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Theoretical models are useful to investigate the drivers of community dynamics. Notable7

are models that consider the events of death, birth, and immigration of individuals as-8

suming they only depend on their abundance – thus, all types share the same parameters.9

The community level expectations arising from these simple models and their agreement10

to empirical data have been discussed extensively, often suggesting that in nature, rates11

might indeed be neutral or their differences not important. But, how robust are these12

model predictions to type-specific rates? And, what are the consequences at the level13

of types? Here, we address these questions moving from simple to diverse communities.14

For this, we build a model where types are differently adapted to the environment. We15

adapt a computational method from the literature to compute equilibrium distributions16

of the abundance. Then, we look into the occurrence-abundance pattern often reported in17

microbial communities. We observe that large immigration and biodiversity – common in18

microbial systems – lead to such patterns, regardless of whether the rates are neutral or19

non-neutral. We conclude by discussing the implications to interpret and test empirical20

data.21

Keywords: ecology, neutral theory, niche theory, migration, biodiversity, mathematical model.22
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1 Introduction23

Theoretical models have been instrumental in understanding ecological systems. Historically, a24

handful of puzzling natural observations have motivated their development – from the limits of25

exponential growth by Malthus [1] to the competition of species by Lotka and Volterra [2, 3].26

The stark difference of the frequencies of species within communities is one such observation.27

While few species are very abundant, many others barely appear in community surveys [4]. Two28

hypotheses have dominated the scientific discussions. On one hand, it is proposed that biotic29

interactions and environmental filtering make trophically similar species occupy different niches,30

which allows differences in abundance while preserving diversity. This is known as niche theory31

[5]. Alternatively, Hubbell and others [6] have emphasized that even if niche differences are32

discounted, so only species’ abundances matter, random fluctuations can lead to the patterns33

of abundance and diversity observed in nature. This is known as neutral ecological theory [7].34

Despite their stringent assumptions, neutral models often predict patterns observed in com-35

munities as different as the tropical rainforest of Barro Colorado island [7] and host-associated36

microbiomes [8, 9, 10]. With time, neutral models have become null hypotheses used to discard37

the need for complex mechanistic explanations in data at the community level [6].38

But how does a neutral model work? In a neutral model the death and birth of individuals39

account for changes in community composition. However, because each rate is identical for40

all types, after some time, stochastic drift leads to the extinction of all but one type [11].41

Thus, to preserve diversity, an external source of individuals by immigration or speciation is42

needed. Here, neutral theory builds upon island biogeography. In this theory, MacArthur and43

Wilson [12] have modelled the community composition of small habitats (“islands”) connected44

by migration to a larger habitat (“mainland”). In neutral models, a local community commonly45

receives individuals from an external and larger community [13]. Such community can itself46

undergo internal changes or, by separation of time scales, assumed to be constant [7, 13].47

Early on, neutral models have been used in macroecology to address the patterns of diversity48

and abundance of species [7, 6]. More recently, driven by developments in sequencing tech-49

nologies, the study of patterns of occurrence and mean frequency in microbial communities has50

become possible [14]. At this scale, ecological drift also seems to greatly influence the commu-51

nity dynamics, leading to hypothesize that many microbial taxa could be classified as neutral52
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[15, 10]. However, few taxa, referred to as non-neutral, have occurrences and frequencies differ-53

ent than neutrally expected. It has been suggested that the last group might include, among54

others, pathogens and symbionts [10].55

At least two possibilities could lead to deviations from neutrality. Either different processes56

from those in the neutral model are necessary, or, alternatively, not all the parameters of the57

model are actually neutral. Both of these lead to develop models of selection [11]. Although58

many such models have been developed from niche theory assumptions, fewer have been devel-59

oped from a neutral theory basis [6, 16]. A direct connection from neutral to selective models60

would allow to comparing their patterns while acknowledging that both might be operating61

simultaneously. Indeed, the role of non-neutral processes can only be rejected after ensuring62

that they can not produce “neutral” patterns [16], especially in data.63

Neutral and niche models have been connected in several ways [17, 18, 13]. Some authors64

have assumed that the rate of types are solely determined by the environment, finding that65

neutrality might overshadow the niche structure effect [19], depending on diversity, dispersal,66

and niche overlap [17]. Alternatively, using Lotka-Volterra models with immigration, the ef-67

fect of competitive interactions has been studied. Early models focused on intraspecific [20] or68

interspecific [21] competition. Later on, both were considered simultaneously. Haegeman and69

