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Abstract: 
In many analyses of wind turbine blades, the effects of 
mean stress on the determination of damage in 
composite blades are either ignored completely or 
they are characterized inadequately.  Mandell, et al [1] 
have recently presented an updated Goodman diagram 
for a fiberglass material that is typical of the materials 
used in wind turbine blades. Their formulation uses 
the MSU/DOE Fatigue Data Base [2] to develop a 
Goodman diagram with detailed information at 
thirteen R-values.  Using these data, linear, bi-linear 
and full Goodman diagrams are constructed using 
mean and “95/95” fits to the data.  The various 
Goodman diagrams are used to predict of failure stress 
for coupons tested using the WISPERX spectrum [3].  
Three models are used in the analyses.  The first is the 
linear Miner’s rule commonly used by the wind 
industry to predict failure (service lifetimes).  The 
second is a nonlinear variation of Miner’s rule which 
computes a nonlinear Miner’s Sum based upon an 
exponential degradation parameter.  The third is 
nonlinear residual strength model that also relies on an 
exponential degradation parameter.  The results 
illustrate that the Miner’s rule does not predict failure 
very well.  Both nonlinear models predict the 
experimental data very well when the detailed 
Goodman is used.  Namely, when the mean Goodman 
diagram is used, the nonlinear models predict failures 
near the mean of the experimental data and when the 
95/95 Goodman diagram is used, they predict the 
lower bound of the measured data very well.   
Keywords: wind, blades, fatigue, spectral, fiberglass. 

 

1 Introduction 

In many analyses of wind turbine blades, the effects of 
                                                                 
1 *Sandia is a multiprogram laboratory operated by 
Sandia Corporation, a Lockheed Martin company, for 
the U.S. Department of Energy under contract  DE-
AC04-94AL85000 

mean stress on the determination of damage in 
composite blades are either ignored completely or 
they are characterized inadequately.  Mandell, et al [1] 
have recently presented an updated characterization of 
the fatigue properties for fiberglass materials that are 
typically used in wind turbine blades. Their 
formulation uses the MSU/DOE Fatigue Data Base [2] 
and a three-parameter model to describe the mean S-N 
behavior of the fiberglass at thirteen different R-
values. The R-value for a fatigue cycle is defined as: 

min

max

R = σ
σ

     ,                       (1) 

where σmin is the minimum stress and σmax is the 
maximum stress in a fatigue stress cycle (tension is 
considered positive and compression is negative).   
 
The results are typically presented as a Goodman 
diagram in which the cycles-to-failure are plotted as a 
function of mean stress and amplitude along lines of 
constant R-values.  This diagram is the most detailed 
to date, and it includes several loading conditions that 
have been poorly represented in earlier studies.   
 
This formulation allows the effects of mean stress on 
damage calculations to be evaluated.  Using field data 
from the Long term Inflow and Structural Test (LIST) 
program, Sutherland and Mandell [4] have shown that 
the updated Goodman diagram predicts longer service 
lifetimes and lower equivalent fatigue loads than 
previous analyses.  This prediction is a direct result of 
the lower damage predicted for the high-mean-stress 
fatigue cycles by the updated Goodman diagram.   
 
To validate this result in a controlled set of 
experiments, the spectral loading data of Wahl et al 
[5] is evaluated using the updated Goodman diagram.  
These coupon data were tested to failure using the 
WISPERX spectrum [3].  Six formulations for the S-
N behavior of fiberglass are used: three using mean 
fits of the S-N data and three using “95/95” fits.  Each 
set of fits contains the linear, bi-linear and full (13 R-
values) Goodman diagrams. When using a Miner’s 
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Figure 1a: Data for R= -1. 
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Figure 1b: Data for R=0.1 
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Figure 1c: Data for R= 10 

 
Figure 1: Maximum Absolute Stress versus Cycles to 
Failure for Thirteen R-Values for Database Material 

DD16 

sum, the results illustrate that the mean fits do not 
predict failure very well, while the 95/95 predicts 
failures near the mean of measured data.  A non-
linear residual strength model is then used to 
examine another modeling technique.  This model 
when used with the 95/95 Goodman diagram 
predicts the lower bound of the measured data very 
well.  A nonlinear Miner’s sum residual strength 
model of similar form to the nonlinear model is also 
shown to predict the lower bound of the measured 
data very well. 
 
