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The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing

a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation

and linear stability theory �LST�. To reduce the number of independent parameters, test cases are

arranged so that both the interaction location Reynolds number �based on the distance from the plate

leading edge to the shock impingement location for a corresponding inviscid flow� and the

separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are

introduced via both white-noise and harmonic forcing and, after verification that the disturbances are

convective in nature, linear growth rates are extracted from the simulations for comparison with

parallel flow LST and solutions of the parabolized stability equations �PSE�. At Mach 2.0, the

oblique modes are dominant and consistent results are obtained from simulation and theory. At

Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance

energy at the point where the shock impinges on the top of the separated shear layer. The most

unstable second mode has only weak growth over the bubble region, which instead shows

significant growth of streamwise structures. The two higher Mach number cases are not well

predicted by parallel flow LST, which gives frequencies and spanwise wavenumbers that are

significantly different from the simulations. The PSE approach leads to good qualitative predictions

of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy

in the region immediately after the shock impingement. Three-dimensional Navier-Stokes

simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear

breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are

supplemented with unstable Mack modes. © 2007 American Institute of Physics.

�DOI: 10.1063/1.2720831�

I. INTRODUCTION

Shock/boundary-layer interaction �SBLI� phenomena are

common occurrences in transonic, supersonic, and hyper-

sonic flows. They often result in boundary-layer separation,

which can result in reduced performance �e.g., in engine in-

lets�, increased drag �e.g., on airfoils and other aerodynamic

surfaces� and, especially in the hypersonic case, enhanced

surface heating. Consequently, these flow phenomena have

been investigated extensively, for a variety of geometric con-

figurations and over a broad range of Mach numbers and

Reynolds numbers. Several comprehensive reviews of the

work have been published �Adamson and Messiter,
1

Delery,
2

Dolling,
3

Knight et al.
4�.

Although SBLI occurs in various geometries, a simple

configuration that has often been studied and includes all of

the relevant physical features is that of an oblique shock

wave impinging on a flat plate over which a boundary layer

is developing. In principle, if the plate is wide enough, the

resultant flow field will be essentially two dimensional �2D�
in nature. Figure 1 gives a schematic of such a configuration.

The Mach number upstream of the interaction is denoted by

M1, and regions �1�, �2�, and �3� refer to the flow upstream of

the impinging shock after the initial shock and after the re-

flected shock, respectively. The impinging shock angle is de-

noted by �1 and the strength of the interaction is character-

ized by the overall pressure ratio p3 / p1, which is governed

by M1 and �1. As the shock wave impinges on the boundary

layer, the latter at first thickens due to the imposed adverse

pressure gradient. If the impinging shock is sufficiently

strong, the boundary layer will separate and then later reat-

tach, forming a closed separation bubble. The separation and

reattachment points are denoted by xs and xr in Fig. 1, and

the length of the bubble is defined as LB=xr−xs. During the

interaction, further compression and expansion waves are

created, caused by the deflection of the inviscid flow field

resulting from the boundary layer separation. The compres-

sion waves may merge to form additional shocks, typically

near the separation and reattachment regions.

Most previous studies in SBLI have been concerned with

fully developed turbulent boundary layers. One aspect of

SBLI that is receiving significant attention currently is the

influence of boundary-layer transition. Boundary-layer tran-

sition itself is a process that, despite extensive study over
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many years, is not yet fully understood. It is generally ac-

cepted that, at a sufficiently high Reynolds number, distur-

bances �either inherent in the flow or created by some exter-

nal means� become unstable and provoke transition from

laminar to turbulent flow in the boundary layer. However, in

addition to the Reynolds number, many other factors also

influence this process, including the level of acoustic free-

stream turbulence, wall roughness, wall temperature, and the

Mach number of the flow �see Saric et al.,
5

Ma and Zhong
6�.

Results from linear stability analysis �LSA� of compress-

ible flows are reported in detail in Mack
7

for attached bound-

ary layers. At low Mach numbers ��0.3�, the Tollmien-

Schlichting �first mode� waves are the most unstable

disturbances beyond a critical Reynolds number. As the

Mach number increases, additional “Mack” modes �second

mode, third mode, etc.� of instability appear, and at high

Mach numbers these are the most unstable disturbances.

Flow stability results in SBLI at M1=4.8, focusing on the

second-mode instabilities, are reported in Pagella et al.
8

for a

flat plate boundary layer and at M1=5.373 in Balakumar et

al.
9

for a compression corner flow.

The parabolized stability equations �PSE; see Herbert,
10

Hein et al.
11� approach improves on the en method �Arnal

and Casalis,
12

Stock
13� by including nonparallel terms and

allowing for the streamwise evolution of disturbance shape

functions. The method is applicable to convectively unstable

flow but, although widely used for transition prediction on

wings, it does not appear to have been applied to SBLI until

now.

Direct numerical simulation �DNS� has been applied ex-

tensively to study transition in low-speed flows �e.g., Kleiser

and Zang
14� and a few applications have been made to SBLI

flows. Pagella et al.
8

created a 2D SBLI by impinging an

oblique shock wave on a flat plate boundary layer at a Mach

number of 4.8. In this work, the response of the initially

laminar boundary layer to artificially introduced small-

amplitude disturbances was investigated and the results com-

pared well with those of linear stability theory. This work

was later extended to the case of a 2D compression ramp

flow, also at Mach 4.8 �Pagella et al.
15�, showing that, when

the impinging shock and the shock created by the compres-

sion ramp have the same strength, the characteristics of SBLI

were identical �validating the so-called free interaction con-

cept originated by Chapman et al.
16�. This latter work also

demonstrated that the response to small-amplitude distur-

bances was practically identical. Compression corner flows

at M1=5.373 were also considered by Balakumar et al.,
9

who

showed that the second-mode disturbances were not signifi-

cantly amplified over the separation bubble. In a later study

of the same compression corner flow, Zhao and Balakumar
17

showed that a �0,2� mode arising from nonlinear interactions

led to an oblique type of breakdown. Nonlinear disturbances

and breakdown to turbulence in a flat plate boundary layer

with an impinging shock were considered by Teramoto
18

us-

ing large-eddy simulation at Mach 2.0. At a high pressure

ratio �p3 / p1=1.91�, it was found that transition occurred

even at zero free-stream turbulence level. This indicates the

presence of absolute instability of the laminar base flow, al-

though the resolutions used were not sufficient to achieve

grid-independent results.

In the present study, we revisit the case of a shock wave

impinging on a flat plate with a 2D laminar base flow. Like

Pagella et al.,
8

we initially examine the response of the lami-

nar boundary layer to artificially introduced small-amplitude

disturbances. On the other hand, we investigate the charac-

teristics of SBLI and the boundary layer response over a

range of upstream Mach numbers �M1=2.0, 4.5, and 6.85�,
but keeping the impingement location Reynolds number con-

stant. Because of the potentially large number of parameters

that could influence the flow fields simulated, we examine

the case of adiabatic flows with, additionally, a fixed Rey-

nolds number based on the separation bubble length �i.e.,

ReLB
�. This, we feel, is the most logical procedure to isolate

the effects of Mach number changes. Three-dimensional

�3D� simulations use either white-noise forcing, such that the

unstable modes could emerge naturally, or harmonic forcing

at fixed frequencies and spanwise wavenumbers derived

from LSA.