Loreau tuned the niche overlap using symmetric interactions to investigate the success behind70

the neutral assumption [18]. Kessler and Shnerb classified the dynamics emerging from inter-71

specific interactions, finding that the neutral case links all classes [13]. Focusing on intraspecific72

interactions, Gravel et al. studied the influence of immigration, suggesting a continuum from73

competitive to stochastic exclusion [17]. Throughout these studies, diversity, community size,74

and environmental fluctuations seem to have great relevance, as pointed out by Chisholm and75

Pacala and Fisher and Mehta.76

This previous research has proven useful to bridge neutral and selective theories. The link has77

been instrumental to consider migration, speciation, and stochastic demography key compo-78

nents in ecology. Along this line and motivated by the particularities of microbial communities,79

large community size and taxa diversity [15, 23, 14], here we investigate the commonly observed80

occurrence-abundance pattern in neutral and non-neutral contexts. Similarly to Sloan et al.81

and Allouche and Kadmon, we model death, birth, and immigration within a community, but82

in contrast to these neutral models, type-specific growth and death rates are determined by the83
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environment.84

2 Results85

2.1 A spatially-implicit death-birth model with immigration86

We consider a set of local communities connected by immigration to a larger community which87

contains multiple types of individuals. While local communities change as a result of the88

death, birth, and immigration of individuals, the larger community changes on a much longer89

time-scale – so immigration to local communities can be assumed to be constant. To derive a90

dynamical equation of a local community composition, we account for the events that change91

the frequency xi of each type i = 1, ..., S within each local community. Individuals die with a92

rate proportional to the product xiφi of their frequency and their death rate φi. Additionally,93

they are born proportional to the product xifi of their frequency and their growth rate fi – or94

arrive with a fraction of the immigration rate m that reflects their frequency pi in the external95

environment. Combining these processes, we obtain96

dxi

dt
= fixi − φixi +mpi. (1)

Assume for now an equal death rate for all types, φi = φ, so only fi, m, and pi are free97

parameters. To hold the community size constant, we use
∑

i dxi/dt = 0 to find φ = f̄ + m,98

where f̄ =
∑

j xjfj is the average growth rate of a randomly selected individual. In this way99

dxi

dt
= xi(fi − f̄) +m(pi − xi). (2)

Without immigration, m = 0, Eq. (2) shows that only types whose growth rate is larger100

than the average increase. After sufficient time, only the type with the largest growth rate101

remains. Coexistence is only possible in the neutral case, where all types have the same growth102

rate, fi = f̄ . There, the initial frequencies remain unchanged. Immigration, m > 0, creates an103

equilibrium that resembles the external composition, pi, that for sufficiently large immigration104

might promote coexistence, especially if types with small growth rate migrate more. Similar105

results are obtained if we assume equal growth rate for all types, fi = f in Eq. (1) instead. In106

the general case, growth and death rates have opposing effects.107
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Eq. (1) provides useful insights about the dynamics and equilibria; however, only a stochastic108

model would allow us to compute observables such as the occurrence frequency and the variance.109

To develop such a model, we track the vector of absolute abundances instead, n, and list the110

transition rates that change it. The increase of type i by one individual occurs at the expense111

of the decrease of type j,112

R(n → n+ ei − ej) = φj

nj

N
(fini +mpi). (3)

Here ei and ej are vectors whose i-th or j-th element equals one and zero elsewhere. The113

carrying capacity of the community is given by N . The master equation accounts for changes114

in the probability of observing the community composition n through time,115

∂P (n, t)

∂t
=−

∑

i,j
i 6=j

P (n, t) (R(n → n+ ei − ej) +R(n → n− ei + ej))

︸ ︷︷ ︸

Probability outflux

+
∑

i,j
i 6=j

(P (n+ ei − ej, t)R(n+ ei − ej → n) + P (n− ei + ej, t)R(n− ei + ej → n))

︸ ︷︷ ︸

Probability influx

,

(4)

where P (n, t) is the probability density of community composition n at time t.116

In this work, we investigate the probability distribution at equilibrium, i.e. the state where117

the master equation equals zero. In this case, the influx and outflux to each state balance each118

other, ending up with a system of equations that can be solved to find P (n). For communities119

composed of two types (S = 2), a detailed balance analysis [24] leads to a recurrence equation120

of the arbitrarily denoted type 1121

P (n1) = P (0)