2 Fatigue Data 

The DOE/MSU fatigue database2 contains over 
8800 test results for over 130 material systems [2].  
The database contains information on composite 
materials typically used in wind turbine applications 
that are constructed from fiberglass and carbon 
fibers in a variety of matrix materials.  References 2, 
6 and 7 provide a detailed analysis of data trends 
and blade substructure applications; substructure 
applications.   
 
Recent efforts to improve the accuracy of spectrum 
loading lifetime predictions for fiberglass 
composites have led to the development of a more 
complete Goodman diagram than previously 
available, and a more accurate fatigue model. 
 
 
2.1 Constant Amplitude Data 

The material under consideration here is a typical 
fiberglass laminate that is called DD-16 in the 
DOE/MSU Database.  This laminate has a 
[90/0/±45/0]S configuration with a fiber volume 
fraction of 0.36.  The 90° and 0° plies are D155 
stitched unidirectional fabric, the ±45° plies are 
DB120 stitched fabric, and the resin is an ortho-
polyester. Mandell et al [2, 5] described the test 
methodologies used to obtain the data cited here.  
This material has a static tensile strength of 625 
MPa and a compressive strength of 400 MPa.  The 
95/95 strength values are 510 MPa and 357 MPa, 
respectively.  These strength values were 
determined at a strain rate similar to that of the 
fatigue tests. 
 
For illustrative purposes, the constant amplitude 
data at R = -1, 0.1 and 10 are shown in Fig. 1.  A 
complete set of the data for all thirteen R-values is 
available in Refs. 1 and 2.  
 

                                                                 
2 The database is available on the SNL website: 
http://www.sandia.gov/wind/. 

2.1.1  Curve Fits 
2.1.1.1 Mean Fit 

As presented by Mandell et al [1], the constant amplitude 
data at 13 R-values were fit with a three-parameter equation 
of the following form: 
 



 ( 1)O
O

b
ca Nσσ σ σ

σ
⎡ ⎤

− = −⎢ ⎥
⎣ ⎦

     ,     (2) 

where σ is the maximum applied stress, σO is the 
ultimate tensile or compressive strength (obtained at a 
strain rate similar to the 10 Hz fatigue tests), and a, b, 
and c are the fitting parameters.  The results of these 
fits are summarized in Table I and in Fig. 1. 
 
The parameters in these curve fits were selected to 
provide the best fit to the experimental data and to 
provide a 109 cycle extrapolation stress which was 
within ten (10) percent of the extrapolation from a 
simple two-parameter power law fit to the fatigue data 
having lifetimes greater than 1000 cycles [1]. 
 
2.1.1.2 95/95 Fit 

Using the techniques cited in Ref. 8 and 9 and the 
“Standard Practice” cited in Ref. 10, the “95/95” 
curve fit was also determined for these data.  The 
95/95 fit implies that, with a 95 percent level of 
confidence, the material will meet or exceed this 
design value 95 percent of the time. 
 