The paper includes a description of the overall method-

ology and the numerical techniques employed in this study.

After some code validation cases are briefly described, the

results of 2D simulations of the undisturbed SBLI flow field

are presented. A local linear stability analysis is used to iden-

tify the most unstable modes in terms of frequency and span-

wise wavenumber. From these we derive the appropriate

computational domains for the subsequent three-dimensional

simulations. The response of the boundary-layer disturbances

is, where appropriate, compared with the results of linear

stability theory, bearing in mind that the disturbances intro-

duced are sufficiently weak for a linear response to be ex-

pected. Where differences in the results are identified, these

are discussed in detail. The paper continues with a discussion

of the effects of the nonparallel flow and Mach number

FIG. 1. Schematic view of an oblique shock wave im-

pinging on a flat plate boundary layer.
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variation on the propensity of the separated boundary layer

to undergo transition as a result of SBLI. Finally, 3D Navier-

Stokes simulations using finite-amplitude disturbances are

described. These were carried out to demonstrate the feasi-

bility of the early-stage nonlinear breakdown and transition

onset over the separation bubble.

II. NUMERICAL METHOD AND VALIDATIONS

A. Governing equations and discretization

The dimensionless 3D Navier-Stokes equations that gov-

ern the unsteady, compressible flows in Cartesian coordinates

are written for density �, velocity components ui, pressure p,

and total energy E as

��

�t
+

��u j

�x j

= 0, �1�

��ui

�t
+

��uiu j

�x j

= −
�p

�xi

+
1

Re

��ij

�x j

, �2�

�E

�t
+

��E + p�u j

�x j

=
�ui�ij

�x j

+
1

�� − 1�Re Pr M1
2

�

�x j

��
�T

�x j

� ,

�3�

where the viscous stress tensor is given in terms of the vis-

cosity � by

�ij = �� �u j

�xi

+
�ui

�x j

−
2

3
�ij

�uk

�xk

� . �4�

The temperature T is given by

T = ��� − 1�M1
2�E

�
−

1

2
uiui� . �5�

The ideal gas equation of state can be written as

p = �� − 1��E −
1

2
�uiui� =

1

�M1
2
�T . �6�

The dimensionless parameters governing the flow are the

Reynolds number Re=�r
*ur

*Lr
* /�r

*, the upstream Mach num-

ber M1=ur
* /��R*Tr

* �where R* is the specific gas constant�,
the ratio of specific heats �=1.4, and the Prandtl number

Pr=�r
*cp

* /k*, which is set to 0.72. The variation of the dy-

namic viscosity with temperature is accounted for by Suth-

erland’s law ��=T3/2�1+c� / �T+c�, with c=110.4/288�.
These parameters apply to undissociated air. In these expres-

sions, the subscript “r” denotes a reference value and an

asterisk represents dimensional variables. Further reference

quantities will be discussed in Sec. IV.

This set of governing equations is solved using a stable

high-order scheme. An “entropy splitting” approach is used

to split the Euler terms into conservative and nonconserva-

tive parts. This method was originally proposed by Gerritsen

and Olsson
19

and later applied by Yee et al.
20

and Sandham

et al.
21

All the spatial discretizations are carried out using a

fourth-order central-difference scheme, while the time inte-

gration uses a third-order Runge-Kutta method. A stable

boundary scheme of Carpenter et al.,
22

along with a Laplac-

ian formulation of the viscous and heat conduction terms, is

used to prevent any odd-even decoupling associated with

central-difference schemes. An artificial compression method

variant of a standard total variation diminishing �TVD� fam-

ily is used to capture flow discontinuities such as shock

waves. The TVD filter is applied at the end of each full time

step in the form of an additional numerical flux term �F� as

F j+1/2 = R j+1/2	 j+1/2
 j+1/2, �7�

where R is the right eigenvector matrix of the flux Jacobian

from the Euler equations and 	 is defined by the TVD

scheme of Yee et al.,
20


 is the Ducros et al.
23

sensor, which

is defined as


 =
�� · V�2

�� · V�2 + ��� � V��2 + �
, �8�

where V is the velocity vector and � is machine zero.

B. Inflow and boundary conditions

The velocity and temperature profiles of a compressible

laminar boundary layer are prescribed at the inlet plane of

the computational domain. They are generated by a self-

similar solution of the compressible laminar boundary-layer

equations with given Mach number and wall temperature

conditions �see White
24�. With these inflow conditions super-

imposed, viscous interaction at the leading edge of the plate

can be neglected and the region �1� �see Fig. 1� is regarded as

being identical to the free-stream condition.

At the outlet plane, a characteristic-based boundary con-

dition is used in order to minimize any reflected waves. A

no-slip wall condition with temperature equal to the adia-

batic wall temperature at the inlet plane is applied at the

lower boundary. At the upper surface of the computational

domain, the free-stream quantities are applied in front of the

oblique impinging shock wave, while downstream of the im-

pinging shock location the upper boundary condition was

given, initially, by applying the exact shock jump properties

corresponding to a particular wedge angle. During the simu-

lation, an integral formulation of a characteristic boundary

condition is used at the upper surface. This formulation al-

lows the specification of a reference condition, which is then

superimposed with a time-accurate integration of all outgo-

ing characteristics, computed using information within the

computational domain. This allows the postshock conditions

to be specified while also allowing outgoing waves to pass

smoothly through the boundary without significant reflec-

tions.

C. Code validations

Sandham et al.
25

have demonstrated the capability of the

above described numerical method for flows containing

shock waves and some preliminary 2D results of the present

oblique SBLI flow have been presented in Krishnan et al.
26

The code has been developed specifically to investigate

transitional/turbulent boundary-layer phenomena by direct

numerical simulation �DNS�. For 2D simulations, the solu-

tion is advanced in time until there are negligible �less than

1%� changes in the flow properties of primary interest, such
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as the separation bubble length and the skin friction coeffi-

cient. When the solution has converged the maximum re-

sidual amplitude is well below those of the forcing perturba-

tion. For 3D simulations, disturbances are added to the wall

boundary condition upstream of the separation location and

the simulation is then continued in a time-accurate manner.

Two validation tests were conducted, one for a steady 2D

shock impingement at M1=2.0 and the other for the growth

of small-amplitude disturbances in a flat plate supersonic

boundary layer at M1=1.6 without the shock impingement.

