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 Seismic-induced damages in reinforced-concrete (RC) buildings were primarily associated with materials’ low strength and poor properties. This study aims to 
investigate the seismic response of RC structures according to the different material’s strength and design spectra. Adaptive static pushover and eigenvalue 
analysis were performed for four different design spectra, five types of concrete, 

and two reinforcement grades. Four different design spectra were obtained by 

considering discrete geographical locations with different earthquake risks via 

the updated Turkish Earthquake Hazard Map 2018. Structural analysis was 

carried out for a sample RC building using these spectrum curves and material 

strengths. It has been observed that the structure becomes more rigid as the 

strength of concrete increases. This situation manifested itself with an increase 

in period values and a decrease in the stiffness values. Stiffness values of the 

building are independent of reinforcement. As the concrete strength decreases, the structure’s seismic capacity decreases while the displacement’s demand for 
predicted performance levels increases. Moreover, an increase in the tensile 

strength of reinforcements substantially increases the seismic capacity of the 

building. The study also determines that the site-specific design spectra obtained 

for different provinces are used in the analysis affects the demand displacements 

values considerably. The material differentiation between the stories in the 

building was also examined in this study. It can be a source in terms of how 

material discontinuity affects building performance. 

 
© 2021 MIM Research Group. All rights reserved. 
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1. Introduction 

In recent years, destructive earthquakes have caused large-scale losses for lives and 

properties, bringing forward the importance of seismic studies, research, and scientific 

developments. Several parameters such as number of stories, soft/weak story, short 

column, irregularity in plan, local soil conditions and hill-slope effect will adversely affect 

the behaviour of structures following earthquake loads. These parameters were also 

investigated and considered for rapid evaluation of structures. Parameters that will 

decrease the structural resistance mechanism will increase the amount of damage that might occur [1,2]. Numerous methods are developed to evaluate the building’s seismic 
safety and performance, such as rapid visual screening [3–8] and application of modern 

computational techniques including machine learning [9–11], but design spectra are one 

of the most essential parameters to be used in determining the seismic safety factor of 

buildings. Design spectra can be obtained by combining the local soil conditions and 

seismicity elements of that particular region. Local ground conditions significantly affect 
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the design spectra. Moreover, changes in spectra also affect the target displacements of 

structures [12–16]. Building design and evaluation become more meaningful by using site-

specific earthquake spectra. 

Reinforced-concrete (RC) structures are widely used in developed countries and have an 

important role in terms of seismic-induced damage [17-19]. In such structures, the 

structural elements are made by joining reinforcement and concrete. Earthquake 

resistance of such structures decreases due to weaknesses in resistance mechanisms. 

Their vulnerability increases even in low-intensity earthquakes, depending on the amount 

of these weaknesses. In RC structures, it is associated with low strength and weak 

properties of concrete as the first cause of damage. Also, it should not be overlooked that 

the reinforcement used is straight or ribbed. 

Seismic zones were expressed in four different ways, according to the Turkish Seismic 

Design Code-2007 (TSDC-2007) [20]. These seismic zones were removed with the updated 

seismic design code in 2018 (TBEC-2018) [21]. Site-specific design spectra should be used 

for any geographic location. One of the aims of the study is to examine the effect of different design spectra. In terms of seismicity level, Bingöl is located on level 1, Ağrı on level 2, 
Artvin on level 3, and Konya level 4, respectively, which were selected as case studies. Site-

specific design spectra were obtained for these settlements according to the updated 

Turkish Earthquake Hazard Map-2018. Eigenvalue and static adaptive pushover analyses 

were carried out separately for the five-story RC building using these design spectra. In 

addition, C8, C12, C16, C20 and C25 selections as a concrete class, S220, and S420 

selections were made as to the reinforcement class. Concrete and reinforcement classes 

are taken into consideration as variables, and all other structural characteristics are kept 

constant. Interpretations were made by comparing all the obtained results. 