For these calculations, we use a one-sided tolerance 
limit, which has been computed and tabulated for 
several distributions by a number of authors.  
Typically, these tabulations take the following form: 

*
1- ,X  = X - c  xα γ σ      ,  [3] 

where the sample average X  is given by 

X =  
X

n

i
i 1

n

=
∑

     .  [4] 

for the ultimate strength data and by Eq. 2 for the 
fatigue data.  c1-α,γ is a multiplier (factor) tabulated 
as a function of the confidence level (1-α), 
probability γ and the number of data points n.  The 
standard deviation σx is given by: 

( )
( )

( )

1
n 22

i
i=1

x

1
2 2n n

2
i i

i=1 i=1

X  - X
 = 

n-1

n X  - X
 

n n-1

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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∑

∑ ∑

        .  [5] 

 
For these fits, the independent variable X is the 
number of cycles to failure N.  Thus, the number of 

cycles to failure for the 95/95 fit is given by: 
 
 [ ] [ ] [ ]10 95/95 10 10 olog N  = log N  + log N     , (6) 

where N is determined from Eq. 2 and log10[No] is 
shown in Table I for each of the thirteen R-values. 
 
As shown in Fig. 1, this technique works well for the 
fatigue data, but in many cases it predicts a 95/95 
static strength that is not in agreement with the 
calculated value (see the dotted line in the figure).  To 
rectify this situation, the 95/95 fatigue curve was 
“faired” into the measured 95/95 static strength, as 
shown by the solid lines in the figure  [11]. 
 
2.1.2 Goodman Diagrams 
For the analysis of S-N data, the preferred 
characterization is the Goodman diagram.  In this 
formulation, the cycles-to-failure are plotted as a 
function of mean stress and amplitude along lines of 
constant R-values.  Between R-value lines, the 
constant cycles-to-failure plots are typically, but not 
always, taken to be straight lines.  
 
Typical Goodman diagrams are shown in Figs. 2 and 
3.  These figures are presented in increasing level of 
knowledge about the S-N behavior of the fiberglass 
composite material.  Figures 2a and 3a illustrate the 
“linear” Goodman diagram.  In these figures, the 
diagrams are constructed using the static strength 
values for the R = 1 intercept (the horizontal axis of 
the diagram) and the S-N data for the R = -1 (the  
 

Table I:  Parameters for the Thirteen R-Values for 
Material DD16 and for Small Strands 

 
Model  

 (Equation 2) 
95/95 

(Equation 6) 
R-Value 

a b c log10(No) 
1.1 0.06 3 0.05 4.43 
1.43 0.06 3 0.15 1.85 

2 0.06 4 0.25 2.67 
10 0.1 4 0.35 0.87 
–2 0.01 4 0.55 0.59 
–1 0.02 3 0.62 0.53 

–0.5 0.45 0.85 0.25 0.64 
0.1 0.42 0.58 0.18 0.70 
0.5 0.075 2.5 0.43 0.79 
0.7 0.04 2.5 0.45 0.65 
0.8 0.035 2.5 0.4 0.79 
0.9 0.06 2.5 0.28 1.20 
1* 0.21 3 0.14 3.03 

 
*Assumes a frequency of 10 Hz. 
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Fig. 3a:  Linear Goodman Diagram 
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Fig. 3b: Bi-Linear Goodman Diagram 
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Fig. 3c: Full Goodman Diagram with Thirteen R-

Values 
 

Fig. 3.  95/95  Goodman Diagrams for Database 
Material DD16, Fit with Eqs. 2 and 3 
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Fig. 2a: Linear Goodman Diagram 
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Fig. 2b: Bi-Linear Goodman Diagram 
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Fig. 2c: Full Goodman Diagram with Thirteen R-

Values 
 

Fig.  2.  Mean Goodman Diagrams for Database 
Material DD16, Fit with Eq. 2 
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Fig.  4a: Linear Goodman Diagram 
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Fig. 4b: Bi-Linear Goodman Diagram 
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Fig. 4:  Comparison of Mean and 95/95Goodman 

Diagrams 

 vertical axis).  The “bi-linear” Goodman diagrams, 
shown in Figs. 2b and 3b, add the R = 0.1 S-N data to 
the diagram.  The “full” Goodman diagrams, shown in 
Figs. 2c and 3c, add the information the S-N data from 
the remaining 12 R-values. 
 