The first test case considers the experimental flow con-

ditions of Hakkinen et al.,
27

which were simulated numeri-

cally by Katzer
28

and Wasistho,
29

respectively, providing a

2D SBLI benchmark for the simulations presented in this

paper. The simulations have supersonic inflow at M1=2.0

and Rex=2.96�105 based on the distance from the

boundary-layer origin to the shock impingement location in

the absence of a boundary layer, which is equivalent to

Re�
1
* =950 based on the inflow boundary-layer displacement

thickness �1
*. A baseline computational domain of 400�115

�based on �1
*� with a grid of 151�128 points is used, com-

parable to that adopted by Katzer
28

and Wasistho.
29

The

overall shock pressure ratio is p3 / p1=1.4, corresponding to a

shock angle of �1=32.58° at M1=2.0. Figure 2 gives a com-

parison of c f =2�w /�1U1
2, with �w=�w�du /dy�w and pw / p1

from the current simulation with previous computational and

experimental results. A close agreement with previous inves-

tigations is obtained. The experiments give a shorter bubble

and higher c f, which may be due to three-dimensional effects

in the experiment due to the presence of side walls, as dis-

cussed by Wasistho.
29

The second test case involves the com-

putation of the growth of small-amplitude Tollmien-

Schlichting waves in a flat plate supersonic boundary layer at

M1=1.6 and Reynolds number Re�
1
* =438.802 based on the

inflow boundary-layer displacement thickness. These condi-

tions are identical to those considered by Sandberg.
30

A

small-amplitude disturbance �Adist=0.0002� was considered

in the simulation. The growth of disturbance amplitude rate

�ln�A /Adist�� and the distributions of the amplitude were ob-

tained by a Fourier analysis of the flow variables over two

disturbance periods. Figure 3 shows the growth and decay of

the maximum amplitude of streamwise disturbances u� at

various Rex locations. The present results compare well with

the linear Navier-Stokes solution of Sandberg.
30

Figure 4

gives the comparisons of the disturbance amplitude of three

mode shapes �� ,u� ,T� at a location of Rex=700 plotted

against , which is defined as =yRe/Rex, where Re=105 is

the free-stream Reynolds number; these also agreed well

with linear Navier-Stokes solution. These two validations

imply that the present code is capable of accurately comput-

ing both the 2D separated SBLI flow and the evolution of

small-amplitude disturbances in supersonic boundary-layer

flows.

FIG. 2. Comparison of simulation results with experimental data and theory

at M1=2.0 and Re�1

* =950. �a� Distribution of the skin friction, c f. �b� Dis-

tribution of the wall pressure, pw / p1.

FIG. 3. Comparison of disturbance amplifications along the streamwise di-

rection: Solid line: present simulation �DNS�; symbol: Sandberg �Ref. 30�
�linear Navier-Stokes solution�.

FIG. 4. Comparison of the disturbance amplitude of three mode shapes

�� ,u� ,T� at a streamwise location of Rex=700. Solid line: present simula-

tion �DNS�; symbol: Sandberg �Ref. 30� �linear Navier-Stokes solution�.
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III. SELECTION OF PHYSICAL AND COMPUTATIONAL
PARAMETERS

The intention of the present study is to compare the

growth of small-amplitude disturbances in SBLI at different

Mach numbers. As far as possible, we wish to remove the

influence of other parameters, such as the Reynolds number

and the length of the interaction region. To achieve this we

consider a series of cases with a fixed interaction location

Reynolds number. This Reynolds number is based on the

distance from the origin of the boundary layer �i.e., the flat

plate leading edge� to the point where the shock wave would

impinge, in the absence of a boundary layer, denoted as Rexi.

Additionally, we impose a condition that the Reynolds num-

ber based on laminar bubble length is a constant �denoted as

ReLB
�. This condition is set since it is known that the transi-

tion length Reynolds number in low-speed separation

bubbles is approximately constant �Weibust et al.
31�. Any

changes in disturbance growth factor can then be attributed

to Mach number effects rather than difference in length of

the separation zone. Additionally, we take the wall to be

adiabatic for all cases to remove the influence of heat transfer

to the wall surface.

It was shown in Krishnan et al.
26

that it is possible to

collapse the results for 2D simulations with different bubble

lengths using an extended scaling law LB=4.4P / �1+0.1P�,
where P is a pressure parameter defined as P= �p3− pinc� / p1

and pinc from Katzer
28

is the pressure in region �3� for incipi-

ent separation. Using this previous work as a guide, simula-

tion parameters were chosen as Rexi=3�105 and ReLB
=2

�105 for the three Mach numbers considered here.

Figure 5 shows the variation of ReLB
with pressure ratio

p3 / p1. This can be used to set the pressure ratio at each Mach

number to reach the chosen ReLB
. Table I shows parameters

for a series of 2D simulations designed to confirm that the

numerical resolution is suitable. In each case, the computa-

tional box starts at Rex=50 000 based on distance from the

boundary-layer origin. For convenience, we use a simulation

coordinate x measured from the inflow boundary, such that

Rex=U1x /�1+50 000. The reference length for the simula-

tions is the inflow displacement thickness ��1
*�. Computa-

tional box sizes are Lx and Ly in the streamwise and wall-

normal directions, respectively, and the number of grid

points in these directions are Nx and Ny, respectively.

Table II shows results from the simulations. The separa-

tion and reattachment points are denoted as xs and xr, respec-

tively; the bubble height hb is measured from the wall to the

maximum height of the separation streamline. The final col-

umn shows that the bubble length Reynolds numbers are

converged to within 1.1% of the target value of ReLB
=2

�105 for the fine grid cases 2, 4, and 6.

Figure 6 shows contours of density superimposed with

streamlines and compares the interaction pattern for different

Mach numbers. In each case, the incident oblique shock is

reflected as an expansion fan and directs the flow towards the

wall, leading to reattachment of the separating flow and the

creation of a closed separation bubble. The separation bubble

is found to be asymmetric, particularly at the higher Mach

numbers �M1=4.5 and M1=6.85�, and is displaced towards

the upstream side. In addition, the bubble aspect ratio �ratio

of bubble height to length� gets larger as the Mach number

increases, although the bubble size itself is reducing.

IV. LOCAL LINEAR STABILITY ANALYSIS
OF THE 2D BASE FLOWS

Small-amplitude disturbances in parallel compressible

shear flows are governed by the compressible Orr-

Sommerfeld equation, which assumes the form of distur-

bances as

� = �̂�y�exp�i��x + �z − �t�� , �9�

where �= �� ,u ,v ,w ,T�T, �, and � are wavenumbers in the

streamwise and spanwise directions, respectively, and � is a

frequency. The Orr-Sommerfeld system of equations may be

written in a compact form as

TABLE I. Computational domain and grids for 2D simulations at given Mach number �M1� and shock strength

�p3 / p1�, corresponding to ReLB
	2�105.

Case M1 Re�
1
* �Lx ,Ly� /�1

* �Nx ,Ny� �1 p3 / p1 Tw

1 2.0 732.63 �680, 30� �385, 129� 33.075° 1.480 1.68

2 2.0 732.63 �680, 30� �513, 193� 33.075° 1.480 1.68

3 4.5 1899.70 �260, 15.118� �257, 129� 16.200° 2.667 4.40

4 4.5 1899.70 �260, 15.118� �385, 193� 16.200° 2.667 4.40

5 6.85 3455.00 �150, 15.125� �257, 129� 11.800° 4.121 8.83

6 6.85 3455.00 �150, 15.125� �385, 193� 11.800° 4.121 8.83

FIG. 5. Influence of Mach number M1 and shock pressure ratio p3 / p1 on the

separation bubble length.
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L�̂ = �K�̂ , �10�

where the matrix L depends on the base flow ��̄ , ū ,0 ,0 , T̄�,
and the wavenumbers � and �. The matrix K only depends

on the base flow. A temporal stability problem is defined by

fixing � and � and finding � from the eigenvalues of K
−1

L.

A spatial stability problem is defined by fixing � and � and

iterating on � until Eq. �10� is satisfied.