This study aims to reveal how the material strengths predicted primarily affect building 

performance as a cause of damage, especially in RC structures after the earthquake. While 

acknowledging these differences, settlements with different seismicity risk were taken 

into consideration. The relationship between site-specific design spectra and material 

strengths has been tried to be revealed. Earthquake parameters were obtained for selected 

provinces by using updates earthquake hazard maps for Turkey. Short period mapping 

coefficient, spectral acceleration coefficient, maximum ground acceleration (PGA), 

maximum ground velocity (PGV), local ground effect coefficients, design spectral 

acceleration coefficients, and horizontal elastic spectrum curve were calculated 

individually here for selected provinces. The related information about earthquake 

damages due to concrete strength is also provided. Detailed information about obtaining 

design spectra for selected settlements is given. The RC building model used as an example 

is detailed. Information about the analysis used is presented. 

Additionally, uncertainties in material strength are one of the essential factors to be taken 

into account. Concrete and reinforcement grades were selected when projecting RC 

buildings. In this case, it is impossible to attach the material grades selected at the project 

design stage on the building for various reasons. This means that the material strengths 

stipulated in the project cannot be achieved. Therefore, the calculations made during the 

projecting phase do not make any sense for the envisaged structure. This study also 

explains the failure of the stipulated material strengths at the project design stage. At the 

same time, the differentiation of material strength was also examined with the study. The 

discontinuities occur in material strength in RC structures due to different reasons for 

using different strength materials between stories. 
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2. Selection of Site-specific Earthquake Spectra 

There are many useful structural analysis parameters under earthquake risk [22-27]. 

Seismicity elements are one of these parameters. These elements are briefly defined as 

local soil conditions, fault groups, and their characteristics, historical earthquakes, and 

necessary periods. These parameters vary based on different geographic locations. Within the study’s scope, four various settlements with different seismic risks were selected as Bingöl, Ağrı, Artvin, and Konya. Changes in analysis with varying risks of earthquakes were 
tried to be revealed within the scope of the study. The seismic zone expressions are no 

longer used in the updated Turkish Earthquake Hazard Map [28]. The usage of site-specific 

design spectra has emerged as the most significant change in updated Turkish Building 

Earthquake Code -2018. The site-specific seismic hazard evaluation is the main advantage 

of the new seismic code. It is necessary to mention that the latest update yields more 

reasonable assessments in structural performance. The representation of the selected 

provinces on this map was shown in Figure 1.  

 

Fig. 1 Four different settlements that selected for this study 

For all geographic locations, the standard design earthquake ground motion (DD-2) for an 

earthquake with a 10% annual probability of excess (recurrence period 475 years) and 

local soil conditions ZA class were selected for spectra curves and earthquake parameters. 

The properties of the ZA class were given in Table 1. 

Table 1. Properties of ZA type according to TSDC-2018 [18]  

Local Ground Type  Type of Ground 
Average at the top 30 meters 

(VS)30 [m/s] 

ZA Strong, hard rocks > 1500 

 

In this study, the map spectral acceleration coefficient (SS), map spectral acceleration 

coefficient for the period of 1.0 second (S1), the most significant peak ground acceleration 

(PGA), the peak ground velocity (PGV), local ground impact coefficients (FS and F1), design 

spectral acceleration coefficients (short-period design spectral acceleration coefficient 

(SDS), and design spectral acceleration coefficient (SD1) for 1.0 second period) and 

horizontal elastic spectrum values were calculated separately via the Turkey Earthquake 

Hazard Maps Interactive Web Application [28]. SS for 0.2s and S1 spectral acceleration 

values in 1.0s are calculated directly from the application for a 5% damping ratio. Local 
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ground effect coefficient FS is derived from Table 2 in the short period zone and F1 was 

calculated according to Table 3 in the 1.0s period for local ground type ZA. 