2.1.2.1 Mean Goodman Diagrams 

The Goodman diagrams cited in Fig. 2 were 
constructed using Eq. 2 and the information in Table 
I.  Figures 2a and 2b, use the mean static strengths for 
the intercepts of the constant-life curves with mean 
(horizontal) axis.  Fig. 2c departs from traditional 
formulations in that the intercept for tensile mean axis 
(R = 1) is not the mean static strength.  Rather, the 
intercept is a range of values based upon time-to-
failure under constant load.  These data were 
converted to cycles by assuming a frequency of 10 
cycles/second, typical of the cyclic tests.  Nijssen et al 
[12] have hypothesized a similar formulation 
previously. 
  
2.1.2.2 95/95 

The Goodman diagrams cited in Fig. 3 were 
constructed using Eqs. 2 and 3, the information in 
Table I, and the fairing of the S-N curves into the 
95/95 static strengths.  Again, the tensile intercept in 
Fig. 3c is a range of values based upon time under 
load.    
 
2.1.2.3 Comparison 

The Goodman diagrams presented in Figs. 2 and 3 are 
compared with one another in Fig. 4.  As shown in this 
figure, the shapes of the various Goodman diagrams 
are unchanged by the their conversion from the mean 
values to the 95/95 values. 
 
The significant differences in the Goodman 
formulations are highlighted in Fig. 5. The area near 
the R = –1 axis is very important because this is the 
region where the fiberglass composite is in transition 
between compressive and tensile failure modes and 
many of the stress cycles on a wind turbine blade have 
an R-value near –1.  The effect of the mode change on 
fatigue properties is illustrated by the direct 
comparison of the constant life curves for the three 
Goodman diagrams.  In this figure, the constant life 
curves for the three formulations of the Goodman 
diagram at 105 cycles are compared to one another.  
Four distinct regions of comparison are noted:  (1) the 
region of relatively high compressive mean stress (to 
the left of R = 10 ); (2) the region of relatively low 
compressive stress ( between R = 10 and R = –1); (3) 
the region of relatively low tensile stress (between R = 
–1 and R = 0.1); and (4) the region of relatively high 
tensile stress (to the right of R = 0.1).  In the first and 
third regions, the three formulations lie close to one 
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Fig. 5:  Comparison of the Three Goodman Diagram 

at 105 Cycles 
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Fig.  7a:  Mean Goodman Diagram 
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Fig. 7:  Comparison of Experimental Data to Predicted Failure 
using Linear Miner’s Rule 
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Fig. 6:  Normalized WISPERX Specurum 

another.  Thus, each of the three formulations will 
predict approximately the same damage rate for the 
stress cycles in this range.  For the fourth region (high 
tensile stress) the database formulation is below the 
linear and bi-linear formulations.  Thus, the database 
formulation is more severe (i.e., shorter predicted 
service lifetime) than the other two.  And, finally, for 
the second region (low compressive stress), the 
database formulation is above the linear and bi-linear 
formulations.  Thus, it is less severe.  Regions 2 and 3 
are where the composite is in transition between 
compressive and tensile failure modes. 
 

2.2 WISPERX Spectral Data  
Wahl et al [5] have conducted spectral loading tests of 
coupons using the WISPERX spectrum [3].  The 
WISPERX spectrum is the WISPER spectrum with 
the small amplitude fatigue cycles removed.  The 
spectrum, see Fig. 6, consists of over 25,000 peaks-
and-valleys (load reversal points).  The original 
formulation of the spectrum is in terms of load levels 
that vary from 0 to 64 with zero at load level 25.  For 
testing the load levels were changed to the normalized 
form shown in the figure. In this form, the laod at 
each reversal is ratioed to the maximum load. Thus, 
the test spectrum is a simple multiple of these reversal 
points by the maximum load in the spectrum.  In this 
form, the maximum load in the spectrum is 1.0 and the 
minimum is –0.6923. 
 