In compressible flows, the instability is classified as in-

flectional if a generalized inflection point

d

dy
��

dū

dy
� = 0 �11�

is present. For the shock impingement case at M1=2.0, M1

=4.5, and M1=6.85, Fig. 7 shows the variation of the y lo-

cation of the generalized inflection point, denoted as yi, nor-

malized with the maximum value �yi,max, given in the figure

caption� in the separation bubbles and plotted against Rex. As

previously noted, the location of the maximum bubble height

�the apex of the bubble� moves forwards as M1 increases,

while the inflection point becomes closer to the wall. The

latter is consistent with the reduction in bubble height indi-

cated in Table II. Near the apex of the bubble, the inflection

points follow an approximately linear variation with stream-

wise distance x, increasing over the front and decreasing

over the rear of the bubble. Curvatures of these lines may be

measured by a parameter C given by

C =
UR

�dū/dy�i

d2yi

dx2
, �12�

where UR is a reference velocity, here taken as the inflow

free-stream velocity. The parameter C is effectively the vor-

ticity thickness of the shear layer divided by the radius of

curvature of the yi�x� curve. Typical values range from C

	0.004 ahead of the bubble at M1=2.0 to C	0.015 at M1

=6.85. Curvatures at and after reattachment are smaller.

Compared to the effect of curvature on mixing layers seen by

Zhuang
32 �for example, a variation of 10% in growth rate for

equivalent values of C	0.05�, the curvatures seen here ap-

pear to be small. Only at the apex of the bubble, where

curvatures become O�1�, does the curvature appear to be

significant. Note that the sign of the curvature is destabiliz-

ing near the separation point and near reattachment, but sta-

bilizing at the apex of the bubble.

To show the linear stability characteristics, we consider a

location halfway between the separation point and the apex

of the bubble. Since the shear layer thickness varies rela-

tively slowly with x, these locations are representative of the

mean profiles found throughout the bubble region. Stability

diagrams from viscous temporal stability analysis are shown

in Figs. 8�a�–8�c� for the three Mach numbers, with contours

of the imaginary part of the growth rate �i as a function of

streamwise wavenumber � and spanwise wavenumber �. At

M1=2.0 there is a single peak, located near �� ,��
= �0.13,0.18�; i.e., the most unstable mode is an oblique first

mode. At this peak, the phase speed is cph=�r /�=0.54 and

the wave angle is �=tanh−1�� /��=53°. A simple estimate of

a density weighted convection velocity �Papamoschou and

Roshko
33� gives Uc=�Tw / �1+�Tw�=0.56, in good agree-

ment with the disturbance phase speed, while the simple for-

mula of Sandham and Reynolds
34

for plane mixing layers

�Mc cos �=0.6� leads to a wave angle estimate of �=46°

�with Mc= �Ue−Uc� /ae=0.89�, a reasonable estimate of the

angle of the most unstable mode.

At M1=4.5 �Fig. 8�b��, the oblique first mode of insta-

bility has a peak at �� ,��= �0.14,0.37� �corresponding to a

wave angle of �=68°�. This mode still exists at M1=6.85,

peaking at �� ,��= �0.15,0.60� with a wave angle of �=76°.

The simple estimations for oblique modes give Uc=0.68

�compared to cph=0.72� at M1=4.5 and Uc=0.75 �compared

to cph=0.86� at M1=6.85. The wave angles are estimated as

65° at M1=4.5 and 69° at M1=6.85 �Fig. 8�c��. These simple

estimations thus remain useful for the oblique mode up to the

highest Mach numbers studied.

At M1=4.5 and M1=6.85, the stability diagrams include

additional Mack modes �second mode, third mode, etc.� of

instability. Previous examples for shock-induced separation

bubbles were shown in Pagella et al.
9,16

at M1=4.8; the

present results are consistent with those findings. At M1

=4.5 the most unstable mode is the second mode, with a

growth rate of �i=0.026 at �� ,��= �0.41,0.0� and a phase

speed of cph=0.82. The Mack modes are most unstable in 2D

and propagate with supersonic speed relative to the wall. A

weaker third mode can be seen towards the right of the plot

at �� ,��= �0.97,0.0�. At M1=6.85 �see Fig. 8�c��, the second

TABLE II. Grid convergence study for 2D simulations illustrating the separation bubble length �xs ,xr�, the

location of the bubble apex and the bubble length Reynolds number ReLB
.

Case M1 ximp xs xr �hb ,xb� ReLB

1 2.0 341.24 192.94 460.44 �8.78, 326.64� 195 978

2 2.0 341.24 191.98 463.17 �8.70, 327.04� 198 681

3 4.5 131.76 64.97 168.72 �4.57, 115.73� 197 094

4 4.5 131.76 64.83 169.30 �4.60, 116.08� 198 462

5 6.85 72.40 33.31 91.38 �2.92, 59.58� 200 678

6 6.85 72.40 33.33 91.68 �2.95, 59.84� 202 268
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and third modes have comparable maximum growth rates. A

much weaker fourth mode can be seen at the right-hand edge

of the plot. In contrast to the oblique modes, the locations of

the most unstable Mack modes vary along the length of the

bubble. This is due to the basic physical mechanism of the

Mack mode instability, which involves a resonance of acous-

tic waves located between the critical layer and the wall.

Anticipating that the local height of the bubble will be an

important parameter, we plot �yi against Rex in Fig. 9 for the

most unstable Mack modes �the second mode at M1=4.5 and

the second and third modes at M1=6.85�. The variation of

�yi along the bubble is only of the order ±10%, whereas yi

varies by a factor of roughly three �Fig. 7�. This means that

particular Mack modes are only unstable over short distances

FIG. 6. Density contours show the separation bubble length, shape and location with superimposed streamlines for different Mach numbers: M1=2.0 �top�;
M1=4.5 �middle�; M1=6.85 �bottom�.
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along the bubble length, with reduced overall growth rates.

This will be further quantified in Sec. VI.

V. SIMULATION OF 3D FLOWS WITH SMALL
AMPLITUDE DISTURBANCES

The linear stability results of the previous section were

used as a guide to fix the spanwise box size Lz such that the

most unstable modes are contained within the computational

domain. The dimensions Lx and Ly are the same as in the 2D

simulations detailed in Table I. The laminar base flow is

perturbed by injecting low momentum fluid with zero net

mass flow through the plate surface for which a vertical ve-

locity is specified as vinj�x , t�=A�, where A is the amplitude

and � is a random number �uniformly distributed on

�−0.5,0.5� and independently generated at each x, z, and t

within the forcing strip� giving white-noise forcing in space

�x and z� and time �t�. The injection starts at xst and ends at

xen and spans the whole width of the computational domain.

Table III shows computational parameters for two values of

A for each Mach number �cases 7–12�.
The amplitude A has been chosen such that the response

of boundary layer is still within the linear growth region.