Table 2. Local soil effect coefficients (FS) for ZA soil type according to TBEC-2018 [21] 

Local Soil 

Type 

Local ground effect coefficient FS for the short period zone 

SS≤0.25 SS=0.50 SS=0.75 SS= 1.00 SS=1.25 SS≥1.50 

ZA 0.8 0.8 0.8 0.8 0.8 0.8 

 

Table 3. Local soil effect coefficients (F1) for ZA soil type according to TBEC-2018 [21] 

Local Soil 

Type 

Local ground effect coefficient F1 for 1.0 second period 

S1≤0.10 S1=0.20 S1=0.30 S1= 0.40 S1=0.50 SS≥0.60 

ZA 0.8 0.8 0.8 0.8 0.8 0.8 

 

Referring to the Table 2 and Table 3, FS and F1 coefficients for ZA take a constant value of 

0.8. This situation is also valid for ZB soil type and it differs for other soil types that given 

in TBEC-2018 (ZC, ZD; ZE). This is due to the fact that ZA and ZB soil types are solid ground. 

Short period design spectral acceleration coefficient (SDS) and design spectral acceleration 

coefficient (SD1) values for 1.0 seconds are calculated as follows; 

SDS = SS. FS                                                                        (1)          

SD1 = S1. F1                                                                       (2)          

The comparison of the earthquake parameters obtained for selected provinces in this 

study are presented in Table 4. 

Table 4. Comparison of earthquake parameters for selected provinces 

Parameter 
Province Bingöl Ağrı Artvin Konya 

SS 1.596 0.547 0.425 0.307 

S1 0.419 0.152 0.116 0.073 

PGA (g) 0.648 0.234 0.185 0.133 

PGV(cm/s) 41.836 13.588 10.467 6.688 

FS 0.800 0.800 0.800 0.800 

F1 0.800 0.800 0.800 0.800 

SDS 1.277 0.438 0.341 0.246 

SD1 0.335 0.122 0.093 0.058 

A comparison of horizontal elastic design spectra obtained for selected cities was shown 

in Figure 2. Here, the horizontal axis represents the period value (T), and the vertical axis 

represents the horizontal elastic design spectral acceleration (Sae). 
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Fig. 2 Comparison of horizontal elastic design spectra 

3. Failures According to Low Strength of RC 

The strength of materials directly affects structures under various loads. Materials that are 

insufficient alone can become sufficient in terms of strength by combining additional 

materials. RC is a widely used composite building material that obtained by combining two 

different materials such as concrete and steel. The most important property expected from 

concrete is compressive strength and the tensile strength expected from steel. The 

classification of these two materials is made by considering these properties. Earthquake 

damages are primarily associated with concrete with poorer properties than these two 

materials in any RC structure. Therefore, the quality of these two materials largely 

determines the quality of any RC structural system. Concrete is a composite material, 

including various materials such as cement, aggregate, water and other additional 

materials. Furthermore, concrete production steps are very much, such as calculation of 

composition, transportation, concreting, compaction, and curing of concrete. The fact that 

it is obtained by combining many materials and the production stages are very different 

affects the concrete strength negatively. A concrete with low strength that seems sufficient 

under vertical loads cannot withstand horizontal loads during an earthquake. The concrete 

shows a more ductile behaviour as a result of the different reinforcements placed in the 

concrete in the RC structural system. However, if the compressive strength of concrete is 

low, it causes adherence between concrete and reinforcement to be sufficient even at low 

stresses. In this case, longitudinal reinforcements are easily stripped from the concrete, 

longitudinal reinforcements bonded with tight stirrups sprains. The materials contained 

in concrete, environmental conditions, application errors, bad workmanship, degree of 

compression, insufficient protection/maintenance and cement type generally cause low 

strength of concrete. However, inappropriate grain distribution and size in aggregate, 

direct use of aggregate obtained from rivers found in the region, and inadequate concrete 

compression processes led to concrete with a little resistance to segregation. The usage of 

smooth reinforcement in RC reduces the capacity in terms of both strength and adherence. This situation has been revealed again in the 2020 Sivrice (Elazığ) earthquake lastly in 
Turkey as presented in the Figure 3. 
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Fig. 3 Damages in RC according to poor/low strength after 2020 Sivrice earthquake 

Due to the low concrete strength and the smooth reinforcement used, damage was 

observed in different earthquakes. Some of these damages were shown in Figure 4. 