The experimental cycles-to-failure as a function of the 
maximum stress in the spectrum for material DD16 
are shown in Fig. 7  [5]. 
 
 



3 Damage Models 
Typically, the wind industry uses Miner’s rule to 
estimate damage under spectral loads.  Many other 
models for damage estimation have been proposed.  
Two, which are investigated here, are the nonlinear 
Miner’s Sum proposed by Hwang et al [13] and the 
nonlinear residual strength model proposed by Yang 
et al [14].  A complete description of these models is 
provided by Wahl et al [5]. 
 
3.1 Miner’s Rule 
Miner’s rule defines the damage D, predicted for a 
time interval T, as  

( )
( )

i

i i

n
 = 

N
σ
σ∑D      ,  (7) 

where n is the number-of-cycles, N is the number-of-
cycles to failure and σ describes the stress level of 
fatigue cycle.  For our case where we will be using the 
Goodman diagrams to determine N, σ is divided into 
two components: the mean stress of σm and the 
amplitude of σA of the stress cycle.   
 
Failure occurs when D equals one. The predicted 
service lifetime L, is the time T required for the 
damage D (T) to accumulate to a value of one. 
 
3.2 Residual Strength Models 

3.2.1 Miner’s Sum Nonlinear Model 
Miner’s rule may also be used to describe the residual 
strength of composites, see discussion by Wahl et al 
[5]. In its general form, the nonlinear Miner’s sum 
model has the following form: 

i
jR

j =1 o ji

n
 = 1 - 

N

ν
σ
σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑      ,  (8) 

 
where  [σR/σo] is the ratio of the residual strength to 
the static strength σo after step i and the exponent ν is 
the nonlinear degradation parameter.  As discussed 
above, Ni is evaluated at their implied stress state (σm , 
σA) of ni. 
 
3.2.2 Generalized Nonlinear Model 
A generalized nonlinear residual strength model, see 
discussion by Wahl et al [5], takes the form: 
 

( )
( )

*
i i-1i oR

o o i m Ai

n  + n -  =  
N  , 

ν
σ σσ

σ σ σ σ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  ,  (9) 

where ni is the current number of stress cycles and   
(ni-1)* is the number of  previous equivalent cycles 

determined for the current stress level.  The previous 
equivalent cycles is the number of cycles which would 
give the residual stress ratio [σR/σo]i if cycled only at 
(σm , σA). 
 
If Eq. 9 is rewritten as: 
 

( ) ( )

( )

*i oR
i i-1

o o i ii

*
i i i-1

 - 1 =  n  + n
N  , R

 A  n  + n

ν
ν

ν

σ σσ
σ σ σ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

   , (10) 

   
then, 
 

( ) ( )*
i i-1 i-1 i-1A  n   A  n

ν ν⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦
   ,  or (11) 

 

( ) ( )
1

* i-1
i-1 i-1

i

An    n
A

ν⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  . (12) 

 
For this analysis, we have computed the residual 
strength sequentially using Eqs. 9 through 12 for each 
half-cycle of the sequence.   
 
3.2.3 Residual Strength Ratio 
As defined by Eqs. 8 and 10, the residual strength of 
the composite after i steps for both residual strength 
models is  
 

( ) ( )R
R oi+1 i

o i

 =  σσ σ
σ
⎡ ⎤
⎢ ⎥
⎣ ⎦

     . (13) 

Failure occurs when: 
 

( )i R i
   σ σ≥      . (14) 

While Eq. 13 is rather obvious, this equation implies 
that the residual tensile and compressive strength are 
being reduced proportionally.    
 
In this form, the ratio of the residual stress to the static 
strength is a monotonically decreasing function.  As 
the static strength σo may equal either the tensile or 
the compressive strength (depending on the R-value 
of the ith cycle), the absolute value of the residual 
strength is not a monotonically decreasing function. 
 