Figure 10 shows root-mean-square �RMS� values for the

three velocity components for the two different amplitudes of

white-noise forcing given in Table III. In each case, the RMS

values �fluctuations are computed relative to the local

spanwise-averaged values to remove the influence of small

changes in the base flow� have been divided by A to scale the

amplitude out of the problem. Note that the amplitude of the

forcing perturbation for M1=4.5 and M1=6.85 is an order of

magnitude larger than that for M1=2, but collapse of the

lines �low A� with the symbols �high A� demonstrates the

linearity of results. The curves have a peak near the forcing

location of Rex	100 000. Downstream these disturbances

grow up to the apex of the bubble. For the two higher Mach

numbers in particular, there is a sharp drop in the RMS

streamwise velocity at the apex of the bubble �Rex

	�2.6–2.8��105�. This is followed by renewed growth over

the rear portion of the bubble and reduced growth rates after

the reattachment. Drops in disturbance energy at the shock

impingement location have also been seen in Teramoto.
18

Several other important points can be made in the con-

text of Fig. 10. First, we note that all cases gave time-

invariant statistics; i.e., the flow is demonstrated to be con-

vectively unstable. This is important because the bubbles

contain significant amounts of reverse flow and it is believed

that bubbles with higher pressure ratio �e.g., for M1=2.0 and

p3 / p1=1.91; see Teramoto
18� can sustain transition to turbu-

FIG. 7. Streamwise variation of the location of the generalized inflection

point, plotted as yi /yi,max �where yi,max=10.59, 6.34, and 4.25 for M1=2.0,

4.5, and 6.85, respectively� in the separation bubbles.

FIG. 8. Contours of temporal growth rate �i at �a� M1=2.0, �b� M1=4.5,

and �c� M1=6.85. Contours start from 0.002 and continue upwards with

steps of 0.002 in all cases. The dark color corresponds to higher values.
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lence without appearance of upstream turbulence. Second,

we note that the growth curves for different velocity compo-

nents show different streamwise variations. This indicates

that there are significant nonparallel effects present and that

the locally parallel flow assumption of the LSA described in

the previous section may not be justified.

Figure 11 shows isosurfaces of vertical vorticity �y,

which effectively illustrates the 3D flow structures. The M1

=2.0 results appear to be in good agreement with the most

unstable modes from the previous linear stability analysis.

The dominant spanwise mode corresponds to �=0.196,

which compares reasonably well with the most unstable ob-

lique mode from the LSA, which was �=0.18 �Fig. 8�a��.
Both the M1=4.5 and M1=6.85 cases �Figs. 8�b� and 8�c��
show predominately streamwise structures. Such streamwise

structures, for example on compression ramp experiments

�see Simeonides and Haase
37�, are often attributed to a

Görtler mechanism based on streamwise curvature. How-

ever, we do not observe a strong correlation between the

disturbance growth rate and the streamwise curvature given

by Eq. �12�.
Figure 12 gives the RMS values of kinetic energy in

terms of an n-factor defined as n=ln�e�x� /e�xs�� with e�x�

=max��1

2
ui�ui��x�� and ui�=ui− 
ui�, where 
ui� denotes the

spanwise averaging. The values at Rexs
=1.5�105 are taken

as reference data. At M1=2.0 the n-factor increases up to

values 6–7 during the separation and after the reattachment.

By contrast, at M1=4.5 and M1=6.85, the growth of

the n-factor is relatively small and finally reaches a value

around 2.

The preceding simulations have demonstrated that un-

stable modes emerge naturally from the white-noise forcing,

with characteristic flow structures for all Mach numbers. For

comparison with linear stability theory, it is helpful to run

additional calculations with fixed frequency and spanwise

wavenumber combinations, where a vertical wall velocity is

specified as vinj�z , t�=A sin��t�cos��z� over the disturbance

strip. These forcing parameters were determined with refer-

ence to the earlier white-noise simulations and associated

stability calculations, which are reported in the next section.

Four additional simulations �cases 13–16 in Table III� are

considered. In each case only one spanwise wavelength is

used �in addition, the amplitude is reduced to �10−6 for

M1=2.0 simulations to retain linear growth of the distur-

bances�. Two simulations use the same grid resolution as

those of cases 7–12, while the remaining two include 50%

more grid points in all three directions so that any grid de-

pendency of the results can be addressed.

Figure 13 gives a comparison of the RMS kinetic energy

variations along the streamwise direction for these simula-

tions. Qualitatively, the results are similar to the earlier simu-

lations, indicating that the most unstable modes can emerge

rapidly from white-noise forcing. The grid refinement study

shows that sufficient grid points have been used. In particu-

lar, it should be noted that the large drop in disturbance am-

plitude at the location where the shock impinges on the top

of the separation bubble at M1=4.5 is not sensitive to the

grid. Figure 14 shows isosurfaces of vertical vorticity �y,

illustrating the 3D flow structures. The oblique mode with

�� ,��= �0.056,0.196� simulated at M1=2.0 produces a criss-

cross pattern, consistent with the superposition of two equal

and opposite oblique instability waves. At M1=4.5, oblique

mode forcing with �� ,��= �0.014,0.95� shows predomi-

nately longitudinal streamwise structures, as seen in the

white-noise-forced cases. This confirms that traveling insta-

TABLE III. Computational domain and grids for 3D simulations with small-amplitude disturbances of white-

noise forcing �cases 7–12� and oblique mode forcing �cases 13–16�.

Case M1 �Lx ,Ly ,Lz� /�1
* �Nx ,Ny ,Nz� A �xst ,xen�

7 2.0 �680, 30, 64� �513, 129, 65� 0.001 �51.86, 59.64�

8 2.0 �680, 30, 64� �513, 129, 65� 0.002 �51.86, 59.64�

9 4.5 �260, 15.118, 32� �257, 129, 65� 0.01 �20, 23�

10 4.5 �260, 15.118, 32� �257, 129, 65� 0.02 �20, 23�

11 6.85 �150, 15.125, 32� �257, 129, 65� 0.01 �11, 12.65�

12 6.85 �150, 15.125, 32� �257, 129, 65� 0.02 �11, 12.65�

13 2.0 �680, 30, 32� �513, 129, 33� 0.000 001 �51.86, 59.64�

14 2.0 �680, 30, 32� �769, 193, 49� 0.000 001 �51.86, 59.64�

15 4.5 �260, 15.118, 6.6� �257, 129, 13� 0.001 �20, 23�

16 4.5 �260, 15.118, 6.6� �385, 193, 19� 0.001 �20, 23�

FIG. 9. Streamwise variation of the quantity �yi for the most important

Mack modes �second and third modes� at M1=4.5 and M1=6.85.
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bility waves at low frequency are capable of producing the

streamwise structures seen in the earlier white-noise forcing

simulation.

VI. GROWTH „n-FACTOR… PREDICTIONS
AND DISCUSSION OF NONPARALLEL EFFECTS

Linear stability predictions of disturbance growth are ob-

tained via the n-factor calculated as

FIG. 10. Normalized turbulence intensity from simulations with two differ-

ent amplitudes of white-noise disturbances, showing the linear growth of the

disturbances. �a� M1=2.0; �b� M1=4.5; �c� M1=6.85.

FIG. 11. Isosurfaces of vertical vorticity �y show the near-wall streamwise

structures at three Mach numbers �M1=2.0, 4.5, and 6.85�. Dark color: �y

=−10−5; light color: �y = +10−5.

FIG. 12. Simulated growth n-factors measured by the RMS kinetic energy

for three Mach numbers from small amplitude disturbances of white-noise

forcing.
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n = − 
xs

x

�idx , �13�

where xs is the separation location, preferred here to the

lower branch, to allow comparisons with the simulations of

the previous section. Spatial stability theory is carried out to

determine � for combinations of �� ,��. The combinations

that lead to the greatest n are deemed the most dangerous

disturbances.