 

Fig. 4 Poor quality/ low strength material damages after different earthquakes [29–37] 
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4. Structural Analyses  

Structural analysis for the provinces was performed using the Seismostruct software 

(Seismosoft, 2018). The static adaptive pushover analysis, which is applied in predicting 

the horizontal capacity of a structure, taking full account of the effect that the deformation 

of the latter and the frequency content of input motion have on its dynamic response 

characteristics, was used. Here, analyses were performed by considering the mode shapes 

and participation factors obtained from the eigenvalue analyses in each step during the 

adaptive pushover analysis. This method allows the use of site-specific spectra. Load 

control types used in this study are similar to conventional pushover analysis [38-46]. 

Material models have an essential place in structural analysis [47]. The nonlinear concrete 

model [48] and steel model [49] were used for concrete and steel material, respectively. 

The stress-strain relationship of the material models considered for these models is 

demonstrated in Figure 5. Here, the vertical axis represents stress and horizontal axis 

represents the strain under the stress. 

 

Fig. 5 Material models for concrete and steel considered in the study [50] 

The characteristics of the five different concrete grades considered in this study are given 

in Table 5. The properties of the two different reinforcement grades considered in this 

study are given in Table 6. 

Table 5. Properties of different concrete grades [51] 

Parameter C8 C12 C16 C20 C25 

Mean  compressive strength 

(kPa) 
16000 20000 24000 28000 33000 

Nominal value (kPa) 8000 12000 16000 20000 25000 

Mean tensile strength (kPa) 1600 2000 2400 2800 3300 

Modulus of elasticity (kPa) 1.88E+007 2.10E+007 2.30E+007 2.48E+007 2,69E+07 

Strain at peak stress (m/m) 0.002 0.002 0.002 0.002 0.002 

Specific weight (kN/m3) 24.00 24.00 24.00 24.00 24.00 
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Table 6. Properties of different reinforcement grades [51] 

Parameter S220 S420 

Mean  compressive strength (kPa) 253000 483000 

Modulus of elasticity (kPa) 2.00E+08 2.00E+08 

Nominal value (kPa) 220000 420000 

Yield strength (kPa) 253000 483000 

Specific weight (kN/m3) 78 78 

Strain hardening parameter (-) 0.005 0.005 

Transition curve initial shape parameter 20 20 

Transition curve shape calibrating coeff. A1 (-) 18.50 18.50 

Transition curve shape calibrating coeff. A2 (-) 0.15 0.15 

Isotropic hardening calibrating coeff. A3 (-) 0 0 

Isotropic hardening calibrating coeff. A4 (-) 1.00 1.00 

Fracture/buckling strain (-) 0.10 0.10 

 

The blueprint of the selected RC structure is presented in Figure 6, and the 2D and 3D 

structural models and the applied loads are shown in Figure 7. 

 

Fig. 6 The blueprint of sample model RC building 
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Fig. 7 2D and 3D models of the sample model RC building Each story had an equal height and taken as 3 m. All columns were selected as 0.40 × 0.50m and beams were selected as 0.25×0.60m. The transverse reinforcements used in both elements were selected as ϕ10/10. The reinforcements used in the columns were selected as 4ϕ20 at corners and 4ϕ16 top bottom and left-right sides. The reinforcements used in the beams were selected as 4ϕ16 at lower side, 5ϕ14 upper side and 2ϕ12 at side.  The 
columns and beams used in the structure are shown in Figure 8. The damping ratio was 

taken as % 5 in all structural models. The ZA soil type was chosen as the local soil condition. 

The importance of structure was taken into consideration as Class II. The slabs were 

selected as rigid diaphragms.  