4 Damage Predictions 
The models cited in Section 3 are used here to predict 
the failures of the coupons tested under the WISPERX 
load spectrum that are cited in Section 2.  
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Fig.  8a:  Mean Goodman Diagram 

 

0

100

200

300

400

500

600

2 3 4 5 6 7 8

Cycle to Failure

M
ax

im
um

 S
tr

es
s 

L
ev

el
, M

Pa

  Linear Miner's Rule

 Nonlinear Miner's Sum 0.95  

  Experimental Data

Number of WISPERX Passes:  1 2     10     100   1000 

0

100

200

300

400

500

600

2 3 4 5 6 7 8

Cycle to Failure

M
ax

im
um

 S
tr

es
s 

L
ev

el
, M

Pa

  Linear Miner's Rule

 Nonlinear Miner's Sum 0.95  

  Experimental Data

Number of WISPERX Passes:  1 2     10     100   1000 

 
 

Fig.  8b:  95/95 Goodman Diagram 
 
 

Fig. 8:  Comparison of Experimental Data to Predicted 
Failure using NonLinear Miner’s Sum Residual Strength 

Models 

4.1 Miner’s Rule 
The predictions for Miner’s rule using the three mean-
value Goodman diagrams (see Fig. 2) are shown in 
Fig. 7a.  The linear Goodman diagram predicts the 
longest lifetimes (cycles-to-failure) and the full 
Goodman diagram predicts the shortest lifetimes.  
This comparison illustrates that the mean fits do not 
pass through the mean of the data.  Rather, all three 
formulations predict service lifetimes that are 
significantly higher than the measured lifetime. 
 
The predictions for Miner’s rule using the three 95/95 
Goodman diagrams (see Fig. 3) are shown in Fig. 7b.  
Again, the linear Goodman diagram predicts the 
longest lifetimes (cycles-to-failure) and the full 
Goodman diagram predicts the shortest lifetimes.  
This comparison illustrates that the linear 95/95 
Goodman diagram predicts service lifetimes that are 
higher than the measured lifetime.  And, the full 95/95 
Goodman diagram predicts lifetimes near the mean of 
the experimental data. 
 
Thus, Miner’s rule does not predict the measured 
lifetimes very well.  And, even the 95/95 Goodman 

diagrams are non-conservative in that they predict 
longer service lifetimes than those measured in the 
tests using the WISPERX load spectrum.  At best, the 
full 95/95 Goodman diagram predicts the mean of 
measured data. 
 
4.2 Residual Strength Models 
The predicted lifetimes for spectral loading using the 
WISPERX spectrum are summarized in Figs. 8 and 9. 
  
4.2.1 Nonlinear Miner’s Sum Model 
Noting that in Fig. 7, the slopes of the predicted 
lifetime curves are consistent with the data, but they 
are shifted to the right of the data.  The nonlinear 
Miner’s Sum model described in Eq. 8 shifs the 
prediction to the left when the exponent ν is taken to 
be less than one.  Using a trail-and-error method, a 
value of ν = 0.95 was chosen as the best fit to the 
experientially measured lifetime data using the 95/95 
Goodman diagram. The predictions for the linear 
residual strength model are shown in Fig. 8.   
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Fig.  9a:  Mean Goodman Diagram 
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Fig.  9b:  95/95 Goodman Diagram 

 
 

Fig. 9:  Comparison of Experimental Data to Predicted 
Failure using Nonlinear Residual Strength Models 
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Fig.  10a:  Mean Goodman Diagram 
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Fig.  10b:  95/95 Goodman Diagram 

 
 

Fig. 10:  Comparison of Experimental Data to Predicted 
Failure using NonLinear Miner’s Sum Residual Strength 

Models 

As shown in this figure, the lifetime curve predicted 
by Miner’s rule has been shifted to the left by 
approximately a half-decade of cycles by the linear 
residual strength model.  The predictions are in very 
good agreement with the measured lifetimes.  Namely, 
the predicted lifetimes are near the mean of the data in 
Fig. 9a and at or below the measured lifetimes in Fig. 
9b. 
 