Figure 15 shows n-factor predictions based on stability

theory. For consistency with the earlier DNS results, we have

limited the possible values of � to those that are supported

on the periodic computational domains employed in the pre-

vious section. At M1=2.0, �� ,��= �0.056,0.196� gives the

highest overall n-factor for inviscid stability theory. The ef-

fect of viscosity is shown by the second curve plotted for

M1=2.0 on Fig. 15, with growth rates and n-factors reduced

by around 10%. Even with the viscous effects, the overall

growth rates are still above the linear Navier-Stokes compu-

tations of the previous section �cf. Fig. 12�; quantitative com-

parisons will be made after we have considered nonparallel

effects. Figure 15 also shows the growth rates for the most

unstable oblique modes at M1=4.5 and M1=6.85. The most

dangerous modes are oblique modes �� ,��= �0.245,0.58� at

M1=4.5 and �� ,��= �0.127,0.48� at M1=6.85, respectively.

Overall growth rates lead to n-factors of less than 2, and are

even lower when viscous effects are included.

The amplification of the second mode is strongly depen-

dent on frequency and the most unstable frequency varies as

the local bubble height varies. This leads to low overall

growth factors of the second mode along separation bubbles,

FIG. 13. Simulated RMS kinetic energy �normalized with amplitude� for

M1=2.0 and M1=4.5 from small-amplitude disturbances of oblique mode

forcing.

FIG. 14. Isosurfaces of vertical vorticity �y show the near-wall streamwise

structures from oblique-mode forcing DNS: �y = ±10−5 for M1=2.0 and

�y = ±10−3 for M1=4.5; dark color for negative value and light color for

positive value.

FIG. 15. Growth n-factors illustrating the effects of Mach number and

viscosity.

FIG. 16. Growth n-factors for the Mack modes ��=0.0� of different fre-

quencies at M1=4.5. Note the low overall growth factors, despite the high

localized growth rates.
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as was seen in the study of compression corner flow by Bala-

kumar et al.
9

Figure 16 shows the growth of the n-factors for

the second mode at frequencies �=0.3 and �=0.4 for M1

=4.5. The high frequency case is most unstable at locations

approximately halfway between the separation point �Rex

	2.0�105� and the bubble apex and halfway between the

bubble apex and reattachment �Rex	3.3�105�. The n-factor

plot shows high growth rates in these regions, with a plateau

where this particular frequency is close to neutral; i.e., near

the apex of the bubble. The lower frequency case shows

most growth towards the center of the bubble. In both cases

the overall growth n-factors are very small �corresponding to

only a factor of 10 growth in amplitude� even though the

second modes are locally the most unstable modes.

Nonparallel effects are important in the current problem

and simulations have therefore been made using the parabo-

lized stability equations �see Herbert,
10

Hein et al.
11�. The

equation set in this case is given by

M
d�̂

dx
= ��K − L − L���̂ . �14�

The L and K matrices are the same as in Eq. �10�. The

matrix M multiplies streamwise derivatives of the stability

variables �̂, while L� contains nonparallel terms. The system

is derived by neglecting terms of order Re−2 and assuming

that v̄ is O�Re−1�. The latter assumption is not strictly satis-

fied here since v fluctuations �v�� are about a tenth of the

free-stream velocity, but the inclusion of higher order non-

parallel terms did not significantly change the results. A start-

ing distribution for �̂ at some prescribed x is given from

parallel flow stability theory and the solution is then marched

downstream. At each step the wavenumber is adjusted to

maintain the norm

 ûi
†�ûi

�x
= 0, �15�

where “†” denotes a complex conjugate. Growth factors are

computed using integrated kinetic energy, including the

growth contained in � as well as the growth contained in ûi.

In the current applications, the smallest stable streamwise

step size is taken to minimize truncation errors. Improved

results were obtained when we neglected the streamwise

pressure gradient, as suggested in Herbert.
10

However, the

PSE calculations discussed here remain sensitive to the nu-

merical scheme; this is believed to be because the separation

bubbles are close to the boundary of absolute instability,

where the PSE becomes invalid. These effects will become

more severe with increasing Mach number, thus we consider

the effectiveness of the PSE only at the two lower Mach

numbers M1=2.0 and M1=4.5.

Figure 17 compares the results of the DNS with the PSE

at M1=2.0. Note that the disturbance growth predicted by the

DNS with harmonic forcing is slightly larger than that pre-

dicted with white-noise forcing �Fig. 12�, as expected. It can

be seen that the PSE accounts for the spatial development of

the base flow but leads to reduced growth rates compared to

the DNS. The discrepancy may be due to the fact that trun-

cation errors can be significant in PSE, but step sizes cannot

be reduced due to stability considerations. To provide a bet-

ter estimate we apply a Richardson extrapolation to PSE re-

sults obtained on two different grids �with sizes two and four

times the DNS grid spacing�, bringing an improved PSE es-

timate �shown with the dashed line on the graph� into much

closer agreement with the Navier-Stokes solution. It is im-

portant to note that the PSE approach is capable of predicting

the small dip in growth of the n-factor at Rex=2.85�105,

which results from the reduction in the streamwise RMS at

that location �see Fig. 10�.
The reduction of disturbance energy close to the shock

impingement at the apex of the bubble becomes much more

pronounced at the higher Mach numbers. The linear en

method �Fig. 15� was incapable of predicting this. The PSE

at M1=4.5 for the most unstable frequencies of linear theory

led to damped disturbances, indicating a very strong effect of

the nonparallel terms. The parameters were varied until a

maximum overall growth rate was obtained for �=0.014 and

�=0.95. A comparison of the resulting PSE prediction with

FIG. 17. Growth n-factors for the most amplified oblique first-mode distur-

bances at M1=2.0 ��=0.056, �=0.196�, comparing DNS with PSE.

FIG. 18. Growth n-factors for the most amplified oblique first mode distur-

bances at M1=4.5 ��=0.014, �=0.95�, comparing DNS with PSE.
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the DNS is shown in Fig. 18, also including the results of a

Richardson extrapolation applied in the same way as at M1

=2.0. Again, the n-factors predicted by the DNS with har-

monic forcing are slightly larger than those predicted with

white-noise forcing �Fig. 12�. Agreement between the PSE

and DNS curves is good over the front half of the bubble and

the PSE is capable of predicting the dip in disturbance am-

plitude at the bubble apex. However, the method underpre-

dicts the growth rates during the recovery region after the

shock impingement; this is probably caused by the relatively

large step sizes that had to be adopted for stability reasons.

Qualitatively, the PSE is successful and the spanwise wave-

number for the oblique mode with the highest growth rate is

�=0.95 �corresponding to a wavelength of 6.6�, which

matches well with the DNS results �Fig. 11�b� exhibits span-

wise wavelengths of the order of 5–8�. In addition, the fre-

quency from the PSE prediction ��=0.014� is low, which is

in qualitative agreement with the long quasi-streamwise

structures seen in the white-noise-forced DNS.

VII. EARLY STAGE OF NONLINEAR BREAKDOWN
TO TURBULENCE

In the previous sections, we studied the linear growth of

small-amplitude disturbances by using DNS, LST, and PSE.

Some previous investigations �e.g., Rai and Moin,
35

Piroz-

zoli et al.,
36

Teramoto
18� suggested that at low Mach number

�M1=2.0� the shock-wave/boundary-layer interaction will

undergo an oblique breakdown and finally transition to tur-

bulence. As this study confirms that the two high Mach num-

bers M1=4.5 and M1=6.85 have very similar linear growth

rate, the final breakdown process is likely to be similar.

