Theophylline and 0.000 ? 0.00 0.45 2 0.099 1.09 t 0.031 
Paraxanthine 

Theobromine 0.021 t 0.00 0.42 t 0.1 1 0.98 t 0.00 

The different doses indicate postnatal exposure groups. 

* Mean ? SEM. 
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Figure 1. The distribution of the brain damage is shown by hematoxylin- 

eosin staining at postnatal d 21. Shown is the infarction and selective neuronal 

necrosis in the (A) cerebral cortex, thalamus, and hippocampus and (B) 

striatum of the left hemisphere. 

frontal and parietal cortex. Caffeine-treated rat pups showed a 

similar amount of [ 3 ~ ] - ~ ~ ~ ~ ~  binding to CAI and CA3 

regions of the hippocampus as their controls (Table 5). In the 

cortex, the [ 3 ~ ] - ~ ~ ~ ~ ~  binding was not significantly affected 

by caffeine treatment either when GTP-treated or untreated 

slices were examined (Table 4). However, in both groups there 

was a tendency toward increased binding, and when sections 

studied in the presence and absence of GTP were pooled, there 

was a significant difference between controls and pups in the 

high dose group (p < 0.05). Pups in the low dose group did not 

exhibit increased [ 3 ~ ] - ~ ~ ~ ~ ~  binding (Fig. 3A). 

A,  mRNA was distributed mainly in the cortex and in 

hippocampus as shown earlier (37). The amounts in hippocam- 

pus CAI, CA3,'dentate gyrus, and cortex were quantified. No 

significant differences between groups were seen in either 

region (Fig. 3B shows the results from cortex). 

Adenosine A,, receptors were studied by [ 3 ~ ] - ~ ~ ~  21680 

binding. This ligand is an agonist, and therefore experiments in 

the presence and absence of GTP were less meaningful. Be- 

cause these binding sites as well as the corresponding mRNA 

are enriched in the striatum (37), the measurements were 

confined to this region. As seen in Fig. 3C there were no major 

changes in striatal A,, receptors. There were similarly no 

differences in A,, receptor mRNA between treatments (Fig. 

30).  

DISCUSSION 

The published reports of prevention of ischemic damage in 

adults by adenosine receptor agonists and uptake inhibitors 

Brain damage 
(hemisphere weight deficit 

as % of contralateral) 

Figure 2. The effect of caffeine (0.3 or 0.8 glL) on the degree of brain 

damage. Brain injury was evaluated by weighing the brains 2 wk after HI, and 

brain damage was expressed from the ipsilateral hemisphere weight deficit as 

a percentage of contralateral hemisphere weight. Values are set as mean t 

SEM. 

Table 4. Binding of [ 3 ~ ] - ~ ~ ~ ~ ~  to cortical adenosine A,  

receptors after treatment with diferent doses of caffeine postnatally 

Postnatal treatment group 

Control 0.3 g/L 0.8 g/L 

( n = 6 ) "  ( n = 1 0 )  ( n = 4 )  

[3H]-DPCPX binding + GTP 42.9 5 5.87 49.2 i 2.2 55.6 i 4.1 

['HI-DPCPX binding - GTP 27.6 i 2.3 32.7 i 2.4 41.2 i 3.9 

Change from controls + GTP +14.7% +29.6% 

Change from controls - GTP +18.5% +49.3% 

Results are from animals prenatally exposed to 0.3 g/L caffeine in the 

drinking water. For other prenatal treatment, see Figure 3. Optical densities 

were converted to fmollmg with microscales. The results are combined mea- 

surements from two levels (+6.5 and +2.5 mm from bregma, anterior to 

posterior) 

* n = number of experiments. 

t Mean i SEM. 

have led to the conclusion that adenosine may act as a protec- 

tive agent (15, 38, 39). Much less is known about the situation 

in neonatal animals. Studies of neonatal HI have shown a 

reduction of brain damage with the adenosine uptake inhibitor 

propentofylline (40). However, propentofylline has effects that 
might be unrelated to adenosine, e.g. inhibition of oxygen free 

radicals and Ca2+ homeostasis, which could be relevant (41). 

The aim of the present study was to evaluate the role of 
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Table 5 .  Binding of [-'HI-DPCPX to I?ippocat7zpal adenosine A, 

receptors ufter treatnzelzt with different doses of caffeine postrzatally 

Postnatal treatment group 

Control 0.3 g/L 0.8 giL 

( iz  = 3)$ (n = 5) (n  = 5) 

CAI 56.3 -t 3 .0 t  56.9 + 3.9 68.3 2 6.9 

CA3 79.9 2 7. I 70.1 ? 7.4 73.4 5 2.4 

Rcsults are from animals prenatally exposed to 0.3 glL caffeine in the 

drinking water. Similar results wcre obtained in the animals that had no 

prcnalal caffeine cxposure, hut the number of observations in this group was 

smaller and is thcrcfore not shown. Optical densities were convertcd to 

fmolimg with microscales. The rcsults are measurements at a level +1.6 mm 

from bregma (anterior to posterior). Rcsults obtained only in the presence of 

GTP arc shown. 

* n = number of animals. 

t Mean 2 SEM. 

adenosine receptors further with respect to HI brain damage by 

chronic exposure to caffeine before the insult. 