 

Fig. 8 Column and beam cross-sections 

The dy value refers to displacement at the moment of yield and dint value refers to the 

intermediate displacement. Elastic stiffness (K_elas) and effective stiffness (K_eff) values 

were also calculated separately for selected provinces for different material strengths. 

Three different performance criteria were obtained for damage estimation. These are 

considered as near collapse (NC), significant damage (SD) and damage limitation (DL) 

according to Eurocode-8, (Part-3) [52].  

5. The Interaction Between Material Strength and Site-Specific Spectra 

The comparison of all values obtained in X direction for S220 and S420 has been presented 

in Tables 7 and 8, respectively. The comparison of the static pushover curves for S220 and 

S420 grades are presented in Figures 9. 
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Fig. 9 Comparison of pushover curves for S220 and S420 for different concrete grades 

Table 7. Comparison of values obtained in X direction for S220 

P
ro

v
in

ce
 

C
o

n
cr

e
te

 

 

Period   
dint dy K_elas K_eff 

Base 

Shear 
DL SD NC 

Bingöl 

C8 0.4429 0.061 0.136 109949.2 61788.6 3796.05 0.0948 0.1217 0.2109 

C12 0.4227 0.060 0.128 121202.8 65952.4 3943.33 0.0918 0.1178 0.2042 

C16 0.4066 0.058 0.128 132308.9 70333.2 4044.74 0.0889 0.1140 0.1977 

C20 0.3933 0.055 0.120 146060.4 74676.7 4118.61 0.0863 0.1107 0.1919 

C25 0.3795 0.052 0.120 160602.3 80067.8 4189.83 0.0833 0.1069 0.1853 

Ağrı 

C8 0.4429 0.061 0.136 109947.7 61783 3796.18 0.0342 0.0439 0.0762 

C12 0.4227 0.060 0.128 121201.6 65950.5 3943.51 0.0331 0.0425 0.0737 

C16 0.4066 0.058 0.128 132307.9 70332.8 4044.75 0.0321 0.0412 0.0714 

C20 0.3933 0.055 0.12 146059.6 74677.2 4118.51 0.0312 0.0400 0.0693 

C25 0.3795 0.052 0.12 160601.4 80069.6 4189.79 0.0301 0.0386 0.0669 

A
rt

v
in

 

C8 0.4429 0.061 0.136 109948.2 61787.5 3796.04 0.0272 0.0349 0.0605 

C12 0.4227 0.060 0.128 121202 65954.2 3943.42 0.0263 0.0338 0.0586 

C16 0.4066 0.058 0.128 132308.1 70328.6 4044.85 0.0255 0.0327 0.0567 

C20 0.3933 0.055 0.12 146059.8 74677.5 4118.55 0.0248 0.0318 0.0551 

C25 0.3795 0.052 0.12 160601.6 80085.5 4190.07 0.0239 0.0307 0.0532 

K
o

n
y

a
 

C8 0.4429 0.061 0.136 109951.8 61791.1 3796.04 0.0195 0.0250 0.0433 

C12 0.4227 0.060 0.128 121205.6 65959.6 3943.48 0.0188 0.0242 0.0419 

C16 0.4066 0.058 0.128 132312.0 70320.8 4045.17 0.0182 0.0234 0.0406 

C20 0.3933 0.055 0.12 146065.4 74677.3 4118.56 0.0177 0.0227 0.0394 

C25 0.3795 0.052 0.12 160608.4 80080.7 4189.87 0.0171 0.0219 0.0380 
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Table 8. Comparison of values obtained in X direction for S420 

P
ro

v
in

ce
 

C
o

n
cr

e
te

  
 