Hence, in this section we focus on the discussion of the early

stage of nonlinear breakdown of disturbances and transition

to turbulence in the Mach 4.5 flow.

Comparing to the 3D simulation case 10 described in

Sec. V, the present three-dimensional simulation uses a com-

putational box with the same dimensions in the streamwise

and the wall normal directions, but a smaller spanwise width

equal to 8�1
*. This width should be sufficiently wide for one

wavelength of the dominant response �as seen in Fig. 11�b��.
A grid of 257�129�17 �Nx�Ny �Nz� was chosen with a

corresponding ��x+ ,�y1
+ ,�z+�= �22.0,1.0,11.0�, respec-

tively, close to a fully resolved DNS. The most unstable fre-

quencies and the wavenumbers obtained from the LST/PSE

analysis are used to force the nonlinear breakdown and tran-

sition in the flow. These disturbances are introduced up-

stream of the separation bubble by a localized blowing/

suction strip at the wall surface via the wall-normal velocity

disturbance �v�� as

v� = A exp�− 0.125�x − 25.0�2�sin��t�cos��z�

+ 2% random noise, �16�

where A is the amplitude, � is the spanwise wavenumber,

and � is the frequency of the disturbance. For the oblique

mode disturbance, �=0.014 and �=0.95 were used �since

they are the most unstable disturbances at this Mach num-

ber�. In the case of the second-mode disturbance, �=0.3 and

�=0 were taken.

Figure 19�a� plots the isosurfaces of second invariant

��= ��ui /�x j���u j /�xi�� at a value of −0.0006, showing the

evolution of an oblique first-mode disturbance �A=0.1, �

=0.014, �=0.95� over the separation bubble and after the

reattachment. In comparison to the simulation with small-

amplitude white-noise disturbances �see Fig. 11�b��, the

finite-amplitude oblique disturbance triggers stronger station-

ary streamwise structures by the oblique mode interaction.

An enhanced lift-up of the near-wall fluid in between these

streamwise structures induces strong shear layers away from

the wall. The roll-up of these shear layers further produces

spanwise structures in the flow, which can be identified from

Fig. 19�a� near the outflow boundary. Simulation with A

=0.1 of the second-mode disturbance ��=0.3, �=0.0� by

itself shows spanwise structures in the flow but no sign of

transition onset �see Fig. 19�b��. Very weak streamwise vor-

tices were observed in this flow due to the small-amplitude

random disturbances �as in case 10 described in Sec. V�.
These nonlinear calculations confirm the smaller growth

rates of the second-mode disturbances with n-factors be-

tween 2 and 3.

A combination of a finite-amplitude �A=0.1� oblique-

mode disturbance ��=0.014, �=0.95� with a small-

amplitude �A=0.02� second-mode disturbance ��=0.3, �
=0.0� is found to be effective in advancing the transition

onset. Figure 19�c� shows that the streamwise structures ex-

perience an earlier breakdown for Rex�400 000, compared

FIG. 19. Isosurfaces of second invariant of the velocity gradient tensor

��=−0.0006� showing the coherent structures in the flow. �a� Oblique first

mode with A=0.1, �b� second mode with A=0.1, �c� oblique first mode with

A=0.1+second mode with A=0.02, and �d� oblique first mode with A

=0.1+second mode with A=0.1.
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to Rex�500 000 for the oblique-mode-alone disturbance

�see Fig. 19�a��. A final simulation was performed with equal

�A=0.1� amplitudes of the oblique first mode and the second

mode. Immediately downstream of the disturbance strip, a

hairpin vortex structure was generated, which develops

smaller structures upstream of the shock impingement loca-

tion. However, towards the reattachment and beyond this lo-

cation the breakdown ceases and there is a re-emergence of

the second mode, with spanwise-coherent structures �see Fig.

19�d��. The final breakdown in this case occurs via a break-

down of hairpin-shaped structures for Rex�450 000.

Simulations at M1=6.85 have also been carried out using

10% oblique mode ��=0.014, �=0.62� disturbance, 2%

second-mode ��=0.4, �=0.0� disturbance, and 2% random

noise. Results show energetic streamwise structures; how-

ever, there is no breakdown to turbulence within the present

computational domain �Rex	5.5�105 at the exit�.

VIII. CONCLUSIONS

The two-dimensional Navier-Stokes simulations of an

oblique shock wave impinging on a flat plate laminar bound-

ary layer were carried out at three Mach numbers of M1

=2.0, M1=4.5, and M1=6.85. The results illustrated the ex-

pected features for this type of shock-wave/boundary-layer

interaction; namely, the separation and subsequent reattach-

ment of the boundary layer, and the consequent formation of

additional compression and shock waves. Comparisons of

surface pressure and skin friction distributions with those of

previous numerical simulations by other workers at M1

=2.0 show almost identical results.

A parametric study of the effect of the impinging shock

strength was carried out at the Mach numbers described

above in order to set up baseline flow conditions for subse-

quent three-dimensional simulations in which the linear

growth of artificially introduced small-amplitude distur-

bances was explored. The instabilities were initially seeded

with white noise so as to include many frequency and span-

wise wavenumber combinations. At M1=2.0, the emergent

structures have frequencies and wavenumbers close to those

predicted from parallel flow linear stability theory. Further

simulations were carried out for fixed frequency and span-

wise wavenumber and the PSE approach was demonstrated

to give a close match to the disturbance envelope from the

Navier-Stokes calculations.

At M1=4.5 and M1=6.85, the picture was very different.

The parallel flow linear stability theory could not predict the

large reductions in disturbance kinetic energy near the apex

of the bubble. The inclusion of nonparallel effects in the

PSE, together with the disturbance-evolution formulation

was capable of predicting quantitatively the disturbance

growth over the front of the bubble and qualitatively cap-

tured the extinction process at the apex of the bubble, where

the shear-layer curvature is convex �stabilizing� and very

large. Downstream of the bubble apex, there is a poor corre-

lation between shear layer curvature and disturbance insta-

bility. Thus, although nonparallel effects are extremely im-

portant, it seems that for these flows they should not be

parametrized with a single curvature parameter �in contrast

to the Görtler problem�. The structures that form at the

higher Mach numbers are predominantly streamwise in na-

ture, with spanwise wavenumbers in close agreement with

the most amplified modes from the PSE. By contrast, the

parallel flow linear stability predictions lead to erroneous

estimates of the most unstable frequency and spanwise wave-

number and are unable to predict the reductions of distur-

bance kinetic energy at the apex of the bubble.

Overall the observations suggest that parallel flow stabil-

ity results are of only limited use for high Mach number

shock/boundary-layer interactions. The PSE approach was

capable of producing useful estimations for these flows, but

for any higher interaction strengths the basic instability

mechanism is known to change from convective to absolute

in nature, violating the assumptions of the PSE.

Finally, 3D Navier-Stokes simulations using finite-

amplitude disturbances show that the strength of the stream-

wise structures produced by the oblique-mode disturbances

dominates the early-stage of final breakdown process in the

shock-wave/boundary-layer interaction at Mach 4.5. The ad-

ditional unstable second-mode disturbances are found to en-

hance the nonlinear breakdown of laminar transition to tur-

bulence. This breakdown has not been observed when the

same disturbances were introduced for a Mach 6.85 flow,

indicating that it is relatively more resistant to transition.