(n1−1,1)
∏

n=(0,N)

R(n → n+ e1 − e2)

R(n+ e1 − e2 → n)
, (5)

satisfying
∑N

0 P (n1) = 1. In this case, the transition rates are simplified to the single variable122

n1, using n2 = N − n1 and p2 = 1− p1.123

For communities with more than two types (S > 2) analyses are more challenging, as all124

possible compositions must be considered. This is particularly true for microbial communi-125

ties, where many types interact (101 to 104 taxa are common) in large communities (103 to126
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1014 individuals). Although a recurrence equation exists [21], the exponential increase in the127

number of states and transitions with S and N , make its computation unfeasible. This is a128

problem common to microscopic and even mesoscopic descriptions, which has been deemed129

“the curse of dimensionality” [25]. In neutral models, the equality of rates allows to reduce130

analyses to a single dimension – that of a focal type [15]. However, unless density dependence131

is neglected, non-neutral models are inherently multidimensional, as transitions depend on the132

current community composition.133

A potential way forward is to acknowledge that, typically, rather than being interested in134

the probability of every possible community, we are interested in marginal probabilities. In135

other words, the added probabilities over various dimensions. Methods of model reduction136

have been developed towards this aim. Based on various assumptions, these methods sacri-137

fice “microscopic” information in the interest of specific observables. Jahnke introduced the138

model reduction by conditional expectations (MRCE), where, while selected types are described139

stochastically, others are modeled using a mean-field approximation [26]. The MRCE is derived140

from the Bayes theorem, by which P (n, t) is given by the product of two probabilities, one for141

some chosen types and one for the conditional probability of the others. Then, the probabilities142

of the others are replaced by expected abundances. Because of the last point, the method is143

particularly suited to systems where types have peaked distributions and large populations – a144

situation that can be akin to some microbial communities.145

In this paper we combine the MRCE method [26] with a detailed balance analysis [24] to146

compute the marginal probability distribution of types within a microbial community. For147

each distribution at equilibrium, we extract the probability of occurrence, P (ni ≥ 1), the mean148

frequency E(ni)/N , and compare them in situations of neutrality versus non-neutrality.149

To apply the MRCE method, we adapt our model to the convention in [26]. First, we split150

the vector of abundances n ∈ Z
S into a focal type i, ni, and the set of others, nj ∈ Z

S−1, j 6= i,151

for which the marginal probability, P̃ (ni) ≈ P (ni), and the expected abundance conditioned152

on the focal type, (ñj|ni) ≈
∑

nj
njP (nj|ni), are approximated. Then, each transition rate is153

factored as the product of rates of the focal type and other types,154

R(n → n+ ei − ej) = R+
i (ni)R

−
j (ñj|ni) (6a)

155

R(n → n− ei + ej) = R−
i (ni)R

+
j (ñj|ni). (6b)
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In our model, R+
i (ni) = fini + mpi, R−

j (ñj|ni) = φj
ñj

N
, R−

i (ni) = φi
ni

N
and R+

j (ñj|ni) =156

fjñj + mpj. With these transformations, the equilibrium is given by the simplified master157

equation of the focal type i,158

0 =− P̃ (ni)

(

R−
i (ni)

S∑

j 6=i

R+
j (ñj|ni) +R+

i (ni)
S∑

j 6=i

R−
j (ñj|ni)

)

+ P̃ (ni + 1)R−
i (ni + 1)

S∑

j 6=i

R+
j (ñj|ni + 1)

+ P̃ (ni − 1)R+
i (ni − 1)

S∑

j 6=i

R−
j (ñj|ni − 1),

(7a)

and a set of equations for the expected abundance of the others conditioned on the abundance159

of the focal type (ñj|ni),160

0 =− (ñj|ni)P̃ (ni)

(

R−
i (ni)

S∑

j 6=i

R+
j (ñj|ni) +R+

i (ni)
S∑

j 6=i

R−
j (ñj|ni)

)

+ P̃ (ni + 1)R−
i (ni + 1)

(
S∑

j 6=i

R+
j (ñj|ni + 1)((ñj|ni + 1) + ej)

)

+ P̃ (ni − 1)R+
i (ni − 1)

(
S∑

j 6=i

R−
j (ñj|ni − 1)((ñj|ni − 1)− ej)

)

.