Period   
dint dy K_elas K_eff 

Base 

Shear 
DL SD NC 

Bingöl 
 

C8 0.4429 0.100 0.208 110005.30 56604.8 5651.61 0.099 0.127 0.220 

C12 0.4227 0.096 0.1917 121199.82 60691.12 5817.87 0.096 0.123 0.213 

C16 0.4066 0.092 0.1758 132293.06 64565.63 5950.22 0.093 0.119 0.206 

C20 0.3933 0.089 0.1681 146011.31 67995.43 6068.52 0.090 0.116 0.201 

C25 0.3795 0.087 0.1601 160527.06 71447.68 6201.31 0.088 0.113 0.196 

Ağrı 

C8 0.4429 0.100 0.2162 110003.83 56504.29 5656.65 0.036 0.046 0.080 

C12 0.4227 0.096 0.1917 121198.56 60685.68 5817.96 0.035 0.044 0.077 

C16 0.4066 0.092 0.1757 132292.02 64562.52 5950.07 0.034 0.043 0.043 

C20 0.3933 0.089 0.1681 146010.48 67994.95 6068.47 0.033 0.042 0.073 

C25 0.3795 0.087 0.1601 160526.14 71457.95 6201.32 0.032 0.041 0.071 

A
rt

v
in

 

C8 0.4429 0.100 0.2157 110004.32 56587.24 5652.91 0.028 0.036 0.063 

C12 0.4227 0.096 0.1914 121198.95 60715.11 5817.7 0.027 0.035 0.061 

C16 0.4066 0.092 0.1758 132292.31 64563.81 5950.21 0.027 0.034 0.059 

C20 0.3933 0.089 0.1681 146010.69 67996.45 6068.59 0.026 0.033 0.058 

C25 0.3795 0.087 0.16 160526.38 71459.39 6201.24 0.025 0.032 0.056 

K
o

n
y

a
 

C8 0.4429 0.100 0.2076 110007.89 56548.47 5653.91 0.020 0.026 0.045 

C12 0.4227 0.096 0.1916 121202.59 60688.62 5818.07 0.020 0.025 0.044 

C16 0.4066 0.092 0.1758 132296.18 64566.97 5950.38 0.019 0.024 0.042 

C20 0.3933 0.089 0.1681 146014.4 67997.1 6068.63 0.019 0.024 0.041 

C25 0.3795 0.087 0.1601 160530.61 71449.63 6201.2 0.018 0.023 0.040 

 

The comparison of PGA and target displacements for damage estimation was given in Table 

9.  

Table 9. Comparisons of earthquake – structural parameters 

Province PGA C25-S220 C25-S420 Bingöl 0.648 0.0833 0.1069 0.1853 0.088 0.113 0.196 Ağrı 0.234 0.0301 0.0386 0.0669 0.032 0.041 0.071 

Artvin 0.185 0.0239 0.0307 0.0532 0.025 0.032 0.056 

Konya 0.133 0.0171 0.0219 0.038 0.018 0.023 0.040 
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6. The Effect of Material Discontinuity on Building Performance  

The differentiation of material strengths in the building has also been taken into account within this study’s scope. The construction of the stories can be built at different times due 
to various RC structures that have no engineering services. Since concrete casting is carried 

out at different times, discontinuities occur in material strength within the building. As a 

result, concrete and reinforcement are used in different qualities in the first built parts and 

later built parts. This situation increases the difference of material strength between 

stories, especially with the widespread of ready mixed concrete. The difference in material 

strengths within the building increases as the construction date of the first parts of the 

buildings gets older. These differences to reveal the name of the specified minimum 

concrete and reinforcement grade in Turkey in the last three regulations were taken into 

account. Analyses were carried out using the RC building example in the previous section 

and the design spectrum obtained for Bingöl province. The lowest concrete and 
reinforcement grades were considered, which were specified in the last three seismic 

design codes in Turkey. The building models selected in this context are given in Table 10. 