4.2.2 Nonlinear Residual Strength Model 
The predictions for the nonlinear residual strength 
model using the full and the 95/95 Goodman diagram 
(see Fig. 3c and 4c) are shown in Fig. 9.  These data 
were used to determine an appropriate value for the 
nonlinear degradation exponent ν.  As shown in this 
figure, for ν = 1, the prediction lies on top of the 
95/95 Goodman Miner’s rule prediction.  For 
illustrative purposes, a ν = 1.8 was also shown in Fig. 
9b.  The predictions for this value of ν also lies on top 
of the 95/95 Goodman Miner’s rule prediction.   
 
Using the value chosen by Wahl et al [5] of ν = 0.265, 
the predictions are in general agreement with the data.   

Namely, the predicted lifetimes are near the mean of 
the data in Fig. 9a and at or below the measured 
lifetimes in Fig. 9b.  Thus, the nonlinear model with 
an exponent of 0.265 is a good predictor of the 
measured lifetime when used with the full Goodman 
diagram. 
 
The step in the predicted lifetime at approximately 
400 MPa and 104 cycles is a direct result of the 
WISPERX spectrum.  As shown in Fig. 6, this load 
spectrum contains one very large tension cycle after 
approximately 5000 cycles.  This cycle is the cause of 
failure at both levels of the cited step.  Namely, the 
residual strength is progressively decreasing, until it 
encounters this very large cycle.  This cycle exceeds 
the current residual strength of the composite and 
failure insures.    
 
4.2.3 Residual Strength Comparisons 
Figures 10 and 11 illustrate the predicted residual 
failure strength of the composite using the linear 
Miner’s rule and the two nonlinear residual strength 
models. 
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Fig.  11a:  Mean Goodman Diagram 
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Fig.  11b:  95/95 Goodman Diagram 
 

Fig. 11:  Comparison of Experimental Data to 
Predicted Failure using  the Nonlinear Residual 

Strength Model at a Maximum Load Level of 250 
MPa 



The major difference between the three models is 
illustrated in Fig. 11.  As shown in this figure, the loss 
of residual strength as fatigue cycles accumulate is 
very different.  For Miner’s rule, the composite retails 
its strength for most of its lifetime, and, as failure 
approaches, its residual strength drops precipitously.  
For the nonlinear Miner’s sum with ν = 0.95, the 
residual strength curve maintains the same form, but is 
shift to the left, i.e., a shorter lifetime.   For the 
nonlinear residual strength model with  ν = 0.265, the 
residual strength starts decreasing almost immediately 
and continues to decrease until failure occurs.  Also 
illustrated in this figure is the ability of both nonlinear 
residual strength models to predict the measured 
lifetime of the composite at this load level, i.e. at a 
maximum load level of 250 MPa.   
 
5 Concluding Remarks 
The updated Goodman diagrams presented here have 
been developed using the MSU/DOE Fatigue Data 
Base [2].  The diagram is based upon S-N data 
obtained at thirteen different R-values.  Seperate 
Goodman diagrams were constructed using both the 
mean and the 95/95 representations of the data.  The 
effects of these improved representations of fiberglass 
composite behavior were illustrated using coupons 
tested to failure using the WISPERX load spectrum 
[3].  These comparisons illustrate that when a Miner’s 
rule damage criterion is used,  the mean fits of the 
data do not predict failure very well, while the 95/95 
predicts failures near the mean of measured data.    
Both a nonlinear Miner’s sum model and a nonlinear 
residual strength model used with the 95/95 Goodman 
diagram predicts the lower bound of the measured 
data very well and when used with the mean 
Goodman diagram, the nonlinear models also predict 
the mean lifetime very well. 
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