(7b)

We solve this system of equations in the range of ni = 0, . . . . , N , starting from ni = N . By161

definition P̃ (N + 1) = 0, so no probability flux to or from N + 1 occurs. Then, the influx from162

ni = N implies R−
j (ñj|N) = 0, specifically (ñj|N) = 0. We end up with a simplified system of163

equations for ni = N . To compute P̃ (N − 1) and (ñj|N − 1) from this, we assume without loss164

of generality P̃ (N) = cp, where cp is a positive constant. Consecutive P̃ (ni− 1) and (ñj|ni− 1)165

are computed iteratively. Finally, the normalization
∑N

0 P̃ (ni) = 1 is enforced.166

A reliable numerical method is needed to solve Eq. (7a-7b). The large difference between167

the magnitudes of P̃ (ni − 1) and (ñj|ni − 1) can cause numerical problems. To avoid them, we168

extract P̃ (ni − 1) from Eq. (7a) and substitute it in Eq. (7b) – note that all else are known169

values. The resulting system of equations is solved for (ñj|ni − 1), and these substituted in170

Eq. (7a) to compute P̃ (ni−1). Caution is needed in cases that lead to a normalized P̃ (N) ≈ 0,171

especially if computations are performed in a machine with limited float representation. In this172

case, we find the ni = n∗
i closest to ni = N that while declaring P (ni > n∗

i ) = 0 and P (n∗
i ) = cp173

allows for the iterative solution.174
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Figure 1: Expected equilibrium of a type if rates in the community are neutral. (A) If the immigration

is very small, the population either goes extinct or reaches fixation. A larger immigration reduces the

variation in frequency, centered at its fraction of immigrants (here p1 = 0.5). (B) The mean frequency

increases with the fraction of immigrants p1, but is independent of the immigration rate m. (C) Also

the occurrence frequency increase with the fraction of immigrants (p1), but in an S-shaped manner

that depends on m. Deviations from these patterns have been suggested to indicate non-neutral rates

[10]. The community size is N = 103.

Compared to the fully stochastic model that scales with 2−SNS, here, we solve N(S − 1)175

equations for the marginal probability of each type, i.e. N(S2−S) equations for the community.176

This model reduction allows us to approximate the equilibrium of large communities with many177

interacting types more rapidly.178

2.2 The neutral expectation179

We start by considering the neutral case – a situation where the rates of all types are equal180

(fi = φi = 1 for all i in {1, ..., S}). In contrast to the deterministic model at equilibrium,181

Eq. (2), the frequencies of single stochastic realizations change through time, driven by the182

probabilistic nature of events. As a result, a distribution of frequencies centered at the value183

set by the source of immigrants (pi) emerges. The spread of this distribution inversely depends184

on the magnitude of the immigration, m.185

As shown in Fig. 1A, large immigration drives the equilibrium distribution towards its mean186

value, pi. On the contrary, without or little immigration, the distribution splits. Thus, the187

frequencies zero (no individuals of the i-th type) and one (only individuals of the i-th type) are188

the most probable, decaying towards intermediate frequencies. This is a consequence of noisy189

8
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fluctuations that, for a single realization, lead to the extinction of all but one type. Whether190

the frequency one or zero is most likely depends on the proximity of the initial state.191

The mean frequency of the stochastic model identically corresponds to the frequency of192

the deterministic model. As shown in Fig. 1B, regardless of the total immigration, the mean193

frequency of a type increases linearly with the fraction of migrants of its kind.194

Besides the mean frequency, one of the simplest, but most informative observables is the195

occurrence frequency of individuals of a given type in the community. In other words, the196

probability of observing at least one individual of that type, P (ni ≥ 1). Immigration increases197

this probability up to the point where the type is always observed in the community (Fig. 1C).198

Importantly, this probability does not increase linearly with the fraction of migrants. Instead,199

an S-shaped curve is observed, where changes of immigration of rare or abundant types do not200

modify their occurrence.201

Using two simple observables, the mean frequency and the occurrence frequency, we can202

describe the state of types within a community. In the following, we relax the assumption of203

neutrality – not enforcing equal growth and death rates. Then, we contrast both observables204

to their neutral expectation.205

2.3 Immigration lessens the effect of growth and death differences206

To understand the effect of non-neutral rates, we start from a community composed of only207

two types. Furthermore, we assume only one of them has a non-neutral rate, either fi or φi. In208

this way, we aim to see the effect in the neutral and non-neutral fractions of the community.209