ACKNOWLEDGMENTS

The first author would like to thank the support from

Kingston University under the “Promising Researcher Fel-

lowship Scheme” during the course of the study. The authors

also would like to acknowledge the parallel computing time

support from the University of Southampton and the UK

Turbulence Consortium sponsored by the Engineering and

Physical Science Research Council, UK.

1
T. Adamson, Jr. and A. Messiter, “Analysis of two-dimensional interac-

tions between shock waves and boundary layers,” Annu. Rev. Fluid Mech.

12, 103 �1980�.
2
J. Delery, “Shock phenomena in high speed aerodynamics: still a source of

major concern,” Aeronaut. J. 1, 19 �1999�.
3
D. Dolling, “Fifty years of shock-wave/boundary-layer interaction re-

search: what next?” AIAA J. 39, 1517 �2001�.
4
D. Knight, H. Yan, A. G. Panaras, and A. Zheltovodov, “Advances in CFD

prediction of shock wave turbulent boundary layer interactions,” Prog.

Aerosp. Sci. 39, 121 �2003�.
5
W. S. Saric, H. L. Reed, and E. B. White, “Stability and transition of

three-dimensional boundary layers,” Annu. Rev. Fluid Mech. 35, 413

�2003�.
6
Y. B. Ma and X. L. Zhong, “Receptivity of a supersonic boundary layer

over a flat plate. Part 3. Effects of different types of free-stream distur-

bances,” J. Fluid Mech. 532, 63 �2005�.
7
L. Mack, “Remarks on disputed numerical results in compressible

boundary-layer stability theory,” Phys. Fluids 27, 342 �1984�.
8
A. Pagella, U. Rist, and S. Wagner, “Numerical investigations of small-

amplitude disturbances in a boundary layer with impinging shock wave at

Ma=4.8,” Phys. Fluids 14, 2088 �2002�.
9
P. Balakumar, H. W. Zhao, and H. Atkins, “Stability of hypersonic bound-

ary layers over a compression corner,” AIAA J. 43, 760 �2005�.
10

T. Herbert, “Parabolized stability equations,” Annu. Rev. Fluid Mech. 29,

245 �1997�.
11

S. Hein, A. Stolte, and U. C. Dallmann, “Identification and analysis of

nonlinear transition scenarios using NOLOT/PSE,” Z. Angew. Math.

Mech. 79, S109�1999�.
12

D. Arnal and G. Casalis, “Laminar-turbulent transition prediction in three-

054104-14 Yao et al. Phys. Fluids 19, 054104 �2007�

Downloaded 23 May 2007 to 152.78.62.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



dimensional flows,” Prog. Aerosp. Sci. 36, 173 �2000�.
13

H. W. Stock, “e�N� transition prediction in three-dimensional boundary

layers on inclined prolate spheroids,” AIAA J. 44, 108 �2006�.
14

L. Kleiser and T. A. Zang, “Numerical simulation of transition in wall-

bounded shear flows,” Annu. Rev. Fluid Mech. 23, 495 �1991�.
15

A. Pagella, A. Babucke, and U. Rist, “Two-dimensional numerical inves-

tigations of small-amplitude disturbances in a boundary layer at Ma=4.8:

Compression corner versus impinging shock wave,” Phys. Fluids 16,

2272 �2004�.
16

D. R. Chapman, D. M. Kuehn, and H. K. Larson, “Investigation of sepa-

rated flows in supersonic and subsonic streams with emphasis on the effect

of transition,” NACA Report 1356, 1958.
17

H. W. Zhao and P. Balakumar, “Nonlinear disturbance evolution across a

hypersonic compression corner,” AIAA J. 43, 1034 �2005�.
18

S. Teramoto, “Large-eddy simulation of transitional boundary layer with

impinging shock wave,” AIAA J. 43, 2354 �2005�.
19

M. Gerritsen and P. Olsson, “Designing an efficient solution strategy for

fluid flows—A stable high order finite difference scheme and sharp shock

resolution for the Euler equations,” J. Comput. Phys. 129, 245 �1996�.
20

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-

order shock-capturing methods using characteristic-based filters,” J. Com-

put. Phys. 150, 199 �1999�.
21

N. D. Sandham, Q. Li, and H. C. Yee, “Entropy splitting for high-order

numerical simulation of compressible turbulence,” J. Comput. Phys. 178,

307 �2002�.
22

M. H. Carpenter, J. Nordstrom, and D. Gottlieb, “A stable and conserva-

tive interface treatment of arbitrary spatial accuracy,” J. Comput. Phys.

148, 341 �1999�.
23

F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu and

T. Poinsot, ‘‘Large-eddy simulation of the shock turbulence interaction,” J.

Comput. Phys. 152, 517 �1999�.
24

F. M. White, Viscous Fluid Flow, 2nd ed. �McGraw-Hill, New York,

1991�.
25

N. D. Sandham, Y. F. Yao, and A. A. Lawal, “Large-eddy simulation of

transonic turbulent flow over a bump,” Int. J. Heat Fluid Flow 24, 584

�2003�.
26

L. Krishnan, Y. Yao, N. D. Sandham, and G. T. Roberts, “On the response

of shock-induced separation bubble to small amplitude disturbances,”

Mod. Phys. Lett. B 19, 1495 �2005�.
27

R. J. Hakkinen, I. Greber, L. Trilling, and S. S. Abarbanel, “The interac-

tion of an oblique shock wave with a laminar boundary layer,” NASA

Memo 2-18-59W, 1959.
28

E. Katzer, “On the lengthscales of laminar shock/boundary-layer interac-

tion,” J. Fluid Mech. 206, 477 �1989�.
29

B. Wasistho, “Spatial direct numerical simulation of compressible bound-

ary layer flow,” Ph.D. thesis, University of Twente, Netherlands, 1998.
30

R. D. Sandberg, “Numerical investigation of transitional and turbulent

supersonic axisymmetric wakes,” Ph.D. thesis, University of Arizona,

2004.
31

E. Weibust, A. Bertelrud, and S. O. Ridder, “Experimental investigation of

laminar separation bubbles and comparison with theory,” J. Aircr. 24, 291

�1987�.
32

M. Zhuang, “The effects of curvature on wake-dominated incompressible

free shear layers,” Phys. Fluids 11, 3106 �1999�.
33

D. Papamoschou and A. Roshko, “The compressible turbulent shear-

layer—an experimental study,” J. Fluid Mech. 197, 453 �1988�.
34

N. D. Sandham and W. C. Reynolds, “Three-dimensional simulations of

large eddies in the compressible mixing layer,” J. Fluid Mech. 224, 133

�1991�.
35

M. M. Rai and P. Moin, “Direct numerical simulation of transition and

turbulence in a spatially evolving boundary layers,” J. Comput. Phys. 109,

169 �1993�.
36

S. Pirozzoli, F. Grasso, and T. B. Gatski, “Direct numerical simulation and

analysis of a spatially evolving supersonic turbulent boundary layer at

M=2.25,” Phys. Fluids 16, 530 �2004�.
37

G. Simeonides and W. Haase, “Experimental and computational investi-

gations of hypersonic flow about compression ramps.” J. Fluid Mech.

283, 17 �1995�.

054104-15 The effect of Mach number on unstable disturbances Phys. Fluids 19, 054104 �2007�

Downloaded 23 May 2007 to 152.78.62.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