Table 10. Models selected for material discontinuity 

Model Description 

Model 1 C14 - S220 (In whole structure) 

Model 2 C14 - S220 (only in 1st story)/ C20-S220 (All other stories) 

Model 3 C14 - S220 (only in 1st story)/ C20-S420 (All other stories) 

Model 4 C14 - S220 (only in 1st story)/ C25-S220 (All other stories) 

Model 5 C14 - S220 (only in 1st story)/ C25-S420 (All other stories) 

Model 6 C14-S220 (only in 1st and 2nd stories)  C20-S220 (All other stories) 

Model 7 C14-S220 (only in 1st and 2nd stories)  C20-S420 (All other stories) 

Model 8 C14-S220 (only in 1st and 2nd stories)  C25-S220 (All other stories) 

Model 9 C14-S220 (only in 1st and 2nd stories)  C25-S420 (All other stories) 

Model 10  C20-S220 (In whole structure) 

Model 11 C25-S220 (In whole structure) 

The analysis results obtained for the eleven different building models are shown in Table 

11. 
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Table 11. Results obtained from the change of the material grade within the building 

Model  
 

Period   
dint dy K_elas K_eff 

Base 

Shear 
DL SD NC 

Model 1 0.4142 0.0587 0.1280 126800.97 68139.18 4000.29 0.090 0.116 0.201 

Model 2 0.4011 0.0531 0.1120 143574.93 75468.82 4011.05 0.086 0.111 0.192 

Model 3 0.4011 0.5070 0.0880 143540.79 79580.68 4034.21 0.084 0.108 0.186 

Model 4 0.3927 0.0496 0.1042 154168.61 80902.27 4015.26 0.083 0.107 0.186 

Model 5 0.3927 0.0480 0.0880 154122.84 84990.65 4036.07 0.081 0.104 0.181 

Model 6 0.4076 0.0551 0.1202 138776.00 72623.01 4003.96 0.088 0.112 0.195 

Model 7 0.4076 0.0544 0.1200 138746.22 73661.28 4005.81 0.087 0.112 0.193 

Model 8 0.4034 0.0529 0.1199 143621.45 75860.41 4005.73 0.086 0.110 0.191 

Model 9 0.4034 0.0523 0.1120 143587.62 76593.32 4008.77 0.085 0.109 0.189 

Model 10 0.3933 0.0890 0.1681 146011.31 67995.43 6068.52 0.090 0.116 0.201 

Model 11 0.3795 0.087 0.1601 160527.06 71447.68 6201.31 0.088 0.113 0.196 

Table 12 gives examples of the load factors obtained for equal displacements when 

structural building systems contain different material strengths. The concrete grade was 

selected as a variable by keeping the reinforcement grade constant while making these 

comparisons. 

Table 12. Comparison of load factors for equal relative displacement 

Model  
Relative Displacement (m)  Load 

Factor N511 N411 N311 N211 N211 

Model 1 

0.016 0.015 0.012 0.008 0.0033 

15.82  

Model 10  17.71 

Model 11  19.16 

Model 2  17.28 

Model 4 18.31  

Model 6 16.66  

Model 8 17.16  

The comparison of relative displacement values in building models under equal load 

factors were shown in Table 13. Two different load factor values have been taken into 

account as an example. 

Table 13. Comparison of relative displacement under equal load factors 

Model  

Relative Displacement (m)  

Load  Factor = 25 Load Factor = 40 

N511 N411 N311 N211 N111 N511 N411 N311 N211 N111 

Model 1 0.034 0.031 0.0025 0.0167 0.071 0.127 0.121 0.109 0.088 0.046 

Model 10 0.030 0.028 0.023 0.0153 0.064 0.089 0.084 0.074 0.055 0.026 

Model 11 0.027 0.026 0.021 0.0141 0.059 0.079 0.075 0.065 0.048 0.023 

Model 2 0.031 0.029 0.024 0.0163 0.069 0.104 0.098 0.089 0.070 0.039 

Model 4 0.028 0.027 0.022 0.0154 0.068 0.096 0.091 0.082 0.065 0.037 

Model 6 0.032 0.030 0.024 0.0166 0.070 0.120 0.115 0.101 0.081 0.043 

Model 8 0.030 0.028 0.024 0.0166 0.070 0.111 0.106 0.097 0.079 0.041 
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7. Conclusions