For a growth rate below one (f1 < 1) or a death rate above one (φ1 > 1), the non-neutral type210

has a reduced mean frequency that preserves its linear relationship to the fraction of immigrants211

(Fig. 2A-B and Fig. 3A-B). However, in contrast to the neutral expectation, immigration does212

play a role, as large migration can reduce the changes occurring in the internal community213

dynamics (compare panels A to B in Fig. 2-3). In this context, the neutral type (f2 = φ2 = 1)214

benefits from the reduced proliferation of its partner, thus, gaining in frequency, especially if215

most immigrants belong to the neutral type.216

A similar picture arises for the occurrence pattern. While the non-neutral type occurs less217

frequently, the neutral type thrives, occurring more often than when both types are neutral218

(Fig. 2C-D and Fig. 3C-D). The change can be as severe as losing all non-neutral individuals219

9
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Figure 2: Effect of non-neutral growth rates on the equilibrium of a community with two types. One

of two types has non-neutral growth rate (f1 6= f2 = 1), but the death rate is neutral (φ1 = φ2 = 1).

In contrast to its all-neutral (f1 = f2 = 1) expectation, a lower growth rate of the non-neutral

type (f1 < f2) reduces its mean frequency and occurrence. The change can be of several orders

of magnitude. Inversely, a larger growth rate of the non-neutral type (f1 > f2) increases its mean

frequency and occurrence. The effect of growth rate differences on the internal dynamics is reduced

if immigration is larger, especially for slowly growing types. Immigration is (A, C) m/N = 10−3 and

(B, D) m/N = 10−1, with community size N = 103.

from the community (panel C in Fig. 2-3). Crucially, large total immigration can prevent this220

(compare panels C to D in Fig. 2-3), even if most migrants are of the neutral type.221

Once the roles are reversed, so the non-neutral growth rate is above one (f1 > 1) or the death222

rate below one (φ1 < 1), the mean frequency and occurrence patterns mirror the previous results223

(Fig. 2 and Fig. 3). Although changes produced by non-neutrality in growth (f1 6= 1) or death224

(φ1 6= 1) rates are qualitatively similar, they show quantitative differences.225
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Figure 3: Effect of non-neutral death rates on the equilibrium of a community with two types.

One of two types has non-neutral death rate (φ1 6= φ2 = 1), but neutral growth rate (f1 = f2 =

1). Differences in death rates modify the mean frequency and occurrence of both types. A larger

immigration reduces differences to the all-neutral (φ1 = φ2 = 1) expectation in a similar fashion to

differences in growth rate (Fig. 2). Immigration is (A, C) m/N = 10−3 and (B, D) m/N = 10−1,

with community size N = 103.

We conclude that even for the simplest community (one with two types), just one non-neutral226

rate is enough to change the community occurrences and abundances substantially from their227

all-neutral expectation. This is more visible through the mean frequency (as changes of several228

orders of magnitude are possible) and for communities with little external migration – where229

the internal dynamics is more important.230
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Figure 4: Occurrence-abundance pattern in general non-neutral communities. (A) The non-neutral

pattern of a diverse community largely resembles neutral patterns, see Fig. 1C. (B) However, the

change from neutrality of each type can be large (blue arrows), shown here for m/N = 10−3 . In

general, the mean frequency does not equal the fraction of immigrants pi, assuming otherwise underes-

timates the change from neutrality (yellow arrows). (C) Similar to a community with two types, Fig. 2-

3, the overlap to the neutral expectation increases when immigration, m, is increased to m/N = 10−1.

The growth and death rates, fi and φi, were sampled from a normal distribution with mean 1 and stan-

dard deviation 0.1, where P (fi < 0.8) = P (fi > 1.2) ≈ 0.023 and P (φi < 0.8) = P (φi > 1.2) ≈ 0.023.

The fractions of migrants pi range from 10−4 to 10−1 and have a G ≈ 0.6, Eq. (8), indicating inter-

mediate immigration asymmetry. Except from the immigration rate m, all rates in (B-C) are equal.

The community size is N = 103.