The major finding was a rcduction of brain damage in both 

groups treated with caffeine compared with the control 

group-a reduction that was significant for the low dose group 

(30%) (Fig. 2). Considering that caffeine is a weak, nonselec- 

tive antagonist for adenosine receptors (12) and that the extra- 

cellular levels of endogenous adenosine during ischemia are 

high (22), the remaining extracellular levels of caffeine are 

expected to possess a negligible effect on adenosine receptors 

during HI. This is particularly true in the low dose group. In the 

group reared by dams fed 0.8 g/L caffeine, some receptor 

antagonism may occur. It is possible that this could contribute 

to the smaller beneficial effect in this high dose group. 

The control and the low dose groups were similar with 

respect to confounding factors recorded (Table 2). This indi- 
cates that the low dosage of caffeine did not affect the growth 

of the body or the weight gain of the contralateral hemisphere. 

In contrast, the groups exposed to the high caffeine concentra- 

tion were different (Table 2). These dams were hyperactive and 

the weight gain of the pups was deficient. These results corre- 

spond to earlier clinical studies on growth retardation in infants 

exposed to high concentrations of caffeine (1, 13). There was 

even a tendency toward more extensive brain damage after 

prenatal high dose of caffeine compared with controls. Due to 

the multiple side effects of caffeine this trend is difficult to 

interpret and may well be secondary to dehydration and/or 

malnutrition (42, 43). 

Because the only known effect of caffeine in the concentra- 

tion achieved here is blockade of adenosine receptors and 

because adenosine appears to be cerebroprotective, the mech- 

anism behind the protection after long term caffeine treatment 

is obscure. In a study on gerbils long term caffeine treatment 

was associated with an up-regulation of adenosine A, receptors 

(25). However, the reduction of brain damage in the low dose 

group had no clear correlation with changes in A, receptors or 

in A, receptor mRNA. The group of neonatal pups exposed to 

low dose caffeine in breast milk showed no differences in 
['HI-DPCPX binding or adenosine receptor A, mRNA levels 

compared with unexposed animals. Our failure to demonstrate 

any change in adenosine receptors is likely to be related to the 

dose of caffeine used. In studies where up-regulation has been 

found after oral caffeine treatment, a plasma concentration of 

about 20 mg/L was achieved (37). We used doses which gave 

plasma concentrations in the 0.2-1 mg/L range. The present 

data are in complete agreement with results in mice where oral 

treatment with low doses of caffeine, producing plasma con- 

centrations of 0.2-1 mg/L, had marked adaptive effects that 

were not associated with any change in receptor binding (44). 

Thus we conclude that the effects observed in this study are 

unlikely to be due to an increased transmission through A ,  

receptors. 

The reduction of brain damage in our model also cannot be 

related to influence of the A,, receptors. The A,, receptors are 

predominantly located on neurons in the dopamine rich regions 

of the brain and not in the cortical regions most affected by the 

ischemic damage (45). Furthermore, there were no major 

changes in A,, ligand binding or in A,, receptor mRNA levels. 

Instead our working hypothesis is that caffeine, by blocking 

actions of endogenous adenosine, alters transmission in, e.g. 

glutamate-related and y-aminobutyric acid-related pathways 

and that this induces adaptive changes that eventually may 

prove beneficial. It is known that caffeine treatment does 

induce adaptive changes in several types of receptors (46). 

Several of the affected transmitters (excitatory amino acids, 

y-aminobutyric acid) (32-34, 47) have been implicated in 

cerebroprotection. It is also known that acute, as well as 

chronic, administration of caffeine induces changes in several 

immediate early genes, including c7fos (48). Because the prod- 

uct of immediate early genes acts as a transcription factor, 

several consequent changes can be anticipated. Irrespective of 

what the precise mechanism proves to be, it is likely that the 

cerebroprotective effect of long term caffeine treatment can be 

related to changes in susceptibility to seizures, spreading de- 

pression, or other forms of hyperexcitation, whereas acute 

administration of caffeine has the opposite effect (44). 

Caffeine exposure to neonates may be clinically important. 

We have concentrated on a rat pup model that mimics the 

common situation of a pregnant or just delivered mother who 

drinks coffee and therefore passively exposes her fetus or child 

to caffeine. The developmental age of 7-d-old rats with respect 

to brain maturation corresponds to a near term human fetus 

(49). In our study the plasma concentrations of caffeine were 

similar to those seen in umbilical cord plasma in newborns of 

mothers consuming coffee (0.5-2 mg/L) (7). The plasma con- 

centrations also resemble the levels in infant serum in studies 

with breast-fed infants and caffeine-exposed mothers (5, 11). In 

spite of these circumstances, extrapolation from rat to man is 

difficult, and the net effect of caffeine exposure may be different 

in a clinical setting. Nevertheless, the present finding that low 

dose administration of caffeine reduced ischemic brain damage 

is intriguing, and studies on pregnant women with different 

coffee consumption or newborns receiving caffeine as a treat- 

ment for apnea may be warranted. The importance of further 

investigation is also indicated by the tendencies toward an 

increased distress of pups born to dams that consumed a higher 

dose of caffeine. 
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Figure 3. Adenosine A, and A,, receptor binding and mRNA expression in rat pups exposed to caffeine, pre- and postnatally. Measurements were made at  f1.6 

m m  (cortex) and +4.4 m m  (striatum) from bregma (anterior to posterior). For binding quantification, OD was converted to fmol/rng with microscales. Values 

are set  as mean 2 SEM.  Treatments are shown along the x axis where the first figure indicates the prenatal exposure and the second figure indicates the postnatal 

exposure. Number  of measurements indicated in parentheses. ( A )  ["HI-DPCPX binding in cortex; (B) adenosine receptor A ,  m R N A  in cortex; (C) [%I-CGS 

21680 binding in striatum; and (D) adenosine receptor A,, m R N A  in striatum. 
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