Eigenvalue and static adaptive pushover analysis for sample RC buildings were made for 

three different variables. All three selected parameters directly affect the earthquake 

behaviour of the structures. The first variable is the site-specific design spectrum 

according to the updated Turkish Earthquake Building Code-2018, which is one of the most 

important changes in this code. An analysis was carried out for four different cities which 

each located on different seismicity levels. Five different concrete classes have been 

selected as another variable. Meanwhile, two different reinforcement grades were 

considered as the last variable. As concrete strength increases, the deformability of it 

decreases. As the strength of the concrete increases, the building’s period value decreases, and the 
elastic and effective stiffness values increase. These show that the structure will be more 

rigid with the rise of the strength of the concrete. The decrease in concrete strength 

reduces the seismic capacity of the building. With the reduction of concrete strength, the 

target displacement values foreseen for the performance criteria expected from the 

building have increased. These results on concrete strength have remained valid for both 

reinforcement classes. The period value of the buildings did not change according to the 

reinforcement class. Elastic and effective stiffness values, which are calculated over crack 

and cracked sections, also remained constant. The seismic capacity of the buildings was 

significantly increased due to increasing the reinforcement strength. With the increase of 

reinforcement strength, the target displacement values have increased. The highest risk 

values among the provinces considered were calculated for the Bingöl province. The site-

specific design spectra did not change the period, elastic and effective stiffness, and seismic 

capacity values. However, the design spectra significantly altered the target displacement 

values for the performance criteria for damage estimation. The increase in PGA value also 

caused the target displacement to increase. The use of site-specific design spectra in the 

analysis and evaluation of structures allows a more realistic calculation of performance 

levels expected from the structure. It is clearly seen that a complete agreement was 

observed between the earthquake-structural analysis results by using the site-specific 

design spectra. The importance of material strength in RC structures with site-specific 

design spectra has been revealed once again in the light of the 2020 Sivrice earthquake. 

Since the seismicity elements of each geographic location are different, the results are 

expected to be varied. The construction of material strengths as projected in the project by 

obtaining engineering services will decrease the damage levels that may occur in the 

buildings to a lower level. 

In columns and beams, both the normal and shear force capacities have increased with the 

increase in concrete strength. An effect of steel grade is not considered in seismic design 

code for limit values in normal force and shear force in columns and beams. The 

reinforcement ratios in the columns take constant values independently in the concrete 

and steel grade. However, this ratio of both concrete and reinforcement grade directly 

affects in the beams. As the concrete strength increased, the reinforcement ratios foreseen 

for the beams increased. As the reinforcement strength increased, the rate of 

reinforcement decreased. One of the most important causes of earthquake damages has 

revealed the effect of material strength on the building performance and limit conditions 

foreseen for forces with this study. In addition, analysis was carried out using the site-

specific design spectra foreseen in the updated Turkish seismic design code. The final 

results obtained once again demonstrated the importance of obtaining site-specific design 

spectra. 

The material strengths can vary between stories in RC structures that do not receive 

engineering services and whose stories are built at different times. This causes 
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discontinuity of the material in the building. In this context, analyses were performed by considering the minimum concrete grade, which was states in Turkey’s last three seismic 
design codes. Low strength concrete is the leading cause of earthquake damage in RC 

structures in Turkey. In this respect, while the minimum concrete grade to be used in the 

1975 code was C14, it was raised to C20 in 2007 and to C25 in the current 2018 regulation. 

The differentiation of the reinforcement grade within the structure affected the analysis 

results at minimal levels. With the increase in the number of low-strength concrete stories, the periods increased, and the structure’s total rigidity decreased. The base shear forces 
obtained for building models with different strengths are very close to the whole structure’s value for the lowest strength concrete in the structure. This situation has 

preserved its validity for the relative displacements. Equal displacements occurred at 

higher load factors with the increase in concrete strength in different building models. As 

the concrete strength increases, the structure behaves more rigid and makes fewer 

displacements. The change in concrete strength within the structure also negatively 

affected the relative displacement values. All the results obtained once again revealed that 

concrete strength directly affects the earthquake behaviour of structures. 
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