2.4 Neutral and non-neutral patterns are similar at the community level231

but full of differences at the level of types232

Communities with two types might occur in vitro. However, in nature, communities are much233

more diverse, especially for microbes. We have produced random instances of such diverse234

communities, sampling growth and death rates, fi and φi, from a normal distribution with235

mean one and a desired standard deviation. Similarly, we have produced random fractions of236

migrants, pi, just conditioned on the Gini index of the community,237

G =
1

S − 1

∑

i,j

|pi − pj|. (8)

This number that indicates the asymmetry in immigration between types from zero to one,238

allow us to compare communities quantitatively, regardless of their number of types S. As an239

example, for G = 0 the fractions of migrants are identical for each type, while for G = 1 the240
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Figure 5: Occurrence-abundance pattern for different levels of asymmetry in the parameters. A

pattern is robust to various asymmetries in the immigration, pi, and growth and death rates, fi and

φi. Each community has forty types. For low symmetry in immigration, the types span the range

more widely. Colors from dark to light indicate how non-neutral a type is, quantified as the geometric

distance from (fi, φi) = (1, 1). Types overlap regardless of their non-neutrality. The fractions of

immigrants, pi, have a G ≈ 0.3 (A-B) or G ≈ 0.6 (C-D). The growth and death rates, fi and φi,

were sampled from a normal distribution with mean 1 and standard deviations 0.1 (A, C) or 0.2 (B,

D). In the last case, P (fi < 0.8) = P (fi > 1.2) ≈ 0.159 and P (φi < 0.8) = P (φi > 1.2) ≈ 0.159.

Immigration is m/N = 10−1, with community size N = 103.

source pool only contains a single type.241

Using these parameters, we have computed the occurrence and abundance frequency of all242

types in a certain community. Interestingly, the community patterns that we observe are very243

similar to those expected from neutrality (Fig. 4A compared to Fig. 1C) – even if asymmetries244

of growth, death, and immigration increase (Fig. 5). In particular, large immigration together245

with high biodiversity consistently lead to these patterns (Fig. 5). This indicates that neither246
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neutrality nor non-neutrality, but large immigration and biodiversity are behind these patterns.247

Even when neutral and non-neutral patterns are similar at the community level, we observe248

large differences at the level of types. While in the “all-neutral” case, the mean frequency equals249

the fraction of migrants, E(ni)/N = pi, this is not the case in a non-neutral scenario (Fig. 4B-250

C). Neither is for the occurrence frequency. The distance from the neutral expectation of each251

type is not simply related to the level of non-neutrality of its own parameters. Rather, neutral252

and non-neutral types fall on, above, or below the neutral expectation (Fig. 5), highlighting253

the inherent multidimensionality determining the equilibrium of these communities.254

To investigate the effect of single parameters at the level of types, we chose two representative255

types – one close to the neutral expectation, and another one distant from it (Fig. 6A). Our256

results show that types do not remain on or far from the neutral expectation. Rather, the257

relative magnitude of their growth and death rate, fi and φi, is crucial to observe simultaneous258

decrease or increase in occurrence and mean frequency (Fig. 6C-D). In particular, types with259

a smaller fraction of immigrants, pi, experience more abrupt changes. Only large fractions of260

immigrants allow to overcome the effect of growth and death rate differences, leading to large261

occurrence and mean frequency at the level of types (Fig. 6B).262

2.5 To test neutrality the niche structure must be known first263

So far we have used our model to compute observables based on known parameters. However,264

we can invert this process to infer parameters from simulations or experimental data.265

Particularly relevant is the possibility of testing niche structure in data [15, 8, 9, 10]. Our266

model indicates care is needed to quantify the true difference from neutrality (Fig. 4B-C). In267

fact, the comparison of the selective case to the neutral case can only be inferred after fitting268

all parameters of the general model (m, pi, fi, and φi for all i). This is in contrast to the –269

often used – method by Sloan et al. for neutral conditions, where only the immigration rate m270

is fitted, while all growth and death rates are assumed fi = φi = 1, and the fraction of migrants271

pi equalled to the mean frequency E(ni)/N . Our results indicate these assumptions on the272

data are unfounded and lead to underestimate niche structure (Fig. 4B-C), especially in large273

communities with many types. Moreover, the consistent occurrence-abundance pattern that274

we observe (Fig. 5), and often reported in data [8, 9, 10], emerges from a general death-birth275

processes with immigration, Eq. (3), not just from a neutral process (where fi = φi = 1 for276
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Figure 6: Effect of growth, death, and immigration at the level of types. (A) The community shown

corresponds to Fig. 5C, withG ≈ 0.6 for pi, and fi and φi drawn fromN (1, 0.1). Two types are spotted

by circles, one that falls on the neutral expectation and the other distant from it. Single parameters

are modified in (B-D) for both types. Arrows in the colorbars indicate their original values. (B) For

large fractions of migrants, pi, non-neutral types are indistinguishable from the neutral expectation;

only for small fractions they are below it. (C) Different growth rates, fi, lead non-neutral types to

fall on, above, or below the neutral expectation. Changes are especially abrupt for the type with less

immigration. (D) Different death rates, φi, mirror the effect of changing growth rates qualitatively.

Immigration is m/N = 10−1, with community size N = 103.

all i). Niche structure – and thus neutrality – can not be discarded or confirmed if certain277

parameters are fixed a priori [15].278

The large number of parameters to be fitted requires large datasets. For a community with279

S types, 3S + 1 parameters must be fitted, thus requiring at least 3S + 1 data points. The280

2S data points obtained from the occurrence and mean frequencies are not sufficient. We281

propose to include additional observables that can be readily computed from data [27]. These282

might include, but not be limited to, raw and central moments of the frequency. From this283

set of observables, available Bayesian methods [28] can be used to infer the parameters using284

Eq. (7a-7b).285

In Fig. 7, we show two potential observables, the variance and the second moment of the286

distribution. In a community with two types, S = 2, both observables reflect the differences in287

growth, fi, and death rates, φi. Only some variances overlap for distinct rates. In this sense,288
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Figure 7: Variance and second raw moment of the frequency. A community with two types is considered.

(A-B) One type has non-neutral growth rate (f1 6= f2 = 1) but neutral death rate (φ1 = φ2 = 1),

or (C-D) a neutral growth rate (f1 = f2 = 1) but non-neutral death rate (φ1 6= φ2 = 1). (B, D)

f1 > 1 and f1 < 1 lead to a second raw moment above or below the neutral expectation, respectively.

This moment increases continuously with the fraction of migrants, pi, while the variance reaches a

maximum at intermediate pi (A, C). In contrast to the second raw moment, the variance of different

growth and death rates overlaps. Differences in death rates mirror the effect of growth rate differences

qualitatively. Immigration is m/N = 10−1, with community size N = 103.

the second raw moment might provide more information to discriminate them. A set of similar289

observables could allow to characterize the rates of empirical communities.290

3 Discussion291

Understanding the drivers of communities is one of the main objectives of ecological research.292

In this work, we have used a stochastic death-birth model with immigration to investigate293
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the equilibrium distribution of communities. Comparing cases where changes only depend on294

the abundances to cases where types have different birth or death rates, we have identified295

conditions leading to a robust occurrence-abundance pattern – often reported empirically.296

Our approach acknowledges the intrinsic density dependence of communities, Eq. (3), but297

simultaneously allow us to compute the equilibrium distribution of large and diverse communi-298

ties, Eq. (7a-7b). Combining a method of model reduction [26] and a detailed balance analysis299

[24], we asked questions directly linked to empirical observations. In contrast to studies em-300

phasizing biotic interactions [20, 21, 18, 13], our model can be classified with studies that focus301

on the differential adaptation to the environment [17, 19]. As some of these studies, our results302

highlight the central role of immigration and biodiversity in community ecology [19, 22].303

We tested the reliability of our approach by reproducing known results of neutral adaptation304

[15]. Namely, that the mean frequency of a type equals its immigration and that the occurrence305

frequency increases in an S-shaped manner with the mean frequency, Fig. 1. These results306

already capture the important role of immigration but discard the frequency dependent effects307

of other types – for which biodiversity might be important.308

The match between community level patterns of neutral models and empirical data has been309

documented extensively [6, 8, 9, 10]. Still, some empirical evidence is at odds with neutral310

theory [29, 30]. The mismatch with evolutionary history – including phylogenetic trees [29, 30],311

is one of them. It has been observed that mild differences in adaptation lead to full agreement312

[31] – indicating the need to consider models with differential adaptation, even if this is mild.313

Here, we considered a general death-birth model where large immigration consistently led to314

a robust occurrence-abundance pattern. Interestingly, evidence suggests that large immigra-315

tion might indeed be common in various environmental and host-associated microbiomes [10].316

Others that deviate from the occurrence-abundance pattern have small immigration [10]. Such317

seems to be the case in Caenorhabditis elegans, where active destruction of microbes during318

feeding results in reduced immigration to the gut microbiome [32].319

A second observation is that with differential adaptation, biodiversity takes a central role.320

In contrast to the simplest community of two interacting types (Fig. 2-3), diverse communities321

promote an occurrence-abundance pattern that resembles the neutral case (Fig. 5). With322

biodiversity, less extreme occurrences and mean frequencies are observed (compare Fig. 2-3 to323

Fig. 5). Our results agree with research showing that in the limit of high biodiversity, various324
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neutral and non-neutral patterns converge at the community level [19].325

Previous research has speculated about the ecological role of types based on their location in326

the occurrence-abundance curve [10] – the motivation being the possibility to identify microbial327

taxa actively involved in biotic interactions. Our results indicate that such direct identification328

from occurrence-abundance curves remains challenging, mainly because neutral and non-neutral329

types can overlap (Fig. 6). We propose a way forward, based on the inclusion of new observables330

computed from data [27] (Fig. 7) combined with robust fitting approaches [28].331

Our focus at the level of types revealed the difficulty of assessing niche structure and neu-332

trality from empirical data. While niche and neutral patterns can be indistinguishable at the333

community level, at the level of types, big differences are observed (Fig. 5-6). Commonly, in334

microbial ecology, models have been tested at the community level, where, embraced by a prin-335

ciple of parsimony, neutral interpretations have been suggested [8, 9, 10]. Our model suggests336

this is indeed sensible for community level questions. However, for questions at the level of337

types – including that of ecological roles – general models including differential adaptation can338

not be avoided. In this case, no parsimonious preference can be given to neutral hypotheses.339

The last observation calls for a broader discussion on terminology. As defined by Fisher340

and Mehta, a community is “statistically neutral” if its distribution can not be distinguished341

from a distribution constructed under the assumption of ecological neutrality. We must note,342

however, that ecological neutrality implies statistical neutrality, but statistical neutrality does343

not necessarily imply ecological neutrality [22]. As our results indicate, a reference to large344

immigration and biodiversity, rather than neutrality, is more accurate and prevents mislead-345

ing interpretations, that in their worst form, could lead to unfounded generalizations or hold346

research questions back. On the contrary, our results suggest that numerous questions about347

neutrality, adaptation, and ecological roles, in microbial ecology and elsewhere are yet to be348

answered.349

Although we mainly focused on microbial communities, our work can be framed in the larger350

macro-ecological literature. There, a substantial number of models have linked neutral and351

niche theories [20, 21, 18, 13, 17, 19]. Heated debates have occurred; however, they have352

benefited from a close revision of the assumptions on the models and a careful discussion353

of their implications [19, 6, 31]. The observation of asymptotically equivalent patterns for354

neutral and non-neutral rates is one of their main results [19]. We believe microbial research355
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can be guided along this line while offering powerful methods to investigate general ecological356

questions [27]. In particular, the possibility to work, in vivo and in vitro, with large and diverse357

communities in much shorter time scales [33].358

Finally, we should mention some limitations of our work. A limitation of origin is that we359

considered a differential adaptation to the environment as the sole source of non-neutrality.360

Certainly, this is not true in nature, where types take part in numerous symbiotic interactions361

[13]. Therefore, any empirical application of our model should be preceded by evidence of362

little to no symbiosis. A technical limitation is that we have only approximated the stochastic363

dynamics [26]. Our results should be more robust in large communities where types have limited364

variance [26]. Interestingly, large immigration – which appears to be common in microbial365

communities [10] – might lead to satisfying this condition.366

Although we provided a focused analysis of the occurrence-abundance pattern at equilibrium,367

future work could study its dynamics [34] and derive exact equations for these and other ob-368

servables [27]. In addition, identifying neutral and non-neutral types remains an open problem.369

The development of methods for parameter inference from data [27] seems the way forward.370

4 Conclusion371

Here, we presented a general death-birth model with immigration. Using a method of reduction372

for the stochastic model, we analysed the equilibrium distribution of abundances for communi-373

ties equally or differently adapted to the environment. We observe that the community pattern374

of occurrence-abundance, often reported empirically, is consistently observed in conditions of375

large immigration and high diversity, regardless of the adaptation to the environment. However,376

at the level of types, differences in adaptation still lead to large changes.377

Availability of code378

The data generated and analysed during the current study can be simulated from the Python379

code available via GitHub at https://github.com/romanzapien/occurrence-abundance.git.380
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